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Abstract: We consider a square matdx whose entries have first order asymptotics of the
form (Ao)ij ~ & efNi whene goes to 0, for somajj € C andAjj € R. We show that
under a non-degeneracy condition, the order of magnituidbg dlifferent eigenvalues o,

are given by min-plus eigenvalues of min-plus Schur complets built fromA = (A;j),

or equivalently by generalized minimal mean weights of @it This construction gives,

in non singular cases, a graph interpretation to the slopélseoNewton polygon of the
characteristic polynomial aff.. It explains the order of magnitudes of eigenvalues in the
perturbation formula of Lidskil, ViSik and Ljusternikné it allows us to solve some cases
which are singular in this theor@opyright 2001 IFAC
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1. INTRODUCTION computed by applying the Newton-Puiseux algorithm
to the characteristic polynomial ofl.. The leading
Let Ac denote an x n matrix whose entries, which exponents\; of the eigenvalues ofl, are the slopes
are continuous functions af > 0, have first order  of the associated Newton polygon, but it is hard to
asymptotics of the formA.)ij ~ ajje™l whene goes  guess these slopes from the dominant exponents of the
to 0, whereaj; € C, andAjj € R The goal of this  gntries ofA,.
paper is to give first order asymptotics ~ Aje’i, ] ]
with 4; € C andA; e R, for each of the eigenvalues [N this paper, we show that the dominant exponents of
cl,.... C" of A, in some generic cases. the eigenvalues are ml_n-plus elgenvaIL_Jes of mln-plus
Schur complements built from the matrix of dominant
Computing the asymptotics of spectral elements is exponentsA = (Ajj), provided that certain (conven-
a central problem of perturbation theory, see Kato tjonal) Schur complements built from = (aj) are
(1995) and Baumgartel (1985). For instance, when jnyertible. This often allows us to get the first order
the entries ofA. have Taylor (or, more generally, asymptotics of the eigenvalues.df, by mere inspec-
Puiseux) series expansions dnthe eigenvalueg’, tion. For instance, if

have Puiseux series expansionseinwhich can be 1 4
€ €

Ac=10¢€e 2| | 1)
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Framework IV program through the research network ALAPEDES . L

(“The Algebraic Approach to Performance Evaluation of Dése we get by direct application of Theorem 1 below
Event Systems”). (without any computation) that the spectrum 4§




consists of three eigenvalues et al.(1983). See also Maslov and Samborskii (1992);
Ei ~ 3, ﬁf ~je V3 Lf’ ~ 213 @) Gaubert and Plus (1997); Bapat (1998).)

wherej = exp(2iz/3). See 83 for details (and for
more refined examples).

To a matrix A € (Rmin)™", we associate the (di-

rected) graphG(A), which has nodes,1..,n and

an arc(i — ) if Aj # 0. We say thatA is

The present work is a continuation of Akiat al. irreducible if G(A) is strongly connected. The min-

(1998), where related max-plus formulee were given plus spectral theorem states that an irreducible matrix

for the Perron eigenvalue and eigenvector, whkn A e (Rmin)™" has a unique eigenvalue,

is nonnegative. All these results are partial version- A

s of a “matrix Puiseux theorem”, which determines  pmin(A) = min min —2 -
. ) ) 1<k<niy,... ik k

the asymptotic expansions of the eigenvaluesdpf

by reasoning on4,, rather than on its characteristic \y,e say that a circuitiy — ip — -+ — ik — i1)

polynomial. This is the object of a forthcoming pa- ¢ (A is critical if (i1, . .. , ix) attains the minimum

per Akianet al.(2001). in (4), and we call critical the nodes and arcs of this

Theorem 1 below can be thought of as an extension ofCircuit. The critical nodes and critical arcs form the
a theorem due to Viik and Ljusternik (1960) and Lid- critical graph, GS(A).

skil .(1965), which giyes the first _order expansions The Kleene's starof a matrix A € (Rmin)™" is
ofhelgenvalues and eigenvectors, in the special casgyefined by

where

(4)

A=A Ap A’ |
Ae = Ao+ €b 3)

_ i.e. (A")ij = infk=0(A%)jj. All the entries of(A*)j;
for someb e C"™", using the Jordan structure of are> —oo if, and only if, pmin(A) > 0. When
Ao (see Moroet al. (19.97) for a recent overwgw). pmin(A) = 0, A* = A0 ... @ AN-1.
Theorem 1, together with the graph interpretation of
§4, shows that the dominant exponents of the eigenval-The min-plus spectral theorem also states that any
ues are given by generalized mean weights of circuit- €igenvector of an irreducible matriis a linear com-
s, which explains the dominant exponents found by bination of the columngomin(A)~*A)*; correspond-
Visik, Ljusternik and Lidskif, in the special case (3), N to critical nodeg. (We warn the reader that when
and allows us to solve cases which are singular in their® € Rmin \ {0} andB € R1:", =B should be inter-
theory. preted in the min-plus sense, i(ele)ij = —a +
Finally, we note that results of max-plus spectral the- Bij-)
ory were already applied to WKB type asymptotics If Ais anL x L matrix with entries inRmin, for all
in Dobrokhotovet al. (1992). See also Kolokoltsov J, K C L, we denote byA;k the J x K submatrix of

and Maslov (1997). A IfC C L,if & € Rmin\{0}, and if pmin(A " Acc) >
0, the (twisted, min-plus$chur complemeitf C in A
2. STATEMENT OF THE RESULT is defined by
SchurC, &, A)= Ann @ Anc(AAce)* A Acn.

2.1 Preliminaries
whereN = | \ C. Whenx = 1 = 0, we shall

We first recall some classical facts of min-plus alge- simply write Schu¢C, A) instead of SchucC, 1, A).
bra. See for instance Baccedt al. (1992) for more  Note that matrices are indexed by “abstract indices”,
details. not by integers 12, ..., k. For instance, ifA is a
{1,2,3} x {1, 2, 3} matrix, B = Schur{1, 2}, A) is

a {3} x {3} matrix, whose unique entry is denoted by
Bas (not by B1).

The min-plus semiringRmin, is the seR U {+o0} e-
quipped with the additiora, b) — a®b = min(a, b)
and the multiplicationa,b) — a® b = a+ b. We
shall denote by0 = +oo and1 = 0O the zero and  We shall also need conventional Schur complements.
unit elements ofRyin, respectively. We shall use the If a is a L x L matrix with entries inC, and if
familiar algebraic conventions, in the min-plus con- acc is invertible (we use the same notations as for
text. For instance, iA, B are matrices of compatible submatrices with entries Rmin), we define

dimensions with entries iRmin, (AB)ii = (A® 1
B)Ij — mink(Aik + Bkj)y A2 = A® A, eJtC. SChU(C, a) =anN —anc(acc) "acn -
Using the same symbol, “Schur”, both for convention-
al and min-plus Schur complements is not ambiguous:
considering min-plus Schur complements of complex
matrices, or conventional Schur complements of min-
plus matrices, would be meaningless.

We shall need some results from min-plus (or e-
quivalently, max-plus) spectral theory, which can
be found for instance in Baccellet al. (1992)
and Cuninghame-Green (1995). (The max-plus spec-
tral theorem has been discovered by many authors,
including Cuninghame-Green, Gondran and Minoux Both min-plus and conventional Schur complements
(1977), Vorobyev (1967), Romanovskil (1967), Cohen satisfy



SchufC U C’, a) = SchuxC, SchufC’,a)) (5)

forall L x L matricesa, and for all disjoint subsets of
indicesC, C’' C L, provided that the Schur comple-
ments are well defined.

2.2 Main Theorem

It will be convenient to use an equivalence notion
slightly weaker than the usual equivaleneelf f. €
C, a € C, A € Rmin, we write

f, ~ ae (6)

if either lim._ge A f. aand A # +oo, or, if

A = 400 and fc = 0 for e small enough. (This is
consistent with the conventian*>® = 0.) If a # 0,

f. ~ac® < f. ~ach but f. ~ 0c” just means
that f. = o(e”). Of courseae” must be viewed as
a formal expression, for (6) to be meaningful when
a=0.

A

In the sequel, we shall assume tliall )ij ~ & eAi,
for somea € C™" and for some irreducible matrix
A € (Rmin)™". (The case wherd\ is reducible is a
straightforward extension.)

We build by induction a finite sequence of min-plus
square matriceg; and scalarg; € R, for1 <i <Kk,
together with a partitiol€1 U --- UCyx = {1, ..., n}.

First, we setA; = A. Foralli > 1,

o = pmin(Ai) (7)
and we take foC; the set of critical nodes of;. We
build, aslonga€, U---UC; # {1,...,n}, the min-
plus Schur complement:

Ait1 = SchurCi, i, Aj) .
Due to the irreducibility ofA, it is not difficult to see

that A; is irreducible, so thaC; # @. Hence, the
algorithm stops at some indé&x< n.

We denote byD the min-plus diagonal matrix such
thatDj; = & whenj e Ci, we setA = D~1A, and
we select an arbitrary eigenvectdrof A, for instance

any column ofA* (it is not difficult to see that all the
nodes 1... ., n belong to the critical graph of).

We define thesaturation graph Sat, with nodes
1,...,n,andthe arc — j such thaV; = Aj; +V;.
The matrixaS2is defined by
i if (i — ) € Sat,
(aSat)ij — a-lj ( J)
0 otherwise.

(8)

We finally define recursively the conventional Schur
complements:

st = aSa ¢+l — Schurc;,s) |,
as long as theC; x C; submatrix ofs, Sicici* is
invertible. Using (5), we get equivalently

s*1 — SchukC,U---UC;, a5 |
It will be convenient to set

ti = SiCiCi .

©)

Theorem 1.Assume that the matrices, ... ,t¢ are
invertible. Then, for 1< i < ¢, A¢ has|C;| eigenval-
ues with asymptotics

Le~nrje®, j=1...,|C]

where thei; are the eigenvalues of. Moreover, if
¢ < k, to each non-zero eigenvalug of t“*! is
associated an eigenvalue.df with asymptotics

Lo~ njevest, (10)

and all the remaining eigenvalues.df areo(e%¢+1).
(All eigenvalues are counted with multiplicities.)

In fact, the asymptotics (10) are valid as soon as the
(CLU---UCy) x (C1 U ---U Cy) submatrix ofaSat

is invertible, which allows us to defing*! by (9).
Theorem 1, together with such refinements, will be
proved in an extended version of the present paper.
Here, we only show examples (in §3), and give an
intrinsic graph interpretation of the exponents(in

84). (The graph interpretation of 84 implies that the
asymptotics predicted by Theorem 1 are independent
of the choice of the eigenvectbrof A.)

3. EXAMPLES
3.1 A Simple Example

Let us first apply Theorem 1 to the matrix (1). We can
write (Ae)ij ~ a&je”Ni, with

111 10 4
a=|111|, A=|+4oc0l -2 (11)
111 1 2+o00

We havepmin(A) = —1/3, andGC¢(A) consists of the
critical circuit:

so that the construction of §2.2 stops with =
{1, 2, 3}. SinceG°®(A) is strongly connected and cov-
ers all the nodes, the saturation graphfofoincides
with G¢(A) (independently of the choice of the eigen-
vector of A), hence,

010
001 ,
100

Sat __

a~>* = (12)

and since the spectrum afis {1, j, j2}, Theorem 1
shows that the spectrum ofe consists of the three
eigenvalues (2), as announced in the introduction.

3.2 Comparison with Lidskis theorem: Regular Case

To see that Theorem 1 explains the dominant expo-
nents found by Lidskil, we next revisit the example
of Moro et al. (1997) illustrating Lidskil’s result. We
shall see in the next section that Theorem 1 solves
cases which are singular in LidskiT (1965).



Let Ac = Ap + €b, where

1

do=| - - | -1 (13)

(the dots represent 0), afde C™". We can write
(Ag)ij > gjj eAi with

=

. (14)

P RRrRPRRR R R
P RRPR R RRrRrO
P RRP R RR R R
P RRPR ROk kR
P RRP R RR R R

=)

PR RRPRORRRR
PR RRPRRRPRRR
Rl OolkrkrRRPRRPR

=
=
=
=
=

aj = 1 whenAjj = 0 anda;; = bjj whenAjj = 1.
We geta1 = pmin(A1) = 1/3, and the critical graph
of Az is composed of the circul — 2 - 3 —
4 - 5— 6 — 1), together with the arc63 — 1)
and (6 — 4). Thus,C; = {1,...,6}. A simple
computation gives

10[1
A= 111
111

We havexz = pmin(A2) = 1/2, and the critical graph
of Ay is reduced to the circuit 7 8 — 7. Thus,
C, = {7, 8}. The last min-plus Schur complement is
Az = (1). Thus,a3 = 1, andC3 = {9}. Let us take
the eigenvectoV = (A*). g:

V=[01323013230120]" .

We get
_ 1 . _
1
b3y - - |b3g - - |bg7 - |bgg
. 1.
asat: . .o . .1
ber - - |bea - - |bs7 - |beg
. . 1.
bg1 - - |bgs - - |bg7 - |bgg
| bo1 - - |bosa - - |bg7 - |bgog |
Hences! = aS& and
_ . _
-1
o b1 - - |b3s -
. 1.
1
| ber - - |bea - -]

To reobtain the results of Lidskil, it is convenient to
reorder the nodes dt1, in order to putt! in cyclic
form

b3y bas -
be1 besa -

Thus,t! is invertible if, and only if,

¢ _ | Ps1bas

be1 bea

is invertible, and the eigenvalues tf are the cubic
roots of the eigenvalues of At this point, we know
already, by Theorem 1, that whens invertible, A,
has 6 eigenvalues with asymptotick ~ iel/3,
corresponding to the different eigenvaluesf t1. The

inverse oft! can be computed easily in block form
fromr —1, which leads to:

1 o b - 1b

32: b87 @ _ b81 b84 r1|:b37 - b39j|
| bg7 - |bog | o1 bgg o7 09
- 1T

-1
= | bgy - |bgo |. andt2=[/ }

| b7 - [bgg _ 8

where

by, = b7 — [ sy bga]r* [Ez;}
(the other entries oy are computed in a similar
way). Thus,t? is invertible if, and only if,bg; # 0,
and the eigenvalues ¢f are the square roots of.
We know by Theorem 1 that, whelog, # 0, A.
has two eigenvalues with asymptoti€s ~ iel/2,
corresponding to the two square rowtsf by-. Finally,

s% = t3 = byg — by(bg,) by | (15)

which shows that, whes® # 0, A, has one eigen-
valueL, ~ s%. (The expression (15) is equal to that
of Moro et al. (1997), due to the identity (5).)

3.3 Singular case

Let us now assume thdds; = bgs = 0. We may
keep A as in (14), but this gives little information
sincer = [%81%] is not invertible (which implies
thatt! is not invertible). This case is considered as
singular in Lidskil (1965) and Moret al. (1997).
However,(Ao)ij = ajj €Ai still holds if we change the
following values ofA: Ag1 = Asg = +00. To make

the example more interesting, we shall also assume
that Agg = +o00 (hencepgg = 0).

We still haveas = 1/3 but the critical graph now
consists only of the circuit - 2 — 3 — 1, so
thatCy = {1, 2, 3}. We now get



101
110
4/311
111
111
111

Ao

so thatwp = 2/5, with a critical graphCy consisting
of the only circuit4— 5—- 6 —- 7 — 8 — 4. We
leave it to the reader to check thag = (1). We take
the eigenvectoV = (A*). q:

V =[01/32/302/54/51/53/5 O]T .
The matrixt! is invertible if, and only ifbz; # 0. In
this case, A has three eigenvalues with asymptotics

L. ~ »e1/3, corresponding to the different cubic roots
A of b31. We have

) . . |be7 -

=

/
. b§9
’ I:)99

where for instancéy, = bgs — bgibs;baa. Thus,t?

is invertible, if, and only if,bg,be7 # 0. When this
is the caseA. has five eigenvalues with asymptotics
Le ~ 1e?/5, corresponding to the different quintic
rootsx of bg,be7. Finally, s® = byg — by, (b5,) ~bg,,
and, whers® # 0, A, has a last eigenvalug. ~ s¢.

Proposition 2. The numbersg; defined in (7) satisfy:

«j = maxi, subjectto
(Icla — a1lclcy, — -+ - — ai-1lClci_y) >

(el =leley —---—lclei_Pr . (17)

for all circuitsc in G(A).

The previous formula is equivalent to:

Icla — a1lClc, — - - — aj—1]Clc;_,4

aj = min
Icl —IClcy — -+ —IClci_y

’

where the minimum is taken over all circu@tsh G(A)
which are notincluded i€ U. ..UC;j_1. Note that ifc
isincludedinCqU...UCj_1, thatis if the denominator

is zero, the numerator is necessarily nonnegative (by
definition ofw;_1), so that (17) holds for all.

The proof of Proposition 2 is based on the following
classical interpretation of Schur complements.
Lemma 3.Consider a matrixA € R, a partition
CUN of {1,...,n} and a realr. Then, for all paths
pin G(SchurC, «, A)), we have

| Plschurc,e,A) = Min|p'|a —alp'lc |

where the minimum is taken over all the patpisof
G(A) that have the same extremal nodespaand
satisfy p’ " N = p. Moreover,|p| = |p'| — |Plc

Itis a good exercise to perform again the computationsfor all pathsp’ with the same properties as before.

whenbgg # 0 andBgg # +o0. Then,az = 4/5, and
s3 is identically O: in this case, the conclusions for the
eigenvalues of order/3 ande?/° are unchanged, but

Indeed, using (16) together with the definition (7) of
aj, and using repeatedly Lemma 3, we get Proposi-

we can only conclude from Theorem 1 that the last tion 2

eigenvalue io(e*/®). Such cases can be desingular-
ized using the methods of Akiagt al. (2001), which

We say that a circuit of G(A) is acritical circuit of

need higher order informations on the asymptotics of order i if the inequality (17) evaluated at = «; is

the entries of4..

4. GRAPH INTERPRETATION

In this section, we give a graph interpretation of the
exponentsy; of Theorem 1. Ifp = (ip — i1 —

- — ij) is a path ofG(A), we denote byp|a =
Aigiy + -+ + Aij_ii; theweightof p, and by|p| = j
its length For allL c {1, ..., n}, we denote byp|_
the number of arcs op with initial node inL, i.e.,
lpl = {0 <m < j—1] im e L} (all the path

an equality. We caltritical graph of order ithe graph
G;(A) whose nodes and arcs belong to critical circuits
of orderi. Of course G°(A) = G§(A).

If cis a critical circuit of ordeii, we get by apply-
ing the equality in (17) withx aj that|c|a —
a1lClc, — -+ — aj—1lClc;_, — ailcly, = O, where
Ni ={1,...,n}\ (C1U...UCj_1). After replacing
¢ by a cyclic conjugate of, we may assume that the
initial node ofc is in Nj. Then, applying repeatedly
Lemma 3, we obtain that N N;, which is a critical
circuit of Aj, isincluded inC;. Thereforecisincluded

interpretations below have dual versions, obtained byin C; U ... U G;, |c|n, = |C|c, and both terms of (17)

replacing “initial” by “final”). We also denote bpnL
the subsequence qf obtained by deleting the nodes
notinL (p N L need not be a path @&(A)). We get,
by mere rephrasing of the definition pfin(A):

pmin(A) = maxi, subject to

Ic|a > |c|A for all circuitsc of G(A) . (16)

Thew; have a similar characterization:

evaluated at, with i instead of — 1, are zero, which

shows that is a critical circuit of order 4+ 1. Thus,
G{(A) C Gf4(A) (18)

which means that the nodes and arc&pfA) belong

to Gf+1(A). For instance, the matriA of (14) (from
the example of Section 3.2) has the following graphs:



The graphsGF(A), fori = 1,2, 3 are represented in
black, magenta (medium gray), and green (light grey),
respectively; for readability, a node or arc is drawn
with the color of the minimal grapls7(A) to which

it belongs. For the matriA of the singular case of
Section 3.3, the grap3f(A) become:

0 0 1

1
‘\l_/
1 0
5
8\_0/7\_1/6\0/

Let D; denote the min-plus diagonal matrix such that
(Di)jj =amif j € Cywithm < i, and(Dj)jj = «;

if j € Cmwithm > i, and letA; = D, *A. We easily
derive from Proposition 2, (16) and (18) the following
lemma.

Lemma4.Forall 1 < i < k, we haveG{(A) =

G°(A), Ai has min-plus eigenvalui and the set of
critical nodes ofA; is C1 U ... U Cj. In particular,
GS(A) = G(A) and all the nodes oA = Ay are
critical.

To any irreducible matriB € R" with eigenvalue
« and eigenvectoW of B, we associate the saturation
graph SatB, W), with nodes 1...,n and an arc

i — jif a+W = Bjj +W;. The saturation graph Sat
defined above in Section 2.2 is equal to(@atv). We
need the following well known (and easy) properties:

Lemmab.Let B € RX" be an irreducible matrix
with eigenvaluey, and letW € RY. . If BW = oW,
then the strongly connected components of BawV)

are exactly the strongly connected components of RO

GC(B). If BW > aW, then(BW); = oW for all
critical noded € G¢(B).

Hence, the strongly connected components of the

graph Sat= Sai A, V) coincide with the strongly con-
nected components @¢(A), which shows that the
irreducible blocks of the matriaS@ are independent
of the choice of the eigenvectdt. Moreover, for all
i=1,...,kandforC = CyU...UGC;, the restriction
Vi of V to C satisfiesAccV, = (AccVi > Vi,

which implies, using Lemmas 4 and 5, thatis an
eigenvector of A)cc, so that the strongly connected
components of SatC x C) coincide with the strongly
connected components G‘C((Ai)cc) = G%(A) =
G{(A). Hence, the irreducible blocks 085 are
independent of the choice &f. This implies that the
irreducible blocks of the matrices, ... , t‘*1, and,

a fortiori, their eigenvalues which occur in the first
order asymptotics of Theorem 1, are independent of
the choice olV.
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