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Abstract

We show that the answer to the Burnside problem is positive for semigroups

of matrices with entries in the (max,+)-algebra (that is, the semiring (R[

f�1g;max;+)), and also for semigroups of (max,+)-linear projective maps

with rational entries. An application to the estimation of the Lyapunov

exponent of certain products of random matrices is also discussed.

1. Introduction

The \(max,+)-algebra" is a traditional name for the semiring (R[f�1g;max;+),

denoted R

max

in the sequel. This is a particular example of idempotent semiring

(that is a semiring whose additive law satis�es a � a = a), also known as dioid

[17, 18, 2]. This algebraic structure has been popularized by its applications to

Graph Theory and Operations Research [17, 8]. Linear operators in this algebra

are central in Hamilton-Jacobi theory and in the study of exponential asymptotics

[33]. The study of automata and semigroups of matrices over the analogous

\tropical" semiring (N [ f+1g;min;+) has been motivated by some decision

problems in language theory [40, 41, 43, 21, 20, 32, 27, 24, 25]. From our point

of view, the interest of the (max,+) algebra arises from the study of Discrete

Event Dynamic Systems [2, 12], where sequences driven by R

max

-linear equations

represent synchronization and saturation phenomena. An account of the related

(max,+)-linear system theory can be found in [2, 7, 38]. Automata over the

(max,+) algebra also have noticeable applications to Discrete Event Systems [13,

15]. In particular, certain �niteness results for semigroups of matrices can be

used to compute some asymptotic performance measures (mean-case and optimal-

case Lyapunov exponents [13, 15], the latest being essentially equivalent to the

classical asymptotic nondeterministic complexity [42]). Let us also mention that

�nitely generated semigroups of matrices are central in the study of the stability

of random (max,+) linear Discrete Event Systems [29, 30, 31].

In this paper, we �rst show that the answer to the Burnside problem for

semigroups of matrices over R

max

is positive, which extends a theorem of Simon

[40] for the tropical semiring. The main novelty by comparison with Simon's

proof consists in using the (max,+)-spectral theory (analogous to the Perron-

Frobenius theory). A di�erent proof based on an adaptation of a combinatorial

argument of Straubing can be provided in another special class of dioids. Later, we

consider semigroups of (max,+)-linear projective maps. In a previous paper [13],

we showed that under certain coarse irreducibility assumptions, �nitely generated

semigroups of linear projective maps with rational entries are �nite. Here, we
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extend this result, showing that the answer to the Burnside problem is also positive

for semigroups of linear projective maps with rational entries. Contrarily to the

non projective case, the rationality assumption is important: we provide a counter

example which is based on a kind of irrational walk on the (max,+) projective

line. The decidability of the limitedness problem for rational series over R

max

is also obtained as an easy consequence of the decidability result of Hashiguchi

[20, 21] for the same problem over the tropical semiring. We conclude by giving

an application where these �niteness results allow a simple computation of the

Lyapunov exponent of some particular (max,+) automata.

2. Statement of the Results

In the sequel, �;
 will stand for the additive and multiplicative laws of a semiring,

whose zero and unit are denoted respectively 0 and 1. E.g., for the R

max

semiring,

� = max, 
 = +, 0 = �1, 1 = 0. The matrix operations induced by the

semiring structure are de�ned and written as usual (e.g. for matrices with entries

in R

max

, (AB)

ij

=

L

k

A

ik

B

kj

= max

k

(A

ik

+B

kj

)).

A semigroup S is torsion if for all s 2 S , there exist n 2 N and c 2

N n f0g such that s

n+c

= s

n

: The well known Burnside problem asks whether a

�nitely generated torsion semigroup is �nite. See [9] for a survey. The answer

is positive for matrices with entries in commutative rings [34, 22, 44]. It is

also positive in some more exotic semirings, such as the tropical semiring (N [

f+1g;min;+) (Simon [40]), the \dual" semiring (N [ f�1g;max;+) and the

semiring of rational languages in a single letter (Rat(a

�

);[; :) (Mascle [32]). We

show that this property also holds in the case of R

max

:

Theorem 2.1. A �nitely generated torsion semigroup S � R

n�n

max

is �nite.

Moreover, this result admits an e�ective translation:

Theorem 2.2. It is decidable if a �nitely generated semigroup S � R

n�n

max

is

torsion.

Indeed, the proof provides an algorithm which after some reduction coincides with

Simon's algorithm for the tropical semiring (whose complexity is essentially 3

n

2

).

The proof of Theorem 2.1 uses the spectral theory of R

max

together with

the linearity of the natural order of R

max

. In spite of certain generalizations of the

spectral theory to other |non totally ordered| dioids [10, 14], the argument does

not seem to extend easily. However, we mention in passing that there is another

class of dioids for which we can prove that the answer to the Burnside problem is

also positive. We shall use the algebraic order of dioids, which can be de�ned by

a � b () a� b = b :

Theorem 2.3. Let D be a commutative dioid such that

8x; fy 2 D j y � xg is �nite : (1)

Then, a �nitely generated torsion semigroup S � D

n�n

is �nite.

The proof is an adaptation to the dioid's case of a combinatorial argument of

Straubing [44]. This yields another proof of Mascle's �niteness result for matrices

over the semiring (N[f�1g;max;+) (but not for the tropical semiring, for which
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the algebraic order � is the opposite of the standard one). Let us give another

example of nontrivial dioid satisfying (1). Let (M;+) be a commutative monoid.

Then, the dioid P

f

(M) of �nite subsets of M , equipped with [ (as addition) and

sum of subsets (as product) satis�es the condition of Theorem 2.3.

We next consider linear projective semigroups. We de�ne the matrix pro-

jective space as the quotient of R

n�n

max

by the parallelism relation

M 'M

0

, 9� 2 R

max

n f0g; M = �M

0

:

We write PR

n�n

max

for the quotient semigroup (of \linear projective maps"), and p

denotes the canonical morphism of multiplicative semigroups

p : R

n�n

max

! PR

n�n

max

:

Let us introduce the subsemiring of R

max

: Q

max

def

= (Q [ f�1g;max;+). We set

PQ

n�n

max

def

= pQ

n�n

max

.

Theorem 2.4. A �nitely generated torsion semigroup S � PQ

n�n

max

is �nite.

The restriction to linear projective maps with rational entries is essential, see x10.

below.

Finally, we extend to R

max

a theorem of Hashiguchi [20] for rational series

over the semiring (N [ f+1g;min;+). See also Hashiguchi [21], Simon [43] and

Krob [25] for a �rst extension to (Z[ f+1g;min;+). Given a �nite alphabet �,

we denote by R

max

hh�ii the semiring of formal series with coe�cients in R

max

and

noncommuting indeterminates in �. The coe�cient of a series s at the word w

is written hs;wi.

Theorem 2.5. It is decidable if a rational series s 2 R

max

hh�ii is limited, that

is, if the set of values of the coe�cients of s,

C = fhs;wi j w 2 �

�

g

is �nite.

3. Preliminary Results from the (max,+) Matrix Theory

We next recall the de�nition and basic properties of the (max,+) spectral radius.

The following result is classical. It has been proved many times with various

degrees of generality [16, 8, 6, 10], [2, Th. 3.23].

Lemma 3.1. Let A 2 R

n�n

max

. The following quantities are equal

1

:

1. supfr 2 R

max

j 9u 2 R

n

max

nf0g; Au = rug;

2.

L

k2N

�

trA

k

�

1

k

=

L

1�k�n

�

trA

k

�

1

k

=

L

1�k�n

L

i

1

:::i

k

(A

i

1

i

2

: : : A

i

k

i

1

)

1

k

.

This common value will be denoted by �(A).

Of course, a

1

k

with the semiring notation of the (max,+)-algebra means

a

k

in the

usual algebra. In more conventional terms:

�(A) = max

1�k�n

max

i

1

:::i

k

A

i

1

i

2

+ � � �+A

i

k

i

1

k

: (2)

In the sequel, it should be clear from the context whichever algebra is used.

The following lemma is almost obvious.

1

We denote by 0 the vector with all entries equal to 0 .
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Lemma 3.2. For all A 2 R

n�n

max

and k � 1:

�(A

k

) = (�(A))

k

: (3)

Proof. �(A

k

) � (�(A))

k

follows immediately from Lemma 3.1,2. The converse

inequality follows from Lemma 3.1,1; for if Au = ru, then A

k

u = r

k

u, hence

�(A

k

) � (�(A))

k

.

The most useful result of the (max,+)-matrix theory is perhaps the fol-

lowing cyclicity theorem which is the exact (max,+) counterpart of a well known

asymptotic property for usual nonnegative matrices. Let us recall that a matrix

M is irreducible

2

if 8i; j; i 6= j , 9k � 1; (M

k

)

ij

6= 0.

Theorem 3.3. [6, 10],[2, Th. 3.112] If M 2 R

p�p

max

is irreducible, then

9N; c � 1; 8n � N; M

n+c

= (�(M))

c

M

n

: (4)

where �(M) denotes the spectral radius of M .

It is very natural to look for generalizations of this cyclicity property to �nitely

generated semigroups of matrices. To this end, we observe that (4) rewrites as

follows in the projective linear semigroup PR

p�p

max

:

(pM)

n

= (pM)

n+c

:

That is, an irreducible linear projective map is torsion. This suggests to consider

�nitely generated projective linear semigroups satisfying some irreducibility condi-

tion. Indeed, the extension to semigroups requires a stronger primitivity condition

that we next introduce.

Given a �nitely generated semigroup S with generators A

1

; : : : ; A

p

, we

introduce an alphabet � = fa

1

; : : : ; a

p

g, and note � the unique morphism �

+

! S

such that 8i; �(a

i

) = A

i

. We shall write equivalently S = �(�

+

) or S =

hA

1

; : : : ; A

p

i.

De�nition 3.4. A semigroup S = �(�

+

) � R

n�n

max

is primitive if there exists

an integer N such that

3

jwj � N ) �(w) > 0 : (5)

That is, we require every su�ciently long product of generators to have non-zero

entries

4

. This extends to semigroups the usual primitivity (or aperiodicity) notion

5

.

We say that a set S of matrices is projectively �nite if pS is �nite. Then, we have

the following partial extension of the cyclicity theorem 3.3, taken from [13, 15].

2

The notion is borrowed to the Perron-Frobenius theory. See e.g. [35]. Note that with this

de�nition, a (possibly zero) 1-dimensional matrix is automatically irreducible.

3

For a matrix A , the notation A > 0 is a shorthand for 8ij; A

ij

> 0 . The length of the word

w is denoted jwj .

4

It is immediate to check that this notion is indeed independent of the choice of the (�nite)

set of generators. A more intrinsic characterization is provided in Remark 3.8 below.

5

A matrix A is primitive (in the sense of the Perron-Frobenius theory) if a power of A has

non-zero entries, i.e. if there is an integer N such that A

N

> 0 . Therefore, a semigroup S with

a single generator A is primitive i� A is primitive in the Perron-Frobenius sense.
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Theorem 3.5. Let A

1

; : : : ; A

p

2 Q

n�n

max

. If hA

1

; : : : ; A

p

i is a primitive semi-

group, then it is projectively �nite.

Contrarily to Theorem 3.3 (relative to the case p = 1), the theorem requires the

entries to be rational. See x10. for a counter-example in the irrational case.

For the sake of completeness, we include the proof of Theorem 3.5, which

exploits some bounding arguments and norm properties which will be more inten-

sively used later on (in the study of the Burnside problem for projective linear

semigroups). Let us introduce the following \norms":

kAk =

M

ij

A

ij

= sup

ij

A

ij

; jAj

^

= inf

A

ij

6=0

A

ij

;

with the convention inf � = +1. Obviously,

8A;B 2 R

n�n

max

;

(

kA�Bk = kAk � kBk;

jA�Bj

^

� jAj

^

^ jBj

^

(6)

8A;B 2 R

n�n

max

;

(

kABk � kAkkBk;

jABj

^

� jAj

^

jBj

^

:

(7)

The proof relies on the following observation.

Lemma 3.6. Let K 2 N. The set S of matrices A 2Z

n�n

max

such that

kAk

jAj

^

� K

is projectively �nite

6

.

Proof. After normalization, we may assume that 8A 2 S n f0g; jAj

^

= 1.

Since there is at most (K + 2)

n

2

� 1 matrices A 2Z

n�n

max

such that 1 = jAj

^

and

kAk � K , the lemma is proven.

Proof of Theorem 3.5. Let q be the lcm of the denominators of the entries

of the matrices A

1

; : : : ; A

p

. Since x 7! x

q

(x

q

= x � q with the conventional

notation) is an automorphism of Q

max

which maps all the entries to integers, we

shall assume that A

1

; : : : ; A

p

2Z

n�n

max

. Let

K

0

= max( kA

1

k; : : : ; kA

p

k ) ;

K

00

= min ( jA

1

j

^

; : : : ; jA

p

j

^

) :

The primitivity assumption implies that for w 2 �

+

long enough, we have a

factorization w = sur with jsj; jrj = N and �(s); �(r); �(u) > 0 (N is the

\primitivity index" satisfying (5)). Then

k�(w)k = k�(sur)k � k�(s)kk�(u)kk�(r)k � (K

0

)

2N

�(u)

ij

(8)

for some indices ij belonging to the argmax in k�(u)k = sup

ij

�(u)

ij

. Moreover

�(sur)

kl

� �(s)

ki

�(u)

ij

�(r)

jl

� (K

00

)

2N

�(u)

ij

:

This implies that

k�(w)k

j�(w)j

^

�

 

K

0

K

00

!

2N

: (9)

It remains to apply Lemma 3.6 to conclude.

6

We denote by Z

max

the semiring (Z[ f�1g;max;+). Recall that we use the semiring

notation, so that

a

b

or a=b denote a� b .
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Remark 3.7. The primitivity condition only involves the boolean image of the

semigroup S . That is, introducing the morphism � from R

max

to the boolean

semiring

7

B = f0;1g,

�(x) =

�

1 if x 6= 0,

0 if x = 0,

(10)

and extending canonically (componentwise) � to a morphism R

n�n

max

! B

n�n

, we

get that S is primitive i� the �nite semigroup �(S) is primitive.

Remark 3.8. As a by-product of Remark 3.7, we get the following more intrin-

sic characterization: a semigroup S is primitive i� all its matrices are primitive

8

.

Indeed, the non trivial implication can be proved as follows. Let us assume that

all the matrices of S are primitive, and consider the �nite semigroup �(S), whose

elements are primitive boolean matrices. Let N denote the cardinal of �(S).

Each product of at least N elements of �(S) writes aeb, where a; e; b 2 �(S)

and e is idempotent [37, Chap. 1, Prop. 1.12]. Note that the only primitive and

idempotent boolean matrix is the matrix J : J

ij

= 1;8ij . Since the primitive

boolean matrices a; b have at least one non zero entry per row and column, we

have aJb = J . Hence, J is the boolean image of every product of at least N

elements of S , which means precisely that S is primitive.

4. Preparation

We recall or prove some lemmas of general interest. The �rst one is a well known

combinatorial result due to Brown [4]. We say that a semigroup S is locally �nite

if any �nitely generated subsemigroup of S is �nite.

Lemma 4.1. (Brown) Let ' : S ! T be a morphism from a semigroup S to a

locally �nite semigroup T . Then S is locally �nite i� for all idempotent E 2 T ,

'

�1

(E) is locally �nite.

We now give some lemma speci�c to the dioid or (max,+) case. Reducible

semigroups of matrices are de�ned in the following natural way:

De�nition 4.2. Let D be a dioid and S a subsemigroup of D

n�n

. We say that

S is reducible if there exists a proper partition f1; : : : ; ng = I [ J such that

8s 2 S; 8i 2 I; 8j 2 J; s

ij

= 0 :

Let � be a morphism �

+

! D

n�n

, and S = �(�

+

). It is easily checked that

S is reducible i� there exists a constant permutation matrix P , two morphisms

�

1

: �

+

! D

p�p

; �

2

: �

+

! D

q�q

and a map � : �

+

! D

p�q

, (with 1 � p < n,

p + q = n), such that

8w 2 �

+

; P�(w)P

�1

=

"

�

1

(w) �(w)

0 �

2

(w)

#

: (11)

Moreover, this is clearly equivalent to saying that the matrix M =

L

a2�

�(a) is

reducible (i.e. non-irreducible). The interest of irreducible semigroups arises from

the following lemma, which shows that, with respect to the Burnside problem, we

may only consider irreducible semigroups.

7

Which can be seen as a subsemiring of R

max

.

8

In the Perron-Frobenius sense, see Footnote 5.
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Lemma 4.3. Let S = �(�

+

) be a reducible semigroup satisfying (11). Then S

is torsion (resp. �nite) i� �

1

(�

+

) and �

2

(�

+

) are torsion (resp. �nite).

Proof. It is clear that the condition is necessary. Conversely, an easy induction

shows that

�(w) =

M

a2�;uav=w

�

1

(u)�(a)�

2

(v) ; (12)

where u; v 2 �

�

and �

1

; �

2

are extended to �

�

(the empty word being mapped

to the identity matrix). Assuming that �

1

(�

+

) and �

2

(�

+

) are �nite, (12) writes

�(w) as a sum of elements taken from the �nite set �

1

(�

�

)�(�)�

2

(�

�

); hence �(w)

can only take a �nite number of values due to the idempotency of �. This implies

that �(�

+

) is �nite. An application of this last result to subsemigroups of S with

a single generator shows the implication for torsion semigroups.

We now prove some speci�c (max,+) lemma.

Lemma 4.4. Let A 2 R

n�n

max

. The following assertions are equivalent:

1. A is torsion;

2. for all irreducible bloc

9

B of A, �(B) = 1 or 0.

Proof. From Lemma 4.3, we may assume that A is irreducible. The result

follows readily from the cyclicity theorem 3.3.

Corollary 4.5. Let A 2 R

n�n

max

. The following assertions are equivalent:

1. A is projectively torsion;

2. there exists � 2 R

max

, such that for all irreducible bloc B of A, �(B) = �

or 0.

Proof. Corollary 4.5 if obtained from Lemma 4.4 by noticing that A is projec-

tively torsion i� A

n+c

= �

c

A

n

for some n; c > 0 and � 6= 0, that is i� �

�1

A is

torsion.

Consider the following characterization of the (max,+) spectral radius (cf.

Lemma 3.1):

�(A) =

M

k�1

�

trA

k

�

1

k

: (13)

We next generalize this property to semigroups of matrices.

Proposition 4.6. Let � = fa

1

; : : : ; a

p

g, and S = �(�

+

) for some morphism

� : �

+

! R

n�n

max

. Let M = �(a

1

)� � � � � �(a

p

). Then

�(M) =

M

w2�

+

(tr�(w))

1

jwj

=

M

w2�

+

(� (�(w)))

1

jwj

:

Moreover, the sup is attained in both summations

10

.

9

By a repeated application of decomposition (11), a reducible matrix A writes A = P

�1

TP ,

where T is an upper block-triangular matrix whose diagonal blocks B are irreducible. We call

such a B an irreducible block of A . As noticed in Footnote 2, an irreducible block may be

reduced to a zero 1-dimensional matrix.

10

recall that

L

i

�

i

= sup

i

�

i

.
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Proof. Since 8i; �(a

i

) �M , we have

8w 2 �

+

; �(w) �M

jwj

;

then

M

w2�

+

(tr�(w))

1

jwj

�

M

k�1

�

trM

k

�

1

k

= �(M) (14)

by (13). Similarly,

M

w2�

+

(� (�(w)))

1

jwj

�

M

n�1

(�(M

n

))

1

n

= �(M) (15)

by Lemma 3.2. We now prove the converse inequalities. Let i

1

; : : : ; i

k

2 f1; : : : ; ng

such that

�(M)

k

=M

i

1

i

2

: : :M

i

k

i

1

:

Since M =

L

s

�(a

s

), each entry of M corresponds to some entry of one of the

�(a

s

). Precisely, for each l 2 f1; : : : ; kg, we can take s

l

2 f1; : : : ; pg such that

M

i

l

i

l+1

= �(a

s

l

)

i

l

i

l+1

(with the convention k + 1 = 1). Let w = a

s

1

: : : a

s

k

. Then

�(�(w)) � tr�(w) � �(w)

i

1

i

1

� �(a

s

1

)

i

1

i

2

: : : �(a

s

k

)

i

k

i

1

= �(M)

k

which shows that the converse inequalities in (15) and (14) hold.

The following property of idempotent boolean matrices was already used

by Krob [23, Prop 9.4] in a di�erent context.

Lemma 4.7. Let A 2 B

n�n

be an idempotent matrix. Then, the irreducible

blocs of A are either 0 or equal to some matrix J

k

, where J

k

denotes the k�k -

matrix whose entries are all equal to 1.

Proof. Let B be an irreducible k�k -bloc taken from A. Since A is idempotent,

B is idempotent as well, and we have B = B

+

. Either B is reduced to a single 0

element, either B

+

= J

k

.

The following property already appears in the theory of (classical) spectral

radii of Hadamard products of nonnegative matrices (see Elsner, Johnson, Dias da

Silva [11], Theorem 7).

Lemma 4.8. Let M 2 R

n�n

max

be irreducible. Then

�(M) = min

D

kDMD

�1

k (16)

where D ranges the set of diagonal matrices with non 0 diagonal entries.

Proof. We get from Lemma 3.1,1 and 2 that �(M) = �(DMD

�1

) � kDMD

�1

k

for all D . We consider the case n � 2, then �(M) 6= 0 and by homogeneity, we

may assume that �(M) = 1. Let u be an associated eigenvector, i.e. Mu = u.

Set D

�1

= diag(u

1

; : : : ; u

n

). Then, kDMD

�1

k =

L

ij

u

�1

i

M

ij

u

j

=

L

i

u

�1

i

u

i

= 1.

Hence, the minimum in (16) is equal to 1 = �(M).
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5. Proof of Theorem 2.2

We show that it is decidable if a �nitely generated (max,+) semigroup of matrices

is torsion. With a family of generators A

1

; : : : ; A

p

of a semigroup S , we associate

the matrix M =

L

p

i=1

A

i

.

Lemma 5.1. For S to be torsion, it is necessary that �(M) = 1 or 0.

Proof. From Proposition 4.6, we get

�(M) = (� (�(w)))

1

jwj

for some w 2 �

+

. If S is torsion, then �(w) is torsion, hence by Lemma 4.4,

�(�(w)) = 1 or 0.

The case �(M) = 0 is immediate, then S is nilpotent, a fortiori, torsion:

Proposition 5.2. �(M) = 0 i� S is nilpotent.

Proof. Let n denote the size of M . If �(M) = 0, then M has no circuits

11

.

Since a length n path of M admits a subcircuit, M has no length n paths,

hence M

n

= 0. For all length n word w , we have �(w) � M

n

= 0, hence

S

n

= 0. Conversely, the existence of a circuit (i

1

; : : : ; i

k+1

) implies that for all

m, 0 6= (M

mk

)

i

1

i

1

. Since 0 6= M

mk

=

L

w2�

mk
�(w), S contains arbitrarily long

nonzero products.

When �(M) = 1, the following normalization is instrumental.

De�nition 5.3. The semigroup S is normalized if

supfkAk j A 2 Sg = 1 : (17)

Proposition 5.4. If �(M) = 1, the semigroup S = hA

1

; : : : ; A

p

i can be nor-

malized by a diagonal similarity.

Proof. We �rst assume that M is irreducible. Introduce the diagonal matrix

D as in the proof of Lemma 4.8. Setting A

0

i

= DA

i

D

�1

, M

0

=

L

i

A

0

i

= DMD

�1

,

we have

8i; kA

0

i

k � kM

0

k = 1 ; (18)

hence, the semigroup S

0

= DSD

�1

is normalized. When M is reducible, we prove

the result by induction on the number of irreducible blocks. Assume that

M =

"

M

1

N

0 M

2

#

;

where by the induction hypothesis, kM

2

k = �(M

2

) = 1. (1) If the irreducible block

M

1

is zero, set D = diag(1; kNkId). (2) If M

1

6= 0, choose a diagonal matrix D

1

such that kD

1

M

1

D

�1

1

k = �(M

1

) � 1, and set D = diag(D

1

; kNkkD

1

kId). In both

cases, DSD

�1

is normalized.

11

Recall that a length k path of a matrix A is a family of k + 1 indices (i

1

; : : : ; i

k+1

) such

that A

i

1

i

2

: : :A

i

k

i

k+1

6= 0 . The weight of the path is equal to A

i

1

i

2

: : :A

i

k

i

k+1

. A circuit is a

path such that i

k+1

= i

1

.
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We denote by R

�

max

the subdioid of R

max

comprising the elements � 1 = 0. Using

Proposition 5.4, since S is torsion i� S

0

= DSD

�1

� (R

�

max

)

n�n

is torsion, we are

reduced to the case of �nitely generated subsemigroups of (R

�

max

)

n�n

.

We next introduce some morphisms from R

max

and R

�

max

to simpler struc-

tures. The morphism � from R

max

to the boolean semiring B was already in-

troduced in Remark 3.7. In the case of nonpositive reals, there is another useful

morphism

 : R

�

max

! B ;  (x) =

�

1 if x = 1,

0 if x < 1;

that we also extend to (R

�

max

)

n�n

(componentwise). We will use the product

morphism: �� : (R

�

max

)

n�n

! B

n�n

�B

n�n

: Finally, we introduce the following

map borrowed to Simon's proof [40]

� : R

�

max

! R

�

max

; �(x) =

8

<

:

1 if x = 1,

�1 if 0 < x < 1,

0 if x = 0.

� is not a morphism, but we have

�(A�B) = �(A)� �(B);

�(�(A)
 �(B)) = �(A
B) :

(19)

Hence, � is a morphism from R

�

max

to the three elements dioid �(R

�

max

) =

f0;�1;1g equipped with the two following laws �

�

and 


�

:

a�

�

b

def

= a� b; a


�

b

def

= �(a
 b) :

We naturally extend � to (R

�

max

)

n�n

.

Proposition 5.5. Let A 2 (R

�

max

)

n�n

. Let { denote the injection

�((R

�

max

)

n�n

)! (R

�

max

)

n�n

. The following assertions are equivalent.

1. A is torsion

2. {��(A) is torsion

3. for each non zero irreducible bloc B of A, there exists a circuit of B com-

posed only of arcs

12

of weight 1,

4. any block taken from  (A) and corresponding

13

to an irreducible bloc of �(A)

contains at least a circuit.

Proof. (4) , (3) is obvious.

(1) () (3): This follows from Lemma 4.4 and the fact that since all the entries

of A are � 1, a circuit with weight 1 has all its entries equal to 1.

(3) () (2). Apply the previous result to {��(A), since the irreducible blocs and

the entries equal to 1 are exactly the same for A and {��(A).

This yields the following extension to R

�

max

of Simon's algorithm [40].

12

An arc is a path of length 1 (the de�nition of paths and circuit was recalled in Footnote 11

supra).

13

I.e. the two blocks are obtained by selecting the same rows and columns, respectively from

 (A) and �(A).
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Algorithm 5.6. Compute the �nite semigroup �(S) and for each t 2 �(S),

check that the matrix A = i(t) satis�es property 5.5,3.

When the semigroup S is primitive (Def. 3.4), we obtain a particularly simple

result:

Theorem 5.7. A primitive semigroup S = �(�

+

) � (R

�

max

)

n�n

is torsion i�

there is no nilpotent matrix in  S .

One may equivalently replace \nilpotent" by \zero" in the statement of the theo-

rem.

Proof. This follows from Proposition 5.5,4, since for all A 2 S , A admits

a single irreducible block: there is a circuit in  A i�  A is non nilpotent (by

Proposition 5.2).

Example 5.8. Let us consider the matrices

A =

"

0 1

�1 �1

#

and B =

"

0 2

0 0

#

(with �(A) = 0; �(B) = 1) and de�ne

~

A = �(A)

�1

A = A,

~

B = �(B)

�1

B =

"

�1 1

�1 �1

#

:

We claim that

~

S

def

= h

~

A;

~

Bi is torsion. In order to show that, we normalize

~

S as

in Proposition 5.4. We have

M =

~

A�

~

B =

"

0 1

�1 �1

#

;

�(M) = 1 = 0. Recall that all the columns i of M

+

def

= M �M

2

� � � � such that

M

+

ii

= 1 are eigenvectors of M for the eigenvalue 1 (see [2, 3.100]). Here,

M

+

= Id�M =

"

0 1

�1 0

#

:

Let D

�1

= diag(M

+

11

;M

+

21

) = diag(0;�1) and set

A

0

= D

~

AD

�1

=

"

0 0

0 �1

#

; B

0

= D

~

BD

�1

=

"

�1 0

0 �1

#

:

~

S is torsion i� hA

0

; B

0

i is torsion. According to theorem 5.7, we have to check

that  hA

0

; B

0

i has no nilpotent elements. But

 (A

0

) =

"

1 1

1 0

#

�  (B

0

) =

"

0 1

1 0

#

;

hence we may bound from below a product of k matrices  (A

0

) and  (B

0

) by

 (B

0

)

k

. Since  (B

0

) is not nilpotent, this completes the veri�cation.
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6. Proof of Theorem 2.1

We now prove that the answer to the Burnside problem is positive for R

n�n

max

. Using

the normalization argument of the preceing section (Lemma 5.1, Propositions 5.2

and 5.4), it is enough to prove the result for a semigroup S � (R

�

max

)

n�n

.

Proposition 6.1. Let S � (R

�

max

)

n�n

be a �nitely generated semigroup. S is

�nite i� the non 0 entries of the matrices of S are bounded.

In other words, the �niteness of S is equivalent to the following property

9K 2 R

�

; 8s 2 S;8i; j; s

ij

6= 0) K � s

ij

: (20)

Proof. Condition (20) is clearly necessary. Conversely, assume that (20) holds.

Let A

1

; : : : ; A

p

be generators of S , and let

� = supf(A

k

)

ij

j 1�k�p; 1� i; j�n; 0 < (A

k

)

ij

< 1g :

Let w = a

s

1

: : : a

s

k

2 �

k

. We have

�(w)

ij

= (A

s

1

)

ii

2

: : : (A

s

k

)

i

k

j

(21)

for some indices i

2

; : : : ; i

k

. We set i

1

= i; i

k+1

= j . Let N(w) denote the maximal

number of indices l : 1 � l � k such that (A

s

l

)

i

l

i

l+1

< 1 in a factorization of type

(21). Then �(w)

ij

� �

N(w)

. This implies that �

N(w)

� K with � < 1, hence

N(w) is bounded. Since �(w)

ij

is a product of N(w) non-1 factors taken from a

�nite set, �(w)

ij

can only take a �nite number of values.

To show that a �nitely generated torsion semigroup S 2 (R

�

max

)

n�n

is �nite,

it remains to check that the non 0 entries of the matrices of S are bounded. Due

to Brown's Lemma, we may assume that �(S) = feg for some idempotent matrix

e. Moreover, due to Lemma 4.3, we may assume that S is irreducible. Then, by

Lemma 4.7, either e = J

n

, either e is the zero scalar matrix. In the latest case,

S = f0g is �nite. In the �rst case, we have necessarily

8A 2 S; kAk = 1 ; (22)

otherwise 0 < �(A) � kAk < 1 contradicts the fact that A is torsion (by Lemma

4.4). The proof of Theorem 3.5 shows that there exists a �nite real K such that

8A 2 S;

kAk

jAj

^

� K :

It follows from (22) that jAj

^

� K

�1

. This concludes the proof of Theorem 2.1.

7. Proof of Theorem 2.3

We next show that the answer to the Burnside problem is positive for semigroups

of matrices over dioids D such that for all x 2 D , fy 2 D j y � xg is �nite. We

use the symmetrized version (for semirings) of the Amitsur-Levitski identity (see

e.g. [5]). Let X

1

; : : : ;X

p

be p non commuting indeterminates and de�ne

S

+

p

=

M

� even

X

�(1)

: : :X

�(p)

S

�

p

=

M

� odd

X

�(1)

: : :X

�(p)

where the sums are taken over the even and odd permutations of f1; : : : ; pg.
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Lemma 7.1. Let A be a commutative semiring. Then, the identity S

+

2n

= S

�

2n

holds in A

n�n

.

This lemma can be easily deduced from the classical Amitsur-Levitski theorem

by a technique of Reutenauer and Straubing [39, proof of Lemma 1], [12, Ch. 1,

Prop. 2.1.5], [14, Prop. 2.2.1]. The proof of Theorem 2.3 consists in adapting the

argument of Straubing [44]. Indeed, let � be a morphism �

+

! D

n�n

, such that

S = �(�

+

) is torsion. Recall that a word w is r -divided if it admits a factorization

w = w

1

: : : w

r

such that for all permutation � 6= Id,

w

�(1)

: : :w

�(r)

<

lex

w

(<

lex

denotes the lexicographic order). Then, Shirshov's Lemma [28, Th. 7.1.5]

states that if q � 2r , there exists an integer N(j�j; q; r) such that, for all word

w 2 �

+

such that jwj � N(j�j; q; r), either w admits a factorization w = uv

q

s

with 1 � jvj < r , either w contains a r -divided factor (i.e. w = uvs where v is

r -divided). Set r = 2n, p = maxf#h�(w)i + 1 j jwj < rg ( #h�(w)i is the �nite

order of the cyclic semigroup f�(w); �(w

2

); : : : ; g), and q = max(p; 2r). We claim

that

8w 2 �

+

; �(w) �

M

jvj<N(j�j;q;r)

�(v) : (23)

We show this assertion by induction on w with respect to the military order �

m

,

(u �

m

v i� juj < jvj or juj = jvj; u �

lex

v ). Let w such that jwj � N(j�j; q; r).

If w = uv

q

s, then �(v

q

) = �(v

t

) for some t < s, hence �(w) = �(w

0

) with

w

0

= uv

t

s <

m

w , and by the induction hypothesis, we are done. Otherwise, we

have w = uvs, where v = v

1

: : : v

r

is r -divided. The symmetrized polynomial

identity (7.1) implies that

�(v) �

M

� odd

�(v

�(1)

: : : v

�(r)

) ;

therefore

�(w) �

M

w

0

<

m

w

�(w

0

) :

This shows (23). Thus S = �(�

+

) is bounded above and (1) implies that it is

�nite.

8. The Burnside Problem for Projective Linear Semigroups

We show that a �nitely generated torsion subsemigroup of PQ

n�n

max

is �nite (Theo-

rem 2.4). The particular case of primitive linear projective semigroups (see Theo-

rem 3.5) suggests that the following quantity will play an important role.

De�nition 8.1. The projective width of a set S � R

n�n

max

is by de�nition

�(S) = sup

s2S

ksk

jsj

^

: (24)

Rephrasing Lemma 3.6, we can state:

Lemma 8.2. A �nitely generated semigroup S � Q

n�n

max

is projectively �nite i�

its projective width �(S) is �nite.

The key point in the proof that �(S) is �nite is the following.
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Lemma 8.3. Let S = �(�

+

) be a reducible projectively torsion semigroup such

that �(S) = feg for some idempotent matrix e, take �

1

; �

2

; � as in (11), and

assume that �(�

1

(�

+

)) and �(�

2

(�

+

)) are �nite. Then �(�(�

+

)) is �nite.

Indeed, let us assume that Lemma 8.3 is proved. Then, using Brown's Lemma, it

is enough to prove Theorem 2.4 when �(S) = feg for some boolean idempotent

matrix e 2 B

n�n

having the form of Lemma 4.7. We prove that �(S) is �nite by

induction on the number of irreducible blocks of e. For a single irreducible block:

either e = J

n

for some n, then S is primitive, and the �niteness of �(S) follows

from the bound (9); either e = 0, and S = f0g. In both cases, S is projectively

�nite. Lemma 8.3 gives precisely the induction step, from which Theorem 2.4

follows.

It remains to show Lemma 8.3. We have to bound the di�erent terms of

the form s

ij

=s

kl

appearing in ksk= jsj

^

. We will show that 8w 2 �

+

, 8i; j 2

f1; 2g; i 6= j ,

k�

i

(w)k= j�

j

(w)j

^

� k (25)

k�(w)k= j�

i

(w)j

^

� k

0

i

(26)

k�

i

(w)k= j�(w)j

^

� k

00

i

(27)

k�(w)k= j�(w)j

^

� k

000

; (28)

for some e�ective �nite constants k; k

0

i

; k

00

i

; k

000

.

Let e

1

; e

2

denote the diagonal blocks of e corresponding to the partition

(11). For all w 2 �

+

, for all i = 1; 2, e

i

= �(�

i

(w)). From Lemma 4.7, we get

the following alternative: A1) either e

i

= 0 and �

i

= 0, A2) either e

i

contains a

nonzero irreducible block, and thus 8w 2 �

+

, �(�

i

(w)) 6= 0.

Let us check item (25). If �

i

or �

j

are zero, then for all w 2 �

+

,

k�

i

(w)k= j�

j

(w)j

^

= 0. We may therefore assume that �

i

; �

j

6= 0. Since �(w)

is projectively torsion, Corollary 4.5 together with item A2) of the alternative

implies that �(�

i

(w)) = �(�

j

(w)) 6= 0. Noting that

j�

i

(w)j

^

� �(�

i

(w)) = �(�

j

(w)) � k�

j

(w)k ;

we get

k�

i

(w)k

j�

j

(w)j

^

�

k�

i

(w)k

j�

i

(w)j

^

j�

i

(w)j

^

k�

j

(w)k

k�

j

(w)k

j�

j

(w)j

^

� k

def

= �(�

i

(�

+

))�(�

j

(�

+

)) : (29)

We next prove (26) when i = 1. We assume that �

1

6= 0 (otherwise, there

is nothing to prove). From formula (12) together with (6) we have k�(w)k =

k�

1

(u)�(a)�

2

(v)k for some factorization w = uav (with a 2 �, u; v 2 �

�

), hence,

k�(w)k

j�

1

(w)j

^

�

k�

1

(u)kk�(a)kk�

2

(v)k

j�

1

(w)j

^

�

k�

1

(u)kk�(a)kk�

2

(v)k

j�

1

(u)j

^

j�

1

(a)j

^

j�

1

(v)j

^

(by (7))

� k

0

1

def

= �(�

1

(�

+

))

 

M

a2�

k�(a)k

j�

1

(a)j

^

!

k : (30)

The bound k

0

2

is obtained dually (replacing 1 by 2 in (30)).
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The proof of (27) is similar, with k

00

i

= �(�

i

(�

+

))(

L

a2�

k�

i

(a)k

j�(a)j

^

)k .

Finally, we prove (28). If both �

1

and �

2

are zero, then the idempotency

of e implies that � = 0, and there is nothing to prove. Otherwise, we choose i

such that �

i

is non zero. Then, the alternative implies that for all w , j�

i

(w)j

^

is

�nite, and

k�(w)k

j�(w)j

^

�

k�(w)k

j�

i

(w)j

^

j�

i

(w)j

^

k�

i

(w)k

k�

i

(w)k

j�(w)j

^

� k

0

i

k

00

i

� k

000

def

=

M

j=1;2

k

0

j

k

00

j

:

This concludes the proof of Lemma 8.3 and of Theorem 2.4.

9. Decidability of the Limitedness Problem

We now prove Theorem 2.5.

Lemma 9.1. Let s be a series with trim

14

linear representation (�; �; �) and

let M =

L

a2�

�(a). If s is limited, then �(M) = 1 or 0.

Proof. Let us assume that �(M) 6= 0. From Lemma 3.1,2 and Proposition 4.6

there exist i and k and a word w (of length k ) such that �(M)

k

= (M

k

)

ii

=

�(w)

ii

6= 0. Since the linear representation is trim, there exist two indices l; j and

two words u; v such that

�

j

�(u)

ji

�(w)

ii

�(v)

il

�

l

6= 0 :

Hence, for all p � 1,

0 < K�(M)

pk

� hs; uw

p

vi (31)

for some (�nite) constant K . Moreover,

hs; uw

p

vi � k�kkM

juj+jvj+pk

kk�k � K

0

�(M)

juj+jvj+pk

(32)

for another (�nite) constant K

0

. If 0 < �(M) < 1, (32) and (31) imply that

hs; uw

p

vi takes arbitrarily small but non-0 values. If �(M) > 1, (31) shows that

hs; uw

p

vi takes arbitrarily large values. Therefore, �(M) 62 f0;1g contradicts the

limitation of s.

Since a rational series s 2 R

max

hh�ii admits a trim linear representation,

by Lemma 9.1, we may perform the same reduction as in the decision algorithm

for the torsion property (Propositions 5.2 and 5.4). Therefore, we are reduced to

the case where

�(�

+

) � (R

�

max

)

n�n

(33)

(but � and � can have positive entries).

The conclusion is an immediate consequence of the following lemma.

Lemma 9.2. Assume that (33) holds, then s is limited i� the non 0 values of

hs;wi are bounded below.

That is, we require that

9K 6= 0; hs;wi 6= 0) hs;wi � K : (34)

Proof. This is a straightforward variant of the proof of Proposition 6.1.

It remains to show that the boundedness property (34) is decidable.

14

Recall that a (n-dimensional) linear representation of a series s is a triple (�; �; �), where

� 2 R

1�n

max

, � is a morphism: �

�

! R

n�n

max

, � 2 R

n�1

max

, and 8w 2 �

�

, hs; wi = ��(w)� .

The representation is trim if each state is both accessible and co-accessible, i.e. 8i; 9u; v 2 �

�

,

(��(u))

i

6= 0 , (�(v)�)

i

6= 0 .
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Lemma 9.3. Under the assumption (33), the boundedness property (34) holds

for s i� it holds for the series s

0

given by the linear representation

15

(��; {��; ��).

Proof. There exist two positive constants K and K

0

such that

8ij;8a 2 �; K � ({��(a))

ij

� �(a)

ij

� K

0

� ({��(a))

ij

: (35)

Noting that for K > 0, x 7! x

K

= K � x is an automorphism of R

max

, we get

that (35) is valid not only for a 2 �, but also for w 2 �

�

. Therefore,

K � hs

0

; wi + j�j

^

+ j�j

^

� hs;wi � K

0

� hs

0

; wi+ k�k+ k�k :

Since the representation of s

0

lives in (N

�

[ f�1g;max;+), which is

isomorphic to the tropical semiring, the decidability of the limitedness problem

for the series s

0

follows from Hashiguchi's theorem [20], see also [21, 41, 43, 27]).

This concludes the proof of Theorem 2.5.

10. Counter Example

We show that the theorem of �niteness of primitive linear projective semigroups

with rational entries (Theorem 3.5) does not extend to the irrational case. A

similar counter-example has been obtained independently by Mairesse [31].

Let

A =

"

p

2 �

� 0

#

; B =

"

0 �

� 1

#

where � is a parameter to be �xed soon and

p

2 = 1:414 : : : We have A;B > 0.

Hence, hA;Bi is primitive. We claim that phA;Bi is in�nite. This can be

rephrased in terms of (max,+) homographic functions. More precisely, we set

for x 2 R,

u(x)

def

= p

h

x 0

i

:

We have

u(x)pA = u(h

A

(x))

where the homographic map associated with A is

h

A

(x)

def

=

p

2x� �

�x� 0

:

Similarly, we have

h

B

(x)

def

=

x� �

�x� 1

; u(x)pB = u(h

B

(x)) :

Clearly, it is enough to show that the semigroup hh

A

; h

B

i (equipped with the

composition product) is in�nite. We assume that � < 0, and note that

� � x � �� ) h

A

(x) =

p

2 + x; h

B

(x) = x� 1 :

We choose � such that the diameter of [�;��] is greater than

p

2 + 1. Then,

for all x 2 [�;��], we have x +

p

2 2 [�;��] or x � 1 2 [�;��]. Hence, it is

possible to de�ne a sequence x

n

2 [�;��] such that x

0

= 0 and x

n

= h

A

(x

n�1

)

or h

B

(x

n�1

). Such a \walk" in [�;��] is visualized on Figure 1. The trajectory

shown corresponds to the particular choice: x

1

= h

A

(x

0

) = x

0

+

p

2, x

2

= h

A

(x

1

),
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x

0

+

p

2

x

1

x

3

x

2

��

PR

2

max

�1

�

Figure 1: The x

n

sequence

x

3

= h

B

(x

2

) = x

2

�1. Let p(A; k) (resp. p(B; k)) denote the number of choices of

h

A

(resp. h

B

) up to step k (e.g., for the walk of the picture, p(A; 3) = 2; p(B; 3) =

1). We have

8k � 0; x

k

= p(A; k)�

p

2 � p(B; k)� 1 :

Since p(A; k) + p(B; k) = k !1 and 1;

p

2 are rationally independent, x

k

takes

an in�nite number of values. But x

0

is mapped to x

k

by an element of hh

A

; h

B

i,

and so hh

A

; h

B

i (hence phA;Bi) is in�nite.

The reader is referred to Mairesse [30, 31] for a complete study of the

\geometry" of (max,+) linear projective maps in small dimension (set of �xed

points and attracting domains).

11. Application: an Upper Bound for the Lyapunov Exponent

We consider a random walk w

k

2 �

k

. That is, the word w

k

= a

1

: : : a

k

(with

a

i

2 �) occurs with the probability p(w

k

) = p(a

1

) : : : p(a

k

) where the p(a) are

given nonnegative numbers such that

P

a2�

p(a) = 1. Let � : �

+

! R

p�p

max

be a

morphism. The (max,+) Lyapunov exponent ` of � measures the growth of a

random product of k matrices:

`

def

= lim

k

E (k�(w

k

)k)

1

k

= lim

k

(k�(w

k

)k)

1

k

a.s.

This (max,+) Lyapunov exponent was introduced by Baccelli, by analogy with the

maximal Lyapunov exponents of random products of matrices in the conventional

algebra. See [2, 3, 29, 30, 31] for a complete and more general presentation (in

terms of random products). See also [13, 15].

As a by-product of the above characterizations of �nite semigroups, we

obtain an upper-bound for the Lyapunov exponent, together with an equality

case.

Theorem 11.1. Let � : �

+

! R

n�n

max

such that 8a 2 �; �(�(a)) 6= 0 and de�ne

the morphism:

~� : 8a 2 �; ~�(a)

def

= �(�(a))

�1

�(a)

with the associated \worst case matrix"

~

M =

M

a2�

~�(a) :

Then

` � �(

~

M )E�(�(w

1

))

 

= �(

~

M ) +

 

X

a2�

�(�(a))� p(a)

!!

: (36)

Moreover, if ~�(�

+

) is torsion, then the equality holds in (36).

15

Here, {�� denotes the unique morphism �

0

such that 8a 2 �; �

0

(a) = {(��(a)). Note that

in general, {��(w) 6= {(��(w)).
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It should be noted that we have by construction

8a; �(

~

M ) � �(~�(a)) = 1

hence, we can decide if ~�(�

+

) is torsion by checking the non trivial inequality

�(

~

M ) � 1 and by using Algorithm 5.6.

Example 11.2. Consider the semigroup of Example 5.8. Since the normalized

semigroup ~�(�

+

) is torsion, we have

` = �(�(a)) � p(a) + �(�(b)) � p(b) = 1 � p(b) = p(b) :

Example 11.3. In the same vein, we can build many semigroups whose Lya-

punov exponents are immediately obtained. Let

�(a) =

2

6

4

1 � �

� � �

� � �

3

7

5

; �(b) =

2

6

4

2 # #

# # #

# # #

3

7

5

where * stands for arbitrary �nite real numbers � 1 (we allow di�erent values) and

# stands for arbitrary �nite real numbers � 2. Let e

11

2 R

n�n

max

: (e

11

)

ij

= �

i=1;j=1

(Kronecker's � ). Then,  ~�(a);  ~�(b) � e

11

, and since e

2

11

= e

11

,  ~�(w) is non

nilpotent for all w . Hence the condition of Theorem 5.7 is satis�ed, and we have

` = 1� p(a) + 2 � p(b) :

Proof of Theorem 11.1. For simplicity we shall assume that the alphabet

has only two letters (� = fa; bg), the extension to the general case being straight-

forward. We have

�(w) = �(�(a))

jwj

a

�(�(b))

jwj

b

~�(w) ; (37)

hence

(k�(w)k)

1

jwj

= �(�(a))

jwj

a

jwj

�(�(b))

jwj

b

jwj

(k~�(w)k)

1

jwj

: (38)

The usual law of large numbers yields:

lim

jwj!1

�(�(a))

jwj

a

jwj

�(�(b))

jwj

b

jwj

= E�(�(w

1

)) a.s. (39)

Setting

~

M =

L

a2�

~�(a), we obtain

k~�(w)k � k

~

M

jwj

k � K�(

~

M)

jwj

for some �nite constant K . Then, it follows from (38) and (39) that

lim

jwj!1

(k�(w)k)

1

jwj

� E�(�(w

1

))�(

~

M ) a.s. (40)

Moreover, if ~�(�

+

) is �nite, trivially, (k~�(w)k)

1

jwj

! 1 as jwj ! 1, hence, we

obtain from (38),(39) the equality in (40).

Acknowledgment The author would like to thank Jean Mairesse for numerous

discussions and comments, and particularly, for having suggested the probabilistic

application.



Gaubert 19

References

[1] M. Akian, J.P. Quadrat, and M. Viot, Bellman processes, Lect. Notes. in

Control and Inf. Sci, no. 199, Springer, June 1994.

[2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat, \Synchronization

and linearity", Wiley, 1992.

[3] F. Baccelli and T. Konstantopoulos, Estimates of cycle times in stochas-

tic Petri nets, Proceedings of Workshop on Stochastic Analysis, Rutgers

University (I. Karatzas, ed.), Springer, Berlin, 1991.

[4] T.C. Brown, An interesting combinatorial method in the theory of locally

�nite semigroups, Paci�c J. Math. 36 (1971), 285{289.

[5] R. R. Brualdi and H. J. Ryser, \Combinatorial matrix theory", Cambridge

University Press, 1991.

[6] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot, Analyse du comporte-

ment p�eriodique des syst�emes de production par la th�eorie des dio��des,

Rapport de recherche 191, INRIA, Le Chesnay, France, 1983.

[7] G. Cohen, P. Moller, J.P. Quadrat, and M. Viot, Algebraic tools for the

performance evaluation of discrete event systems, IEEE Proceedings: Spe-

cial issue on Discrete Event Systems 77 (1989), no. 1.

[8] R.A. Cuninghame-Green, \Minimax Algebra", Lectures notes in Eco-

nomics and Mathematical Systems, no. 166, Springer, 1979.

[9] A. de Luca, On the Burnside problem for semigroups, In \Mots"

(M. Lothaire, ed.), Hermes, 1990.

[10] P. Dudnikov and S. Samborski��, Endomorphisms of semimodules over

semirings with an idempotent operation, Math. in USSR, Izvestija 38

(1992), no. 1, (translation of Izv. Akad. Nauk SSSR Ser. Mat. 55, 1991).

[11] L. Elsner, C.R. Johnson, and J. Dias da Silva, The Perron root of a

weighted geometric mean of nonnegative matrices, Linear Multilinear Al-

gebra 24 (1988), 1{13.

[12] S. Gaubert, Th�eorie des syst�emes lin�eaires dans les dio��des, Th�ese,

�

Ecole

des Mines de Paris, July 1992.

[13] , Timed automata and discrete event systems, Proceedings of

the ECC93 (Groningen), July 1993.

[14] ,On rational series in one variable over certain dioids, Rapport

de recherche 2162, INRIA, Jan. 1994.

[15] , Performance evaluation of (max,+) automata, IEEE Trans. on

Automatic Control (1995), to appear (preliminary version: INRIA Report

1922, May 1993).

[16] M. Gondran and M. Minoux, Valeurs propres et vecteurs propres dans les

dio��des et leur interpr�etation en th�eorie des graphes, EDF, Bulletin de la

Direction des Etudes et Recherches, Serie C, Math�ematiques Informatique

2 (1977), 25{41.

[17] , Graphes et algorithmes, Eyrolles, Paris, 1979, (Engl.

transl. \Graphs and Algorithms", Wiley, 1984).

[18] , Linear algebra in dioids: a survey of recent results, Annals

of Discrete Mathematics 19 (1984), 147{164.



20 Gaubert

[19] J. Gunawardena ed., \Idempotency", Publications of the Isaac Newton

Institute, Cambridge University Press, 1995, to appear.

[20] K. Hashiguchi, Limitedness theorem on �nite automata with distance func-

tions, J. Comput. System Sci. 24 (1982), no. 2, 233{244.

[21] , Improved limitedness theorems on �nite automata with dis-

tance functions, Theoret. Comput. Sci. 72 (1990), 27{38.

[22] G. Jacob, La �nitude des repr�esentations lin�eaires des semi-groupes est

d�ecidable, J. Algebra 52 (1978), 437{459.

[23] D. Krob, Complete systems of B -rational identities, Theor. Comp. Sci. 89

(1991).

[24] , The equality problem for rational series with multiplicities in the

tropical semiring is undecidable, Int. J. of Algebra and Comput. 3 (1993).

[25] , Some consequences of a Fatou property of the tropical semiring,

J. of Pure and Applied Algebra 93 (1994), 231{249.

[26] D. Krob and A. Bonnier-Rigny, A complete system of identities for one

letter rational expressions with multiplicities in the tropical semiring, The-

oret. Comput. Sci. 134 (1994), 27{50.

[27] H. Leung, On the topological structure of a �nitely generated semigroup of

matrices, Semigroup Forum 37 (1988), 273{287.

[28] M. Lothaire, \Combinatorics on words", Encyclopedia of Mathematics and

its applications, Addison-Wesley, 1983.

[29] J. Mairesse, Products of irreducible random matrices in the (max,+) alge-

bra, Rapport de Recherche 1939, INRIA, June 1993, To appear in Adv.

Applied Prob.

[30] , A graphical approach of the spectral theory in the (max,+)

algebra, IEEE Trans. Automatic Control (1995), to appear.

[31] , Stabilit�e des syst�emes �a �ev�enements discrets stochastiques.

approche alg�ebrique, Th�ese,

�

Ecole Polytechnique, June 1995.

[32] J.P. Mascle, Torsion matrix semigroups and recognizable transductions,

In \Automata, Languages and Programming" (L. Kott, editor), Lecture

notes in Computer Sciences, 1986, pp. 244{253.

[33] V. Maslov and S. Samborski�� eds., \Idempotent analysis", Adv. in Sov.

Math., vol. 13, AMS, RI, 1992.

[34] R. McNaughton and Y. Zalcstein, The Burnside problem for semigroups,

J. Algebra 34 (1975), 292{299.

[35] H. Minc, \Nonnegative matrices", Wiley, 1988.

[36] R.D. Nussbaum, Convergence of iterates of a nonlinear operator arising

in statistical mechanics, Nonlinearity 4 (1991), 1223 { 1240.

[37] J.E. Pin, \Vari�et�es de langages formels", Masson, Paris, 1984.

[38] M. Plus, A linear system theory for systems subject to synchronization and

saturation constraints, Proceedings of the �rst European Control Confer-

ence (Grenoble), July 1991.

[39] C. Reutenauer and H. Straubing, Inversion of matrices over a commutative

semiring, J. Algebra 88 (1984), no. 2, 350{360.



Gaubert 21

[40] I. Simon, Limited subsets of the free monoid, Proc. of the 19th Annual

Symposium on Foundations of Computer Science, IEEE, 1978, pp. 143{

150.

[41] , Recognizable sets with multiplicities in the tropical semiring, In

\Mathematical Foundations of Computer Science" (M.P. Chytil, L. Janiga,

and V. Koubek, eds.), Lecture notes Computer Science, vol. 324, Springer,

1988, pp. 107{120.

[42] , The nondeterministic complexity of a �nite automaton, In

\Mots" (M. Lothaire, ed.), Hermes, 1990.

[43] , On semigroups of matrices over the tropical semiring, Theor.

Infor. and Appl. 28 (1994), no. 3-4, 277{294.

[44] H. Straubing, The Burnside problem for semigroups of matrices, in \Com-

binatorics on words: progress and perspectives" (L.J. Cummings, ed.),

Acad. Press, 1983, pp. 279{295.

INRIA

Domaine de Voluceau

BP 105

78153 Le Chesnay C�edex

France

Email:

Stephane.Gaubert@inria.fr

Received April 1, 1994

and in �nal form November 27, 1995


