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Abstract

Min-max functions, F : Rn → Rn, arise in modelling the dynamic behaviour of
discrete event systems. They form a dense subset of those functions which are homoge-
neous, Fi(x1 + h, · · · , xn + h) = Fi(x1, · · · , xn) + h, monotonic, ~x ≤ ~y ⇒ F (~x) ≤ F (~y),
and nonexpansive in the `∞ norm—so-called topical functions—which have appeared
recently in the work of several authors. Our main result characterises those min-max
functions which have a (generalised) fixed point, where Fi(~x) = xi + h for some h ∈ R.
We deduce several earlier fixed point results. The proof is inspired by Howard’s pol-
icy improvement scheme in optimal control and yields an algorithm for finding a fixed
point, which appears efficient in an important special case. An extended introduction
sets the context for this paper in recent work on the dynamics of topical functions.

Keywords: cycle time, discrete event system, fixed point, max-plus semiring, non-
expansive map, nonlinear eigenvalue, Perron-Frobenius, policy improvement, topical
function.
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1 Introduction

A min-max function F : Rn → Rn is built from terms of the form xi + a, where 1 ≤ i ≤ n
and a ∈ R, by application of finitely many max and min operations in each component. For
example,

F1(x1, x2) = max(min(max(x1 + 1, x2 − 1.2),max(x1, x2 + 2)),min(x1 + 0.5, x2 + 1))
F2(x1, x2) = min(max(x1 + 7, x2 + 4.3),min(x1 − 5, x2 − 3)) .

(A different notation is used in the body of the paper; see §1.1.) Such functions are ho-
mogeneous, Fi(x1 + h, · · · , xn + h) = Fi(x1, · · · , xn) + h, monotonic with respect to the
usual product ordering on Rn, ~x ≤ ~y ⇒ F (~x) ≤ F (~y), and nonexpansive in the `∞ norm,
‖F (~x)− F (~y)‖ ≤ ‖~x− ~y‖. Functions with these properties have emerged recently in the
work of several authors, [2, 23, 28, 31, 40]. We shall follow Gunawardena and Keane and call
them topical functions. They include (possibly after suitable transformation) nonnegative
matrices, Leontieff substitution systems, dynamic programming operators of games and of
Markov decision processes, nonlinear operators arising in matrix scaling problems and de-
mographic modelling and renormalisation operators for certain fractal diffusions, [12, 24].
They also include examples, such as the min-max functions of the present paper, which arise
from modelling discrete event systems—digital circuits, computer networks, manufacturing
plants—an application discussed in more detail in §1.2.

Any topical function T can be approximated by min-max functions in such a way that some
of the dynamical behaviour of T is inherited by its approximations (see Lemma 1.1). In
this paper we study the dynamics of min-max functions, motivated partly by the appli-
cations to discrete event systems and partly by the need to develop a nonlinear Perron-
Frobenius theory for topical functions. For any topical function, a fixed point—or nonlin-
ear eigenvector—is a vector, ~x = (x1, · · · , xn) ∈ Rn, for which there exists h ∈ R, such that
F (~x) = (x1 +h, · · · , xn+h). The cycle time vector, χ(F ) = limk→∞ F

k(~x)/k ∈ Rn, provides
the appropriate nonlinear generalisation of the Perron root, or spectral radius (see §1.3).
The limit in question does not always exist, [23, Theorem 3.1], and it remains an important
open problem to characterise those topical functions for which it does. The nonexpansive
property of F guarantees that χ, when it does exist, is independent of the initial condition,
~x. The cycle time vector provides a performance measure in discrete event systems, where
it measures the asymptotic average system latency (see §1.2).

Unlike the conventional spectral radius, the cycle time is a vector and immediately gives
a necessary condition for the existence of a fixed point. If F has a fixed point, then the
homogeneity property implies that χ(F ) exists and that χ(F ) = (h, · · · , h): the cycle time
has the same value in each component. (In the context of discrete event systems this
represents the fact that the system can only possess an equilibrium state when the average
latency of each event is asymptotically the same.) It is interesting to ask whether the
converse is true. In other words, whether,

∃~x ∈ Rn, such that F (~x) = (x1 + h, · · · , xn + h) if, and only if, χ(F ) = (h, · · · , h) . (1)

In 1994 the third author put forward a conjecture—the Duality Conjecture—on the ex-
istence of the cycle time for min-max functions, [19]. The conjecture asserts that any
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min-max function has a cycle time and that χ, when considered as a functional from min-
max functions to Rn, is “almost” a homomorphism of lattices (see [17, §3] for a more precise
statement). The conjecture was shown to imply the fixed point result (1) but the method of
proof was nonconstructive and gave no algorithm for finding a fixed point, [19]. The ques-
tion of constructibility is an important one in the applications; for instance, in the study of
digital circuits, the solution of the clock schedule verification problem requires calculating
the fixed point of a min-max function, [18].

The main result of the present paper is a constructive fixed point theorem for min-max
functions which is independent of the Duality Conjecture and of the existence of cycle
times for min-max functions. We give a necessary and sufficient condition, in terms of the
cycle times of the component “max-only” functions (see below), for any min-max function to
have a fixed point. The algorithm based on the proof is not tractable in general but can be
made efficient in an important special case. We recover as corollaries of our main theorem
the two previous fixed point results for min-max functions, one due to the third author
with more restrictive hypotheses, [19, Theorem 3.1], the other due to Olsder, applicable to
separated min-max functions (see below) satisfying certain conditions, [33, Theorem 2.1].
Both earlier results were nonconstructive.

The methods of the present paper rely on a special class of min-max functions which can
be studied by linear methods, albeit of an unusual nature. This is the class of matrices over
the max-plus semiring, Rmax = R ∪ {−∞}, where addition and multiplication are defined as
max and +, respectively, the latter being distributive over the former (see §1.4). Matrices
over Rmax correspond to min-max functions in which the min operation is never used,
so-called “max-only” functions. Matrix algebra over Rmax has been extensively studied,
[1, 9, 10, 29, 32, 42]. Min-max functions can be represented by finite collections of max-plus
matrices and the dynamical properties of the latter, known from the linear theory over
Rmax, can be used to infer those of the former.

After the final draft of this paper was finished, the second and third authors, inspired by the
methods used here, proved the Duality Theorem for min-max functions, [13, Theorem 1],
and then went on to show the existence of the cycle time for a larger class of topical functions
including some arising in Markov decision theory, [12, Theorem 15]. The proofs require some
of the technical results of §1.4 but also introduce a number of new ideas. Fixed point results
are not elaborated upon in this later work and the results and methods of the present paper
remain relevant.

Interest in the class of min-max functions, and in the broader class of topical functions, has
come from a number of directions and brings together a number of distinct themes: discrete
event systems, Perron-Frobenius theory, max-plus matrix algebra, fixed point theorems for
nonexpansive functions, nonlinear dynamics, etc. Because of the recent emergence of this
area, we have devoted the remainder of this Introduction to amplifying the outline above.
We hope this will give a better sense of the scope of the present work.

Special cases of min-max functions were studied by Olsder in [33]. Min-max functions
themselves were introduced in [21]. The present paper incorporates some of the results of
[6, 19, 20], as well as new material. The authors gratefully acknowledge discussions with
Michael Keane, Roger Nussbaum, Geert-Jan Olsder, Jean-Pierre Quadrat, Colin Sparrow
and Sjoerd Verduyn Lunel. They are also grateful to the reviewer and editors for their
helpful comments. This work was partially supported by the European Community Frame-
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work IV programme through the research network ALAPEDES (“The Algebraic Approach
to Performance Evaluation of Discrete Event Systems”).

1.1 Min-max functions

We begin with some notation. Vectors in Rn will be denoted ~x,~a, etc. For vector valued
quantities in general, such as functions F : X → Rn, the notation Fi will denote component
i: F (x) = (F1(x), · · · , Fn(x)). To avoid clutter, we use xi for the components of ~x. The
partial order on R will be denoted in the usual way by a ≤ b but it will be convenient to
use infix forms for the lattice operations of least upper bound and greatest lower bound:

a ∨ b = lub(a, b)
a ∧ b = glb(a, b) .

(The word “lattice” is used in this paper to refer to a partial order in which any two elements
have a least upper bound and a greatest lower bound, [26, §1.1]. We do not require, however,
that a lattice has a greatest and a least element.) The same notation will be used for lattices
derived from R, such as the function space X → R. The partial order here is the pointwise
ordering on functions: f ≤ g if, and only if, f(x) ≤ g(x) for all x ∈ X. If Rn is identified
with the set of functions {1, · · · , n} → R, then this specialises to the product ordering on
vectors.

To reduce notational overhead we shall use the following vector-scalar convention: if, in
a binary operation or relation, a vector and a scalar are mixed, the relevant operation is
performed, or the relevant relation is required to hold, on each component of the vector.
For instance, if h ∈ R and ~x ∈ Rn, then ~x+h will denote the vector (x1 +h, · · · , xn+h), and
~x ≤ h will imply xi ≤ h for each 1 ≤ i ≤ n. Throughout this paper, we shall use h to denote
a real number without specifying so explicitly. Formulae such as ~x = h should therefore
always be interpreted using the vector-scalar convention: xi = h for each 1 ≤ i ≤ n.

The notation ‖~x‖ will denote the `∞ norm on Rn: ‖~x‖ = |x1| ∨ · · · ∨ |xn|. If F,G : X → X,
then function composition will be denoted, as usual, by FG: FG(x) = F (G(x)).

Definition 1.1 A min-max function of type (n, 1) is any function f : Rn → R1, which can
be written as a term in the following grammar:

f := x1, x2, · · · , xn | f + a | f ∧ f | f ∨ f (a ∈ R). (2)

The notation used here is the Backus-Naur form familiar in computer science. The vertical
bars separate the different ways in which terms can be recursively constructed. The simplest
term is one of the n variables, xi, thought of as the i-th component function. Given any
term, a new one may be constructed by adding a ∈ R; given two terms, a new one may be
constructed by taking a greatest lower bound or a least upper bound. Only these rules may
be used to build terms. Of the three terms

((((x1 + 2) ∨ (x2 − 0.2)) ∧ x3) ∨ (x2 + 3.5))− 1
x1 ∨ 2

(x1 + x2) ∧ (x3 + 1)
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the first is a min-max function but neither the second nor the third can be generated by (2).

We shall assume that + has higher precedence than ∨ or ∧, allowing us to write the first
example more simply:

(((x1 + 2 ∨ x2 − 0.2) ∧ x3) ∨ x2 + 3.5)− 1 .

Although the grammar provides a convenient syntax for writing terms, we are interested in
them only as functions, Rn → R. Terms can therefore be rearranged using the associativity
and distributivity of the lattice operations, as well as the fact that addition distributes over
both ∧ and ∨. The example above can hence be simplified further to

(x1 + 1 ∨ x2 + 2.5) ∧ (x3 − 1 ∨ x2 + 2.5) .

It is clear that any term can be reduced in a similar way to a minima of maxima, or, dually,
a maxima of minima. We shall discuss the corresponding canonical forms in §2.1.

Definition 1.2 ([21, Definition 2.3]) A min-max function of type (n,m) is any function
F : Rn → Rm, such that each component Fi is a min-max function of type (n, 1).

The set of min-max functions of type (n,m) will be denoted MM(n,m). We shall mostly be
concerned with functions of type (n, n), which we refer to as functions of dimension n. It is
convenient to single out some special cases. Let f ∈ MM(n, 1). If f can be represented by a
term that does not use ∧, it is said to be max-only. If f can be represented by a term that
does not use ∨, it is min-only. If f is both max-only and min-only, it is simple. The same
terminology extends to functions F ∈ MM(n,m) by requiring that each component Fi has
the property in question. If F ∈ MM(n,m) and each Fi is either max-only or min-only, F
is said to be separated. Of the following functions in MM(2, 2),

S =

(
x1 + 1
x2 − 1

)
T =

(
x2 + 1
x2 − 1

)
U =

(
x1 + 1 ∨ x2 + 1

x1 + 2

)
,

S and T are both simple and U is max-only. Moreover, S ∧ T is min-only and (S ∨ T ) ∧ U
is separated.

Proposition 1.1 Let F,G ∈ MM(n, n) and ~a, ~x, ~y ∈ Rn and h ∈ R. The following hold.

1. F + ~a, FG, F ∨G and F ∧G all lie in MM(n, n).

2. Homogeneity: F (~x+ h) = F (~x) + h. H

3. Monotonicity: if ~x ≤ ~y then F (~x) ≤ F (~y). M

4. Nonexpansiveness: ‖F (~x)− F (~y)‖ ≤ ‖~x− ~y‖. N

The first three parts follow easily from Definition 1.2, while the fourth is a consequence of
the following observation of Crandall and Tartar, [8]. (See also [23, Proposition 1.1] for a
proof adapted to the present context.)
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Proposition 1.2 If F : Rn → Rn satisfies H then M is equivalent to N.

The homogeneity property suggests a generalisation of the conventional notion of fixed, or
periodic, point.

Definition 1.3 Suppose that F : Rn → Rn satisfies property H. We say that ~x ∈ Rn is a
fixed point of F , if F (~x) = ~x + h for some h ∈ R, and that ~x is a periodic point of F with
period p, if ~x is a fixed point of F p, but not of F k for any 0 < k < p.

A fixed point of F in this sense is a fixed point of F − h in the conventional sense. Unless
otherwise stated, the phrases “fixed point” and “periodic point” will have the meaning given
by Definition 1.3 throughout this paper.

Min-max functions first arose in applications and these applications continue to provide
important insights. In the next two sub-sections we review this material.

1.2 Discrete event systems

A discrete event system is, roughly speaking, a system comprising a finite set of events
which occur repeatedly: a digital circuit, in which an event might be a voltage change on
a wire, from binary 1 to 0 or vice versa; a distributed computer system, in which an event
might be the arrival of a message packet at a computer; an automated manufacturing plant,
in which an event might be the completion of a job on a machine. Discrete event systems
are ubiquitous in modern life and are the focus of much interest in engineering circles,
[1, 7, 15, 25]. They are dynamical systems, in the sense that they evolve in time, but their
analysis leads to quite different mathematics to that used to model dynamic behaviour in
continuous and differentiable systems.

If n is the number of events in the system, let ~x ∈ Rn be such that xi is the time of first
occurrence of event i, relative to some arbitrary origin of time when the system is started.
(It is worth noting that the existence of such a global clock is not always a reasonable
assumption: distributed systems sometimes operate on the basis of only local time refer-
ences.) Suppose further that the system can be modelled in such a way that, for some
function F : Rn → Rn, Fi(~x) gives the time of next occurrence of event i. In this case the
dynamic behaviour of the system can be modelled by the discrete dynamic system F .

It might be thought that a model of this kind is too simplified to occur in practice. This
is not the case. For instance, the problem of clock schedule verification in digital circuits
leads directly to such a model. To each “latched synchronous” circuit may be associated an
element F ∈ MM(n, n), where n is one more than the number of storage latches. (Practical
circuits may have as many as 104 latches.) The clock schedule verification problem for the
circuit may be solved by finding a fixed point of F . We shall not discuss this application
further here; the reader should consult [18, 37, 39] for more details. It does underline,
however, the importance of understanding when fixed points of min-max functions exist
and how to calculate them when they do. These are the main concerns of the present
paper.

The axioms of homogeneity and monotonicity have an appealing interpretation in the con-
text introduced above. Homogeneity is tantamount to saying that the origin of the global
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time reference is irrelevant. Monotonicity asserts that delaying some events cannot speed-up
any part of the system. This latter condition is intuitively reasonable and is often observed
in practice but the complexity of the real world does throw up examples in which it fails. It
is natural, in the light of these observations, to focus attention on functions satisfying these
two properties. By virtue of Proposition 1.2, these are necessarily nonexpansive in the `∞
norm.

Definition 1.4 ([23, Definition 1.1]) A topical function is any function F : Rn → Rn

satisfying properties H and M.

Topical functions have appeared in the work of a number of authors, [2, 23, 28, 31, 40].
Current work suggests that they provide a mathematically appealing model for discrete
event systems, [17, 2]. For serious applications in this area, the dynamics of a single function
must be extended in several ways. First, by considering the semigroup generated by a set
of functions, {F (α) | α ∈ A}, [11, 38] as in the theory of automata, [34]. This allows
for the possibility of nondeterminism: if the system is in state ~x, it may evolve to any of
the states F (α)(~x). For instance, demanding £20 from an automatic cash machine may
sometimes result in two ten pound notes and sometimes in one ten and two fives. A second
extension comes by taking F (α) to be a random variable from some suitable measure space
into the space of topical functions. This permits stochastic behaviour to be modelled: in a
digital circuit it is conventional to consider only the maximum or minimum delays through
a component (the manufacturer provides a data book which lists these values) but in a
distributed computer system the time taken by a message packet will vary widely and a
probabilistic approach is more appropriate, [1, Chapter 7], [36]. Notwithstanding these
extensions, the dynamical behaviour of a single topical function remains largely unknown
and leads to a number of open problems, [24].

What role do min-max functions play within the larger class of topical functions? In turns
out to be an unexpectedly central one, as shown by the following observation of Gunawar-
dena, Keane and Sparrow.

Lemma 1.1 ([24]) Let T : Rn → Rn be a topical function and let S ⊆ Rn be any finite set
of points. There exists H ∈ MM(n, n) such that T ≤ H and T (~u) = H(~u) for all ~u ∈ S.

It follows that min-max functions approximate topical functions, not only in the topological
sense that MM(n, n) is dense in the set of topical functions (in the compact-open topology),
but also in a lattice theoretic sense: any topical function is the lower envelope of a family
of min-max functions. More importantly, this approximation preserves some aspects of the
dynamics. Using the notation of Lemma 1.1, it follows from property M that T k ≤ Hk. In
particular, the cycle time vector of T will be bounded above by that of H (provided both
exist). It also follows from Lemma 1.1 that every periodic orbit of a topical function is
the orbit of some min-max function. Lemma 1.1 and its consequences provide one of the
principal motivations for the present paper: to study min-max functions as a foundation
for analysing topical functions.

We have presented topical functions as arising naturally from attempts to find a mathe-
matical model for discrete event systems. However, they also have intrinsic mathematical
interest because they include a number of classical examples which have been extensively
studied in quite different contexts.
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1.3 Topical functions and cycle times

Let R+ denote the positive reals: R+ = {x ∈ R | x > 0}. The whole space, Rn, can be
put into bijective correspondence with the positive cone, (R+)n, via the mutually inverse
functions exp : Rn → (R+)n and log : (R+)n → Rn, which do exp and log on each component:
exp(~x)i = exp(xi), for ~x ∈ Rn, and log(~x)i = log(xi), for ~x ∈ (R+)n. Let A be any n × n
matrix all of whose entries are nonnegative. Elements of Rn can be thought of as column
vectors and A acts on them on the left as A~x. We further suppose the nondegeneracy
condition that no row of A is zero:

∀1 ≤ i ≤ n, ∃1 ≤ j ≤ n, such that Aij 6= 0 . (3)

In this case, A maps the positive cone onto itself, A : (R+)n → (R+)n. Let E(A) : Rn → Rn

denote the conjugate E(A)(~x) = log(A(exp(~x))). Clearly, E(AB) = E(A)E(B), so that the
dynamics of A and E(A) are entirely equivalent.

The point of this is that E(A) is always a topical function: property H is the additive
equivalent of the fact that A commutes with scalar multiplication, while property M follows
from the nonnegativity of A. We see that the dynamics of topical functions includes as
a special case that of nonnegative matrices; in other words, Perron-Frobenius theory. It
can be shown that a number of classical examples in optimal control, game theory and
mathematical economics also give rise to topical functions. The geography of the space of
topical functions is discussed in more detail in [12, 24].

If ~x ∈ Rn is a fixed point of E(A), so that E(A)(~x) = ~x+h, then exp(~x) is an eigenvector of
A with eigenvalue exp(h). Fixed points of E(A) therefore correspond bijectively to positive
eigenvectors of A. That is, to eigenvectors lying in the positive cone. What about the
eigenvalue? Can this also be generalised to the nonlinear context? A clue to doing this
came from the applications.

A frequent demand from system designers is to estimate performance, [3, 18]. If the system
can be modelled by a single function, F : Rn → Rn, as described above, an estimate can
be made on the basis of the time elapsed between successive occurrences: F (~x)− ~x. Better
still is an average over several occurrences:

(F k(~x)− F k−1(~x) + · · ·+ F (~x)− ~x)/k .

Letting k → ∞, we get limk→∞ F
k(~x)/k. This is a vector quantity, which measures the

asymptotic average latency in each component. Does this limit exist?

Lemma 1.2 Let F : Rn → Rn satisfy property N. If limk→∞ F
k(~x)/k exists somewhere,

then it exists everywhere and has the same value.

Proof Suppose that, for some ~x ∈ Rn, limk→∞ F
k(~x)/k = ~a and let ~y be another point of

Rn. Choose ε > 0. By property N, for all sufficiently large k,

‖~a− F k(~y)/k‖ ≤ ‖~a− F k(~x)/k‖+ ‖F k(~x)/k − F k(~y)/k‖ ≤ ε+ ‖~x− ~y‖/k .

From which the result follows immediately.

2
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Definition 1.5 Let F : Rn → Rn satisfy property N. The cycle time vector of F , denoted
χ(F ) ∈ Rn, is defined to be

lim
k→∞

F k(~x)/k (4)

when this limit exists for some ~x ∈ Rn, and to be undefined otherwise.

Suppose that F = E(A) and that A has a positive eigenvector with eigenvalue λ, which must
necessarily be real. (Perron-Frobenius theory tells us that λ equals the spectral radius of
A.) It then follows, as above, that χ(E(A)) = log(λ). We see from this that χ is a nonlinear
vector generalisation of the spectral radius. It can be shown that if A is any nonnegative
matrix satisfying (3) then χ exists and can be determined in terms of the spectral radii
of the irreducible components of A, [24]. Indeed, by using E−1 on (4), we see that the
cycle time vector corresponds to the usual spectral radius formula, albeit disintegrated into
individual components.

The cycle time vector immediately yields a necessary condition for a fixed point. Suppose
that F is a topical function with a fixed point, so that F (~x) = ~x+h. By repeated application
of H, we see that F k(~x) = ~x + k.h. Hence, χ does exist and χ(F ) = h. We recall from
the vector-scalar convention that this means each component of χ(F ) has the same value
h, which, by Lemma 1.2, is independent of the choice of fixed point. As discussed in the
Introduction, the converse result, (1), also holds when F is a min-max function, [12, 13].

Not all topical functions have cycle times, [23, Theorem 3.1]. It remains an important open
problem to characterise those that do, [24]. Furthermore, one cannot expect such a strong
fixed point theorem as (1) even for those topical functions that do have cycle times. If

A =

(
1 1
0 1

)

then χ(E(A)) = (0, 0) but A does not have a positive eigenvector. This example raises a
number of issues which take us beyond the scope of the present paper and we defer further
discussion to later work.

1.4 Max-only functions and max-plus matrices

It should be clear from the remarks before Definition 1.2 that if f ∈ MM(n, 1) is max-only,
it can be reduced to the form

f = x1 + a1 ∨ · · · ∨ xn + an

where the absence of a term xj + aj is indicated by setting aj = −∞. This can be thought
of as an element adjoined to R which is less than any real number and acts as an absorbing
element for addition: a + (−∞) = −∞. Hence, if F ∈ MM(n, n) is max-only, it can be
represented by a matrix A with entries in R ∪ {−∞}:

F1 = x1 +A11 ∨ · · · ∨ xn +A1n
...

...
...

Fn = x1 +An1 ∨ · · · ∨ xn +Ann .

(5)

8



Since each component of F must have some value, A satisfies a nondegeneracy property
formally similar to (3):

∀1 ≤ i ≤ n, ∃1 ≤ j ≤ n, such that Aij 6= −∞ . (6)

Suppose that the algebraic operations on R ∪ {−∞} are now redefined so that the sum op-
eration becomes maximum and the multiplication operation becomes addition. The element
−∞ then becomes a zero for sum, while 0 becomes a unit for multiplication. Since addition
distributes over maximum, this structure forms a semiring, called the max-plus semiring,
and denoted Rmax. If vectors in Rn are thought of as column vectors, (5) can be rewritten
as a matrix equation

F (~x) = A~x (7)

in which the matrix operations are interpreted in Rmax. It follows that F k(~x) = Ak~x and
the dynamics of F reduce to matrix algebra, albeit of an unusual sort. We have, in effect,
linearised an apparently nonlinear problem.

Cuninghame-Green was perhaps the first to realise the implications of matrix algebra over
max-plus, [9]. Since that time the idea has been rediscovered and redeveloped several times
and there are now several standard texts on the subject, [1, 4, 10, 29, 42]. For recent
overviews, see [14, 17].

In this paper we shall not adopt max-plus notation. That is, + and × will always have
their customary meanings. We shall use ∨ and + for the corresponding max-plus operations.
Similarly, 0 will always have its customary meaning and we shall use −∞ for the zero in
Rmax. If A and B are, respectively, n × p and p × m matrices over Rmax, then AB will
always mean the matrix product over Rmax:

(AB)ij =
∨

1≤k≤p
Aik +Akj .

(Recall that + has higher precedence than ∨.) The customary ordering on R extends to
Rmax in the obvious way, so that −∞ ≤ x for all x ∈ Rmax. The same symbol is used for
the product ordering on vectors: if ~x, ~y ∈ (Rmax)n then ~x ≤ ~y if, and only if, xi ≤ yi for
all i. An n × n matrix over Rmax, A, acts on the whole space (Rmax)n and it is easy to
see that it is monotonic with respect to the product ordering: if ~x ≤ ~y then A~x ≤ A~y. We
recall that ~x ∈ (Rmax)n is an eigenvector of A for the eigenvalue h ∈ Rmax, if A~x = ~x+ h.
If A satisfies the nondegeneracy condition (6), so that A can also be considered as a min-
max function, then fixed points of A correspond bijectively to eigenvectors of A lying in
Rn. (This restriction is formally similar to that needed for nonnegative matrices and their
eigenvectors in §1.3.) In this paper, the word “eigenvector” will indicate an element of
(Rmax)n while the phrase “fixed point” will imply that the element in question lies in Rn.

We need to recall various standard results in max-plus theory. The reader seeking more
background should consult [1, Chapter 3].

Let A be an n × n matrix over Rmax. The precedence graph of A, denoted G(A), is the
directed graph with labelled edges which has nodes {1, · · · , n} and an edge from j to i if,
and only if, Aij 6= −∞. The label on this edge is then the real number Aij . (Some authors
use the opposite convention for the direction of edges.) We shall denote an edge from j to
i by i ← j. A path from im to i1 is a sequence of nodes i1, · · · , im such that 1 < m and
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ij ← ij+1 for 1 ≤ j < m. A circuit is a path which starts and ends at the same node:
i1 = im. A circuit is elementary if the nodes i1, · · · , im−1 are all distinct. A node j is
upstream from i, denoted i ⇐ j, if either i = j or there is a path in G(A) from j to i. (A
node is always upstream from itself.) A circuit g is upstream from node i, denoted i ⇐ g,
if some node on the circuit is upstream from i. The weight of a path p, |p|w, is the sum of
the labels on the edges in the path:

|p|w =
m−1∑
j=1

Aijij+1 .

It follows from this that matrix multiplication has a nice interpretation in terms of path
weights: Asij is the maximum weight among all paths of length s from j to i. The length
of a path, |p|`, is the number of edges in the path: |p|` = m − 1. If g is a circuit, its cycle
mean, denoted m(g) is defined by m(g) = |g|w/|g|`. If A is an n× n matrix over Rmax, let
µ(A) ∈ (Rmax)n be defined by

µi(A) = max{m(g) | i⇐ g} . (8)

This is well defined: although there may be infinitely many circuits in G(A), only the
elementary ones are needed to determine µ(A). By convention, the maximum of an empty
set is taken to be −∞. Hence, if there are no circuits upstream from node i, µi(A) = −∞.
If A satisfies the nondegeneracy condition (6) then every node has an upstream circuit and
so µ(A) ∈ Rn.

It is convenient at this point to single out the functions t, b : Rn → R given by

t(~x) = x1 ∨ · · · ∨ xn
b(~x) = x1 ∧ · · · ∧ xn .

If c is any vector valued quantity, we shall often simplify this notation by writing tc and bc
in place of t(c) and b(c), respectively. It follows from (8) that tµ(A) is the maximum cycle
mean over all circuits. A critical circuit is an elementary circuit with cycle mean tµ(A).

Before proceeding further, it may be helpful to see an example. The max-only function

F1(x1, x2, x3) = x2 + 2 ∨ x3 + 5
F2(x1, x2, x3) = x2 + 1
F3(x1, x2, x3) = x1 − 1 ∨ x2 + 3

(9)

has associated max-plus matrix, precedence graph and µ vector shown below

 −∞ 2 5
−∞ 1 −∞
−1 3 −∞


1

2

3-
�

−1

5

�
�

�
��	

@
@
@
@@R

2 3

�

1

 2
1
2

 . (10)

The maximum cycle mean is 2 and 1← 3← 1 is the unique critical circuit.
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Proposition 1.3 If F ∈ MM(n, n) is max-only and A is the associated matrix over Rmax,
then χ(F ) exists and χ(F ) = µ(A).

Proof Let µ1(A) = h. Suppose initially that h = 0 and consider the sequence of numbers
α(s) = (As~0)1. It follows from one of the remarks above that we can interpret α(s) as
the maximum weight among paths in G(A) of length s which terminate at node 1. If we
consider any path terminating at node 1 then the only positive contribution to the weight
of the path can come from those edges which are not repeated on the path: a repeated
edge would be contained in a circuit, whose contribution to the path weight is at most 0.
Since there are only finitely many edges, the weight of any path must be bounded above by∑
Aij>0Aij . Hence α(s) is bounded above. Since h = 0, we know that there is some circuit

upstream from node 1 whose weight is 0. Call this circuit g. For s sufficiently large, we can
construct a path, p(s), terminating at node 1 whose starting point cycles round the circuit
g. The weight of this path can only assume a finite set of values because |g|w = 0. Since
α(s) is the path of maximum weight of length s, it follows that α(s) ≥ |p(s)|w and so α(s)
is also bounded below. We have shown that there exist m,M ∈ R such that, for all s ≥ 0,
m ≤ α(s) ≤M . It follows immediately that lims→∞ α(s)/s = 0. Hence,

lim
s→∞

(F s(~0))1/s = µ1(A).

If h 6= 0 then replace F by G = F − h. G is also a max-only function and if B is its
associated matrix, then Bij = Aij − h. Hence µ1(B) = 0 and we can apply the argument
above to show that lims→∞(Gs(~0))1/s = 0. But since F = G+h, it follows from property H
that lims→∞(F s(~0))1/s = h = µ1(A). The same argument can be applied to any component
of F and the result follows.

2

If F has a fixed point, so that F (~x) = ~x + h, then h = µ(A). In particular, h = tµ(A),
the maximum cycle mean over all circuits in G(A). This is the eigenvalue associated to any
eigenvector of A lying in Rn. It is the analogue for max-plus matrices of the Perron root,
or spectral radius, for nonnegative matrices, [1, Theorem 3.23].

Suppose that A is an n× n matrix over Rmax. Suppose further that tµ(A) = 0, so that all
circuits of G(A) have nonpositive weight. Since any path p in G(A), with |p|` ≥ n, must
contain a circuit, it is not difficult to see that

(As)ij ≤ Aij ∨ · · · ∨ (An)ij (11)

for all s ≥ n. Let (A+)ij = sup{(As)ij | 1 ≤ s}, which is well defined as an element of Rmax

by the previous observation. (It is well-known in max-plus theory that, A+ = A∨ · · · ∨An,
[1, Theorem 3.20], but we shall not need this here.) Note that it is still possible for (A+)ij =
−∞, since it may be the case that there are no paths from j to i. Let C(A) ⊆ {1, · · · , n}
be the set of those nodes of G(A) which lie on some critical circuit. Let PA be the Rmax

matrix defined as follows:

(PA)ij =
∨

u∈C(A)

(A+)iu + (A+)uj . (12)

PA is sometimes called a spectral projector, [1, §3.7.3]. Part 3 of Lemma 1.4 will show that
it encapsulates information about the eigenvectors of A.

The next lemma is a standard result in max-plus matrix theory.
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Lemma 1.3 ([1, Theorem 3.105]) Suppose that A is an n× n matrix over Rmax such that
tµ(A) = 0. Then (PA)A = A(PA) = PA and (PA)2 = PA.

The next lemma collects together a number of useful observations. Some of them are well-
known in max-plus theory, [1, Chapter 3], but do not appear in a convenient form in the
literature.

Lemma 1.4 Suppose that A is an n × n matrix over Rmax such that tµ(A) = 0. Suppose
further that ~x, ~y ∈ (Rmax)n. The following statements hold.

1. If A~x ≤ ~x then PA~x ≤ ~x.

2. A~x = ~x if, and only if, PA~x = ~x.

3. The image of PA : (Rmax)n → (Rmax)n is the eigenspace of A for the eigenvalue 0.

4. If A~x = ~x, A~y = ~y and xi = yi for all i ∈ C(A), then ~x = ~y.

5. If i ∈ C(A) then (PA)ii = 0.

6. If A~x ≤ ~x then (A~x)i = xi for all i ∈ C(A).

7. If µ(A) = 0 then PA : Rn → Rn.

Proof 1. Since A~x ≤ ~x, it follows that As~x ≤ ~x and so A+~x ≤ ~x. Hence (A+)uj + xj ≤
(A+~x)u ≤ xu. Choose 1 ≤ i ≤ n. Then, by (12), (PA~x)i ≤

∨
u∈C(A)(A

+)iu +xu ≤ (A+~x)i ≤
xi. Hence PA~x ≤ ~x as required.

2. If PA~x = ~x then it follows immediately from Lemma 1.3 that A~x = ~x. So suppose that
A~x = ~x. By part 1, PA~x ≤ ~x. Choose 1 ≤ i ≤ n. If xi = −∞, then certainly (PA~x)i = xi,
so we may assume that xi > −∞. For each s, ~x = As~x. Hence there exists 1 ≤ j ≤ n such
that xi = (As)ij + xj . (As)ij is the weight of some path of length s from node j to node i.
If we choose s = n, then this path must contain a circuit g. It is not difficult to see that,
because xi > −∞, we must have m(g) = 0. It follows that there exists v ∈ C(A) such that,
for some s, xi = (As)iv + xv. But then,

xi ≤ (A+)iv + xv ≤
∨

u∈C(A)

(A+)iu + xu ≤ (A+~x)i = xi ,

the last equality holding because ~x is evidently an eigenvector of A+. It follows that
xi =

∨
u∈C(A)(A

+)iu + xu. Hence, by (12), (PA~x)i =
∨
u∈C(A)(A

+)iu + (A+~x)u = xi. Hence
PA~x = ~x.

3. According to Lemma 1.3, (PA)2 = PA. Hence the image of PA coincides with the set of
eigenvectors of PA. By part 2, the eigenvectors of PA are exactly the eigenvectors of A.

4. Choose 1 ≤ i ≤ n. Since ~x and ~y are eigenvectors of A, they are also eigenvectors of A+.
Hence, since xu = yu for all u ∈ C(A),

(PA~x)i =
∨

u∈C(A)

(A+)iu + xu =
∨

u∈C(A)

(A+)iu + yu = (PA~y)i .
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By part 2, ~x = ~y.

5. If i ∈ C(A) then there exists some k such that (Ak)ii = 0. Hence (A+)ii = 0. It then
follows from (12) that (PA)ii = 0.

6. Since A~x ≤ ~x it follows that Ak~x ≤ Ak−1~x. Hence, by (11), A+~x ≤ A~x ≤ ~x. If i ∈ C(A)
then as in the previous part, (A+)ii = 0. Hence, xi = (A+)ii + xi ≤ (A+~x)i ≤ xi. It follows
that (A~x)i = xi as required.

7. If µ(A) = 0 then there must be a critical circuit upstream from every node of G(A).
Hence, for any 1 ≤ i ≤ n, there exists some k ∈ C(A), such that Aik > −∞. It follows
from Lemma 1.3 and part 5 that (PA)ik ≥ Aik + (PA)kk > −∞. Hence PA : Rn → Rn, as
required.

2

Proposition 1.4 Let F ∈ MM(n, n) be max-only. The fixed point result (1) holds for F .

Proof If F has a fixed point then clearly χ(F ) = h. So suppose χ(F ) = h. Assume first
that h = 0. Let A be the max-plus matrix associated to F . By Proposition 1.3 we see
that µ(A) = 0 and, in particular, tµ(A) = 0. Let ~c = PA(0, · · · , 0). By Lemma 1.3, ~c is
an eigenvector of A with eigenvalue 0. Furthermore, since µ(A) = 0, part 7 of Lemma 1.4
shows that ~c ∈ Rn. Hence F has a fixed point. If h 6= 0 then the same reasoning shows that
(F − h) has a fixed point: (F − h)(~c) = ~c. Hence, F (~c) = ~c+ h, as required.

2

Dual results to those above hold for min-only functions. To each such function is associated
a matrix over the min-plus semiring: Rmin = R ∪ {+∞} with minimum as sum and addition
as multiplication. Rmin is isomorphic, as a semiring, to Rmax and any result holding over
one of them has a dual over the other in which the roles of max and min are interchanged.
We leave it to the reader to formulate these and any associated definitions; we shall not
state them separately. It will be helpful, however, to use a different notation for the dual of
the µ-vector. If B is an n×n matrix over Rmin, which satisfies the nondegeneracy condition
dual to (6), η(B) ∈ Rn will denote the vector of minimun upstream cycle means in G(B):

ηi(B) = min{m(g) | i⇐ g} .

If F is the corresponding min-only function, then by Proposition 1.3, χ(F ) = η(B).

With this preparation, we are now in a position to study the main concerns of the present
paper.

2 Fixed points of min-max functions

The main goal of this section is to derive a constructive fixed point theorem for min-max
functions. The proof of this occupies the second sub-section. We then develop an algorithm
for an important special case and discuss its complexity. While we cannot determine this
completely, experience shows the algorithm to be efficient. In the final sub-section we show
that our general fixed point theorem leads to a straightforward proof of an earlier fixed
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point result due to Olsder, [33]. We begin by setting up the conditions which enter into the
fixed point result.

2.1 Rectangularity

Definition 2.1 Let F ∈ MM(n,m). A subset S ⊆ MM(n,m) is said to be a max-representation
of F if S is a finite set of max-only functions such that F =

∧
H∈S H.

It should be clear from the remarks before Definition 1.2 that every min-max function has a
max-representation and a (dual) min-representation. Since we know the cycle time vectors
of max-only functions, we can estimate that of F , when it exists. Suppose that χ(F ) does
exist. For any H ∈ S, F ≤ H. By property M, χ(F ) ≤ χ(H). Hence,

χ(F ) ≤
∧
H∈S

χ(H) . (13)

A max-only representation therefore gives an upper estimate for the cycle time. This
estimate can be used to develop an alternative condition for fixed points. The first difficulty
is that there are many different max-representations of a given min-max function and the
corresponding estimates may differ. The min-max function

F1(x1, x2, x3) = (x2 + 2 ∨ x3 + 5) ∧ x1

F2(x1, x2, x3) = x2 + 1 ∧ x3 + 2
F3(x1, x2, x3) = x1 − 1 ∨ x2 + 3

(14)

has both the max-representation
 x2 + 2 ∨ x3 + 5

x2 + 1
x1 − 1 ∨ x2 + 3

 ,

 x1

x3 + 2
x1 − 1 ∨ x2 + 3




and the max-representation
 x2 + 2 ∨ x3 + 5

x3 + 2
x1 − 1 ∨ x2 + 3

 ,

 x1

x2 + 1
x1 − 1 ∨ x2 + 3


 .

The cycle time vectors of the constituent max-only functions can be calculated by the
methods of the previous section. We leave it to the reader to show that they are, in the
order in which they appear above, 2

1
2

 ,
 0

2.5
2.5

 and

 2.5
2.5
2.5

 ,
 0

1
1

 .

It follows that the estimate (13) gives, for the first max-representation, (0, 1, 2), while for
the second, (0, 1, 1).

To get the best estimate, the information in all the max-representations of F must be used.
Observe that the set of min-max functions MM(n,m) has a natural representation as an
m-fold Cartesian product: MM(n,m) = MM(n, 1)× · · · ×MM(n, 1). If S ⊆ A1 × · · · × Am
is a subset of such a Cartesian product, let πi(S) ⊆ Ai denote its projection on the i-th
factor.
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Definition 2.2 The rectangularisation of S, denoted Rec(S), is defined by

Rec(S) = π1(S)× · · · × πm(S) .

S is said to be rectangular if S = Rec(S).

It is, of course, always the case that S ⊆ Rec(S). It is also clear that πi(S) = πi(Rec(S)).
It follows that, if S ⊆ MM(n,m) is finite, then∧

H∈S
H =

∧
H∈Rec(S)

H and
∨
H∈S

H =
∨

H∈Rec(S)

H , (15)

since the partial order on MM(n,m) is defined componentwise. Furthermore, if S contains
only max-only functions, then so does Rec(S). It is worth observing that neither of the
max-representations used above was rectangular.

Suppose that S ⊆ P , where (P,≤) is a partially ordered set. Denote by Min(S) the subset
of least elements of S,

Min(S) = {x ∈ S | y ∈ S, y ≤ x =⇒ y = x} ,

and by Max(S) the corresponding set of greatest elements. If S is finite and x ∈ S, then
there exist u ∈ Min(S) and v ∈ Max(S) such that u ≤ x ≤ v.

Now suppose that P is a product partial order: P = A1 × · · · ×Am, with the partial order
on P defined componentwise from those on the Ai.

Lemma 2.1 Let Si ⊆ Ai be finite subsets for 1 ≤ i ≤ m. Then

Min(S1 × · · · × Sm) = Min(S1)× · · · ×Min(Sm) .

Proof It is clear that both L = Min(S1 × · · · × Sm) and R = Min(S1)× · · · ×Min(Sm) are
irredundant: no two elements are related by the partial order. If x ∈ S1 × · · · × Sm then,
by definition of the least element subset, we can find u ∈ L such that u ≤ x. By a similar
argument on each component, we can find v ∈ R such that v ≤ x. It follows easily that
L = R.

2

Theorem 2.1 Let F ∈ MM(n,m) and suppose that S, T ⊆ MM(n,m) are rectangular max-
representations of F . Then Min(S) = Min(T ).

Proof For m = 1 this is a restatement of one of the main results of an earlier paper,
which asserts the existence of a canonical form for min-max functions, [21, Theorem 2.1].
Now suppose that m > 1. Since πi(S) and πi(T ) are evidently max-representations of Fi,
it follows from the first case that Min(πi(S)) = Min(πi(T )). But then, since S and T are
rectangular, it follows from Lemma 2.1 that

Min(S) = Min(π1(S))× · · · ×Min(πm(S)) = Min(π1(T ))× · · · ×Min(πm(T )) = Min(T ) ,

as required.

2
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Corollary 2.1 Let F ∈ MM(n, n) and suppose that S, T ⊆ MM(n, n) are rectangular max-
representations of F . Then ∧

H∈S

χ(H) =
∧
G∈T

χ(G) .

Proof Since χ is monotonic, it must be the case that
∧
H∈Min(S)

χ(H) =
∧
H∈S χ(H). The

result follows immediately from Theorem 2.1.

2

The max-representations used for example (14) have identical rectangularisations, obtained
by taking the union of the two representations. The best estimate for the cycle time of F ,
on the basis of Corollary 2.1, is therefore χ(F ) ≤ (0, 1, 1).

Suppose that F ∈ MM(n, n). Let S, T ⊆ MM(n, n) be rectangular max and min respresen-
tations, respectively, of F . If G ∈ T and H ∈ S then clearly G ≤ H and so χ(G) ≤ χ(H).
It follows that ∨

G∈T
bχ(G) ≤

∨
G∈T

χ(G) ≤
∧
H∈S

χ(H) ≤
∧
H∈S

tχ(H) . (16)

Furthermore, by (13) and its dual, χ(F ), if it exists, must have a value intermediate between
the two innermost terms.

The Duality Conjecture asserted that, if F is any min-max function, and S and T are
rectangular max and min representations, respectively, of F , then∨

G∈T

χ(G) =
∧
H∈S

χ(H) .

It is easy to see that, in this case, χ(F ) must exist and have the same value. For the min-
max function (14), this gives χ(F ) = (0, 1, 1). The inequalities (16) also suggest conditions
for the existence of a fixed point.

Proposition 2.1 Suppose that S, T are rectangular max and min representations, respec-
tively, of F and suppose in addition that F has a fixed point, where F (~x) = ~x + h. Then
(16) collapses to an equality.

Proof Suppose that F (~x) = ~x + h. We know in this case that χ does exist and that
χ(F ) = h. Since S is rectangular, there must be some H ∈ S such that H(~x) = ~x+ h. But
then h = χ(H) = tχ(H). It follows that h =

∧
H∈S tχ(H). The dual argument, using the

rectangularity of T , shows that h =
∨
G∈T bχ(G). The result follows.

2

We see from this that equality of the outermost terms in (16) is a necessary condition for F
to have a fixed point. It was shown in [19] that this is also a sufficient condition. There are
two difficulties with this result. Firstly, it is nonconstructive, which is a major handicap
in the applications of min-max functions. Secondly, it requires information from both a
max representation and a min representation of F , which is difficult to obtain for any given
function. In particular, we do not know how to deduce Olsder’s Theorem from the result
in [19].
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Proposition 2.1 also shows that the condition
∧
H∈S χ(H) = h, and its dual, are both

necessary for F to have fixed point. The main result of this paper is to show that either
of these weaker conditions is also sufficient. This fixed point result, Theorem 2.2 below,
suffers from neither of the defects just mentioned.

2.2 The fixed point theorem

It will be convenient, from this point onwards, to drop any notational distinction between
max-only or min-only functions and their associated matrices. If A is a max-only or min-
only function, we shall use the same symbol to stand for its associated Rmax or Rmin

matrix, respectively. Furthermore, taking advantage of Proposition 1.3, we shall use χ(A)
interchangeably with µ(A) and η(A).

If U and V are sets, let U\V denote the complement of V in U : U\V = {i ∈ U | i 6∈ V }.
The next result is the key technical lemma of this section.

Lemma 2.2 Suppose that F ∈ MM(n, n) and that S ⊆ MM(n, n) is a rectangular max-
representation of F . Choose any family of n functions in S: A1, · · · , An ∈ S. There exists
a function K ∈ S such that tχ(K) =

∨
1≤i≤n χi(Ai).

Proof Let hi = µi(Ai) and h =
∨

1≤i≤n hi. We have to find K ∈ S such that tχ(K) = h.
We can assume, without loss of generality, that h1 = h. Let Ui ⊆ {1, · · · , n} be the subset
of nodes upstream from i in G(Ai):

Ui = {k ∈ {1, · · · , n} | i⇐ k in G(Ai)} .

By convention, a node is always upstream from itself, so that i ∈ Ui. It follows that the sets
{Ui} provide a cover of {1, · · · , n}: U1 ∪ · · · ∪ Un = {1, · · · , n}. Let Vr = U1 ∪ · · · ∪ Ur for
1 ≤ r ≤ n. The sets {Vr} provide a filtration of {1, · · · , n}: U1 = V1 ⊆ · · · ⊆ Vn = {1, · · · , n}.
Define a function ` : {1, · · · , n} → {1, · · · , n} by the filtration level at which a number first
appears:

`(i) =

{
1 if i ∈ V1

r if i ∈ Vr\Vr−1 for r > 1

Now define a new matrix K according to the following rule: Kij = (A`(i))ij . Since S is
rectangular, K ∈ S. It remains to show that K has the required property.

Let i, j be nodes of G(K) such that i ← j. Let `(i) = r, so that i ∈ Ur. By construction
of Ur, r ⇐ i in G(Ar). Since i ← j in G(K), it must be the case that Kij 6= −∞ and so
(Ar)ij 6= −∞. Hence, i← j in G(Ar) and therefore also r ⇐ j. It follows that j ∈ Ur. But
then `(j) ≤ r. We have shown that if i← j in G(K), then `(i) ≥ `(j).

Suppose that g = i1 ← · · · ← im is a circuit in G(K), where m > 1 and i1 = im. Let
`(i1) = r. By the previous paragraph, it must be the case that `(ij) = r for 1 ≤ j ≤ m.
Hence g is also a circuit in G(Ar) and furthermore r ⇐ g. But then, by virtue of (8),
m(g) ≤ µr(Ar) = hr. In particular, m(g) ≤ h. Since g was chosen arbitrarily, it follows that
tµ(K) ≤ h.

Finally, let g be a critical circuit of A1 upstream from node 1. Since we assumed that
h = h1, it follows that m(g) = h. Every node on g and every node on the path from g
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to 1 are in U1. By construction of K, g is also upstream from node 1 in G(K). Hence,
tµ(K) ≥ h. It follows that tµ(K) = h, as claimed. This completes the proof.

2

Lemma 2.2 has a number of useful consequences which we collect in the following Lemmas.

Lemma 2.3 Under the same conditions as Lemma 2.2, the function {1, · · · , n} × S → R :
(i,H)→ χi(H) has a saddle point:

t

( ∧
H∈S

χ(H)

)
=
∧
H∈S

tχ(H) .

Proof It is well known that half the conclusion always holds; we briefly recall the argument.
Choose 1 ≤ j ≤ n. For any H ∈ S, χj(H) ≤ tχ(H). Hence,

∧
H∈S χj(H) ≤

∧
H∈S tχ(H).

Since j was chosen arbitrarily, it follows that t (
∧
H∈S χ(H)) ≤

∧
H∈S tχ(H).

Let Hi ∈ S be a max-only function for which χi(Hi) =
∧
H∈S χi(H). Let h =

∨
1≤i≤n χi(Hi).

It follows from Lemma 2.2 that there exists K ∈ S such that tχ(K) = h. Hence,

∧
H∈S

tχ(H) ≤ h = t

( ∧
H∈S

χ(H)

)
.

The result follows.

2

Lemma 2.4 Under the same conditions as Lemma 2.2, if
∧
H∈S χ(H) = h, there exists

K ∈ S such that χ(K) = h.

Proof It follows from Lemma 2.3 that h = t (
∧
H∈S χ(H)) =

∧
H∈S tχ(H). Let K ∈ S be

such that tχ(K) = h. Then,

h =
∧
H∈S

χ(H) ≤ χ(K) ≤ h . (17)

It follows that χ(K) = h, as required.

2

The next result is the main theorem of this section. It follows in detail an argument given
by Cochet-Terrasson and Gaubert in [6]. The additional ingredient which appears here is
Lemma 2.2, in the guise of Lemma 2.4, which allows a stronger result to be derived than
that in [6].

The proof is based on a min-max analogue of Howard’s policy improvement algorithm for
stochastic control problems with average or ergodic cost (see, for example, [41, Ch. 31–
33],[35]). Typically, Howard’s algorithm finds a fixed point of F (~x) =

∧
u∈U ~cu +Pu~x where

U is a finite set and, for all u ∈ U , ~cu ∈ Rn is a cost vector and Pu is a row-stochastic
matrix. (In this paragraph matrix operations are to be interpreted in the usual algebra.) It
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is easy to see using Proposition 1.1 that functions of this form are in fact topical. At each
step, Howard’s algorithm selects a function A(~x) = ~c + P~x in S = Rec{~cu + Pu~x | u ∈ U}
and finds a fixed point of it. It is necessary to assume that such a fixed point can be found,
which is the case, for instance, if each matrix Pu is positive. If this point is not also a fixed
point of F , then the function A is replaced by A′ ∈ S which satisfies F (~x) = A′(~x) and
the process is repeated. Under appropriate conditions it can be shown that this leads, after
finitely many steps, to a fixed point of F .

The convergence proof for the traditional Howard algorithm relies on a form of maximum
principle: algebraically, the fact that the inverse of I − P is monotone, for a nonnegative
matrix P whose spectral radius is strictly less than one. The analogue of this in the proof
below is the monotonicity property of the spectral projector which appears as part 1 of
Lemma 1.4.

Theorem 2.2 Let F ∈ MM(n, n) and suppose that S, T ∈ MM(n, n) are rectangular and,
respectively, a max-representation and a min-representation of F . The following conditions
are equivalent.

1. F has a fixed point with F (~x) = ~x+ h.

2.
∧
H∈S χ(H) = h.

3.
∨
G∈T χ(G) = h.

Proof It follows from Proposition 2.1 that 1 implies both 2 and 3. Assume that 2 holds.
We shall deduce 1. The fact that 3 also implies 1 follows by a dual argument.

We may assume, as usual, that h = 0. It follows from Lemma 2.4 that there is A1 ∈ S such
that χ(A1) = 0. By Proposition 1.4, A1 has a fixed point: A1(~a1) = ~a1. Hence, F (~a1) ≤ ~a1.
Since S is rectangular, we can find A2 ∈ S such that A2(~a1) = F (~a1). We can ensure,
furthermore, that if Fi(~a1) = (~a1)i, then (A2)i = (A1)i. Since A2(~a1) ≤ ~a1, it follows by
property M that µ(A2) ≤ 0 and so, by a similar argument to (17) that µ(A2) = 0. As a
consequence, it follows from part 6 of Lemma 1.4, that (A2(~a1))i = (~a1)i for all i ∈ C(A2).
Hence, Fi(~a1) = (A2(~a1))i = (~a1)i, and so, by construction, (A2)i = (A1)i for all i ∈ C(A2).
It is then not difficult to see that C(A2) ⊆ C(A1).

Since µ(A2) = 0, it also follows that A2 has a fixed point. By part 7 of Lemma 1.4,
PA2 : Rn → Rn. Hence we may choose the fixed point of A2 to be ~a2 = PA2(~a1). Since
A2(~a1) ≤ ~a1, it follows from part 1 of Lemma 1.4 that ~a2 ≤ ~a1. At the same time,
if i ∈ C(A2), then by part 5 of Lemma 1.4, (PA2)ii = 0 and so (~a2)i ≥ (~a1)i. Hence,
(~a2)i = (~a1)i for all i ∈ C(A2).

We can now carry on and generate a sequence (As,~as) for s = 1, 2, · · · , such that the
following properties hold:

1) As ∈ S and as ∈ Rn

2) As(~as−1) = F (~as−1)
3) As(~as) = ~as
4) ~as ≤ ~as−1

5) (~as)i = (~as−1)i for all i ∈ C(As)
6) C(As) ⊆ C(As−1) .
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Evidently, since S is finite, we must have Ak = Al for some k < l. By property 6, C(Ak) =
· · · = C(Al). Hence, by property 5, (~ak)i = · · · = (~al)i for all i ∈ C(Al). It follows from
property 3 that ~ak and ~al are fixed points of Al which agree on C(Al). Hence, by part 4 of
Lemma 1.4, ~ak = ~al. By property 4, ~ak = · · · = ~al. In particular, ~al = ~al−1. By property
2, ~al = Al(~al) = Al(~al−1) = F (~al−1) = F (~al). It follows that ~al is a fixed point of F . This
completes the proof.

2

Corollary 2.2 ([19, §3]) If F ∈ MM(n, n) satisfies the Duality Conjecture, then the fixed
point result (1) holds.

Proof Evident.

2

Corollary 2.3 ([6]) Suppose that F ∈ MM(n, n) has a max-representation S such that each
H ∈ S has a fixed point. Then F has a fixed point.

Proof Since χ(H) = tχ(H) for each H ∈ S, the result follows immediately from the
Theorem.

2

Corollary 2.4 ([19, Theorem 3.1]) Let F ∈ MM(n, n) and let S, T be as in Theorem 2.2.
F has a fixed point, with F (~x) = ~x+ h, if, and only if,∨

G∈T
bχ(G) = h =

∧
H∈S

tχ(H) .

Proof If F has a fixed point, this is just Proposition 2.1. If the formula holds, then it
follows from (16) that condition 2 and condition 3 of Theorem 2.2 hold and hence that F
has a fixed point.

2

2.3 Algorithmic issues

Finding fixed points of min-max functions is an important problem in applications. For
instance, the clock schedule verification problem mentioned in §1.2 is equivalent to finding
a fixed point of a min-max function associated to a digital circuit. The particular form
of the min-max functions which arise in this application leads to efficient algorithms for
finding fixed points. For general min-max functions the situation is less clear. Although
the methods of the previous section are constructive in nature, they do not give rise to an
efficient general algorithm.

The problem stems from the fact that a min-max function is typically presented in the
form F =

∧
H∈S H where S is a subset of max-only functions which is not necessarily

rectangular. In order to make use of the method in Theorem 2.2, it is necessary to find

20



A ∈ Rec(S), such that A has a fixed point and χ(A) is minimal; this is the starting point
for the iteration. Searching all of Rec(S) to find such a function is prohibitively expensive.
However, it is sometimes the case that all functions H ∈ Rec(S) have fixed points. This
occurs, for instance, when S consists of functions for which the corresponding max-only
matrices have no −∞ entries. In this case it is easy to see, using Proposition 1.3, that each
function H ∈ Rec(S) satisfies χ(H) = h, for some h ∈ R. Hence, by Proposition 1.4, each
H has a fixed point. This situation does arise in applications. We can adapt the method of
Theorem 2.2 to give a tractable algorithm in this case.

It will be convenient to extend the spectral projector notation PA (see (12)) to general
matrices: if tµ(A) 6= 0, let Ã = −tµ(A) +A, so that tµ(Ã) = 0, and define PA = PÃ.

Suppose that a min-max function F is given in the form:

Fi(~x) =
∧

u∈U(i)

Aiu~x , (18)

where U(1), · · · , U(n) are finite sets and Aiu are row vectors with entries in Rmax. Bor-
rowing the vocabulary of optimal control, we say that a policy is a map π : {1, · · · , n} →⋃

1≤i≤n U(i), such that π(i) ∈ U(i), for all 1 ≤ i ≤ n. The corresponding policy matrix A[π]
is defined by A[π]i = Aiπ(i). By construction, the set of policy matrices A[π] is rectangular.

The fixed point algorithm takes as input a min-max function of the form (18) each of whose
policy matrices has a fixed point. Equivalently, by Proposition 1.4, for each policy matrix,
π, there exists hπ ∈ R such that χ(A[π]) = hπ. The algorithm produces as output ~x ∈ Rn

and h ∈ R such that F (~x) = ~x+ h. The steps are as follows.

1. Initialisation. Select an arbitrary policy π1. Set s = 1 and let A1 = A[π1]. Find
~x1 ∈ Rn and h1 ∈ R, such that A1~x1 = ~x1 + h1.

2. If F (~xs) = ~xs + hs, then stop.

3. Policy improvement. Define πs+1 by

∀1 ≤ i ≤ n,
∧

u∈U(i)

Aiu~xs = Aiπs+1(i)~xs .

The choice should be conservative, in the sense that πs+1(i) = πs(i) whenever possible.
Let As+1 = A[πs+1].

4. Value determination.

(a) If µ(As+1) < hs, then, take any fixed point ~xs+1 of As+1.

(b) If µ(As+1) = hs, then, take the particular fixed point ~xs+1 = PAs+1~xs.

5. Increment s by one and go to step 2.

The cycle time vector µ(A) of a max-plus matrix A can be computed by Karp’s algorithm,
[1, 27] while Gondran and Minoux give algorithms in [16, Chapter 3, §4] which can be
adapted for computing the spectral projector PA.
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The proof that the algorithm terminates is a straightforward generalisation of the method
of Theorem 2.2 and is left as an exercise to the reader. The following example illustrates
how the algorithm works in practice.

Consider the min-max function:

F1(x1, x2, x3) = (x1 ∨ x2 ∨ x3 + 1) ∧ (x1 − 1 ∨ x2 + 1 ∨ x3 + 1)
F2(x1, x2, x3) = (x1 − 1 ∨ x2 + 2 ∨ x3 + 1) ∧ (x1 ∨ x2 + 1 ∨ x3)
F3(x1, x2, x3) = (x1 + 1 ∨ x2 ∨ x3 + 2) ∧ (x1 ∨ x2 + 1 ∨ x3 + 2)

Alternatively, F can be written in the form (18), with

U(1) = U(2) = U(3) = {1, 2},
A11 =

(
0 0 1

)
A12 =

(
−1 1 1

)
A21 =

(
−1 2 1

)
A22 =

(
0 1 0

)
A31 =

(
1 0 2

)
A32 =

(
0 1 2

)
Note that each policy matrix of F has all its entries finite and so, as discussed above, F
satisfies the conditions required by the algorithm.

Initialisation. Select π1(1) = 1, π1(2) = 1, π1(3) = 1 so that

A1 =

 0 0 1
−1 2 1
1 0 2

 .

Since µ(A1) = 2, we set h1 = 2 and we choose some fixed point of A1, for instance,

~x1 =
(
−2 −1 −1

)T
.

Policy improvement. We have F (~x1) = A2~x1 where

A2 =


0 0 1

0 1 0

1 0 2

 .

Here, π2(1) = 1, π2(2) = 2 and π2(3) = 1.

Value determination. We have h2 = h1 = 2. Accordingly, we select the particular fixed
point

~x2 =
(
−2 −3 −1

)T
= PA2~x1 ,

where

PA2 =


−2 −3 −1

−3 −4 −2

−1 −2 0

 .

Since F (~x2) = ~x2 + h2, the algorithm terminates.

The complexity of one iteration of the algorithm is O(n3 +(
∑

1≤i≤n |U(i)|)n), where n is the
dimension of the ambient space, and |X| denotes the cardinality of the set X. Indeed, Karp’s
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algorithm for computing the cycle time vector µ(A) of a matrix A has time complexity O(n3)
as do the algorithms of [16]. It follows that one value determination step costs O(n3) time.
Clearly, one policy improvement step requires (

∑
1≤i≤n |U(i)|) scalar products, which can

be done in time O((
∑

1≤i≤n |U(i)|)n).

It seems difficult to bound accurately the number of iterations of the algorithm. Experiments
suggest that its average value is well below n, at least when |U(i)| is O(n), for all i. The
situation seems very similar to that of conventional policy improvement algorithms, which
are known to be excellent in practice although no polynomial bound is known in general
for their execution time.

2.4 Derivation of Olsder’s Theorem

Olsder has proved a fixed point theorem for certain separated min-max functions, [33,
Theorem 2.1]. Although this applies only to a restricted class, it was the first result to be
proved on min-max functions beyond the Rmax linear setting. We now show that it follows
from Theorem 2.2.

Let F ∈ MM(n, n) be a separated function. We can assume, without loss of generality, that
F has the following form

Fi =

{
x1 +Ki1 ∨ · · · ∨ xn +Kin if 1 ≤ i ≤ s
x1 +Ki1 ∧ · · · ∧ xn +Kin if s+ 1 ≤ i ≤ n

where 1 ≤ s < n and Kij is an n×n matrix of elements satisfying Kij ∈ Rmax for 1 ≤ i ≤ s
and Kij ∈ Rmin for s + 1 ≤ i ≤ n. Let t = n − s. Recall the notation introduced at the
end of §1.4: if B is a matrix over Rmin, then η(B) denotes the vector of minimum upstream
cycle means and χ(B) = η(B).

K is neither a matrix over Rmax nor over Rmin but it is convenient to break it into blocks
which are. Let A,C be matrices over Rmax of size s×s and s×t, respectively, corresponding
to the top left and top right blocks of K and let D,B be matrices over Rmin of size t × s
and t× t, respectively, corresponding to the bottom left and bottom right blocks of K:

Aij = Kij i ∈ {1, · · · , s} j ∈ {1, · · · , s}
Ci(j−s) = Kij i ∈ {1, · · · , s} j ∈ {s+ 1, · · · , s+ t}
D(i−s)j = Kij i ∈ {s+ 1, · · · , s+ t} j ∈ {1, · · · , s}

B(i−s)(j−s) = Kij i ∈ {s+ 1, · · · , s+ t} j ∈ {s+ 1, · · · , s+ t} .

Suppose that F has a fixed point: F (~x) = ~x + h. Let ~y ∈ Rs be the vector obtained from
~x by truncating the last t components: yi = xi for 1 ≤ i ≤ s. Evidently, A(~y) ≤ ~y + h,
so that µ(A) ≤ h. Equivalently, in scalar terms, tµ(A) ≤ h. A dual argument shows that
h ≤ bη(B). Hence, a necessary condition for F to have a fixed point is that tµ(A) ≤ bη(B).

Olsder’s result is by way of a converse to this but requires more assumptions on the structure
of A, B, C and D. To discuss it, we need to review some further material from matrix theory.
For more details, see [1].

Let A be an n× n matrix over Rmax. A is said to be irreducible if there does not exist any
permutation matrix P such that P tAP is in upper triangular block form. (This is identical
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to the notion of irreducibility for nonnegative matrices, [30, §1.2].) An equivalent condition
is that G(A) is strongly connected. That is, if i and j are any two nodes in G(A), then
they are upstream from each other: i ⇐ j and j ⇐ i. If i ← j in G(A) then it is easy
to see that µi(A) ≥ µj(A). It follows that if A is irreducible then µ(A) = tµ(A). (By
Proposition 1.4 we see that A has an eigenvector lying in Rn. This is a max-plus version of
the Perron-Frobenius Theorem, [1, Theorem 3.23].) If U ⊆ {1, · · · , n} is a subset of nodes,
all of which are upstream from each other—i ⇐ j for all i, j ∈ U—then we shall say that
U is upstream (respectively, downstream) from some node k ∈ {1, · · · , n}, if there is some
i ∈ U such that k ⇐ i (respectively, i⇐ k).

Theorem 2.3 ([33, Theorem 2.1]) Suppose that F ∈ MM(n, n) is separated. Using the
notation above, suppose further that A and B are irreducible and that both C and D have
at least one finite entry. Then F has a fixed point if, and only if, tµ(A) ≤ bη(B).

Proof We begin with some initial constructions and observations. Define rectangular max
and min-representations of F , S, T ⊆ MM(n, n), as follows.

S = {F1} × · · · × {Fs} ×
∏
s+1≤i≤s+t{xj +Kij | Kij 6= +∞}

T =
∏

1≤i≤s{xj +Kij | Kij 6= −∞} × {Fs+1} × · · · × {Fs+t} .

Let ~µ =
∧
H∈S µ(H) and ~η =

∨
G∈T η(G). We know from (16) that ~η ≤ ~µ.

For any H ∈ S, Hi = Fi for i ∈ {1, · · · , s}. Hence the top left block of H is equal to A:
Hij = Aij for i, j ∈ {1, · · · , s}. Since A is irreducible by hypothesis, it follows that, for any
i, j ∈ {1, · · · , s}, µi(H) = µj(H). Furthermore, tµ(A) ≤ µi(H) for all H ∈ S. Hence,

µi =
∧
H∈S

µi(H) =
∧
H∈S

µj(H) = µj .

It follows that µ1 = · · · = µs. Let us call the common value µ. Evidently, tµ(A) ≤ µ.
Dually, ηs+1 = · · · = ηs+t = η and bη(B) ≥ η.

Consider the min-plus matrix B. It has a rectangular max-representation, R ⊆ MM(t, t),
of the form

R =
∏

1≤i≤t
{xj +Bij | Bij 6= +∞} .

Each element of R is a simple function. Since B is irreducible, η(B) = bη(B). By Lemma 2.4
there exists a simple function U ∈ R such that η(U) = bη(B). Now construct an element
K ∈ S by choosingKj = Uj−s for j ∈ {s+1, · · · , s+t}. It is clear that µj(K) = bη(B) for j ∈
{s+1, · · · , s+t}. By hypothesis, Cik 6= −∞ for some i ∈ {1, · · · , s} and k ∈ {s+1, · · · , s+t}.
It follows that i← k in G(K). It is not difficult to see that µi(K) = tµ(A)∨ bη(B). Hence,

µi(K) =

{
tµ(A) ∨ bη(B) if i ∈ {1, · · · , s}
bη(B) if i ∈ {s+ 1, · · · , s+ t} .

It follows that µ ≤ tµ(A) ∨ bη(B) and µi ≤ bη(B) for i ∈ {s + 1, · · · , s + t}. By a dual
construction we can show that η ≥ bη(B) ∧ tµ(A) and ηi ≥ tµ(A) for i ∈ {1, · · · , s}. We
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can summarise what we have shown in the table below.

tµ(A) ≤ η1 ≤ µ ≤ tµ(A) ∨ bη(B)
...

...
...

...
...

...
...

tµ(A) ≤ ηs ≤ µ ≤ tµ(A) ∨ bη(B)
bη(B) ∧ tµ(A) ≤ η ≤ µs+1 ≤ bη(B)

...
...

...
...

...
...

...
bη(B) ∧ tµ(A) ≤ η ≤ µs+t ≤ bη(B)

We can now embark on the proof proper. If F has a fixed point then we saw above, in the
preamble to Theorem 2.3, that tµ(A) ≤ bη(B). Now suppose that tµ(A) ≤ bη(B). We shall
show that F must have a fixed point.

Choose j ∈ {s + 1, · · · , s + t}. We claim that µj ≤ µ. To see this, choose H ∈ S such
that µ1(H) = · · · = µs(H) = µ. By construction of S, H is simple in the components
s + 1, · · · , s + t. Hence the node j must have an unique edge leading to it in G(H): say,
j ← k. If k ∈ {s + 1, · · · , s + t} then it has a similar property and we can proceed in this
way until one of two mutually exclusive possibilities occur. Either the path remains entirely
among the nodes in the range {s+ 1, · · · , s+ t} or it contains a node i ∈ {1, · · · , s}. In the
latter case, µj(H) = µi(H) = µ since the path out of j is unique until it reaches a node in
{1, · · · , s}. Hence, µj ≤ µ.

In the former case, j is not downstream from {1, · · · , s} in G(H). Suppose, to begin with,
that there is no node in the range {s + 1, · · · , s + t} which is downstream from {1, · · · , s}.
Because C has at least one real entry, some node in this range is upstream from {1, · · · , s}.
Since every circuit of G(H) in the range {s+ 1, · · · , s+ t} must also be a circuit in G(B), it
follows that µ ≥ bη(B). From the table, we see that µj ≤ bη(B) and so µj ≤ µ.

We may now assume that there exists u ∈ {s+ 1, · · · , s+ t} downstream from {1, · · · , s} in
G(H). Since B is irreducible, there exists a path in G(B) from u to j:

j = u1 ← u2 ← · · · ← um = u , (19)

where 1 < m, {u1, · · · , um} ⊆ {s+ 1, · · · , s+ t}. We may assume furthermore, without loss
of generality, that u1, · · · , um−1 are not downstream from {1, · · · , s} in G(H). It follows that
µui(H) ≥ bη(B) for 1 ≤ i < m. Define H ′ ∈ S by altering H as follows:

(H ′)i = Hi if i 6∈ {u1, · · · , um−1}
(H ′)ui = B(ui−s)(ui+1−s) if 1 ≤ i ≤ m− 1

By construction, (19) is also a path in G(H ′) and j is downstream from {1, · · · , s} in G(H ′).
It follows that µj(H ′) = µ1(H ′). The only difference between G(H ′) and G(H) is at the
nodes u1, · · · , um−1 which may have different edges leading to them.

Suppose that µ1(H ′) > µ. This can only happen if one of the edges on (19) has created a
new circuit upstream from 1 in G(H ′). Let ur be the first node on (19) which is upstream
from {1, · · · , s} in G(H ′). We may assume that 1 ≤ r < m, for if r = m, then, contrary to
what was just said, no edge of (19) can have caused the change. It must now be the case
that ur was also upstream from {1, · · · , s} in G(H). Hence, µ = µ1(H) ≥ µur(H). But, as
we saw above, µur(H) ≥ bη(B). It follows once again that µj ≤ µ. Hence, we may assume
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that µ1(H ′) = µ. But then µj ≤ µj(H ′) = µ1(H ′) = µ. In either case, µj ≤ µ, which
establishes the claim.

Now suppose that for some j ∈ {s + 1, · · · , s + t}, it is the case that µj < µ. Choose
H ∈ S such that µj(H) = µj . If p is the path in G(H) leading to node j then p cannot
start from any node i ∈ {1, · · · , s}. For if it did, µ ≤ µi(H) = µj(H) < µ, which is
nonsense. Hence p must terminate in a circuit g, which must also be a circuit in G(B).
Hence m(g) ≥ bη(B). But evidently, µj(H) = m(g), since g is the only circuit upstream
from j. Hence µj(H) ≥ bη(B), from which it follows that bη(B) ≥ µ > µj(H) ≥ bη(B),
which is also nonsense. It follows that for all j ∈ {s+ 1, · · · , s+ t}, µj = µ. We have shown
that

∧
H∈S χ(H) = µ. By Theorem 2.2, F has a fixed point. This completes the proof.

2

The above proof is straightforward in comparison with Olsder’s original argument and fits
within the general framework established by the Duality Conjecture.

3 Conclusion

If H is a max-only function which does not have a fixed point (so that χ(H) 6= h for any
h ∈ R), it can nevertheless be shown that there exists ~x ∈ Rn such that Hk(~x) = ~x+kχ(H)
for all 1 ≤ k. We can think of this as a generalised fixed point appropriate for the situation
in which χ(H) 6= h. It is shown in [13] that the policy improvement methods of §2.2 can be
adapted to prove that any min-max function has a generalised fixed point. This immediately
yields a proof of the Duality Conjecture. An alternative proof, which works for a larger
class of topical functions, is given in [12]. It remains an open problem to show that the
algorithm given in §2.3 for a subclass of min-max functions can be extended to the more
general topical functions considered in [12].

References

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity.
Wiley Series in Probability and Mathematical Statistics. John Wiley, 1992.

[2] F. Baccelli and J. Mairesse. Ergodic theorems for stochastic operators and discrete
event systems. Appears in [22].

[3] S. M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1990.

[4] Z.-Q. Cao, K. H. Kim, and F. W. Roush. Incline Algebra and Applications. Mathe-
matics and its Applications. Ellis-Horwood, 1984.

[5] J. Cochet-Terrasson. Modélisation et Méthodes Mathématiques en Économie. Rapport
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