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Introduction

We survey the different kinds of rational series which arise in the study of Discrete
Event Systems (DES) and of certain related Markov Decision Processes. The use of
rational series over fields is classical, e.g. as transfer functions, generating series of finite
Markov chains, skew Ore series in Difference and Differential Algebra, commutative
multivariable series for linear PDE with constant coefficients, Fliess’ noncommutative
generating series for bilinear systems. It turns out that all these more or less familiar
classes of series admit useful counterparts for DES, when the scalars belong to some
dioids [5] such as the (max;+) semiring. The main interest of this series theoretical
point of view consists in introducing some efficient algebraic techniques in the study of
these dynamical systems. Since this paper is obviously too short for such a program, we
have chosen to propose an introductive guided tour. A more detailed exposition will be
found in our references and in a more complete paper to appear elsewhere.

1 Rational Series in a Single Indeterminate

1.1 Rational Series as Transfers of (max;+)-Linear Systems

We consider systems of recurrent linear equations in the (max;+) algebra of the form

x(n) = Ax(n� 1)�Bu(n); y(n) = Cx(n) ; (1)

where1 x(n) 2 Rp
max, u(n) 2 Rmax; y(n) 2 Rmax. As it is well known [2, 5], this class

of systems encompasses in particular the dater equations of SISO Timed Event Graphs
(TEG). A straightforward argument shows that the least solution2 of (1) is given by

y(n) =
M
k2N

CAkBu(n� k) ; (2)

1
Rmax denotes the “(max,+) semiring” (R[ f�1g;max;+). The reader is referred to [5] for
the general notation about dioids. In particular, � and 
 denote the sum and the product, "
denotes the zero and e the unit (in Rmax, a� b = max(a; b), a
 b = a+ b, " = �1, e = 0).

2 which corresponds for a TEG to the earliest behavior [5].



hence, the input-output behavior of the system is completely determined by the following
transfer series3

H =
M
k2N

CAkBXk = C(AX)�B 2 Rmax[[X]] ; (3)

where4 M� def
=
L

k2NM
k. A series is realizable if it admits a representation of the form

(3) for some finite dimensional triple (A;B;C). The celebrated Kleene-Schützenberger
Theorem [3] states that realizable series coincide with rational series defined as follows.

Definition 1. Let S denote a dioid. The dioid of rational series over S in the indeter-
minate X is the least subset of S[[X]] containing the polynomials and stable by the
operations �;
 and �.

Thus, the transfer series H = C(AX)�B of a stationary finite dimensional (max;+)
linear system is rational.

1.2 Generating Series of Bellman Chains

Let us consider a Markovian maximization problem with finite state S = f1; : : : ; ng,

finite horizon k, final reward b and transition reward i
Aij
! j. The value function for the

initial position i 2 S is thus given by

v
(k)
i

def
= max

i1:::ik
[Aii1 + : : :+Aik�1ik + b(ik)] : (4)

This is a particular case of Bellman chain (Akian, Quadrat and Viot [1]). As it is well
known and obvious from (4), the value function is given by a product of matrices in the
(max;+) algebra, that is, v(k) = Akb. Now, let us consider the vector of generating
series

Vi
def
=
M
k

v
(k)
i Xk =

M
k

(Akb)iX
k 2 Rmax[[X]] : (5)

An immediate comparison with (3) shows that the generating series of an homogeneous
Bellman chain with finite state are rational.

3 Given a semiring S , S[[X]] denotes the semiring of formal series H =
L

k
HkX

k , equipped
with componentwise sum and Cauchy product. S[X] denotes the subdioid of polynomials.
We shall sometimes write (HjXk) instead of Hk , in line with the scalar product notation

(HjH 0)
def
=
L

k
HkH

0

k .
4 For a in a dioidD, a� is to be interpreted as the least upper bound of the set fa0; a1; a2; : : :g

with respect to the natural order a � b () a � b = b. Here, D = (S[[X]])n�n and the
convergence of (AX)� is immediate, due to the fact that AX has no constant coefficient. In
the scalar case (a 2 D = Rmax[[X]]), a� is well defined iff a0 = (ajX0) � e. See [12] for a
more precise discussion.



1.3 Representation Theorems for Rational Series over Commutative Dioids

Definition 2 (Simple Series). A series s 2 S[[X]] is simple if it writes s = aXk(bXp)�

with a; b 2 S, k 2 N, p 2 Nnf0g.

Theorem 3. Let S be a commutative dioid. A series s 2 S[[X]] is rational iff it is a sum
of simple series.

The proof consists in reducing an arbitrary rational expression to a sum of simple series
via the following classical rational identities5

(C) (a� b)� = a�b�

(SC) (ab�)� = e� aa�b�

n � 1; (P (n)) a� = (e� a� : : :� an�1)(an)� :

Definition 4 (Weak and Strong Stabilization). The dioid S satisfies the weak stabi-
lization condition6 if

8a; b; �; � 2 S; 9c; � 2 S; 9K 2 N; 8k � K; a�k � b�k = c�k : (6)

Strong stabilization holds if the value � = �� � is allowed (whenever a; b 6= ").

We also introduce the following central notion which already appears in the theory of
nonnegative rational series [3].

Definition 5 (Merge of Series). The merge of the series s(0),…, s(c�1) is the series t
such that 8k 2 N, 8i 2 f0; : : : ; c� 1g, ti+kc = s

(i)
k .

For instance, the series (X2)��1X(1X2)� = 0�1X�0X2�2X2�0X3�3X4�: : :
is the merge of the series X� = 0�0X�0X2� : : : and 1(1X)� = 1�2X�3X2� : : :

Definition 6 (Ultimately Geometric Series). The series s is ultimately geometric if
9K 2 N, 9� 2 S, 8k � K, sk+1 = �sk.

We have the followingcentral characterization first noted by Moller [19] forS = Rmax.

Theorem 7 [12]. Let S be a commutative dioid satisfying the weak stabilization condi-
tion. Then, a series is rational iff it is a merge of ultimately geometric series.

As a corollary, we obtain a version of the classical periodicity theorem [2, 6].

Corollary 8 (Cyclicity). Assume that S is commutative without divisors of zero and
satisfies the strong stabilization condition. Let A 2 Sn�n be an irreducible matrix.
Then, 9� 2 S and k � 0; c � 1 such that Ak+c = �Ak.

The proof [12] consists in showing that all the merged series which appear in (AX)�ij
have the same asymptotic rate – independent of ij – due to the irreducibility.

Example 1 (Computing the Value Function of a Bellman Chain). Let us consider the
Bellman Chain (4), whose transition rewards are described on Fig. 1. For instance, the

5 For a more complete study of rational identities, see Bonnier and Krob [16, 14]. The two labels
(C) and (SC) recall that these identities are specific to commutative rational series.

6 The strong stabilization is borrowed to Dudnikov and Samborkskiı̆ [6, 18]. See [12] for a
comparison of these properties.
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V1 = (1X)V1 �XV2 � e

V2 = (2X)V2 �XV3
: : :

Vn = (nX)Vn �XV1 :

Fig. 1. A Simple Bellman Chain with its Generating Equations

arcn
e
! 1means thatAn1 = e. We take as final reward a Dirac at node1: bi = e if i = 1,

bi = " otherwise. Let v be the value function defined by (4) and consider the generating
series V given by (5). V can be computed by performing a Gaussian elimination7 on the
systemV = AXV �b displayed on Fig. 1. After some computations making an intensive
use of the rational identities (C),(SC), we get eventually V1 = (1X)� � Xn(nX)�.
Taking the coefficient of V1 at Xp, we obtain the value function with initial state 1 and
horizon p

v
(p)
1 = max(p; n(p� n)) :

2 Skew Rational Series

Let � be an endomorphism of the semiring S. The semiring of skew series over S,
denoted by S[[X;�]] is by definition the set of formal sums s =

L
n2NsnX

n equipped
with the usual componentwise sum and the skew product:

(s 
 t)n
def
=

M
p+q=n

sp 
 �p(tq) :

This noncommutative product arises from the rule Xa = �(a)X, 8a 2 S.

2.1 Skew Series and Discounted Bellman Chains

Let A 2 Rn�n
max and let us consider the following Markovian discounted optimization

problem (discounted “Bellman chain”) with initial state i, final state j and horizon k:

(A[k])ij
def
= maxi1;:::;ik�1

�
Aii1 + � �Ai1i2 + : : :+ �k�1 � Aik�1j

�
; (7)

where � 2]0; 1] denotes the discount rate. We have the following Hamilton-Jacobi-
Bellman equation

(A[k+1])ij = max
q

�
Aiq + � � (A[k])qj

�
: (8)

After introducing the automorphism ofRmax and ofRn�n
max :

x 2 Rmax; �(x)
def
= � � x ; A 2 Rn�n

max ; �(A)ij
def
= �(Aij) ;

we rewrite (8) as A[k+1] = A
 �(A[k]), hence

A[k] = A
 �(A) 
 : : :
 �k�1(A) : (9)

Since A[k] = ((AX)� jXk), the asymptotic study of the sequence of “skew powers”
A[k] reduces to the evaluation of the matrix (AX)� whose entries are skew rational
series.
7 E.g. V2 can be eliminated by noting that V2 = (2X)V2 � XV3 is equivalent to V2 =

(2X)�XV3 .



2.2 Theorems of Representation for (max;+) Rational Skew Series

We again consider simple series which write s = (aXp)�bXn or equivalently s =
bXn(fXp)� with a; b; f 2 Rmax, p � 1; n � 0:

Theorem 9. A skew series s 2 Rmax[[X;�]] is rational iff it is a sum of simple series.

This theorem is rather surprising because rational series usually cannot be expressed
with a single level of star in noncommutative structures. The proof uses the machinery
of noncommutative rational identities, such as

(S) (a � b)� = a�(ba�)�

together with a few specific “commutative” identities, in particular

8a; b 2 Rmax; p � 1; ((a � b)Xp)� = (aXp)�(bXp)� : (10)

Definition 10. The series s 2 Rmax[[X;�]] is ultimately skew geometric iff

9K 2 N; �2 Rmax k � K ) sk+1 = ��(sk) (= �+ � � sk) : (11)

Theorem 11. A series s 2 Rmax[[X;�]] is rational iff it is a merge of ultimately skew
geometric series.

We obtain as a corollary the following remarkable periodicity theorem first proved by
Braker and Resing [4] (for primitive matrices).

Theorem 12 (Skew Cyclicity). For an irreducible matrix A 2 Rn�n
max , 9c � 1, 8ij,

9�ij such that A[k+c]
ij = �ij�

c(A
[k]
ij ) for k large enough.

Example 2 (Value Function of a Discounted Bellman Chain). Let us compute the value
function v for the discounted version of the Bellman Chain described in Fig. 1. Using
the identity (10), it is not too difficult to obtain V1 = (1X � (�X)�Xn)

� with � =L
1�i�n�1�

i(i+1). An application of the identity (S) givesV1 = (1X)��(�X)�Xn,

hence v(p)1 = 1[p] � �[p�n], which rewrites:

v
(p)
1 = max

�
1� �p

1� �
; �

1� �p�n

1� �

�
with � = max

1�i�n�1
(�i(i+ 1)) :

3 Rational Series in Several Commuting Indeterminates

3.1 Timed Event Graphs with Unknown Resources and Holding Times

As shown in [2, 5], the algebraic modelization of Timed Event Graphs uses the two
operators8

� : u 2 RZmax 7! y 2 RZmax; y(k) = 1 + u(k)


 : u 2 RZmax 7! y 2 RZmax; y(k) = u(k � 1) :

8 The signalsu and y are dater functions [5, §4.1], � and 
 are the shifts in dating and in counting.



When some task has an unknown duration �1, we get an equation of the form y(k) =

�1 + u(k), which suggests to introduce a new operator �1 : �1u(k)
def
= �1 + u(k). In

the same vein, an unknown initial marking q1 (say an unknown number of parts, of
machines) is represented by a new operator 
1 : 
1u(k) = u(k � q1). Then, the dater
functions of a TEG with unknown resources and holding times satisfy the following
polynomial equations9:

x = Ax�Bu; y = Cx; A 2 (B [
i ; �i])
n�n; B 2 (B [
i ; �i])

n�p; C 2 (B [
i ; �i])
r�n

(with essentially as many �i as unknown holding times and as many 
i as unknown
markings). The transfer H = CA�B is a rational series of B [[
i ; �i]].

Example 3 (Transfer of a Machine with Two Part Types). Consider a single machine
producing 2 different parts with processing times t1; t2. Under a cyclic scheduling,
we obtain the TEG shown on Fig. 2,(a). The input ui represents the arrivals of row

t1

u1

u2

t2 t1

t2

M1 M2 Mn

t1

t2

t1

y1

y2

t2

t1t1

t1
t2t2t2

u2

u1

H =

�
�1 
�1�2
�1�2 �2

�
(
�1�2)

�

y2

y1

Fig. 2. (a): A Single Machine Producing 2 Types of Parts. (b): A Cascade of n Machines.

materials for part i (ui(k) = date of k-th arrival), and the output yi represents the dates
of production of the same part. For instance, the expression10H11 = �1(
�1�2)

� shows
that for the autonomous regime, one part of type 1 exits every t1+ t2 units of time (after
time t1).

3.2 Some Algebraic Results

Let S denote a (commutative) dioid. It follows from the commutative rational identities
(C),(SC) that a series s 2 S[[X1; : : : ; Xn]] is rational iff it can be written s =Lk

i=1 uiv
�

i where ui; vi are polynomials. However, we have a much more precise result
inspired by the theory of rational subsets of Nk [8].

Definition 13. A simple series s writes s = aX
�1
1 : : :X

�k
k (
Lr

i=1 aiX
�i1
1 : : :X�ik

k )�,
where the vectors (�1;i)1�i�k; : : : ; (�r;i)1�i�k form a free family of Nk.

Theorem 14. Assume that S is totally ordered. Then, a series s 2 S[[X1; : : : ; Xm]] is
rational iff it is a sum of simple series.

The proof uses essentially the following kind of rational identity:

(aX)�(bY )�(cXY )� = (aX)�(bY )� � (aX)�(cXY )� � (bY )�(cXY )� : (12)

9
B = f"; eg denotes the boolean semiring.

10 For the autonomous regime starting at time 0 (e.g. if an infinite quantity of inputs become
available at time 0, see [2, §5.4.4.1]), the monomial transfer 
n

N
i
�
ki

i
can be interpreted as

“the event n occurs at the earliest at time
P

i
ki � ti”.



Example 4 (Transfer of a Flowshop with n Identical Machines). Let us consider a
cascade of n identical machines of type shown on Fig. 2,(b). The transfer matrix of the
flowshop is equal to Hn. An easy induction gives

Hn =

�
�n1 � 
�21�

2
2(�1 � �2)

n�2 
�1�2(�1 � �2)
n�1

�1�2(�1 � �2)
n�1 �n2 � 
�21�

2
2(�1 � �2)

n�2

�
(
�1�2)

�

(modulo the licit additional simplification rules �si � �ti = �
max(s;t)
i ). This expression

specifies the input/outputbehavior in functionof the unknown processing times t1; t2. In
particular, the term10 �n1�
�

2
1�

2
2(�1��2)

n�2 in the expression ofHn
11 means that, for the

autonomous regime, the part of type 1 numbered 0 has a transfer time ofn�t1, while the
part of the same type numbered 1 has a transfer time of 2(t2+ t1)+(n�2)max(t1; t2).

Example 5 (Heaviside Calculus for some Special Variational Inequalities). Let us search
for the least solution u; v of the system11:

0 � ��
@v

@x
�
@v

@t
; 0 � max(��

@u

@x
; ��

@u

@t
); u � max(
+v; f); v � �+u : (13)

A discretization gives with theRmax notation:

uh(x; t) � �huh(x� h; t)� �huh(x; t� h) � 
vh(x; t)� f(x; t)

vh(x; t) � �hvh(x� h; t� h)� �uh(x; t) :
(14)

Introducing the space and time shiftsXu(x; t)
def
= u(x�h; t) andTu(x; t)

def
= u(x; t�h),

we get
uh � (�hX � �hT )uh � 
vh � f

vh � �hXTvh � �uh :
(15)

A Gaussian elimination gives the least solutionu = (�hX � �hT � (�hXT )�
�)�f :
The convergence of this star inRmax[[X;T ]] yields the compatibility condition 
� � e.
After some computation involving the rational identities (C), (SC), (12), we obtain

u =
�
(�hX)�(�hT )� � 
�(�hX)�(�hXT )� � 
�(�hT )�(�hXT )�

	
f :

We have for the second term of this sum:

(�hX)�(�hXT )�f(x; t) = supp;n�0[�hp+ �hn+ f(x � hp� hn; t� hn)]

= supq�n�0[�h(q � n) + �hn + f(x � hq; t� hn)]
:

After an analogous argument for the two other terms, we introduce the three kernels

k1(�; � ) = �� + ��; k2(�; � ) =

�
�(� � � ) + �� + 
 + � if � � �

�1 otherwise,

k3(�; � ) =

�
�(� � �) + �� + 
 + � if � � �

�1 otherwise.

Then, letting h! 0, we get the explicit solution

u(x; t) = sup
�;��0

[max(k1; k2; k3)(�; � ) + f(x � �; t� � )] :

11 u; v; f are maps R2 ! R. �;�; �; 
; � are constant. We do not address the regularity issues
here.



4 Rational Series in Non Commuting Indeterminates

4.1 Definition and Basic Examples

Let �� denote the free monoid over a finite alphabet �. The series y =
L

w2��(yjw)w

(in Rmaxhh�ii) is recognizable iff there exists � 2 R1�n
max; � 2 R

n�1
max, and a morphism

� : �� ! R
n�n
max such that (yjw) = ��(w)�. The general version of the Kleene-

Schützenberger theorem states that recognizable and rational series coincide.

Example 6 (Deterministic Cost). Let (Q; q0; �) denote a finite deterministic automaton,
� : Q ! Rmax a final cost and � : Q � � ! Rmax a transition cost. Let w =

wk : : :w1 2 �k denote a sequence of decisions (wi denotes the i-th letter of w, read
read from right to left). We consider the cost

(cjw)
def
=

kX
n=1

�(qn�1; wn) + �(qk); subject to qn = �(qn�1; wn) (16)

(by convention, (cjw) = " if �(q0; w) is undefined). This is the discrete counterpart
of the usual integral cost

R T
0
�(x(t); u(t))dt + �(x(T )) for the system _x = f(x; u).

The series
L

w(cjw)w is recognizable (take � = Dirac at q0 and 8a 2 �; 8p; q 2
Q; �(a)pq = �(q; a) if �(q; a) = p and " otherwise).

Example 7 (A Workshop with Different Schedules). We consider a workshop with 2
machines M1;M2 and 2 different regimes of productioncorresponding to the processing
of 2 differents parts (a) and (b), as represented12 by the TEGs (a) and (b) displayed on
Fig. 3. We assume that the workshop can switch from a regime to the other, according to

�1

Regime (a)

�2 M2

x1

M1
�1 M1
�1

�1

x2x2

�2

A(a) =

h
�1 " "

�1 �2 "

�1 �2 "

i x3

Regime (b)

x2x2

M1

M2

x3

1

2

3

�1b

�2a

�1a

�1a

�2a

�1b

e

e

A(b) =

h
�1 �2 "

" �2 "

�1 �2 "

i

B =

h
e

e

"

i
C =

�
" " e

�

�1

�2

�2

�2b

�2b

�2

�1

�2b
�1a

Fig. 3. A Workshop with Two Production Regimes and its Equivalent (max;+) Automaton

an open loop schedule described by a wordw 2 fa; bg�. E.g. the word baameans that the
two machines first follow two tasks with times and precedence constraints determined
by the TEG (a) and after that one task described by the TEG (b). The behavior of
the workshop under the schedule w = wk : : :w1 is determined by the system of non
stationary (max;+) linear equations

xw(0) = B; xw(n) = A(wn)xw(n� 1); yw(n) = Cxw(n) ; 1 � n � k ; (17)

12 The interpretation of regime (b) is the following. A part is processed by M2 during �2 time
units. Then it is sent to M1 (processing time of �1). For simplicity, we have neglected the
transportation times. A dual interpretation can be provided for regime (a). The initial condition
B = [e; e; "]T require M1 and M2 to begin to work at time e = 0.



where A(a); B;C and A(b); B;C stand for the linear representations of the TEGs (a)
and (b) displayed on Fig. 3. The output yw(n) represents the date of completion of the

latest task of the sequence wn�1 : : :w1. The map w 7! (yjw)
def
= yw(k) is recognizable

(take � = C; � = B; �(a) = A(a); �(b) = A(b)). The linear representation�; �; � can
be visualized by the automaton with multiplicities13 in the (max;+) semiring displayed
on Fig. 3.

4.2 Asymptotic Behavior of (max;+) Automata

The asymptotic analysis of a recognizable series y consists in estimating (yjw) where
w is a word of length k!1. We consider the worst case performance:

rworst
k

def
=

M
w2�k

(yjw) = max
wk;:::;w12�

max
ik;:::;i0

[�ik+�(wk)ikik�1
+ : : :+�(w1)i1i0 +�i0 ] :

Theorem 15 [11, 10]. Let y be the series given by the linear representation �; �; �. Let
M =

L
a2� �(a). Then rworst

k = �Mk�.

This is a superposition principle which states that the worst case behavior is obtained
by mere superposition of the TEGs with transition matrices �(a); a 2 �.

Example 8. For the automaton of Ex. 7, the asymptotic behavior is determined by
the eigenvalue � of M = A(a) � A(b), i.e. limk(r

worst
k )


1
k = limk r

worst
k =k = � =

maxi=1;2max(�i; �i).

We next turn to the dual optimal case measure of performance14:

r
opt.
k

def
= min

w2�k;

(yjw)6="

(yjw) = min
wk;:::;w12�;

(yjw)6="

max
ik;:::;i0

[�ik+�(wk)ikik�1
+ : : :+�(w1)i1i0+�i0 ] :

This min-max problem consists in finding a schedule minimizing the transfer time
of the k-th input. We remark that for the subclass of deterministic15 series, (yjw)

does not involve maximization, so that the computation of ropt. and rworst become
dual. More formally, we introduce y0 =

L
(yjw)6=�1(yjw)w 2 Rminhh�ii (where

Rmin
def
= (R[ f+1g;min;+)) and we get:

Proposition 16. For a deterministic series y, ropt.
k = �0(M 0)k�0, where �0; �0; �0 is

a Rmin-linear representation of y0, M 0 =
L

a2� �0(a) and all the operations are
interpreted inRmin.

Thus, we are reduced to characterize the series which admit deterministic representa-
tions. Under some finiteness and integrity conditions on �; �; �, e.g. if 8a; i; j; �(a)ij 2
Z, the series y is deterministic [11, 10, 13]. However, the minimal dimension of a de-
terministic representation can be arbitrarily larger than the dimension of �; �; �. Thus

13 See [7]. The multiplicity of w – i.e. (yjw) – is equal to the sum of the multiplicative weights
of all the paths with label w from the input to the output. E.g. (yjba) = �1�1 � �2�2 � �1�2 .

14 The mean case performance rmean
k = E(yjw(k)) – where w(k) is a random word of length k –

is dealt with in the first order ergodic theory of TEGs [2, 17].
15 A series is deterministic if it admits a representation of the form (16).



computing ropt. from Prop. 16 can be much more complex than computing rworst from
Th. 15. Some different techniques based on rational simplifications can sometimes be
applied as in Ex. 9, but it is hopeless to obtain universal canonical forms since the
equality of (max;+) rational series is undecidable [15]. It remains an open question
whether the asymptotic behavior of ropt. can be exactly evaluated for some reasonable
classes of series without appealing to the above determinization procedure.

Example 9. For the automaton of Ex. 7, limk r
opt.
k =k = min(maxi(�i);maxi(�i)).

When �2 � �1, �2 � �1, this follows for instance from the easily obtained expression
y = (�2a � �2b)(�2a� �2b)

�.
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