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Modeling and Analysis of Timed
Petri Nets Using Heaps of Pieces

Stéphane Gaubert and Jean Mairesse

Abstract— The authors show that safe timed Petri nets can
be represented by special automata over the (max, +) semiring,
which compute the height of heaps of pieces. This extends to
the timed case the classical representation a la Mazurkiewicz
of the behavior of safe Petri nets by trace monoids and trace
languages. For a subclass including all safe free-choice Petri nets,
we obtain reduced heap realizations using structural properties
of the net (covering by safe state machine components). The
authors illustrate the heap-based modeling by the. typical case
of safe jobshops. For a periodic schedule, the authors obtain
a heap-based throughput formula, which is simpler to compute
than its traditional timed event graph version, particularly if one
. is interested in the successive evaluation of a large number of
possible schedules.

Index Terms— Automata with multiplicities, heaps of pieces,
(max; -+) semiring, scheduling, timed Petri nets.

1. INTRODUCTION

NTIMED and timed Petri nets have been actively studied

for a long time, in particular as a modeling and anal-
ysis tool for discrete event systems. Two different kinds of
algebraic objects have been introduced for untimed and timed
Petri nets, respectively.

1) The untimed behaviors of Petri nets can be represented
by languages (sets of possible firing sequences). In the
case of a net with bounded markings, the language of the
net is recognized by a finite automaton, the reachab111ty
graph. /

The timed behavior of a net can be represented by dater
functions which provide the occurrence time of all the
possible events in the system.

9

The most satisfactory results are relative to the subclass
of timed event graphs, which can be modeled by finite-
dimensional recurrent linear systems over the (max, +) semir-
ing; see [2] and [12]. :

There exists a striking connection between the two cases:
both (max, +) linear systems and conventional automata are
specializations of (max, +) automata, i.e., automata with mul-
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tiplicities [20] over the (max, +) semirihg. This observation
leads to the natural question, which was left unsolved in [21]:

What is the modeling power of (max, +) automata in
terms of timed Petri nets?

The purpose of this paper is to propose the following
answer:

Timed safe Petri nets are special (max, +) automata,
which compute the height of heaps of pieces.

As a by-product, we will obtain new automata-based per-
formance evaluation algorithms.

This representation theorem is best understood by compar-
ison with the following existing approaches.

1) Trace Languages: In the landmark paper [31],
Mazurkiewicz observed. that . frace monoids (that
is, frec partially commutative monoids) and their
subsets (trace languages) are a natural model of the
logical behavior of safe Petri nets. Trace monoids, in
which certain letters commute,. and others do not, allow
one to identify the different sequential representations
of the same concurrent events.

2) Heaps of Pieces: In [40], Viennot observed that trace
monoids are isomorphic to. heap monoids, that is,
monoids in which the generators are pieces (in the nearly
usual understanding: these pieces are solid rectangular-
shaped blocks), and where the concatenation consists of
piling up one heap above the other. This yields a very
intuitive graphical representation of trace monoids.

3) (Max, +) Linear Representations: A mnext step was the
observation that the height of heaps of pieces is rec-
ognized by a heap automaton, a special type of (max,
+) automaton, the result holding for general, polyomino-
shaped, pieces. This was proved in Gaubert and Mairesse
[22], and in a different form, by Brilman and Vincent
(71, [41}.

‘The heap representatlon theorem for safe timed Petri nets
that we give can be seeh as a synthesis of these three results.
The essential idea. is that considering general pieces in heap
automata enables us to’ model tlme through the height of a
piece.

More precisely, one of the main results of the paper goes
as follows. Let G be a safe timed Petri net, with set.of
transitions 7 and set of firing sequences . C 77. Then the
map yg: L — R*, which associates to a firing sequence the
date of completion of the last event in the net, is recognized
by a heap automaton (less formally, a piece is associated to
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each letter in 7 and yg(w) is the height of the heap obtained
by piling up the pieces corresponding to the letters of w).
~ Heap representations are particularly well adapted to al-

gebraic computations. As a typical illustration, we dérive a
heap-based performance evaluation method for safe jobshops.
The assignment of the jobs on the machines is fixed but not
the order on which the jobs are processed by the machines (the
schedule). With each periodic schedule, the classical modeling
associates an event graph (i.e., a (max, +) linear system)
whose size grows with the period of the schedule; see [2],
[12], and [27]. On the other hand, the representation by heap
model is independent of the (even nonperiodic) schedule which
is considered. This is particularly interesting for the successive
evaluation of a large number of schedules. For a periodic
schedule, we propose a new (heap-based) algorithm to com-
pute the throughput of the jobshop, which is simpler than the
refined variants of the traditional (event graph based) method.

It is worth noting that heaps of pieces are essentially an
extension of the Gantt charts traditionally used in scheduling.
Whereas conventional Gantt charts only display the resource
(machine) occupation times, heaps of pieces contain the com-
plete time information for both resources and jobs, which
allows us to write dynamical equations.

Let us mention the related independent work of Hulgaard
[28], who studied the subclass of safe free-choice Petri nets.

He did not put forward the automata or heap models, but he .

did introduce (for time analysis purposes) dater variables and
dynamical equations similar to the ones used here; see the
discussion in Remark 4.8.

A very different algebraic approach is that of Baccelli ef al.
[3]; Cohen et al. [13], [14]; and Libeaut and Loiseau, see [29,
Ch. 2]. Essentially, the counter function (vector of numbers
of firings, as a function of time) of general (not necessarily
safe) free-choice or fluid Petri nets satisfies some combination
of implicit (min, +) and (4, Xx)-linear dynamical equations,
which become explicit under certain assumptions on the timing
or routing policy. In a certain sense, this approach, which
computes the number of firings (logical time) as a function of
the physical time, is dual, or inverse, to the automata approach
proposed here, which computes the dates (physical times) as
a function of the schedule (logical time). Surprisingly, these
two points of view lead to completely different technical
developments.

The paper is -organized as follows. In Section II, we intro-
duce heap models and (max, +) automata. In Section III, we
recall basic facts about Petri nets and their representation. by
trace monoids. The main result,
represented by heaps of pieces,” is proved in Section IV-A.

In this representation, the size of the heap model is equal
to the number of places in the Petri net. In Section IV-B,
we show the existence of a much smaller heap representation
for the subclass of nets which can be covered by safe- state
machine components. It includes in particular all safe free
choice Petri nets. '

In Section V, we apply these results to the typical example
of jobshops, proposing a new performance evaluation algo-
rithm. In Section VI, we discuss at a more algebraic level the
models used in the paper and their interplay.

“safe timed Petri nets can be
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Fig. 1. Heap of pieces associated with the word w = abed.

To conclude, let us mention related general references. The
reader is referred to [2], {15], [23], [25], [30], and [42], for
an account of the theory of the (max, +) semiring. The theory
of automata with multiplicities is dealt with in [4], [20], and
[37]. The (max, +) automata used in this paper are generaliza-
tions of “cost automata,” or automata with multiplicities over
the tropical semiring (N U {400}, min, +). They have been
widely studied for their connections with classical decidability
problems in language theory (see [35], [38], and the references
therein). A discrete-event systems oriented presentation can
be found in [21]. General accounts of Petri net theory can be
found in [5], [16], and [33] or in the proceedings [6].

II. HEAP MODELS AND (MAX, +) AUTOMATA

The following heap model generahzes the heaps of pleces
of Viennot [40].

Imagine a horizontal axis with a finite number of slots. A
piece is a solid (possibly nonconnected) “block” occupying
some of the slots, with staircase-shaped upper and lower
contours; see Fig. 1. With an ordered sequence of pieces,
we associate a heap by piling up the pieces, starting from
a horizontal ground. This piling occurs in the intuitive! way: a
piece is only subject to vertical translations and occupies the
lowest possible position, provided it is above the ground and
the pieces previously piled up.

Let us propose a more formal definition.

Definition 2.1: A heap model is a five-tuple H
(7, R, R, I, u), where:
« 7 is a finite set whose elements are called pieces;
* R is a finite set whose elements are called slots;
* BT — P(R) gives the subset of slots occupied by a
piece. We assume that each piece occupies at least one
slot Va € T, R(a) # 0;

* T xR — RU{-00} gives the height of the lower
contour of the piece at the different slots. u: 7 x R —
R U {—oc0} (with u > [) gives the height of the upper
contour of the piece. By convention, {(a, r) = u(a, r)
—oo if 7 ¢ R(a) and min,¢p(q) I(a, ) = 0.

11t corresponds for example to the mechanism of the Tetris game.
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A piece a occupies a region of the R x R™ plane, of the
form {(r, y) € R(a) x RT | A+ 1(a, r) <y < XA +u(a, 7)},
where A € IR™ depends on the pieces already piled up, and
A = 0 if there is.no other piece. '

We will interpret a length k word> w = a1 - ap € T* as
a heap, i.e., as a sequence of k pieces aj, -+ , aj piled up in
this logical order.

We define the upper contour of the heap w as the R-
dimensional row vector z3(w), where zy(w), is the height
. of the heap on slot . The horizontal ground assumption yields
zy(e) = (0, ---, 0) (recall that e denotes the empty word).
The height of the heap w is

yn(w) = max 2z (w),.

A useful interpretation of a heap model consists of viewing
pieces as tasks and slots as resources. Each task a requires
a subset of the resources [given by R(a)] during a certain
amount of time [u(a, r) —l(a, r) for a resource r € R(a)]. In
the simplest case where [(a, r) = 0, Vr € R(a), the execution
of a task begins as soon as all the required resources, used by
earlier tasks, become free. For more details along these lines,
see [7] and [22].

Borrowing the terminology of [2], the maps y, and x5, are
called the dater functions of the heap model.

The piling mechanism and the different notations are best
understood graphically and on an example; see Fig. 1.

Example 2.2: Let us consider the following heap model.

o T ={a, b ¢, d} R=1{123, 4}.
. g‘ga) = {1,2,3}, R(b) = {L,2}, R(e) = {2,4},

Q= (231
* uwla,.)” = [1, 1,3, —oc], l{a,.) = [0,0,0, —cc],
ulb, ) = [3, 2, —o00, —o0], (b, .) = [0, 0, —o0, —o},
u(e, .) = [~o0, 2, —00, 2], l(c, .) = [—o0, 0, —c0, 0],

u(d, ) = [—o00, 1, 3, 1], I(d, .) = [—00, 0, 0, 0].

We have represented, in Fig. 1, the heap associated with the
word w = abed. Piece c is an example of a nonconnected (but
“rigid”) piece.

We can read directly on Fig. 1 the values zy(w) =
[47 6, 8, 6] and y?‘l(w) = 8.

Definition 2.3: The (max, +) semiring3 IR 2 is the set
R U {—o0}, equipped with the operation max, written ad-
ditively [i.e., @ &b = max (a, b)] and the usual sum, written
multiplicatively (i.e., a®b = a+b5). In this semiring, 0 = —oo0,
1 =0.

Note that R,.x is a dioid, i.e., a semiring with an idem-
potent addition (a © a =
paper the matrix and vector operations induced by the semiring
structure. For matrices A, B of appropriate sizes, (A® B);; =
Aij @ B;; = max (AU> Bij), (A ® B)ij = @k A ® Bk]’ =

2We recall the following standard notations. Given a finite set (alphabet)
T, we denote by 7™ the set of words of length n on 7. We denote by
T* = UuenT ™ the free monoid on 7, that is, the set of finite words equipped
with concatenation. The unit (empty word) will be denoted by e. The length

of the word w will be denoted by |w|. We shall write |w|, for the number of
occurrences of a given letter ¢ in w.

3A set K equipped with two operations @ and ® is a semiring if & is
associative and commutative, & is associative and distributive with respect to
@, there is a zero element 0 (¢ $ 0 =a,a ®O0 = 0 ® a = 0) and a unit
element 1 (e ®1=1Qa = a). '

a). We shall use throughout the
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maxy, (Aix + Bi;), and for a scalar a, (a @ A),; = a®@ A;j =
a+ A;;. We will omit the ® sign, writing for instance AB
instead of A® B as usual. Given a set S, we denote by 1s the
S-dimensional column vector whose entries are all equal to 1.
Definition 2.4: Given a finite alphabet 7, a (max, +) -
automaton* is a four-tuple A = (Q, I, F, M), where:
¢ () is a finite set (of states);
« I € RX? and F e ROL!
vectors, respectively; =
» M is a morphism T*

are the initial and final

— REXQ

The morphism M is uniquely specified by the finite family
of @ X @ matrices, M(a), a € 7. Then, for a word w =
ai -+ an, We have '

CM(w) = Mlay - an) = M(ag) - M(an)

the matrix product being interpreted in the (max, +) semiring.

Let us define the vectors £ 4(w) = IM(w) € REXZ and the
scalars y 4 (w) = IM(w)F € Riax associated with the (max,
4) automaton A. We say that x4 and y4 are recognized® by

‘the automaton A.

We have -
xale)=1
zA(wa) =z 4(w)M(a)
yalw) =z 4(w)F.

Hence a (max, +) automaton may be seen as a (max, +)
linear system whose dynamics is driven by letters.

With a heap model H = (7, R, R, I, u), we associate the
morphism M: T* — RRXR  defined by

1, ifs=r r¢ R(a),
uw(a, r) —l(a, s), if r € R(a), s € R(a),
0, otherwise.

Theorem 2.5: Let H =(7, R, R, [, u) be a heap model.
The (max, +) automaton (R, 1%, 1z, M) recognizes the
upper contour 3, and the height y

oy (w) = 1 M(w),
yn(w) = 15 M(w)1g.
A variant of this result was proved in [22]; see also [7]. We
say that (R, 1%, 1g, M) is the heap automaton associated
with the heap model. For the sake of completeness, we give
an abridged version of the argument.

Proof: The following dynamical equation should be clear
from the physical description of the system:

Ma)sr =

YweT", M

z(wa)y,
EOR if r ¢ R(a)
= S?z% (zn(w)s + u(a, ) — l(a, s)), ifr € R(a).
)

For example, let us consider the case of a piece a with a
horizontal base [I(a, s) = 0, s € R(a)]. When adding piece

4This is the specialization to the (max, +) semiring of the classical notion
of automaton with multiplicity [20] or linear representation [4], [37]. For more
details along these lines, see Section VI. .

5 Classically, in automata theory, only the map y.4 is said to be recognized.
It-is convenient here to extend the definition of recognizability.
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a to a heap w, one has first to compute the height of the
base of the piece which is equal to max,ep(a) #3(w)s. Then
the height of the heap wa on slot r € R(a) is obtained as
maX,er(a) TH(w)s + u(a, r). Clearly, we have

VreR, xnle)=1 .
yp(w) = max Ty (W),
’ :.’EH(U))].R. (3)
We identify in (2) and (3) a dynamics of the form (1). [ ]

We will use later the following elementary commutation
property, which holds for-all a, b C T

R(a) NR(b) = 0 = M(a)M(b) = M(B)M(a). @)

An alternative “dual” automaton representing the heap model,
obtained by associating dater variables to pieces, instead of
slots, was given in [22]. k

Example 2.6: Let T = {a,b,¢,d}, Q = {1, 2, 3, 4},
I = 122, F =19

rn 1 3 7 3 2
, 11 3 3 2
M(a)= ] | 3 i M) = 1
L 1. 1
ri T 1
2 2 1 31
L 2 2 4 1 3 1

(the O entries are omitted).

One easily verifies that the (max, +) automaton
(Q, I, F, M) represents the heap model given in Example
2.2. We have

M(abed) =

s s
SO D
oo 0o o
OO

0 3 5 3
za(abed) =IM(abed) = [4, 6, 8, 6], ya(abed) = 8.
This provides an algebraic confirmation of the values ob-
tained graphically in Fig. 1.
Remark 2.7: Heap  automatd, - as introduced in
Theorem 2.5, are (max, +) automata. of a specific form.
The morphism M of a heap automaton verifies

Ma)=1d [l~(a, )] tu(a, 2

where I is the ideptity matrix defined by I;; = 1, I;;
0,7 # j, where i(a, i) —l(a, 4} if l(a, i) # 0 and
l(a, i) = I(a, i) = O otherwise, and where I(a, .), u(a, .)
- are viewed as row vectors.

III. UNTIMED AND TIMED PETRI NETS

A. Definitions

" 'We next recall some classical facts about untimed and timed
Petri nets.
Definition 3.1: A Petri net (PN) is a four-tuple § =
(P, T, F, M), where:
» P is a finite set, whose elements are called places;
e 7T is a finite set, whose elements are called transitions;
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Fig. 2. Strongly connected safe Petri net.

e FC(PxT)J(T x P)is a relation between places

and transitions;

s M is a map P — N. The integer M(p) is called the

initial marking of place p.

We will use the term Petri net to denote both the unmarked
and the marked net. We will sometimes denote the marked net
by (G, M) instead of G to insist on the value of the initial
marking.

A Petri net is traditionally represented as a bipartite directed
graph. There are two different kinds of nodes, places p € P,
(represented by circles), and transitions ¢ € 7 (represented
by rectangles). An element of F is an arc from a place to.a
transition or from a transition to a place. It is therefore natural
to speak of “input places,” “output transitions,” and so on. We
use the notations *p, p® (respectively, *a, a®) for the set of
input and output transitions of place p (respectively, input and
output places of transition a). The marking M (p) is displayed
by drawing M (p) tokens in place p.

We will use the classical notions of (directed) path, circuit,
connectedness, and strong-connectedness of graph theory. An
example of a strongly connected Petri net is provided in Fig. 2.

A Petri net is a dynamic object. The underlying structure
(P, T, F) is never modified, but the marking M evolves
according to the following firing rule. '

1) Transition a is enabled at M if there is at least one token
in each of its input places.

2) An enabled transition a can fire. The firing of a trans-
forms M into M’ (written M~ M') by removing one
token from each of the input places and adding one token
in each of the output places of a.

We say that a word w = aiag -+ a, € T* i8 a firing
sequence starting from marking M’ if there is a sequence of
markings M’ = My, M1, -+, M, = M" such that transition
a; is enabled at M;_; and M;_1— M;. We abbreviate this
by M’ M”. A marking M" is reachable from a marking
M’ if there is a firing sequence w € T* such that M’ M".
We denote by R(M’) the set of markings reachable from M’.

We call language® of the Petri net (G, M) the set L C T*
of firing sequences starting from .M.

Definition 3.2: A Petri net (G, M) with language L is:
¢ Live—ifVw e L, Vt € 7T,3u € T, suchthatwut € L,
i.e., if whatever the past firings (= w) are, it is possible to
6More properly, the P-type free labeled language, according to the ter-
minology of Peterson [34]. Various kinds of Petri net languages have been

defined (according to various kinds of acceptance conditions on final markings
and the different labeling functions that one may consider).
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(I) Concurrency, (II) choice, and (III) synchronization.

(i

Fig. 3.

find a firing sequence from the current state, containing
transition t;
» Bounded—if the set R(M) is finite. Equivalently, if 3%
such that VM’ € R(M), Vp € P, M'(p) < k;
» Safe—(or one-bounded) if a place will not hold more than
one token: VM’ € R(M),Vp e P, M'(p) <1
Example 3.3: The Petri net represented in Fig. 2 is live
and safe. Its language is L = (abUcd)*(e Ua U ¢).
Let us recall some classical subclasses of Petri nets.
‘1) A circuit is a PN such that |*¢| = [t*] = |*p| = [p*]| =1
forall t € T,p € P.
2) A state machine (SM) is a PN such that |*¢| = [¢t*| = 1
forall t € 7.
3) An event graph (EG) is a PN such that |*p| = [p
for all p € P.
4) A free choice net (FC) is a PN such that p®* N ¢® # 0 =
p* = ¢* for all p,q € P.
SM are also known as S-systems and EG as marked graphs,
decision-free Petri nets, or T-systems. Our definition of FC
~ corresponds to what is often called extended free choice nets in
the literature. It follows from the definitions that EG C FC
and SM C FC. |
In Fig. 3, we illustrate the basic notions of concurrency,
choice (or decision), and synchronization. In case (I), tran-
sitions @ and b are concurrently enabled, i.c., they can fire
independently. In case (II), we say that there is a choice
between transitions ¢ and b or that ¢ and b are in conflict.
In case (III), there is a synchronization at transition a. Among
Petri nets, SM allow choice but not synchronization whereas
EG allow synchronization but not choice. FC are the natural
generalizations of both SM and EG.

=1

B. Execution Semantics and Traces

Let us consider a Petri net where n transitions, ai to a,,
are concurrently enabled; see Fig. 3(I). We assume that all of
them have to fire before any new transition becomes enabled.
Then, the same behavior, i.e., the firing of the n transitions,
can be described by any of the following n! firing sequences
Gg(1) *** Gg(n) Where o is.a permutation of {1, ---, n}.

This simple example shows that firing sequences, which
provide a sequential description of the behavior, are not really
adapted in the presence of concurrency.

The problem of modeling concurrency in a more efﬁment
way has long been considered. A classical approach, proposed
by Mazurkiewicz [31], [32], uses the notion of trace monoid.
For a géneral and recent reference on traces; see [18].

.. 687

Definition 3.4: Let 7 be an alphabet equipped  with a
reflexive symmetric relation called dependence relation and
denoted by D. We denote by I the complement of D, called
independence relation. The trace monoid 7*/ ... is the quotient
of the. free monoid 7* by the least congruence ~ containing
the relations ab ~ ba, V(a, b) € Z. The elements of 7%/
will be called traces.

Two words are representatives of the same trace if they can
be obtained one from the other by repeatedly interchanging
adjacent independent letters. Indeed, one can easily show that
the reflexive and transitive closure of the relation uabv =

“ubav, V{a, b) € Z, u, v € T* is compatible with the monoid

structure of 7*. Hence, this reflexive and transitive closure is
precisely the trace relation ~; see [18, Ch. 1, Sec. 1.3] for
details.

Given a Petri net (P, 7, F, M), we define the following
independence relation: ,

T={(a,b) e T*|(*aUa®) N (*bUD®) = 0} 5)
and the associated trace monoid (7*/.). Two transitions are
independent iff they do not share input or output places.

For safe Petri nets,’ the congruence ~ generated by Z
identifies firing sequences which differ only by the sequential
ordering of concurrent events. In particular, if w; ~ wy then
wy € L & wy € L (where L is the language of the Petri net).
A trace whose representatives are firing sequences is called a
firing trace. The set of firing traces is denoted by (L/..).

It is very convenient to visualize trace monoids using heap
models, as it was originally proposed by Viennot in [40]. Let us
detail this for the trace monoid (7*/.) associated with a safe
Petri net (P, 7, F, M ) Consider the heap model H(7*/..)
with

* set of pieces 7T

¢ set of slots P;

* R(a) =* aUa®, a €T,

e la;7) =0, ula, r) =1, 7 € R(a).

Two words wy, we € T are equivalent (w; ~ ws) if and
only if they provide the same heap. In the heap associated
with w € L, the pieces associated with one level (i.e., the
pieces occupying a common vertical position) correspond to
the events (i.e., the transition firings) occurring concurrently.

Example 3.5: Let us consider the Petri net of Fig. 2. We
have represented in Fig. 4 the heap of pieces associated
with the firing sequence abcdabed. Note that there is no
concurrency at all in this Petri net. It is purely sequential and
the independence relation 7 defined in (5) is empty.

C. Timing

A timed Petri net (TPN) is a net with firing times associated
with transitions and/or holding times associated with places.
Several firing semantics have been considered in the literature.
We restrict our attention to safe Petri nets and consider a

"Tn a nonsafe Petri net, two transitions @, b such that ®*a N® b # () can be
concurrently enabled if their common input places hold more than one token.
It is possible to introduce another dependence relation to take care of this; see
Diekert [17]. Such refinements are not needed here as we consider only. safe
Petri nets.
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P1 P2 P3 Pa D5 Pe

Fig. 4. Heap of pieces for the word w = abcdabed.

semantic which coincides with the one of Ramchandani [36]
for this subclass. ,

Let a be a transition with firing time 7, and whose output
places p € a*® have holding times Tp. We assume that transition
a becomes enabled at instant ¢. A firing occurs in three steps.

1) At instant ¢, the firing of @ may be initiated. If initiated,
it removes. one token from each input place.

2) One token is added in each of the output place at instant
L+ 7q:

3) The token added in place p € a® can contribute to the
enabling of the transitions in p* after instant ¢ + 7, + 7.

Between ¢ and ¢ + 7., the tokens can be considered as
being “frozen” in their original input place. The tokens and
the transition a cannot be involved in any other firing between
¢t and ¢ + 7,. A natural question to ask is what happens
if transition a is not initiated at instant ¢. First, ¢ may
never fire. Second, in order to fire, transition a needs to get
disabled in a first time (because of the safeness property, this
happens precisely when the token of one of the places in ®a
participates in the firing of another transition), then reenabled
later on.

Let us investigate some other consequences of this semantic.
- First of all, if a transition fires, it does so “as soon as possible.”
We say that the Petri net operates with an earliest firing rule.
Second, the decisions on which transitions are to fire is not
based on time considerations. All logically feasible choices
can be considered. This contrasts with several models studied
in the literature. For example, in the so-called race policy,
see for instance [1], a place with several output transitions
allocates its token to the transition which is able to complete
its firing first.

We denote by (G, M, 7) a timed Petri net, where = is a
map 7 UP — IR, providing the firing and holding times of
transitions and places. By convention, the timed evolution of
the Petri net starts at instant zero, in marking M, the holding
times of the initial tokens being completed.

Example 3.6: Let us consider the Petri net of Fig. 2. We
associate with its transitions, the following firing times:

To =1, T = 2, Te =2, T4 = 1.

We associate with the places the holding times

7'1‘—‘—‘1, 7'2:0, 7'3:0, 7‘4:2, 7'5—'20, 7'6‘-‘—‘0.’
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Let us assume that the initial marking is the one shown i1
Fig. 2. Transitions a and ¢ are enabled. If we choose to firt
transition c, the firing will be initiated at time 0, completed a
time 2, and transition d will become enabled at time 2.

IV. HEAP REPRESENTATION FOR SAFE TIMED PETRI NETS

A. Heap Representation Theorem

In this section, we state the main representation theorem o
the paper: firing times of safe timed Petri nets are recogmzec
by heap automata.

LetG=(7,P, F, M, 7) denote a safe timed Petri net
with set of firing sequences . C 7*. The timed behavios
of the net is defined as follows: for a firing sequence w =
ay - ar € L, we start at time O and fire the transitions
ay, -~ -, ax in this order, applying the earliest firing semantic
described in Section III-C.

With each place p, and for w € L, we associate the real
nonnegative numbers: z(w), = instant at which the last token

~ arrived in place p under the schedule w becomes available for

the firing of downstream transitions.

#'(w), = last instant of presence of a token in place p,
under the schedule w.

We set 2/(w), = z(w), = 0, if no token was ever present
in place p. We set

_ [ a(w)y,

zg(w)p { 2 (w)y,

In words, this is the completion time of the last “event” at place

p, under schedule w, an “event” being either the availability,
or the departure of a token.

We call x¢ the dater function of the Petri net. The makespan

or execution time of the firing sequence w is naturally defined

if M~ M/, with M'(p) = 1

6
if M= M, with M'(p) = 0. ©

by

yo(w) = max zg(w),.
In words, this is the completion time of the last “event” in the
Petri net under schedule w.

Theorem 4.1 (Heap Representation for Safe TPN): Let G =

(T, P, F, M, 7) be a safe timed Petri net with language L.

Then, the heap model H = (7, P, R, I, u), with

VaeT, R(a) =a"U%a
VYVaeT,Vpea®, u(a, p) =14+ 7
VaeT,Vpe®a\a®, u(a, p) =0
YaeT,Vpe R(a), I{a, py =0
is such that
Vwel,  zg(w)=an(w), yo(w)=yn(w). ()

Equation (7) states that the dater vector of the net coincides
with the upper contour of the associated heap.

Let us consider the heap model obtained from H by replac-
ing u and [ by 4(a) = 1, a.€ R(a) and I(a) = 0, a € R(a),
respectively. This is precisely the heap model associated with
the trace monoid 7*/., of the Petri net, i.e., H(7T*/.); see
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Section IH-B. The pieces’ of the heap model M are obtained
by a deformation of the pieces of the heap model H(7*/..),
incorporating the timing information. '

Proof of Theorem 4.1: Let us consider w € L, a € 7,
such that wa € L. We have

zg(w)p, ifpda®*Uta
zg(wa)y = { pesy mg(w)P’ tTatm, ifpca
max rg(w)p, ifpe®ala®.
peta
¥

Indeed, the firing of transition a after w is initiated at instant

T = max zg(w)y
p'eta

from . which (8) follows. The dynamics (8) would coincide

verbatim with the one of the heap model A given above

[see (2)], if the term maxyce, zg(w), was replaced by
max, cequas Zg(w), . Hence, it remains to check that

max | ag(w)y = max zg(w)py

or equivalently

Vp"ea®\*a zg(w)pr < max zg(w)y

p'E’a
Since p” € a*\* a, the firing of o at time 7" adds one token
to the marking of p”. Since the net is safe, there is at most one
token in each place, for any logically admissible execution of
the system. We conclude that the exit time of the last token in
* place p” under the firing sequence w must be strictly less than
T Using the defining relation (6), zg(w), is equal to the last
instant of presence of a token in p”, under w. We conclude
that 2g(w)pr < T = maxyceq £g(w)y. |
Due to the commutation in (4), the heap associated with
w-€ T*, and a fortiori 23, (w) and y4;(w), depend only on the
equivalence class of w in 7*/ ~. Although this heap, z(.),
and yy,(w) are defined for all w € 7*, they have no meaning
in terms.of the Petri net if w ¢ L.
Example 4.2: Let us illustrate the previous construction
with the Petri net G = (7, P, F, M) represented in Fig. 2
and the numerical values of Example 3.6.

The heap model associated with G is H = (7, P, R, [, u)
with / ~
R(a) =*aUa® = {p, p2, p3, pa}, R(b) = {p1, pa, p3}

R(d) = {ps, ps, D5, pe}
u(b7 ') = [37 07 27 07 07 0]
U(d, ) = [07 0,1,3,0,1].

)=
(C) = {p37 D5, PG}
) =[0,1,0,3,0, 0],
[0 07 07 07 27 0]7

u(a,
ule, ) =

We have represented the heap of pieces associated with the
schedule w = abedabed in Fig. 5. For the clarity of the figure,
pieces with parts of zero width have been materialized by
replacing zero by a “small” but strictly. positive height. This
heap is a deformation of the one of Fig. 4. The reader could
check directly (by simulation of the Petri net) that the height
of the heap, yg(w) = 16, attained at slot 4, corresponds to
the last occurrence of an event in the system (the availability

of the token in py4, after the firing of the last occurrence of d
" in the schedule w).
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P1 P2 P3 P4 P5 Pé

Fig. 5. Heap of pieces associated with the word w = abedabed.

B. The Minimal Realization Problem

The size of the heap representation in Theorem 4.1 is equal
to the number of places of the Petri net, a possibly large
number. This raises naturally the following minimal realization
problem: what is the minimal size of a heap representation of
a given safe timed Petri net?

As a partial answer to this probably difficult problem, we
will show that simple (usually small) heap representations can
be built from structural invariants, for a subclass of nets.

To formalize this rigdrously, we introduce the following
definition.

Definition 4.3 (Heap Realization): We say that a timed
Petri net (G, M) with language L, has a heap realization of
size k if there is a heap model ‘H with & slots, such that

Vwel,  yglw)=yn(w).

That is, the execution time of the firing sequence w coincides
with the height of the heap of pieces w. It is not required
that x4, = xg, which gives the potential for a smaller heap
realization.

The following notions are classical; see [16, Sec. 5.1].

Definition 4.4 (State Machine Covering): A state machine
component of a Petri net G 'is a subnet G’ of G, that is a state
machine, and satisfies

*pUp®* C G’ for every place p of G,

We say'that Gi1, -+, Gr, is a (cardinality k) state-machine
covering of a Petri net G, if
1) Gy, ---, G are state-machine components of G;
2) every arc of G belongs to at least one component G,
1 <i<k ,
We say that the covering is safe (respectively, live) if it is com-
posed of safe (respectively, live) state-machine components.
It follows from this definition that a state machine compo-
nent is uniquely defined by its set of places. Note that a safe
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(respectively, live) SM is an SM with at most (respectively,
at least) one token.

Theorem 4.5 (Reduced Realization Theorem): let ¢ =
(P, T,F, M, 7) be a safe timed Petri net with language I,
and having a safe state machine covering (G, - -, Gi). Then,
G admits a heap realization of size k given by the heap model
H=(T,{1,---, k}, R, I, u), where

VaeT, R(a) ={i|la € G;}
VaeT, Vi€ R(a), l(a, 1) =0
VYa €T, Vi € R(a),

where p(a, i) is the unique place such that (a, p(a, i)) € G;.
Proof: We first prove the result when the state-machine
components are not only safe but live. Then, there is exactly
one token at any time in each state-machine component and we
may speak unambiguously of the token in G;. With this token,
- we associate a dater function Z;. If w is a firing sequence, we
denote by Z(w); the time at which token ¢ becomes available
in its current place p € G;, after the firing of the last transition
a € w such that p € a* (it is the “completion time” of schedule
w for the token ¢). It is clear that max; Z(w); = yg(w). Hence,
it is enough to prove that z(w) = zg(w), for w € L. We set
-Z(e); = 0 (recall that e denotes the empty word). Clearly,
Z(e) = wp(e). Let us consider w € L,a € T such that
wa € L. We have

H(wa); = { H(w)s,

u(a7 7’) =T+ Tp(a, i)

if i ¢ R(a)
if i € R(a).
€)
We recall that p(a,?) is the unique place such .that
(a, p(a, 7)) € G;. For all places p’ €* a, there exists at least
one state machine component G; such that (p’, a) € G;. Thus

Zi(w). (10)

maxy eeq T(W)p + Ta + Tp,

max & P = max

Ie. g< )p ’ Hp// (p// a)eg]
Arguing as at the end of the proof of Theorem 4.1 (usmg the
safe character of the net), we get that

max Z(w)

. i=
3: 3p”, (p",a)€G,

max
j: I, (p”,a)€G or(a, p'")EG;

#w)
= jrenlg(};) Z(w);. (11)

Substituting (10) in (9), and using (11), we get that Z satis-
fies precisely the dynamics (2) of the heap model H. This
concludes the proof of the theorem, when the state-machine
covering is live.

For a general safe but not-live covering,. there is either
zero or one token in each state-machine component. All
the transitions within unmarked state-machine components
will never fire. It is now immediate to adapt the above
argument, setting. Z(w); = —oo, for any unmarked state-
machine component G;. [ ]

Example 4.6: Let us illustrate Theorem 4.5. We consider
the Petri net G = (7, P, F, M) of Fig. 2, with the timings
defined in Example 3.6. .

This net admits a decomposition-into four SM-components,

Gi, 1 =1, -+, 4, with respective sets of places
Pr = {p1, p2}, Py = {p2, p3, ps}
Py ={pa}, Py = {ps, ps}. .
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Fig. 6. (1), (2) Heaps of pieces for the words abcdabed and abededab and
(3) minimal heap realization.

Let us consider the' associated heap model M as .in
Theorem 4.5. It is exactly the heap model defined in
Example 2.2 and 2.6. The set of slots is R = {1, 2, 3, 4},
slot ¢ corresponding to the SM-component G;. The heap
associated with the schedule abcd was represented in Fig. 1.
As a further illustration, the heaps associated with abcdabed

" and abededab are represented in Fig. 6(1) and 6(2).

It is interesting to note that the heap realization given above
is not minimal. A smaller realization is shown on Fig. 6(3).
Note that this size three realization is not associated with a
state machine covering of the net (here, the cardinality of a
state machine covering is at least equal to four). This shows
that Theorem 4.5 provides only a partial answer to the minimal
realization problem.

The next classical result (see for example [16, Th. 5.6]),
shows that the reduced realization of Theorem. 4.5 can be
applied to all live and safe free choice nets.

Proposition 4.7: A live and safe free choice net admits a
live and safe state machine covering.

In the case of an event graph, the same result applies when
replacing state machine coverings by circuit coverings. The
problem of finding the covering of minimal cardinality in
Proposition 4.7 (or, in general, for Petri nets admitting such
coverings) appears to be a difficult one.

Remark 4.8: In his thesis, Hulgaard proposed a similar
approach for safe FC [28, Ch. 7]. He defined an analogue
of the vector xg(w) and of the matrices M(a), and derived
dynamical equatiohs similar to (9). The main difference is
that he uses rectangular matrices which depend not only on
the transition to fire but also on the current marking.

C. Heap Realization’ and P-Semiflow

There is a close connection between the size of the heap
realization in Theorem 4.5 and a classical invariants, the P-
semiflows. A P-semiflow is a column vector € N* such
that 33 c.,2(p) = X ,cqe #(p), Va € 7. That is, the
weighted marking (usual algebra) » x(p) M (p) of the places
is invariant by the firing of a transition.
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Fig. 7. Expansion of the Petri net of Fig. 2.

Let G be a safe timed Petri net admitting a SM covering
{G1, -+, Gx}. We consider the strictly positive vector z =
Tg, + -+ + xg,, where zg, € RY__ is the characteristic

vector of G;, defined by

(1, iftpeg;
7g:(p) = {0, otherwise.

The vector z is a P-semiflow. The invariant >-_ z(p)M (p)
is equal to k& times the size of the heap realization of G.
However, it is not true that each P-semiflow of a Petri net can
be represented as the sum xg, + - - - + g, of the characteristic
vectors of a SM covering. A fortiori, the problem of finding
a safe SM covering of minimal cardinality cannot be reduced
to the classical problem of finding a minimal 7P-semiflow.

We define the expansion G of the Petri net G with réspect
to = as follows.

Each place p € P such that z(p) > 1 is replaced by z(p)
places. Each of these x(p) places has the same input and output
.transitions as the original place p. They also have the same
number of tokens and the same holding time as p.

The firing sequences and the temporal behaviors of G and
G are exactly the same (given a firing sequence w, the firing
instants of the transitions are the same). Furthermore, the graph
G admits'a SM partition® (Gy, - - -, Gz). This is best understood
with an example.

Example 4.9: Let us consider the Petri net of Fig. 2. A
state machine covering of this Petri net was provided in
Example 4.6. The associated characteristic vector is z =
(1,2, 1,1, 2,1). Hence, we have to duplicate p, and p5. We
have represented the expanded Petri net with its SM-partition
in Fig. 7.

The reduced heap automaton H associated with G is the
same as the one associated with G. Now, the number of tokens
of G is constant and there is a simple interpretation for (2 );
(or (z7)): it is the dater function of the token of Gi.

V. AN APPLICATION TO THE MODELING
AND PERFORMANCE ANALYSIS OF JOBSHOPS

The results presented above find a natural domain of ap-
plication in scheduling theory. A good introduction to the

8 Same definition as a SM covering except that each arc belongs to exactly
one SM component.
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Fig. 8. A two jobs—two resources manufacturing system.

subject is provided by the books [8] and [10]. We first show
how heap representations can be used to design performance
evaluation methods. We explain informally-the method on a
small manufacturing model, and we compare it with the clas-
sical approach. Then, we consider the general subclass of safe
jobshops. We describe -the classical performance evaluation
algorithm and a new heap automata based one, and we derive
complexity bounds for both of them.

A. An Elementary Example

Let us consider the Petri net of Fig. §, that the reader
certainly recognizes as being the one discussed extensively
above.

This Petri net can be interpreted as a manufacturing system
processing two job types Ji, Ja, using two (heterogeneous)
resources: one specialist S and one machine M.

There are four elementary tasks a, b, ¢, d. The production
sequence for job Ji is ¢b which means that the elementary
tasks a and b have to be performed in this order to complete
one job Ji. The production sequence for job Jy is'cd.

Let w € 7*. For each job type J;, i = 1, 2, we set

Jw|y, =number of type J; jobs completed

under the schedule w. (12)

Then, given an infinite schedule’ z = ajagas--- € T¥,
with ay, ag, -+ € 7, we define the asymptotic throughput of
the jobs of type .J;

P ap c - GnlJg,;
Ai = lim inf - | _ n ) (13)
n-sco execution time of aj - - - an,

We are interested in finding the infinite schedules maximizing
the throughput, under a production ratio constraint (e.g., one
job Jy for one job Jo, in the average). We restrain this problem,
by requiring the schedules to be periodic. That is, one only
considers periodic sequences of the form v* = wvvvv -,
where v is a.finite production pattern satisfying the ratio
constraint. In this case, as detailed below, the lim inf in (13)
becomes a limit (this will follow from the (max, +) linear
representation, together with the (max, +) cyclicity theorem).

9We denote by T the set of infinite words over the alphabet 7.
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Fig. 9. Timed event graph for the schedule.

For instance, let us consider minimal length patterns with
ratio 1/1. There are two possible forms for such patterns: abcd
and cdab. Moreover, we note that the asymptotic performance
is invariant by cyclic conjugacy of the pattern. That is, for
all words u, v, (uv)¥, and (vu)” have the same asymp-
totic throughput, which follows from the identities (uv)* =
w(vw)¥, (vu)? = v(uw)® (the two behaviors differ only by
a finite number of tasks). Hence, there is only one behavior
to congider

Ly = (abed)”.

~ One might of course consider longer patterns. For example,
periodic sequences whose pattern consists of the production
of two jobs Ji and two jobs J, are given by

= (abedabed)” U (abededab)®. -

‘We will not consider as such the schedule optimization prob-
lem (which is a difficult combinatorial one), but we will show
how the heap-based modeling makes easier the subproblem of
the performance evaluation of a given periodic schedule. This
is best ‘understood by comparison with the timed Event Graph
modeling, that we next recall.

1) Hlustrating the Classical Approach: For a given peri-
odic schedule, one is able to build a timed event graph
representing the system, and then to compute the periodic
throughput. of this timed event graph. Let us consider for
example the schedule (abed)“. This functioning is represented
by the timed event graph displayed in Fig. 9, which is obtained
from the timed Petri net of Fig. 2 by replacing the resource
places p3 and ps by circuits, forcing the periodic sequence
abedabed - :

Let z(n ) e RZ__ be the vector providing the dates of the
completion of the nth firing of the transitions. The vector z(n)
evolves according to a (max, +) linear dynamic

Z’a(n) = Ta(Tlxb(n - (7'31 ® 7'41)xd(n — 1))
ry(n) =TpTaxq(n)
Te(n) = 7(T3225(n) & T629(N — 1))

(n) =

za(n) =Ta(T32.(n) © Tagz.(n)).
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Fig. 10. Timed event graph for the schedule (abcdedab)®.

Setting £(n) = [zs(n), za(n)]’, eliminating z, and z., and
taking the numerical values of Fig. 9, we obtain the subsystem
&(n) = Ag(n.— 1), with

- |4 5

=k 3
where p(A) denotes the (unique) (max, +) eigenvalue of the
(irreducible) matrix A (see [2, Secs. 1.3 and 3.2.5] and [12], for
details on the (max, +) spectral theory and its applications to
discrete event systems). It follows from the cyclicity theorem
in [2] that for i = 1, 2, and u € 7, the asymptotic throughputs
are

p(A) =8

=z, (14)

For a schedule with a longer period, one would have to
perform a similar analysis on a larger timed EG. For instance,
the timed EG corresponding to the schedule w = (abcdedab)”
is shown on Fig. 10.

2) Hlustrating the Automata Approach: We associate with
the timed Petri net of Fig. 8 the reduced heap model and
automaton given in Example 4.6.

As opposed to what was done in the classical approach,
one considers a single Petri net (the original one, Fig. 8) and
a single algebraic representation (the heap model). Only the
order in which the products of the matrices M(u), v € 7,
are performed is modified from one schedule to the other.

In particular, for a periodic schedule (v)“, the asymptotic
throughput of job .J; is given by

I,U]Ji
p(M(v))

- For instance, the - matrix M/(abcd) was given in
Example 2.6. Its eigenvalue is p(M(abed)) = 8, providing

a throughput \; = 1/8, which confirms the value obtained
in (14).

A =
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Fig. 11. Generic safe Petri net associated with a safe jobshop.

Similarly, one may compute the matrix M (abedcdab) and -

obtain p(M (abededab)) = 15, yielding a throughput A; =
2/15 > 1/8. This improvement of the throughput can be
visualized on the heaps of pieces of Fig. 6.

These computations could be performed equivalently, and
more simply, with the three-dimensional matrices correspond-
ing to the minimal realization; see Fig. 6(3).

More generally, one can easily check that the optimal
periodic schedule of period 4n and satisfying a 1/1 ratio
constraint is v with v,, = ab(cd)™(ab)™ L. It can be inferred
from the heaps of Fig. 6 that the associated throughput is

n

)\1:)\2:7n+1

so that ); increases to 1/7 as n — +oo. This is of inde-

_pendent interest. It shows that we can always improve on the

throughput by increasing the length of the pattern. Hence there
exists no optimal schedule with a finite period (despite the fact
that all durations are integer valued). An example of the same
kind (but for a nonsafe Petri net) was exhibited in Carlier and
Chretienne [9, Sec. VI-Al.

We next turn our attention to the general class of jobshops.

B. Performance Evaluation of Safe Jobshops
Definition 5.1: A jobshop is specified by:

 a finite set R of resources (machines);

e a finite set 7 of elementary tasks;

« for each task a € 7', a duration 7(a) and a single machine
R(a) € R on which « is to be executed;

« afinite set 7 .C T* of production sequences or jobs. Each
jobJ =ay - ar € J is composed of a finite number of
tasks a1 - -+ ag, to be executed in this order. We require!®
that a task a € 7 belongs to a unique job J(a) € J.

We say that a unit of job J is. produced each time-the
production sequence J is completed.

This model is equivalent to the one of [27]. We will make
a restriction by assuming that the work in.process for each
job is equal to one, that is, at most one unit of each job is
processed simultaneously. We call such jobshops safe, this
assumption being equivalent to the safeness of the natural Petri
net representation of the system, shown in Fig. 11.

We also assume that the jobshop, or equivalently the Petri
net, is connected. It means that there is no proper subset of
jobs sharing no resources with some other jobs. The extension
to the nonconnected case is straightforward.

10%We may always assume this. If the same physical task occurs in two jobs,
we have to represent it by two distinct letters.
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The Petri net admits a natural covering by live and safe state
machine components, each job and machine corresponding to a
component. Hence, jobshops admit reduced heap realizations
(see Theorem 4.5)

H Z(T’ Rl? Rl? l? u)

R'=RUJ
R'(a) =R(a)U J(a)
l(a, ) =0
u(a, r) =7(a), Vr € R(a). (15)

We will be interested in periodic schedules of the form

w e T%. where v belongs to I, the language of the Petri
net and is a pattern corresponding to the exact completion of
several jobs (i.e., without leaving some production sequence
unfinished) and meeting a fixed ratio constraint. .

In line with (12), for each production sequence .J, we will
denote by |v|; the number of units of J completed under v.
The asymptotic throughput of job J is defined as in (13),
replacing J; by J. The following result is an immediate
consequence of the heap representation theorem, together with
the cyclicity theorem for powers of matrices [2, Sec. 3.7.5,
Th. 3:112].

Theorem 5.2 (Throughput Formula) For a safe jobshop
with heap realization (15) and associated matrix representation
M, the asymptotic throughput of job. .J is given by

Ar = Juls x p(M()7"

where p(M(v)) is the (max, +) eigenvalue of M(v).
As the jobshop is assumed to be connected, the matrix M (v)
is irreducible, hence it has a unique eigenvalue; see [2]. As a

-byproduct of this theorem, we obtain an algorithm to.compute

Ag.
Algorithm. 5.3 (Automata-Based): Input: a jobshop, a pat-
tern v € L. ‘ ;
1) Build the heap model (15), and its associated matrices
M(a), a € T.

2) Compute the product of matrices M(v). Complexity:!!
O(l|(17] + IR)).

3) Compute the eigenvalue of M(v), p(M(v)), using Karp
algorithm. Complexity: O(|J| + |R|)%.
Output: Ay = |v]s x p(M(v))~L.
Total Complexity: O(jv|(|T| + [R]) + (|| + |R])?).

The |v| — 1 products of matrices in M(v) can be computed
in a sparse way. Indeed, the matrices M(a), a € T, differ
from the identity matrix only on two row and two column
indices, so that the complexity of an operation MM(a) for
any matrix M of size |7| + |R| is O(|J| + |R|). For details
on Karp algorithm, see, e.g., [2, Th. 2.19].

For comparison, we next give the most efficient variant
known to us of the “classical” performance evaluation al-
gorithm. The general method is borrowed from [2], but the
refinements which greatly reduce the execution time cannot

‘ be found in the literature.

U This is the execution time, the usual operations. (comparison, addition,
etc.) counting for one unit.
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Algorithm 5.4 (Classical or Event Graph-Based ) -Same 1nput
and output as Algorithm 5.3.

1) Build the timed EG representation of the system, fol- -

lowing [2, Sec. 2.6] or [26].
2) Write the (max, +) linear representation

z(n) = Aoz(n) ® A1z(n — 1) (16)

where 2 denotes the vector of dater functions of the
transitions of the timed event graph [2, Sec. 5.1].

3) Let C denote the set of transitions with at least one token
in one downstream place. Compute the C' x C' submatrix
A of AjA,. Complexity: O(|v|(|T|+ |R|)) + (|T| +
R)?). _

4) Compute the eigenvalue p(A), using Karp algorithm.
‘Complexity: O(|J| + |R])?

Total Complexity: O([v|(|7] + [R|) + (|7] + [R])?).

~ The timed EG built in step 1 of Algorithm 5.4 has |v]

transitions and | 7| + |R| tokens. Hence, the matrices Ao and
Ay in (16) are of dimension |v| X |v|. For live timed event
graphs, the matrix Ag has no circuits. Then, we can derive
from (16) the canonical form

z(n) = AjA1z(n — 1)

where A7 = AJ® A9 @ AZ® - ® Al (see [2, Th. 3.17)).
By construction of C, if j & C, (AjA1);; = 0, for all 1.
Hence, AjA1 has only ‘one nontrivial diagonal block A, in
position C x C, and the growth rate of (AjA;)* coincides

with the growth rate of A" .

The cardinal |C| varies with the marking but is of order
|T| + |R|. To compute (A§A;)cc, we have 1) to select the
rows of indices ¢ € C' of A and 2) to multiply each row of
index 72 € C of Aj by each column of index j € C of Aj.
Since the matrix Ao has no circuits, using a rank function,
we can compute a row of Af in time O(F), where FE is the
number of arcs of the graph of Ag (see [24, Ch. 2, Sec. 2.4]).
Here we have £ = O(|v|). We conclude that the complexity
of computing |C| rows of Aj is O(Jv|(]T] + |R|)). On each
column of Ay, there are at most two terms different from 0.
Thus, computing the |C|? entries of (A§41)cc takes a time
Ol T+ IRD) + (171 + IRI)?).

The total complexities of both algorithms are the same.
However, we did not take into account the “modeling” com-
plexities for both methods. This aspect can be considered as a
strong argument in: favor of the automata-based algorithm. A
new 'timed event graph must be built for each new schedule
in the traditional method, whereas the heap realization M is
built only once, and remains valid for all (even nonperiodic!)
schedules. Moreover, the size of the timed EG grows with the
length of the pattern, whereas the size of the heap automaton
remains constant.

Remark 5.5: Additional features can be incorporated to
the jobshop of Definition 5.1, the above modeling by heap
automaton remaining valid. First, a task may require several
resources at the same time to be executed. Second, there might
be general precedence relations between the tasks of a job (it
corresponds to replacing the live and safe circuits in Fig. 11
by live and safe event graphs).
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Table 1
‘Task ai a2 T as b1 b2 C1 Cco d]_ d2
R My Mo M3 M3 Moy My Ms My Ms
T 1 3 3 1 2 2 1 2 1

Example 5.6: We illustrate Theorem 5.2 with the jobshop

described -in [27, Sec. III]. There are three machines:

{My, M5, M3}, four production sequences J =

{J1, -+, Ja}, i = aiagas, Jo = biby, J3 = cieg,

J4 = didy. The resource allocation and time execution maps
are given in Table L.

One requires a production mix of 1/4, 1/4, 1/4, 1/4 be-
tween Jy, Jo, J3, J5. A schedule satisfying this constraint
(and compatible with the order of precedence of the elementary
tasks) is v*, with v = ajasasbibycicadidy. The matrix of the
resource automaton of a4 is (omitting the 0 entries)

M1 Mz M3 Jl J2 JS J4
My ‘1 1

A ‘ 1

We leave it to the reader to write the other matrices and just
give

7 10 9 5 10 10 10
0 3 20 3 3 3
000 3 4 0 5 5
M@)=|7 10 9 5 10 10 10
6 9 8 0 9 9 9
36 50 6 6 6
00 02 0 3 3

‘We have p(M(v)) = 9, which yields the throughput of 1/9,

as in [27, Sec. V]. We used a toy 1mp1ementat10n in Maple
V.3. There are

<3+2+2+2

3,2,2, 2 ) = 91/(31(21)*) = 7560

schedules (a schedule is a word in the shuffle product L of the
four words ajasas, b1bs, cica, dids). But the performance of
a schedule only depends on its equivalence class modulo the
partial commutations zy ~ xy, for the couples of tasks (z, y)
belonging neither to the same job nor to the same machine.
There are only 216 such equivalence classes. Moreover, since
the periodic throughput is invariant by cyclic conjugacy of
the pattern (recall that two words of the form wv and vu are
cyclic conjugates), we only kept one word by class of cyclic
conjugacy (192 words remained). Finally, we had to compute
the matrix product M (w) for these 192 words. We found an
optimal throughput of 1/7, attained for instance for the cyclic
schedule 9%, with © = aydibiasbsciasdacse. This approach
has been developed in [26]. It can be combined with branch
and bound techniques that are classical in scheduling.

12 Available on the author’s web pages: http://amadeus.inria.fr/gaubert/
jobshop.html and http://www liafa.jussien.fr/"mairesse/jobshop.html.
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Fig. 12. (Conventional) Gantt charts are not (max, +) linear.

Remark 5.7: Tt is essential to note that the heap representa-
tion coincides (up to a 90° rotation) with a version of the Gantt
charts, where both the occupation of jobs and machines are
represented. Traditional Gantt charts are exactly the restriction
to the machine columns of heaps of pieces representations.

As an illustration, we have represented in Fig.-12 the
traditional Gantt chart for the model treated at length in
this paper (Example 2.2, 2.6, 3.5, 4.2, 4.6) and the schedule
abededabab. The two added pieces ab seem to “float™ in the
air because one critical modeling variable is lacking. Indeed,
the smallest heap representation is of size three; see Fig. 6(3).

V1. EPILOGUE: ALGEBRAIC STATUS
OF PETRI NET HEAP REPRESENTATIONS

In order to apply the machinery of automata to performance

evaluation problems, we next discuss at a more algebraic level

the different models used in this paper: 1) At the logical level,
the set of admissible behaviors of a Petri net G. is described by
its language L, which is recognized by a “classical” automaton
(deterministic Boolean automaton), the marking automaton
and 2) At the time level, the execution time of an admissible
sequence w € L is recognized by a heap automaton. It is
very natural to embed both models in a common algebraic
framework, as follows.

A. (Max, +) Automaton and Heap Automaton

Classically, a (max, +) automaton A = (Q, I, F, M) over
the alphabet 7 can be represented by a finite IRpa,-valued
and 7 -labeled graph as follows. One draws a finite graph with
nodes ¢ € Q. There are three types of arcs. For each ¢ such
that I, # 0, one draws an input arc valued by the scalar [,
(with no label). Such a node q is called initial. Dually, for
each ¢ such that F; # 0, one draws an output arc valued by
the scalar £, (with no label). Such a node q is called final. For
each triple (g, a, ¢') € @ x 7 X Q such that M(a)sq # O,
one draws an arc from g to ¢/, labeled with the letter a and
valued by the scalar M(a)qq .

The weight of a path

p= (Q1“—1>Qz Qﬁ?j’qu+l>

is the pl‘OdU.Ct m(p) = LnM(al)thz e M(an)qnqn+qun+l’
evaluated in the R,,ax semiring. The label of this path is. the
product of the labels of the edges: £(p) = a; -+ a. Then, the
multiplicity of the word w is equal to the max of the weights
of the paths of label w: y.a(w) = B, 4py=w w(p).

Example 6.1: As an illustration, we provide in Fig. 13
the graphical representation of the (max, +) automaton of

Example 2.6.
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la,2b,1c,1d la,2b,1c,1d

3a,1b,1c¢,3d

la,1b,2c,1d

Fig. 13. (Max -) automaton.

B. Boolean Automaton and Marking Automaton

Starting from a (max, +) automaton, by specialization to
the Boolean semiring,!> one obtains the classical notion of
(nondeterministic) automaton: the multiplicity of w is 1 if the
word w is accepted, i.., if there is a path with label w from
an initial state to a final state, and O otherwise. The language
of a (Boolean) automaton is the set of words accepted by this
automaton.

A Boolean automaton is deterministic if for all (g, a) €
Q x T, there is at most one ¢’ such that M(a)ee # 0, and if
there is a unique ¢ such that I, # 0.

Let G = (P, T, F, M) be a safe Petri net. The marking
automaton'* of (G, M) is the deterministic Boolean automaton
R(M), I'; 1571y, M’), where the initial vector I " is defined
by I3, = 1 and I/, =0 for m # M, and the morphism M’
is defined by M’ —25M"" and M’(a)pr s = O otherwise, for
all o € 7.

By construction, the word w € 7* is a firing sequence of the
Petri net (G, M) iff it is accepted by the marking automaton.
The language of the Petri net, defined in Section IIL, is
the language of the marking automaton. We remark that by

. definition of the independence relation Z [see (5)], matrices

associated with independent transitions commute
(a, b) € T => M'(a)M'(b) = M'(b)M'(a). a7

Example 6.2: The marking automaton of the Petri net of
Fig. 2 is shown on Fig. 14. The state corresponding to marking

m is denoted by the couple (m(p1), m(ps)).

The language of the automaton, L = (ab U cd)*(e Ua U c),
coincides with the language of the net (see Example 3.3).

C. Heap Representation Theorems Revisited

We extend the daters of the net z¢ and yg, which were
preciously only defined on L, by setting, for any w € 7*\ L,
Vp € P, zg(w), =0, yg(w) = 0. We have the following
generalization of Theorem 4.1.

13The Boolean semiring B = ({false, true}, or, and) is isomorphic to the
subsemiring ({0, 1}, @, ®) of Rmax-

14 Also known as marking graph or reachabiliiy graph.
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Fig. 14. Marking automaton of the Petri net of Fig. 2.

Theorem 6.3: The daters (zg),, p € P and yg of a safe
timed Petri net are recognized by a (max, +) automaton.
Proof: We prove that yg is (max, +) recognizable (the
argument for the entries of g is identical). Consider the
characteristic dater of the language L: char L(w) = 0 if w ¢
L, char L(w) = 1 if w € L. The dater char L is recognized
by the marking automaton B = (R(M), I', 1g(ary, M’). Let
H = (R, 1%, 1x, M) be any heap automaton recognizing
yg- Classically [20], the product yg(w) = yn(w)char L(w)
is recognized by the tensor product of the automata H and B,
which is the automaton C = (72 X R(M), I, F", M"), with

M//(a')(r, m), (s, m') = M(a)rsM/(a)mm“ (18)
O

Due to the commutations in (4) and (17), M (a) M" (b) =
M"(b)M"(a), for all (a, b) € Z. This implies that yg, seen
as a function from the trace monoid 7%/ ~— Rpay, is
recognizable. Such functions are well studied objects; see [19]
and the chapter of Duchamp and Krob in [18].

Remark 6.4: As it was discussed above, the dimension
of H is the number of places (normal representation) or
approximately the number of tokens (reduced realization) of
the Petri net G. On the other hand, the dimension of B can
be extremely large, the only bound a priori being 27 which

is deduced from the safeness assumption. A natural idea is to -

look for reduced representations of the marking automaton B.
Assume that n transitions are concurrently enabled and need
to fire before any new transition becomes enabled. Then, the
corresponding part of the marking automaton, which contains
2™ states, can be reduced to only n states by selecting a
single firing sequence. Reduced marking automata can be
incorporated to the modeling proposed in this paper. We have
not insisted on this point as it is a well-documented problem;
see, e.g., Valmari [39] for a systematic way to construct a
reduced marking automaton.

Theorem 6.3 allows us to apply the machinery of automata
to safe timed Petri nets. In particular, the algorithms given in
[21, Sec. V] and [22, Sec. 3.2] enable us to compute very
simply the worst case Lyapunov exponent

aXwedrnL Y (W)
7

(19)

. m
Ymax = limsup
n

which measures the maximal growth rate of the makespan, for
long sequences of admissible events (in L). Indeed, Yinax 1S
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equal to the maximal (max, +) eigenvalue of @, . , M"(a),
where M is the morphism defined in (18).

Other interesting quantities, such as the optimal case Lya-
punov exponent (which, dually, measures the minimal growth
rate of the makespan for long schedules)

mingeannr Yr(w)
mn

(20

Ymin = lim inf
T

can (in certain cases) be attacked with automata techniques,
either along the lines of Cerin and Petit [11], or using the
determinization techniques of [21]. But the difficulty of the
computation of the optimal Lyapunov exponent ymin iS One
order of magnitude above that of .

In (19) and (20), we can consider a lariguage L which is
more general than the language of the Petri net. For example,
as in Section V-A, we can consider a language L1 N L where
Ly is the language of the Petri net and Lo is a language
corresponding to a ratio constraint. We postpone the discussion
of these questions to a companion paper.

VII. CONCLUDING REMARKS

Let us indicate some possible extensions of this work.

1) It remains to develop heuristics and performance bounds
for scheduling, based on heap and automata representa-

tions. :

Matrix representations allow us to apply standard time

parallelization methods (breaking long matrix products

in subproducts, mapped on different processors) to the

parallel simulation of stochastic Petri nets.

The main limitation of the heap-modeling presented here

is the restriction to safe Petri nets. A natural questior

consists of characterizing the subclasses of non safe Petr.

nets for which such a heap modeling remains valid.

2)

3)
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