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Historical background: classical Perron-Frobenius theory

Perron (1907) proved the following.

Let A ∈ Rn×n, with Aij > 0 ∀i, j. Then,

1. ∃u ∈ Rn, ui > 0 ∀i, Au = ρ(A)u, with ρ(A) := max{|λ| |
λ eigenval. of A}.

2. The eigenvalue ρ(A) is algebraically simple, a fortiori, u is unique up to
a multiplicative constant.

Frobenius (1912) showed that the same is true when Aij ≥ 0, with
G := {(i, j) | Aij > 0} strongly connected (A irreducible).
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Let c be the cyclicity of G (=gcd lengths of circuits), and ω =
exp(i2π/c).

Then,

3. the whole spectrum of A is invariant by multiplication by ω, and ωjρ(A),
j = 0, . . . , c − 1 are the only eigenvalues of maximal modulus (all
algebraically simple)

4. so ρmax(A)−kcAkc converges as k tends to ∞.
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Krĕın and Rutman (1948) considered more generally a linear operator A
leaving a (closed, convex, pointed) cone C invariant in a Banach space E.

So A preserves the order: x ≤ y ⇐⇒ y − x ∈ C. When E = Rn and
C = Rn

+, we recover Perron-Frobenius theory.

(Garrett) Birkhoff (1957) approached Perron-Frobenius theory by means
of Hilbert’s geometry. Hilbert’s projective metric is defined by

dH(x, y) = log inf{β
α
| αy ≤ x ≤ βy, α, β > 0} .

It defines a metric on the set of rays included in the interior of C, i.e.
on {R+u | u ∈ intC}, because d(x, y) = 0 iff x = βy. If C is normal,
meaning that 0 ≤ x ≤ y =⇒ ‖x‖ ≤ γ‖y‖ for some constant γ, the latter
metric space is complete.
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Here is the intersection of a ball in Hilbert metric with the simplex,
when C = R3

+:

e1 e2

e3

When C = Rn
+, the Hilbert’s metric can be understood by taking logarithmic

glasses, setting log(x) := (log(xi))1≤i≤n,

dH(x, y) = ‖ log x− log y‖H where ‖z‖H := max
i

zi −min
i

zi

One may also consider Thompson’s metric:

dT (x, y) := ‖ log x− log y‖∞
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Birkhoff showed that if A is a linear self-map of the interior of C, and if the
diameter ∆ of A(C) in Hilbert’s metric is finite, then

dH(Ax,Ay) ≤ γdH(x, y) ∀x, y ∈ intC, γ := tanh(
∆
4

) .

Perron’s theorem is a corollary.
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Max-plus spectral theory

There are remarkable similarities between the Perron-Frobenius problem
and the max-plus spectral problem

Given A = (Aij) ∈ (R ∪ {−∞})n×n, find u ∈ R ∪ {−∞}n, u 6≡ −∞,
λ ∈ R, such that

max
j

Aij + uj = λ + ui

The inhabitants of the max-plus world consider the semiring structure Rmax,
consisting of R ∪ {−∞}, equipped with

a⊕ b := max(a, b), a⊗ b := a + b , 0 = −∞, 1 = 0

so 2⊕ 3 = 3, 2⊗ 3 = 5 and the spectral problem reads Au = λu.
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Au = λu is the dynamic programming equation of the simplest ergodic
control problem.

Example (N. Bacaer). Consider a field with n possible cultures, like
wheat, oat,. . . or even fallow (no crop). Let Aij denote the income of the
land if crop j follows crop i. If the field is initialised with crop i, and if a
bonus uj is given for the final crop j, the optimal income is:

(Aku)i = max
i1,...,ik

Aii1 + · · ·+ Aik−1ik + uik

If u is an eigenvector, (Aku)i = λkui in Rmax, i.e. kλ+ui, so the eigenvalue
λ is the optimal reward per year, and u is a fair bonus, avoiding the “après
nous le déluge” effect (Yakovenko, Kontorer).
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Let G := {(i, j) | Aij > 0}.

Max-plus spectral theorem. Assume that G is strongly connected.

1. ρmax(A) := max
(i1,...,ik)circuit

Ai1i2 + · · ·+ Aiki1

k
is the only eigenvalue of A

(so crop rotation is optimal).

The circuits which realise the maximum are called critical. Normalise
rewards: Ãij := −ρmax(A) + Aij, and define

Ã+ := Ã⊕ Ã2 ⊕ Ã3 ⊕ · · ·

2. The columns Ã·i, with i in a critical circuit, generate the eigenspace.
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Proved independently by several researchers, with various degree of
generality and precision, including: Cuninghame-Green (61), Romanovskii
(67), Vorobyev (67), Gondran-Minoux (77). For infinite dimensional
versions, see Maslov’s school (in particular the book by Maslov and
Kolokoltsov, 97).

Cyclicity theorem (Cohen, Dubois, Quadrat, Viot 83, Nussbaum 88).
There exists c ≥ 1 such that the sequence (ρmax(A)−kcAkc)k=1,2,... is
ultimately stationnary.

The smallest c is obtained as follows: define the critical graph to be the
union of critical circuits, and take the lcm of the cyclicities of its strongly
connected components.

Simpler than Perron-Frobenius, but more degenerate (several
nonproportional eigenvectors), so contraction in Hilbert type metric would
not work.
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The analogy between both results can be explained by “Maslov’s
dequantisation”. Define:

a⊕h b := h log(ea/h + eb/h) .

Then, (R ∪ {−∞},⊕h,+) ' (R+,+,×), but

lim
h→0+

a⊕h b = max(a, b)

Same idea has been used recently in “tropical algebraic geometry”,
in relation with the theory of amoebas (Viro, Passare, Mikhalkin,
Sturmfels,. . . )

This deformation transforms problems of algebra or analysis to
“polyhedral problems” (combinatorial or discrete optimisation).
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Can we embed Perron-Frobenius theory and max-plus spectral theory in
a common perspective?

Answer:

nonlinear Perron-Frobenius theory

Keep A order preserving:

x ≤ y =⇒ A(x) ≤ A(y) ,

but drop linearity, and replace it by milder assumptions, like homogeneity,
nonexpansiveness, convexity or concavity.
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Motivations: 4 problems where nonlinear
Perron-Frobenius theory arise
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1. Lagrange problem / calculus of variations

v(t, x) = sup
X(0)=x, X(·)

∫ t

0

L(X(s), Ẋ(s))ds + φ(X(t)) .

∂v

∂t
= H(x,

∂v

∂x
) v(0, ·) = φ H(x, p) = sup

u
(L(x, u) + p · u) .

Let St denote the Lax-Oleinik semigroup, so that Stφ := v(t, ·).

St(sup(φ1, φ2)) = sup(Stφ1, S
tφ2), and St(λ + φ1) = λ + Stφ1, so St

is maxplus linear (infinite dimension now).

Max-plus eigenproblem. Find a function φ and λ ∈ R such that
Stφ = λt + φ, for all t ≥ 0.
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2. Self-referential phenomena in web ranking

Google’s page rank is based on the following idea:

the rank ri of page i is the frequency of visit of this page by a random
walker on the web graph.

Simplest model: let W denote the adjacency matrix of the web, so that
Wij = 1 if there is a link from page i to page j, and Wij = 0 otherwise.

r = rP, r ≥ 0,
∑

i

ri = 1, Pij =
Wij∑
k Wik
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The actual google page rank relies on

r = r(1− γ)P + γf

γ = 0.15 zapping probability, f vector of “preferences”: with probability γ,
the user resets his exploration, and moves to the next page according to the
probabilities in f .
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Some users believe (foolishly?) that the pagerank measures quality. So
the pagerank influences the behaviour of web users . . . which ultimately
determines the pagerank.

A simple model of this circular effect (Akian, Ninove, SG).

Let T denote a social temperature, measuring the insensitivity of the
user to the web rank.

If the current pagerank is r, the user moves from page i to page j with
probability:

PT (r)ij =
Wije

rj/T∑
k Wikerk/T

If T = ∞, we recover the basic pagerank model.
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The pagerank of tomorrow rk+1
T is obtained as follows from the pagerank

of today, rk
T :

rk+1
T = rk+1

T PT (rk)

Does rk
T converge ?
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Let uT denote the map rk
T → rk+1

T .

By Tutte’s matrix tree theorem, assuming that W is irreducible:

uT (x) = hT (x)/(
∑

k

hT (x)k)

where
hT (x)l =

( ∑
k

Wike
xk/T

)( ∑
R→l

∏
(i,j)∈R

Wije
xj/T

)
,

the latter sum being taken over river networks R with sea l.

So h is order preserving.
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3. Zero-sum repeated games

Dynamic operators of zero-sum repeated games with state space
{1, . . . , n} are of the form:

f : Rn → Rn fi(x) = inf
a∈A(i)

sup
b∈B(i,a)

(rab
i + P ab

i x)

P ab
i := (P ab

ij ), proba. of moving i → j,
∑

j P ab
ij ≤ 1.

rab
i : payment of Player I to player II.
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Questions: fk(0) value of the game in horizon k, as k →∞? x = f(x)?

f is order preserving, and nonexpansive in the sup-norm: ‖f(x) −
f(y)‖∞ ≤ ‖x− y‖∞

Neyman, Sorin, Rosenberg,. . . have developed an “operator approach”
of games using these properties.

Rubinov and Singer have shown that any order preserving sup-norm
nonexpansive map can be represented by such a game (with deterministic
transition probabilities P ab

i ).
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4. Static analysis of programs by abstract interpretation

Goal: determine automatically the invariants of critical programs
(airplanes, . . . ), well established problem since Ariane 501.

Unsolvable in full generality and precision, because the halting of Turing
machines is undecidable.

P. Cousot’s abstract interpretation method gives an approached solution.
Let T denote a complete lattice of subsets of Rd, e.g.: (products of)
intervals, polyhedra, convex sets,. . .

To each breakpoint i of the program, is associated a set xi ∈ T which
is an overapproximation of the set of reachable values of the variables, at
this breakpoint. So d = number of variables of the program.
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The best x is the smallest solution of a fixed point problem x = f(x)
with f order preserving.

void main() {
int x=0; // 1
while (x<100) { // 2
x=x+1; // 3

} // 4
}

x1 = [0, 0]
x2 = ]−∞, 99] ∩ (x1 ∪ x3)
x3 = x2 + [1, 1]
x4 = [100,+∞[∩(x1 ∪ x3)

Let x+
2 := maxx2. After some elimination, we arrive at

x+
2 = min(99,max(0, x+

2 + 1)) .

The smallest x+
2 is 99, it is the value of a zero-sum game.
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Problem: standard fixed point iteration takes 99 iterations to converge,
we need to compute x more rapidly and accurately.

In a joint work with E. Goubault, S. Zennou, . . . at CEA, we are applying
game algorithms (policy iteration) to address this, more latter in this talk.
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0 void main() {
1 i = 1; j = 10;
2 while (i <= j){
3 i = i + 2;
4 j = j - 1; }
5 }

Policy iteration:

5 ≤ i ≤ 10, 4 ≤ j ≤ 8, −3 ≤ j−i ≤ −1

Kleene on
octagons:

6 ≤ i ≤ 12,
9
2
≤ j ≤ 10, −3 ≤ j−i ≤ −1
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When the arithmetics of the program is linear (no product or division
of variables), and when the lattice of Manna’s “templates” ( ∼ discretised
support functions of polyhedra) is chosen, f can essentially be written as:

fi(x) = inf
a∈A(i)

sup
b∈B(i,a)

(rab
i + P ab

i x)

with P ab
i := (P ab

ij ), P ab
ij ≥ 0, but possibly

∑
j P ab

ij > 1 → game in infinite
horizon with “negative discount rate”.
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Some results of non-linear Perron-Frobenius theory

1. Convergence to periodic orbits.

Theorem (Akian, SG, Lemmens, Nussbaum, Math. Proc. Camb. Phil. Soc.,06).
Let C be a polyhedral cone with N facets in a finite dimensional vector
space X. If f : C → C is a continuous order preserving subhomogeneous
map and the orbit of x ∈ C is bounded, then limk→∞ fkp(x) exists with

p ≤ max
q+r+s=N

N !
q!r!s!

=
N !

bN
3 c!b

N+1
3 c!bN+2

3 c!
.

Subhomogeneous means that f(λx) ≤ λf(x) for λ > 1.
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This comes after a long series of works on periodic orbits of nonexpansive
maps when the norm is polyhedral: Ackoglu and Krengel, Weller, Martus,
Nussbaum, Sine, Scheutzow, Verdyun-Lunel,. . .

Some ingredients of the proof: Reduce C = Rn
+. If the orbit of x

stays in the interior of C, we can look at it with logarithmic glasses, i.e.,
consider F := log ◦f◦ exp, which is order preserving and nonexpansive in
the sup-norm. Then a result of Lemmens and Scheutzow (Erg. Th. Dyn.
S. 05) shows that the orbit length is at most

N !
bN

2 c!b
N+1

2 c!

Conjecture (Nussbaum). If F is non-expansive in the sup-norm (but not
order preserving) the bound becomes 2N .
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Application. Assume that f : Rn → Rn is order preserving and additively
homogeneous: f(α + x) = α + f(x) (think to undiscounted games). Here,
α + x := (α + xi)1≤i≤n.

Assume that f has an additive eigenvector, so f(u) = λ + u, λ ∈ R,
u ∈ Rn, then, for all x ∈ Rn,

fk(x) = kλ + asymp. periodic. term in k

6= Difficult case in which fk
i (x) − fk

j (x) → ∞: Neyman, Sorin,
Rosenberg. . .
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2. Existence of eigenvectors.

Theorem (SG, Gunawardena, TAMS 04). Assume that f is order preserving
and additively homogeneous, and that the recession function

f̂(x) := lim
t→∞

t−1f(tx)

exists. If
f̂(x) = x =⇒ x1 = · · · = xn

then
∃u ∈ Rn, ∃λ ∈ R, f(u) = λ + u
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Application. A game inspired by Richman games / discretisation of
infinity Laplacian.

Let

fi(x) =
1
2
( min
(i,j)∈G

Aij + xj + max
(i,j)∈G

Aij + xj) .

Two players. One flips a coin to decide who plays. Player MIN plays Aij to
Player MAX if the move is i → j.

f̂(x) =
1
2
( min
(i,j)∈G

xj + max
(i,j)∈G

xj)

If xi = m := maxk xk, and x = f̂(x), (i, j) ∈ G =⇒ xj = m. So

x = f̂(x) =⇒ x1 = · · · = xn if G is strongly connected.
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3. Uniqueness of eigenvector / fixed point.

The uniqueness of the T -pagerank can be derived from the following
finite dimensional version of (Nussbaum, 1988):

Theorem (Nussbaum). Let Σ := {x ∈ Rn | x ∈ Rn
+

∑
i xi = 1}. Assume

that h : Rn
+ → Rn

+ is continuous, order preserving and subhomogeneous
on intΣ, meaning that h(αx) ≤ αh(x), for α > 1 and x ∈ int(Σ).
Assume that h(x) = λx with x ∈ intΣ, that h is C1, and that h′(x) is
irreducible. Then, x is the only eigenvector of h in ∈ Σ.

Corollary (Akian, SG, Ninove, Posta’06). For T ≥ n, the T -pagerank is
unique.
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For small values of T , one can show that there are always several
T -pageranks.

If T ≈ 0 and r0
T = (1+ε

3
1
3

1−ε
3 )

then limt→∞ rk
T ≈ (1 0 0).

Provocative interpretation: if one believes that the pagerank measures
quality, then the pagerank might become meaningless.

In a recent work with Nussbaum, we extend the latter general uniqueness
result. It is enough to assume that h is semidifferentiable at point x, meaning
that there exists a continuous positively homogeneous map h′x such that

h(x + y) = h(x) + h′x(y) + o(‖y‖)

This works in infinite dimension (normal cone), under mild compactness
assumptions (Fredholm type).
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4. Representation of the fixed point set

Precise results are available when f : Rn → Rn is order preserving,
nonexpansive in the sup-norm, and convex.

Then, by Legendre-Fenchel duality

f(x) = sup
P∈S+

n

(Px− f∗(P ))

where S+
n denote the set of substochastic matrices, and f∗(P ) ∈ (R ∪

{+∞})n.

Compare with the dynamic programming operator of a stochastic control
problem with state space {1, . . . , n}:

fi(x) = sup
a∈A(i)

(ra
i + P a

i x)
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The previous expression is a canonical form of f : when in state i, the
player chooses the substochastic vector Pi ∈ dom f∗i , receives the payment
−f∗i (P ) when in state i, and moves to j with probability Pij.

The ergodic control problem consists in finding P ∈ dom f∗ such that
−mf∗(P ) is maximal, where m is an invariant measure of P . If f(u) = λ+u
with λ ∈ R and u ∈ Rn, this maximum is equal to λ.

Normalise f and assume that f(u) = u. We say that i is critical if it
belongs to a recurrence class of some matrix P such that f(u) = Pu−f∗(P )
(in other words, if it is recurrent for a stationnary strategy which is optimal
for the ergodic problem). Let C denote the set of critical nodes.
Theorem (Akian, SG, NLA TMA 03). The restriction x 7→ xC is a sup-
norm isometry from {x | f(x) = x} to a convex set.

34



“An harmonic function is defined uniquely by its value on the boundary”.
Here, C plays the role of the boundary, it is a discrete version of the Aubry
set arising in Fathi weak KAM’s theory.

Continuous time/second order PDE special case: current work with
Akian and David.

35



Policy iteration for static analysis

Policy iteration was introduced by Hoffman and Karp (66) for stochastic
games with mean payoff with irreducible transition matrices.

In static analyis, transition matrices may be degenerate. We are
interested in the smallest fixed point of

f = inf G

where G is a set of “simpler” self-maps of a lattice L (for instance, L = Rn
).

We say that a set G of maps from a set X to a lattice L admits a lower
selection if for all x ∈ X, there exists a map g ∈ G such that g(x) ≤ h(x),
for all h ∈ G.
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Example. Take L = R, and consider the self-map of L, f(x) =
inf1≤i≤m max(ai + x, bi) , where ai, bi ∈ R. The set G consisting of
the m maps x 7→ max(ai + x, bi) admits a lower selection.

g2

g1

x2 x1 x

y

x2 x3 x11
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We denote by f− the smallest fixed point of a monotone self-map f of
a complete lattice L, whose existence is guaranteed by Tarski’s fixed point
theorem.
Theorem (Costan, SG, Goubault, Martel, Putot CAV’05). Let G denote a
family of monotone self-maps of a complete lattice L with a lower
selection, and let f = inf G. Then f− = infg∈G g− .

The input of the following algorithm consists of a finite set G of
monotone self-maps of a lattice L with a lower selection. When the
algorithm terminates, its output is a fixed point of f = inf G.
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1. Initialization. Set k = 1 and select any map g1 ∈ G.

2. Value determination. Compute a fixed point xk of gk.

3. Compute f(xk).

4. If f(xk) = xk, return xk.

5. Policy improvement. Take gk+1 such that f(xk) = gk+1(xk). Increment
k and goto Step 2.

The algorithm does terminate when at each step, the smallest fixed-point
of gk, xk = g−k is selected.
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Open problem 1: the algorithm may return a nonminimal fixed point of
f , what to do next if f is not sup-norm nonexpansive.

Open problem 2: the worst case complexity is not known (but Condon
showed: mean payoff games is in NP ∩ co-NP).

In general, every g is convex, and the smallest finite fixed point of g
is typically computed by solving a convex program: min

∑
i xi; g(x) ≤ x.

Difficulties arise when there is no smallest finite fixed point (unlike in the
case of classical games, xi may be in R).
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0 i = 150;
1 j = 175;
2 while (j >= 100){
3 i++;
4 if (j<= i){
5 i = i - 1;
6 j = j - 2;
7 }
8 }
9

M0 = context initialization
M2 = (Assignment (i← 150, j ← 175)(M0))∗

M3 = ((M2 tM8) u (j ≥ 100))∗

M4 = (Assignment (i← i + 1)(M3))∗

M5 = (M4 u (j ≤ i))∗

M7 = (Assignment (i← i− 1, j ← j − 2)(M5))∗

M8 = ((M4 u (j > i))∗ tM7

M9 = ((M2 tM8) u (j < 100))∗

IP

 150 ≤ i ≤ 174
98 ≤ j ≤ 99

−76 ≤ j − i ≤ −51
Mine’s Octogon


150 ≤ i

98 ≤ j ≤ 99
j − i ≤ −51
248 ≤ j + i
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Related work: policy iteration for repeated stochastic games
with mean payoff and degenerate transition probabilities (with Cochet
CRAS’06, stochastic case, and Dhingra, Valuetools’06, fast combinatorial
implementation / deterministic).

G = (V,E) directed bipartite graph, rij weight of arc (i, j) ∈ E.

Two players, “Max”, and “Min”, move a pawn.

The pawn is initially at a given node i0 ∈ V . The player who plays first,
chooses an arc (i0, i1) in E, moves the pawn from i0 to i1, and Min pays
ri0i1 to him. Then, the other player chooses an arc (i1, i2) in E, moves the
pawn from i1 to i2, and pays ri1i2 to Max, etc.

The reward of Max (or the loss of Min) after k turns is

ri0i1 + · · ·+ ri2k−1i2k
.
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can play. The initial node, “1”, is indicated by a double circle.
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1) We write the dynamic programming operator as an infimum of g,
where g is a “one player map”.

2) For each g, we compute an invariant half-line, w(t) = v+tη such that
f(w(t)) = w(t + 1) for t ∈ R large enough. (Done by linear programming,
or even policy iteration).

η gives the vector of mean payoff per time unit.

Naive policy iteration does not work, because w is not unique. The
key idea of the algorithm is to use the critical graph of g, to control
the nonuniqueness of w, similarity with the reduction of super-harmonic
functions, CRAS’06. Each step requires solving a one player stochastic
optimal stopping problem.
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Experiments

Complete bipartite graphs, in which n = p. Random weights (uniform).
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Sparse bipartite graphs. n nodes of each kind, every node has exactly 2
successors drawn at random; random weights.
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The max-plus Martin boundary

The analogy with classical potential theory is particularly visible for the
spectral problem over a non compact state space (Work with Akian and
Walsh, 04).

Recall the classical Martin boundary theory, discrete case for simplicity
(Dynkin).

Let Pxy denote a Markov kernel, over a discrete infinite set E. We wish
to find all nonnegative harmonic functions: u = Pu.

1) Define the Green kernel: G = P 0 + P + P 2 + · · ·
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2) The Martin kernel is:

Kxy =
Gxy

Gby

where b ∈ E is a basepoint.

3) Let K := {K·y | y ∈ E}

4) The Martin space M is the closure of K in the product topology.

5) The Martin boundary is B := M\K.
Theorem (Martin representation). Every harmonic function u can be
written as a positive linear combination of functions from the boundary:

u =
∫
B

wµ(dw) .
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µ can be choosen to be supported by a subset of B, the minimal Martin
boundary. (We recognise Choquet’s theorem!).

Theorem. Akian, SG, Walsh 04. A similar representation theorem holds
for discrete max-plus harmonic functions:

ui = sup
j

Aij + uj

and harmonic functions of Lax-Oleinik semigroups

u = Stu, ∀t ≥ 0

The Martin kernel reads: Kxy = A∗xy −A∗by.
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The max-plus Martin boundary has been defined by Gromov (78) when
A∗xy = −d(x, y), its elements are horofunctions or Busemann functions.

The Martin representation should be understood in the max-plus sense:

u = sup
w∈Mm

w + µ(w), µ : Mm → R ∪ {−∞}

Mm minimal Martin space (may include contain non boundary -recurrent-
points).

This extends the representation of weak KAM solutions by Fathi
(compact case). A similar representation has been found in the non
compact case by Ishii and Mitake (06), working with viscosity techniques -
we work directly with the Lax Oleinik semigroup.
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S := Z2

Aij :=

{
−1, if i and j are nearest neighbours,

−∞, otherwise.

The boundary is the square at infinity, in the probabilistic case, it is the
circle (c.f. Ney & Spitzer ’65).
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Example: Linear quadratic control

Hamilton–Jacobi equation

λ = −|x|2 +
1
4
|∇w|2

Maximise reward:

−
∫ T

0

(|γ(t)|2 + |γ̇(t)|2 + λ) dt,
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If λ > 0, solutions are

w(x) = sup
n

(ν(n) + hn(x)),

where ν is an upper semi–continuous map from the unit vectors to R ∪
{−∞}.
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When λ = 0, there is a horofunction for each direction n:

hn(x) =

{
−|x|2 + 2(x · n)2, if x · n > 0,

−|x|2, otherwise.

The function −|x|2 is also a horofunction.

Horospheres of hn with n = (0, 1).
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When λ > 0: for each direction n,

hn(x) = −λ
|x|2

R2
+ x · nλ + 2|x|2

R
− λ log

R√
λ
,

where R :=
√

(x · n)2 + λ− x · n.

Horospheres of hn with n = (0, 1).
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That’s all...
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