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Introduction

We survey the different kinds of rationa series which arise in the study of Discrete
Event Systems (DES) and of certain related Markov Decision Processes. The use of
rational seriesover fieldsisclassical, e.g. astransfer functions, generating series of finite
Markov chains, skew Ore series in Difference and Differentia Algebra, commutative
multivariable series for linear PDE with constant coefficients, Fliess noncommutative
generating series for bilinear systems. It turns out that all these more or less familiar
classes of series admit useful counterparts for DES, when the scalars belong to some
dioids [5] such as the (max, +) semiring. The main interest of this series theoretical
point of view consistsin introducing some efficient al gebrai c techniquesin the study of
these dynamical systems. Sincethis paper isobviously too short for such aprogram, we
have chosen to propose an introductive guided tour. A more detailed exposition will be
found in our references and in a more complete paper to appear elsewhere.

1 Rational Seriesin a Single I ndeter minate

1.1 Rational Seriesas Transfersof (max, +)-Linear Systems
We consider systems of recurrent linear equationsin the (max, +) agebra of theform
z(n) = Az(n — 1) ® Bu(n), y(n)=_Cz(n) , (@D}

where! z(n) € RE ., u(n) € Rmax, y(n) € Rmax. Asitiswell known[2, 5], thisclass
of systems encompasses in particular the dater equations of SISO Timed Event Graphs

(TEG). A straightforward argument shows that the least solution? of (1) isgiven by

y(n) = @C’AkBu(n — k), 2

keN

! R max denotesthe “ (max,+) semiring” (R U {—co}, max, +). The reader is referred to [5] for
the general notation about dioids. In particular, & and @ denote the sum and the product, &
denotesthe zero and e the unit (iINRax, b = max(a,b),a @b =a+b,c = —o0,e = 0).

2 which correspondsfor a TEG to the earliest behavior [5].



hence, theinput-output behavior of the systemiscompletely determined by thefollowing
transfer series’

H=CA"BX* = C(AX)"B € Buna[[X]] ©)
keN

wheret 1+ & D,y M*. A seriesisrealizableif it admitsarepresentation of theform
(3) for somefinitedimensional triple (A, B, C'). The celebrated Kleene-Schiitzenberger
Theorem [3] states that realizabl e series coincidewith rational series defined asfollows.

Definition 1. Let S denote a dioid. The dioid of rational series over S in the indeter-
minate X is the least subset of S[[X]] containing the polynomias and stable by the
operations @, ® and .

Thus, the transfer series H = C'(AX)* B of a stationary finite dimensional (max, +)
linear systemisrational.

1.2 Generating Series of Bellman Chains

Let us consider a Markovian maximization problem with finite state S = {1,...,n},

finite horizon k, final reward b and transition reward 7 4ig j. Thevauefunction for the
initial position: € .S isthus given by

vgk) def max[A;, + ...+ A _yin + b(“ﬂ)] : (4)

f1...0%

Thisis a particular case of Bellman chain (Akian, Quadrat and Viot [1]). Asit iswell
known and obviousfrom (4), the value function is given by a product of matricesin the
(max, 4) algebra, that is, v(*) = A*b. Now, let us consider the vector of generating
Series
Vi €@ ol x* = P(A" ) X" € Braxl[X]] - (5)
k k

An immediate comparison with (3) shows that the generating series of an homogeneous
Bellman chain with finite state are rational .

? Givenasemiring S, S[[X]] denotesthe semiring of formal series H = P, Hi X*, equipped
with componentwise sum and Cauchy product. S[X ] denotes the subdioid of polynomials.
We shall sometimes write (H|X*) instead of Hy, in line with the scalar product notation
(H|H') = @, HiH].

* For « in adioid D, a* isto beinterpreted as the least upper bound of the set {a°,a’, a®,...}
with respect to the natural ordera < b <= a ® b = b. Here, D = (S[[X]])"*" and the
convergenceof (AX)* isimmediate, due to the fact that AX has no constant coefficient. In
the scalar case (¢ € D = Rumax[[X]]), ¢* iswell definediff ao = (a|X°) < e. See[12] for a
more precise discussion.



1.3 Representation Theoremsfor Rational Series over Commutative Dioids
Definition 2 (SimpleSeries). A sariess € S[[X]]issimpleif itwritess = a X*(bXP)*
witha,b € 8, k € N, p € N\{0}.

Theorem 3. Let S bea commutativedioid. Aseriess € S[[X]] isrational iffitisasum
of simple series.

The proof consistsin reducing an arbitrary rational expression to asum of simple series
viathefollowing classical rational identities’
(C) (a@b) =a*b*
(5C) (ab*)* = e P aa*b*
n>1, (P(n)) a*=(e®ad...®a""Ha) .

Definition4 (Weak and Strong Stabilization). The dioid S satisfies the weak stabi-
lization condition® if

Ya, b\, pe S, Je,ve S, IK €N, Yk > K, aX* @bt = . (6)
Strong stabilization holdsif thevalue v = A & 1 isalowed (whenever a, b # ¢).

We also introduce the following central notion which already appears in the theory of
nonnegativerational series[3].

Definition 5 (Merge of Series). The merge of the series s(*),..., s(°=1) isthe series ¢
suchthat Yk € N, Vi € {0,. .., ¢ — 1}, tipge = s\

For instance, theseries (X?)* @1 X (1X%)* = 041X B0X 252X 200X @3X ¢ ..
isthemerge of theseries X* = 060X $0X?@...and1(1X)* = 192X $3X? @ ..
Definition 6 (Ultimately Geometric Series). The series s is ultimately geometric if
K e N,Ja € §,Vk > K, sj41 = asy.

We havethefollowingcentral characterization first noted by Moller [19] for S = R ax.

Theorem 7 [12]. Let S be a commutative dioid satisfying the weak stabilization condi-
tion. Then, a seriesisrational iff it isa merge of ultimately geometric series.

Asacorollary, we obtain a version of the classica periodicity theorem[2, 6].

Corollary 8 (Cyclicity). Assume that S is commutative without divisors of zero and
satisfies the strong stabilization condition. Let A € §™*" be an irreducible matrix.
Then,3a € Sandk > 0, ¢ > 1 such that A*+° = o A*.

The proof [12] consistsin showing that all the merged series which appear in (AX);;
have the same asymptotic rate — independent of 5 — dueto the irreducibility.

Example1 (Computing the Value Function of a Bellman Chain). Let us consider the
Bellman Chain (4), whose transition rewards are described on Fig. 1. For instance, the

® For amore complete study of rational identities, see Bonnier and Krob [16, 14]. Thetwo labels
(C) and (SC) recall that these identities are specific to commutative rational series.

% The strong stabilization is borrowed to Dudnikov and Samborkskil [6, 18]. See [12] for a
comparison of these properties.



1 e O Vi = (1X)0Vi @ XVa @ e
e /1 2\e Vo = 2X)Vo @ X Vs

V, = (nX)V, @ XV .

¥

Fig. 1. A Simple Bellman Chain with its Generating Equations

arcn = 1 meansthat 4,,; — e. Wetakeasfina reward aDiracat node1:b; = eifi = 1,
b; = ¢ otherwise. Let v bethe valuefunction defined by (4) and consider the generating
series V given by (5). V can be computed by performing a Gaussian elimination” on the
systemV = AXV @b displayed onFig. 1. After some computationsmaking anintensive
use of the rational identities (C'),(SC), we get eventually V7 = (1X)* & X" (nX)".
Taking the coefficient of 1, at X7, we obtain the value function withinitial state 1 and
horizon p
vgp) = max(p,n(p—n)) .

2 Skew Rational Series

Let o be an endomorphism of the semiring S. The semiring of skew series over S,
denoted by S[[X; o] isby definitionthe set of formal sumss = @, 5, X" equipped
with the usual componentwise sum and the skew product:

(500, E P 5o .

ptg=n

neN

This noncommutative product arises fromtherule Xa = o(a)X, Va € S.

2.1 Skew Series and Discounted Bellman Chains

Let A € R2X? and let us consider the following Markovian discounted optimization

max

problem (discounted “Bellman chain™) with initial state:, final state j and horizon k:

(A, « max;, iy (Aiy + 8 X Ay +.. .+ 8571 < A ) (7)

where 7 €]0, 1] denotes the discount rate. We have the following Hamilton-Jacobi-
Bellman equation

(B4 = max (Aiq + 8 x (A[k])qj) : (8)
g

After introducing the automorphism of R ., and of R X"

max "

2 E R, 0(@) E B xa, AR, o(A); Eo(Ay)

we rewrite (8) as ATl = A © o( AlF]), hence
Al = Ao o...0d 1 A) . (9)

Since AlFl = ((AX)*|X*), the asymptotic study of the sequence of “skew powers’

Al*] reduces to the evaluation of the matrix (AX)* whose entries are skew rational

Series.

"E.g. V2 can be eliminated by noting that ¥V, = (2X)V: @ XV, is equivalent to V2 =
(2X)* X V5.



2.2 Theorems of Representation for (max, +) Rational Skew Series

We again consider simple series which write s = (aX?)*6X™ or equivalently s =
BX"(fXP)* witha,b, f € Rpax, p > 1,n > 0.

Theorem 9. A skew seriess € R.«[[X; ¢]] isrational iff it isa sum of smple series.

This theorem is rather surprising because rational series usualy cannot be expressed
withasinglelevel of star in noncommutative structures. The proof uses the machinery
of noncommuitative rational identities, such as

(S) (a ®b) = a"(ba™)*
together with afew specific “commutative’ identities, in particular
Va, 0 E Rmax, p>1, ((@a®b)XP)" = (aXP)"(0XP)" . (10)
Definition 10. Theseries s € R q«[[X; ]] is ultimately skew geometric iff
AK e N,a € Ryax k> K = sp41 = ao(sy) (=a+ 5 xsg) . (1)

Theorem 11. A seriess € Ry,«[[X; o] isrational iff it isa merge of ultimately skew
geometric series.

We obtain as a corollary the following remarkabl e periodicity theorem first proved by
Braker and Resing [4] (for primitive matrices).

Theorem 12 (Skew Cyclicity). For an irreducible matrix A € R2x% Je > 1, Vij,
Jov;; such that AEI;J’C] = a;j aC(AEI;]) for £ large enough.

Example2 (Value Function of a Discounted Bellman Chain). Let us compute the value
function v for the discounted version of the Bellman Chain described in Fig. 1. Using
the identity (10), it is not too difficult to obtain V; = (1X & (aX)*X™)" witha =
D,<ic,_, o (i+1). Anapplicationof theidentity (S) givesV; = (1.X)* & (aX)* X",

hence v’ = 1) 4 aP="], which rewrites:

(r) _ L—pr 1-p7" ; _ Q0
vy _max<1_ﬁ,oz 5 with a_lgr?garf(—l(ﬁ(l—i—l))'

3 Rational Seriesin Several Commuting | ndeter minates

3.1 Timed Event Graphs with Unknown Resources and Holding Times

As shown in [2, 5], the algebraic modelization of Timed Event Graphs uses the two
operators®
§iu€Rp —y€RL, y(k) = 14+ u(k)
viu€RE g~y R ylk) = u(k—1) .

® Thesignalsu and y are dater functions[5, 84.1], § and v are the shiftsin dating andin counting.



When some task has an unknown duration ;, we get an equation of the form y(k) =

71 + u(k), which suggests to introduce a new operator §, : é;u(k) L u(k). In
the same vein, an unknown initial marking ¢; (say an unknown number of parts, of
machines) is represented by a new operator v; : y1u(k) = u(k — ¢1). Then, the dater
functions of a TEG with unknown resources and holding times satisfy the following
polynomial equations’:

r=Ax D Bu, y = Cl‘, Ae (}B[’yi,(si])nxn, Be (}B[%,’éi])nxp’ Ce (B[%’éi])rm

(with essentialy as many é; as unknown holding times and as many +; as unknown
markings). Thetransfer H = C'A* B isarational series of B[[y;, 6;]].

Example3 (Transfer of a Machine with Two Part Types). Consider a single machine
producing 2 different parts with processing times ¢;,¢». Under a cyclic scheduling,
we obtain the TEG shown on Fig. 2,(a). The input «; represents the arrivals of row

w1 I ‘ a Y1 Poul
e - b1 v6162 -
@I H= [5152 82 (v6102) :
g |
O w2
Ny v ‘

Fig. 2. (a): A Single Machine Producing 2 Types of Parts. (b): A Cascade of n Machines.

materials for part ¢ (u;(k) = date of k-th arrival), and the output y; represents the dates
of production of the same part. For instance, the expression'® i1, = &;(y6182)* shows
that for the autonomousregime, one part of type 1 exitsevery ¢ + t- unitsof time (after
timet,).

3.2 Some Algebraic Results

Let S denote a (commutative) dioid. It followsfrom the commutative rational identities
(C),(SC) that a series s € S[[X4,...,X,]] is rationa iff it can be written s =
@le u;vf wherewu;, v; are polynomials. However, we have amuch more precise result
inspired by the theory of rational subsets of IN* [8].

Definition 13. A simple series s writess = a X' .. X" (@)_, a; X2 .. X2*)",
where thevectors (o i)1<i<k, - - -, (@) 1<i<k form afree family of INE.

Theorem 14. Assume that S istotally ordered. Then, a seriess € S[[ X1, ..., Xpn]]is
rational iff it isa sumof simple series.

The proof uses essentialy the following kind of rational identity:

(aX) (Y)Y (eXY) = (aX)*(bY) @ (aX)* (XY ) & (bY) (e XY) . (12)
° B = {e, e} denotesthe boolean semiring.
1% For the autonomous regime starting at time 0 (e.g. if an infinite quantity of inputs become

available at time 0, see [2, §5.4.4.1]), the monomial transfer 4™ (X). 65’ can be interpreted as
“theevent n occursat the earliest at time ) . k: x ¢,”.



Example4 (Transfer of a Flowshop with » Identical Machines). Let us consider a
cascade of n identical machines of type shown on Fig. 2,(b). The transfer matrix of the
flowshop isequa to H™. An easy induction gives

n_ |07 ®y6765(61 D 62) 77 y6182(81 B 82)" !

= 816)°
518261 D 62)1=1 83 5 y8283(6y b 82 | (79102)

(modulo the licit additional simplification rules & @ 6! = §™**(*'Y)). This expression
specifiestheinput/output behavior in function of theunknown processingtimesty , £5. In
particular, theterm®® 67 ©~6262 (6, @ 64)" ~2 intheexpression of H7, meansthat, for the
autonomousregime, thepart of type1 numbered 0 hasatransfer timeof n x ¢;, whilethe
part of the same typenumbered 1 has atransfer timeof 2(¢2 +t1) + (n — 2) max(t1, t2).

Example5 (Heaviside Cal culusfor some Special Variational Inequalities). Let ussearch
for the least solution u, v of the system'!:

Jv  Ov Ou Ou
0> /\_3_1‘_%’ 0> max(oz—a—x,ﬁ—%), u > max(y+uv, f), v > p+u . (13)

A discretization giveswith the R, notation:

up(z,t) > aup(z — h,t) ® Brup(z,t — k) © yop(z,1) S f(z,1)

vp(z,t) > Mup(x — bt — h) @ pup(z,t) . (14)

Introducing the spaceand time shifts X u(z, ¢) « u(z—h,t)yandTu(z,t) « u(z,t—h),
we get
up > ("X ® B Tup & yop @ f
vp > N X Ty G pup .
A Gaussian dimination givestheleast solutionu = (o X @ AT @ (A XT)*yu)* f .
The convergence of thisstar inTR ., [[ X, 7] yieldsthe compatibility conditionyu < e.
After some computation involvingthe rational identities (C'), (SC'), (12), we obtain

u={(@"X)(B"T) & yp(@" X) N XT)* @ yu(B"T) (A" XT)* } f
We have for the second term of this sum:

(@" XY (AXT) f(2,t) = Sup, p>olahp + Ahn + f(z — hp — hn,t — hn)]
= supqznzo[ah(q —n)+ Ahn+ f(z — hg,t — hn)] ~

(15)

After an analogous argument for the two other terms, we introduce the three kernels

ki(&,7) = al 4 BT, ko€, 7) = {i(fo_ AT i(:tﬁerzwz—sa

kS(g’T):{ﬁ(r—OH&ﬂw if 7> ¢

—00 otherwise.
Then, letting h — 0, we get the explicit solution

u(z,t) = gsffo[max(kl’ ko, ks)(&, )+ fla =&t —1)] .

oy, v, f alemapsR? — R.a, 8, ), v, u are constant. We do not address the regularity issues
here.



4 Rational Seriesin Non Commuting Indeter minates

4.1 Definition and Basic Examples

Let ©* denotethefree monoid over afiniteaphabet ©. The seriesy = P, ¢ 5« (y|w)w
(in Rypax (X)) isrecognizable iff there exists o € R1X7 3 € R7X1 and a morphism
por X — R2X? such that (y|w) = ap(w)s. The general version of the Kleene-

Schiitzenberger theorem states that recognizable and rationa series coincide.

Example6 (Deterministic Cost). Let (@, g0, §) denote afinite deterministic automaton,
o Q — Rya afina cost and o : Q x X — Rp.x atransition cost. Let w =
wy, ... w; € S* denote a sequence of decisions (w; denotes the i-th letter of w, read
read from right to left). We consider the cost

k
(c|w) d:ef Z U(Qn—la wn) + Oé(Qk), SUbJeCt to qn = 6(QH—1a wn) (16)
n=1

(by convention, (¢c|w) = ¢ if é(qo, w) is undefined). This is the discrete counterpart
of the usual integral cost fOT o(x(t),u(t))dt + a(x(T)) for the system & = f(x, u).
The series @, (¢|w)w is recognizable (take 3 = Dirac at ¢ and Ya € X, Vp,q €
Q, pla)pg = o(q,a) if (¢, a) = p and ¢ otherwise).

Example7 (A Workshop with Different Schedules). We consider a workshop with 2
machines M, M- and 2 different regimes of production corresponding to the processing
of 2 differentsparts (a) and (b), as represented*? by the TEGs («) and (b) displayed on

Fig. 3. A Workshop with Two Production Regimes and its Equivalent (max, +) Automaton

an open loop schedul edescribed by aword w € {a, b}*. E.g. theword baa meansthat the
two machines first follow two tasks with times and precedence constraints determined
by the TEG («) and after that one task described by the TEG (4). The behavior of
the workshop under the schedule w = wy, ... w; is determined by the system of non
stationary (max, +) linear equations

2y (0) = B, 2y(n) = A(wp)zw(n — 1), yp(n) = Cary(n) , 1<n<k, (17)

12 The interpretation of regime (b) is the following. A part is processed by M> during %, time
units. Then it is sent to M (processing time of «1). For simplicity, we have neglected the
transportation times. A dual interpretation can be provided for regime («). Theinitial condition
B =[e,e,¢]” require M, and M- to beginto work attime e = 0.



where A(a), B, C and A(b), B, C stand for the linear representations of the TEGS («)
and (b) displayed on Fig. 3. The output y,, (n) represents the date of completion of the
latest task of the sequence wy,—1 ... w;. Themap w — (y|w) o yw (k) isrecognizable
(takear = C, 3 = B, pu(a) = A(a), u(b) = A(b)). Thelinear representation v, 1, 3 can
bevisualized by the automaton with multiplicities'® in the (max, +) semiring displayed
onFig. 3.

4.2 Asymptotic Behavior of (max, +) Automata
The asymptotic analysis of arecognizable series y consistsin estimating (y|w) where
w isaword of length ¥ — co. We consider the worst case performance:

def
P E P (ylw) = max_ max [, p(wk)iie_, F - p(w0)igie + Bio)

e Wh,y..., W1 EX ig,...,00
wE

Theorem 15[11, 10]. Let y bethe series given by thelinear representation o, p, 3. Let
M =@,y p(a). Then rfos = aM* 3.

This is a superposition principle which states that the worst case behavior is obtained
by mere superposition of the TEGs with transition matrices y:(a), a € X.

Example8. For the automaton of Ex. 7, the asymptotic behavior is determined by
the eigenvalue A of M = A(a) & A(b), i.e limy, (P¥H®% = lim; AWk = X =
max;—1 o max(7;, ;).

We next turn to the dual optimal case measure of performance'*:

. def . :
rzpt = min (ylw) =  min__ - max [og, +p(we)igiey -+ (W1 )i+ i -
wesk, wk(,..l.,u)J;&GE, 2k,.- %0
(ylw)#s ylw)=e

This min-max problem consists in finding a schedule minimizing the transfer time
of the k-th input. We remark that for the subclass of deterministic'® series, (y|w)
does not involve maximization, so that the computation of #° and +"°' become
dual. More formally, we introduce y' = &,y )%— oo (¥W)w € Rumin{(X)) (Where

R pin o (R U {+oc0}, min, +)) and we get:

Proposition 16. For a deterministic series v, rzpt' = o' (M")E 3, where o/, i/, 3" is

a Rmin-linear representation of ', M’ = @, ¢'(a) and all the operations are
interpreted in R ;..

Thus, we are reduced to characterize the series which admit deterministic representa-
tions. Under some finitenessand integrity conditionson «, ¢+, 5, €. if Va, ¢, j, p(a);; €
Z, the series y isdeterministic [11, 10, 13]. However, the minimal dimension of a de-
terministic representation can be arbitrarily larger than the dimension of «, p, 3. Thus

13 See [7]. The multiplicity of w —i.e. (y|w) —is equal to the sum of the multiplicative weights
of all the pathswith label w from the input to the output. E.Q. (y|ba) = 711 @ T2k2 B T1K2.

14 The mean case performance rM™" = F(y|w*)) —where w'*’ is arandom word of length k —
isdealt with in thefirst order ergodic theory of TEGs[2, 17].

15 A seriesis deterministic if it admits a representation of the form (16).



computing #°P from Prop. 16 can be much more complex than computing »"°' from

Th.

15. Some different techniques based on rational simplifications can sometimes be

applied as in Ex. 9, but it is hopeless to obtain universal canonical forms since the
equality of (max, +) rational series is undecidable [15]. It remains an open question
whether the asymptotic behavior of »° can be exactly evaluated for some reasonable
classes of series without appealing to the above determinization procedure.

Example9. For the automaton of Ex. 7, limy r™/k = min(max;(7;), max;(x;)).
When 7 > 1, k2 > k1, thisfollowsfor instance from the easily obtained expression
y = (120 @ Kab)(T2a © K2b)*.
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