
Petri Net Languagesand In�nite Subsets of NmSt�ephane GaubertINRIA, Domaine de Voluceau, BP 105, 78153 Le Chesnay C�edex, Franceemail: Stephane.Gaubert@inria.fr, tel: +33 (1) 39.63.52.58, fax: +33 (1) 39.63.57.86Alessandro Giua�Dip. di Ing. Elettrica ed Elettronica, Universit�a di Cagliari, Piazza d'Armi, 09123 Cagliari, Italyemail: giua@diee.unica.it, tel: +39 070 675.58.92, fax: +39 070 675.59.00

�The work of this author has been partially supported by a fellowship of Regione Autonoma dellaSardegna. 1



Proposed running headThe full title is less than 50 characters and can also be used as a running head.Contact authorAlessandro GiuaDip. di Ing. Elettrica ed Elettronica,Universit�a di Cagliari,Piazza d'Armi, 09123 Cagliari, Italytel: +39 070 675.58.92, fax: +39 070 675.59.00email: giua@diee.unica.it

2



AbstractFamilies of Petri net languages are usually de�ned by varying the type of tran-sition labeling and the class of subsets of Nm to be used as sets of �nal markings(m is the number of places). So far three main classes of subsets have been stud-ied: the trivial class containing as single element Nm , the class of �nite subsets ofNm , and the class of ideals (or covering subsets) of Nm . In this paper we extend theknown hierarchy of Petri net languages by considering the classes of semi-cylindrical,star-free, recognizable, rational (or semilinear) subsets of Nm .We compare the related Petri net languages. For arbitrarily labeled and for �-freelabeled Petri net languages, the above hierarchy collapses: one does not increasethe generality by considering semilinear accepting sets instead of the usual �niteones. However, for free-labeled and for deterministic Petri net languages, we showthat one gets new distinct subclasses of languages, for which several decidabilityproblems become solvable. We establish as intermediate results some properties ofstar-free subsets of general monoids.
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1 IntroductionPetri net (PN) languages have received a lot of attention since the late seventies [14, 15,16, 19, 20, 21, 27]. Comprehensive surveys on PN languages can be found in the work ofJantzen [16] and Peterson [21].Di�erent classes of PN languages have been de�ned, depending on the choice of transitionlabeling (free, �-free, arbitrary) and on the choice of the �nal markings set F . In theliterature [21, 16], three choices are common for F . Choosing F as the set of all reachablemarkings leads to the de�nition of P-type languages, which represent the pre�x-closedbehaviors of nets. Choosing F as a �nite set leads to the de�nition of L-type languages.Choosing F as a covering set (i.e., ideal, see Section 3 below), leads to the de�nition ofG-type languages.Vidal-Naquet [27] and Pelz [20] studied the classes of deterministic languages. Determin-ism is a property of the labeling and of the net structure. Deterministic languages wereintroduced as a trade-o� between modelling power and analytical tractability: it has beenproved, in fact, that several important properties such as language containment, becomedecidable when the net is deterministic.Recently, PN have become a standard model for the study of Discrete Event Systems(DES's) and have been used within many di�erent approaches such as supervisory con-trol [13, 17, 26], logic controller [6], max-plus algebra [2], stochastic processes [1].Supervisory control theory [23] considers a DES as a language generator. In particular,two languages are associated with a given DES G: L(G), the pre�x-closed behavior, i.e.,the set of all words generated by the system; and Lm(G), the marked behavior, i.e., theset of words that are accepted reaching a �nal state. Final states are useful to representdesirable terminal properties. E.g., in a manufacturing system one may require that noparts are left partially unprocessed within the system, at the end of operation.When PN are used as DES models, both L-type and G-type languages have been used torepresent the marked behavior of a net [11]. However, in many real cases, it is useful toconsider more general sets of �nal markings. For instance, terminal states are frequentlyspeci�ed by constraints on a subset of resources (pallets being in a �xed position, machines4



being idle, etc.). This can be modeled by �xing the value of a partial marking (restrictionof the marking to a subset of places), i.e. by taking as set of �nal markings a cylinderof Nm , where m is the number of places of the net, More generally, we may take a semi-cylindrical subset, which is a �nite union of cylinders. The semi-cylindrical subsets haveappeared in the Petri net literature as incompletely speci�ed sets [21], but until now havereceived relatively little attention. In some cases, it is desirable to mix partial markingconstraints and covering constraints. For instance, the speci�cation \at least two partsmust be �nished and the pallet must be empty" will be represented by a constraint of theform M(p) � 2 and M(p0) = 0, with obvious notations. A natural way to handle suchconstraints is to introduce, star-free subsets of Nm , which are the closure of �nite subsetsby the Boolean operations and addition. Other speci�cations require more sophisticatedsets. For instance, making lots of size k may be modeled requiring that the �nal numberof tokens in a given place be a multiple of k. The corresponding set of �nal markings isrecognizable, but not star-free, unless k = 1. Other useful speci�cations on the terminalbehavior may require that the markings of two places p, p0 be in a bounded-fairnessrelation (i.e., jM(p) �M(p0)j � K, for some constant K). This arises, for instance, iftwo di�erent tasks (service of customers, production of parts) have to be performed inalmost identical quantities. More generally, one may wish to include ratio speci�cations(i.e., jM(p) � rM(p0)j � K, for some integers r and K). This kind of properties can beexpressed by allowing the set of �nal markings to be a rational (=semilinear) subset ofNm . Indeed, rational �nal sets turn out to be natural, since the subsets of Nm de�nableby Presburger formul� [15] are precisely the rational subsets: Presburger formul� seemto contain all the practically \reasonable" speci�cations on �nal markings.In this paper, we study the natural hierarchy of subsets of Nm : �nite, ideal, (semi)-cylindrical, star-free, recognizable, rational (or semilinear). All these classes are standard,except the class of star-free subsets | a commutative analogue of star-free languages [22]| that with a remarkable exception [12] has received little attention in the literature. Inthe course of the paper we also incidentally derive some general results about star-freesubsets of cartesian products of arbitrary monoids.Considering di�erent classes of �nal marking sets one obtains di�erent classes of languages.5



Thus we study the hierarchy of Petri net languages, induced by the above hierarchy ofsubsets of Nm .For arbitrarily labeled and for �-free labeled Petri net languages, this hierarchy collapses:one does not increase the generality by considering semilinear accepting sets instead ofthe usual �nite ones. However, for free-labeled and for deterministic Petri net languages,we show that one gets new distinct subclasses of Petri net languages.We also prove that language containment remains decidable for the new deterministicclasses we de�ne.The paper is structured as follows. Section 2 presents the notation on Petri nets. Section 3introduces various classes of subsets of Nm and recalls their basic properties. All theseclasses are standard, except the class of star-free subsets of Nm , which is characterized inSection 4, where general properties of star-free subsets of groups and of cartesian productsof monoids are established in passing. In Section 5 to each of these classes a Petri netlanguage is associated. The properties of these languages for arbitrary and �-free labelingare also studied. In Section 6 deterministic languages are considered. Part of this workhas been presented in [8].2 NotationWe �rst recall some classical de�nitions about Petri nets. See [18, 21] for more details. APlace/Transition net (P/T net) or Petri net is a 4-tuple N = (P; T;Pre;Post) where: P isa �nite set of places; T is a �nite set of transitions; Pre : P�T ! N and Post : P�T ! Nare the input and output functions.A marking is a vector M : P ! N . A marked net (N;M0) is a net N equipped with aninitial marking M0.A transition t 2 T is enabled by a marking M if M � Pre(�; t). The �ring of an enabledtransition t generates a new marking M 0 = M + Post(�; t) � Pre(�; t). When a markingM 0 is reached from marking M by executing a �ring sequence of transitions � = t1 : : : tkwe write M [�iM 0. We write M [�i to indicate that � may be executed from M . The setof markings reachable on a net N from a marking M is called the reachability set of M6



and is denoted as R(N;M).Let � denote a �nite alphabet. A �-labeled Petri net [16, 21] is a 2-tuple G = (N; `)where: N = (P; T;Pre;Post) is a Petri net; ` : T ! � is a labeling function that assignsto each transition a label from the alphabet of events �.Note that in our de�nition of labeled nets, we are assuming that ` is a �-free labelingfunction, according to the terminology of Peterson [21], i.e., no transition is labeled withthe empty string �, while several transitions may have the same label. The mapping `will be extended to a morphism T � ! ��.A labeled net G with an initial marking M0 2 NP , and a (possibly in�nite) set of �nalor accepted markings F � NP can be considered as a language generator. The languageaccepted by G is the set of labels of �rings sequences leading from the initial marking toa �nal marking: L(G;M0; F ) = f`(�) j � 2 T �;M0[�iM; M 2 Fg : (1)We denote by � the pre�x order on �� (i.e., u � w if w = uz for some z 2 ��). For alla 2 �; w 2 ��, we denote by jwja the number of occurrences of the symbol a in w. Wewrite � for the inclusion of sets, and ( for the strict inclusion (i.e., A ( B i� A � B andA 6= B), we denote by = the incomparability relation (A= B i� A 6� B and B 6� A).A monoid (S; �) is a set S with an associative law � and a unit element e. A commutativemonoid will be denoted additively (+ instead of �, 0 instead of e).3 Some classical classes of subsets of NmWe next introduce various classes of subsets of Nm , and recall their basic closure proper-ties. All these facts are standard, except the characterization of star-free subsets of Nm .These properties will be used intensively in the sequel, when de�ning the correspondingclasses of Petri net languages.1. We denote by Triv(Nm) the \trivial" subset fNmg of1 P(Nm).2. We denote by Fin(Nm) the set of �nite subsets of Nm .1Here P(X) denotes the power set of a set X . 7



3. Given a subset I � f1; : : : ; mg and a vector v 2 NI , the cylinder of basis (I; v) isthe subset C(I; v) = fx 2 Nm j 8i 2 I; xi = vig. We denote by SCyl(Nm) the setof �nite unions of cylinders, that we call semi-cylindrical subsets.4. An ideal of the additive monoid Nm is a set X � Nm such that x 2 X; y 2 Nm )x + y 2 X. Thus an ideal X is an upper set for the usual order �, i.e., x 2 X; x �y ) y 2 X. The set of ideals of Nm will be denoted by Id(Nm). A principal idealis a set of the form " (x) = fy 2 Nm j x � yg. As is well known [25, Th. 3.12], anideal of Nm is �nitely generated (i.e., it is a �nite union of principal ideals).5. A subset X � Nm is star-free if it can be written as a �nite expression involving�nite sets, vector sum of subsets, and the Boolean operations (union, intersection,complement). More formally, the set of star-free subsets Sf(Nm) is the least subsetX � P(Nm) such that X � Fin(Nm), and 8X; Y 2 X ; X [ Y 2 X , X \ Y 2 X ,{X 2 X , X + Y 2 X . A more e�ective characterization of star-free subsets isprovided below.6. A subset X � Nm is recognizable if there exists a �nite monoid (S; �), a subsetK � S, and a morphism ' : (Nm ;+) ! (S; �) such that X = '�1(K). We denoteby Rec(Nm) the set of recognizable subsets. A more e�ective characterization ofrecognizable subsets is provided below.7. We denote by Rat(Nm) the set of rational subsets of Nm , i.e., the least subset ofNm containing Fin(Nm) and stable by the operations2 [;+; �. As is well known(see e.g., [7]), a subset X is rational i� it is semilinear, i.e., i� it can be written asX = [i2I(ui + V �i ) for some �nite family f(ui; Vi)gi2I � Nm � Fin(Nm).We denote by H(Nm) = fTriv(Nm); Fin(Nm); : : : ;Rat(Nm)gthe set of above classes. When the speci�cation of m will be irrelevant or clear from thecontext, we will write more simply H;Triv; Fin, etc. instead of H(Nm);Triv(Nm); Fin(Nm),etc.2Recall that for X � Nm , X� = f0g [X [ (X +X) [ (X +X +X) [ � � �.8



To obtain more e�ective characterizations of Rec and Sf, we observe that these classescan be de�ned in a general (possibly noncommutative) monoid (S; �), and not only in(Nm ;+), by merely replacing Nm by S and + by � in the above de�nitions. Since (Nm ;+)is the m-fold cartesian product of (N;+), this raises the question of relating recognizable(resp. star-free) subsets of the the cartesian product monoid S � S 0 with recognizable(resp. star-free) subsets of S and S 0, for arbitrary monoids (S; �) and (S 0; �). In the caseof recognizable subsets, the answer is given by the following classical result. Given twosubsets X � P(S), X 0 � P(S 0), we denote by X 
 X 0 the subset of P(S � S 0) with aselements all �nite unions of sets of the form X �X 0 with X 2 X , X 0 2 X 0.Lemma 1 ([3, Th. 1.5]). For arbitrary monoids (S; �) and (S 0; �), we haveRec(S � S 0) = Rec(S)
 Rec(S 0):Hence we have the following elementary characterization of recognizable subsets of Nmwhich will be used later on.Proposition 2. Let X be a subset of Nm . The following three assertions are equivalent.1. X is recognizable;2. X is a �nite union of sets of the formD(v; a) = fx 2 Nm j (8i 2 f1; � � � ; mg) (9k 2 N) xi = kai + vig (2)where v; a 2 Nm ;3. X is a �nite union of sets of the formA1 � � � � � Am ; (3)where each Aj can be written as Aj = vj + ajN, with vj; aj 2 N.Proof. We �rst prove 2:() 3: This result is immediate, observing that A1� � � ��Am =D(v; a) with a = (aj)1�j�m and v = (vj)1�j�m.We �nally prove 1:() 3:By Lemma 1 it is su�cient to prove 1:() 3: when m = 1.9



Recall that in the one-dimensional case, rational and recognizable subsets coincide, i.e.,Rat(N) = Rec(N); this is a special case of the Kleene-Sh�utzenberger theorem (see e.g., [4]).Since rational and semilinear subsets of N coincide, recognizable subsets are exactly the�nite unions of subsets of the form u+ fv1; : : : ; vkg� with u; v1; : : : ; vk 2 N . By using theidentities (Y [Z)� = Y �+Z� for all Y; Z � N , and fbg�+fcg� = Fb;c[(kb;c+fgcd(b; c)g�)for all b; c 2 N , where Fb;c (resp. kb;c) is a �nite subset (resp. an element) of N dependingon b; c (the �rst identity is a classical commutative rational identity [5], the second identityfollows readily from Bezout's theorem), we can rewrite u + fv1; : : : ; vkg� as an union ofsets of the form v + aN , with v; a 2 N . Thus 1:() 3:
4 Star-free subsets of NmThe de�nition of star-free subsets extends that of star-free languages, seen as subsets offree (noncommutative) monoids. Sch�utzenberger's characterization (see e.g., [22]) of star-free languages in terms of aperiodic syntactic monoids and its extension to trace monoids[12] is a deep result. For star-free subsets of Nm , we next give a much more elementarycharacterization, based on the following star-free analogue of Lemma 1.Lemma 3. For arbitrary monoids (S; �) and (S 0; �), we haveSf(S � S 0) � Sf(S)
 Sf(S 0):Moreover, the equality holds if S and S 0 admit �nite sets of generators � and �0, respec-tively, such that e = {(�S) and e0 = {(�0S 0), where e; e0 denote the unit elements of S; S 0,respectively.Proof. Clearly, (i) Sf(S)
 Sf(S 0) � Fin(S � S 0); and(ii) Sf(S)
 Sf(S 0) is stable by union.Let H;K 2 Sf(S); H 0; K 0 2 Sf(S 0). Since (H �H 0)(K �K 0) = HK �H 0K 0, we get that(iii) Sf(S)
 Sf(S 0) is stable by product.10



Since {(H �H 0) = {H � S 0 [ S � {H 0, S = {; 2 Sf(S), and similarly S 0 2 Sf(S 0), we getthat (iv) Sf(S)
 Sf(S 0) is stable by complement.Since Sf(S � S 0) is the least subset of P(S � S 0) that satis�es (i){(iv), we get thatSf(S � S 0) � Sf(S)
 Sf(S 0), as announced.To show that the equality holds under the assumption of the lemma, we have to check thatif H 2 Sf(S) and H 0 2 Sf(S 0), then H�H 0 2 Sf(S�S 0). Since H�H 0 = (H�e0)(e�H 0),it is enough to check that H � e0 2 Sf(S � S 0).Since e0 = {(�0S 0), we have, for allK � S, {K�e0 = {K�{(�0S 0) = {(K�S 0[S��0S 0),i.e., {K � e0 = { K � S 0 [ [a02�0(e� a0)(S � S 0)! : (4)We will also use the following elementary identities, valid for all K;L � S;K 0 � S 0:(K [ L)�K 0 = K �K 0 [ L�K 0 (5)KL�K 0 = (K �K 0)(L� e0) (6)Let H 2 Sf(S) be given by a �nite expression involving the operations [; {; � and emptyor one-element subsets of S. Properties (4){(6) allow us to rewrite H � e0 as a �niteexpression involving the operators [; {; �, and subsets of the form R�K 0, where R (resp.,K 0) is an empty, one element, or full | i.e., R = S (resp., K 0 = S 0) | subset of S (resp.,S 0). It remains to prove that for any such R;K 0, we have R�K 0 2 Sf(S � S 0). If eitherR = ;, or K 0 = ;, or both R and K 0 are one-element subsets, or R = S and K 0 = S 0, thisis clear. It remains to consider the case R = S and K 0 = fm0g, with m0 2 S 0 (the dualcase follows by symmetry). We have R �K 0 = S �m0 = (e�m0)(S � e0). Applying (4)again, we get S � e0 = {; � e0 = { �Sa02�0(e� a0)(S � S 0)�, which shows that R �K 0 isstar-free.Let co� Fin(S) denote the class of subsets of S with �nite complement. The fact that theinclusion in Lemma 3 can be strict will be derived from the following general observation.11



Lemma 4. If G is a group, thenSf(G) = Fin(G) [ co� Fin(G) : (7)Proof. The inclusion Sf(G) � Fin(G) [ co� Fin(G) is trivial. To show that the equalityholds, we have to check that Fin(G) [ co� Fin(G) is stable by the Boolean operations,which is immediate, and also by product. LetX; Y 2 Fin(G)[co� Fin(G). We distinguishthe following cases.| If X; Y 2 Fin(G), XY 2 Fin(G) � Fin(G) [ co� Fin(G).| If X 6= ; and Y 2 co� Fin(G), we have XY � mY , where m denotes any element ofX. The following assertions are equivalentz 2 {(mY )8y 2 Y; z 6= my8y 2 Y; m�1z 6= ym�1z 2 {Y ;thus, {(mY ) = m{Y 2 Fin(G), i.e., mY 2 co� Fin(G). Since XY contains mY 2co� Fin(G), XY 2 co� Fin(G) � Fin(G) [ co� Fin(G).| The remaining case X 2 co� Fin(G) and Y 6= ; follows by symmetry.The following counterexample shows that the inclusion in Lemma 3 can be strict.Example 5. Consider the group G = Z2 and X = 0�Z. By de�nition, X 2 Sf(Z)
Sf(Z),but X 62 Fin(Z2) [ co� Fin(Z2), and Fin(Z2) [ co� Fin(Z2) = Sf(Z2) by Lemma 4.The following proposition characterizes star-free subsets of Nm .Proposition 6. Let X be a subset of Nm . The following three assertions are equivalent.1. X is star-free;2. X is a �nite union of sets of the formK(I; v) = fx 2 Nm j x � v; 8i 2 I; xi = vig ="(v) \ C(I; v) (8)where v 2 Nm ; I � f1; : : : ; mg; 12



3. X is a �nite union of sets of the formA1 � � � � � Am ; (9)where each Aj can be written as Aj = vj + ajN, with vj 2 N and aj 2 f0; 1g.Proof. We �rst prove 2:() 3: This result is immediate, observing that A1� � � ��Am =K(I; v) with I = fj 2 f1; � � � ; mg j aj = 0g and v = (vj)1�j�m.We �nally prove 1:() 3:We note that Nm has a �nite set of generators � =f(1; 0; � � � ; 0); (0; 1; � � � ; 0); � � � (0; 0; � � � ; 1)g, with f0g = {(� + Nm). Thus, by Lemma 3Sf(Nm) = Sf(N) 
 � � � 
 Sf(N), and it is su�cient to prove 1:() 3: when m = 1.Let X denote the set of �nite unions of sets of the form v + aN , with v 2 N ; a 2 f0; 1g.Clearly, v + 0N = v and v + 1N = v + N are star-free, for N = {;, and ; 2 Fin(N). ThusX � Sf(N). Since X is clearly closed under the Boolean operations and under +, andFin(N) � X , we get Sf(N) � X . Thus Sf(N) = X which shows 1:() 3:We conclude this preliminary part by comparing all the classes of H.Proposition 7. The classes X 2 H are ordered as shown on the following diagram, wherean arrow X ! Y means that X � Y . All the inclusions are strict for m � 1, except theinclusion Rec(Nm) � Rat(Nm) which is strict for m � 2. Classes that are not connectedby a direct path are incomparable.Fin(Nm)!SCyl(Nm)&% Sf(Nm)!Rec(Nm)!Rat(Nm)Triv(Nm)! Id(Nm) %Proof. The inclusions Fin ( SCyl, Triv ( Id, Triv ( SCyl, are obvious.We note that SCyl and Id are incomparable. Since SCyl [ Id � Sf by Proposition 6, thisimplies that the inclusions SCyl � Sf; Id � Sf are strict.To show that Sf � Rec, it is enough to note that, trivially, Fin � Rec, and that Rec isclosed by the Boolean operations and vector sum. The �rst closure property is a classicalresult [3, Chap. III,Prop. 1.1], which holds in an arbitrary monoid. The second closure13



property follows from the characterization of recognizable subsets of Nm given in Prop. 2,point 2.The inclusion Sf � Rec is strict, e.g., 2Nm is a recognizable subset which is not star-free(by the characterization of Eq. (8)).Classically, the inclusion Rec � Rat holds in an arbitrary �nitely generated monoid (seee.g., [3, Ch.3]). The strict inclusion for Nm , m � 2 is well known (e.g., this follows fromcharacterization (3), consider the diagonal D = (1; 1; : : : ; 1)� � Nm which is rational butnot recognizable).Proposition 8. All the classes of H are stable by union and intersection. Sf;Rec;Ratare stable by complement. Fin; Id; Sf;Rec;Rat are stable by sum.Proof. The closure properties for Fin; SCyl; Id; Sf are automatic. The closure of recogniz-able subsets by \;[; { is universal and elementary; it holds under an arbitrary monoid andnot only for Nm (see e.g., [3]). The closure of rational subsets of Nm by complement andintersection is classical (see e.g., Eilenberg and Sch�utzenberger [7]). The other assertionsare clear.5 Petri Net LanguagesWith each of the above classes of subsets of Nm , we associate a class of Petri net languages.De�nition 9. Let X 2 H. We say that a language L is a X -type Petri net language ifthere exists a �-free labeled PN G = (N; `) with initial marking M0 and set of acceptingstates F 2 X such that L = L(G;M0; F ). We denote by LX the set of X -type languages.Remark 10. Some of these classes are well known in the literature.� For X = Fin, we obtain the class LFin usually denoted L following Peterson.� For X = Triv, all the reachable markings are accepted, thus the associated classLTriv coincides with the class P of Peterson (composed of pre�x closed languages).� For X = Id, we obtain the class of weak languages, usually denoted G (in which allthe markings covering a �nite set of markings are accepted).14



� For X = LSCyl, we obtain a class of languages that was �rst considered by Peterson[21], who called the �nal marking sets in SCyl incompletely speci�ed .It is also possible to consider classes of labeling functions other than the �-free.� We de�ne the subclasses of free PN languages LfX by requiring the labeling ` :T ! � to be injective.� A �-labeled Petri net G = (N; `) with initial marking M0 is deterministic if for anyw 2 �� there exists at most one marking reachable in G from M0 while generatingw. The corresponding classes of deterministic PN languages will be denoted LdX .� When we allow ` to be erasing (i.e., when ` is a map T ! f�g [ �), we obtain thenew class of arbitrary PN languages L�X .It is clear that for all X 2 H, LfX � LdX � LX � L�X . We will see in Corollary 18below that all these inclusions are strict.The main result of this section consists in showing that for �-free and arbitrary PNlanguages, the use of in�nite sets of �nal markings (following the hierarchy outlined inthe previous section) does not extend the corresponding classes of PN languages. Thisresult follows from the lemma below, which shows that ��labeled transitions withoutoutput places do not increase the language de�ning power of ��free PN generators.Lemma 11. Let G be an arbitrary labeled Petri net generator with a �nite set of �nalmarkings F 2 Fin. Assume that for all transitions t 2 T labeled by the empty string itholds Post(�; t) = (0 � � � 0). Then L(G;M0; F ) 2 LFin.Proof. We will show that there exists a �-free labeled generator G0 and a set F 0 of �nalmarkings such that L(G0;M0; F 0) = L(G;M0; F ).Let T � = ft�1 ; : : : ; t�rg be the set of transitions of G labeled by the empty string andlet T� = T n T �. Without loss of generality we may assume that for all t� 2 T �,Pre(�; t�) 6= (0 � � � 0) since otherwise t� could be removed without changing the languageof the net. 15



A �ring sequence � of G can always be written as:� = ��0 t1��1 � � � tk��kwhere ��i = t�i;1 � � � t�i;ri 2 (T �)� and ti 2 T�. We say that such a sequence is minimal if the� transitions are �red \as soon as possible", formally, if for all i and for all j : 1 � j � ri,the sequence �0 = ��0 t1 : : : ��i�1t�i;jti is not �rable. Clearly, possibly after a �nite numberof moves of �-transitions (which does not modify the label), we may assume that � isminimal.We claim that the length of the ��i factors in a minimal sequence is bounded by a �xed in-teger q (depending on the net and the initial marking). Indeed, since Post(�; t) = (0 � � � 0),for all �-transitions t�, each �ring of t� reduces the total number of tokens by at least oneunit, and therefore, j��0 j � q0 def= PpM0(p). Next, for i � 1, consider �00 = ��0 t1 : : : ti�1��i�1,with M0[�00iM 00. Since t�i;jti is not �rable at M 00, there exists a place pj such thatM 00(pj) < Pre(pj; t�i;j) + Pre(pj; ti). Let Kp = supt2T�;t�2T� �Pre(p; t�) + Post(p; t)	. Wehave: M 00[tiiM 0 with M 0(pj) < Kpj . Since every �ring of a �-transition consumes at leastone token in such a pj place, we have j��i j � q00 def= Pp(Kp � 1). Setting q = max(q0; q00),we obtain j��i j � q for all factor ��i of a minimal sequence.We introduce a new generator G0 with the same places, and a new alphabet of transitions:T 0 = T� [ T �T� [ : : :[ (T �)qT�. For each new transition t0 = t�1 : : : t�r t, with t�i 2 T �; t 2T�, we set Pre(t0) = Pi Pre(�; t�i ) + Pre(�; t), Post(�; t0) = Post(�; t), `(t0) = `(t), so thatthe �ring of t0 has the same precondition, e�ect, and label, as the consecutive �ring of thesequence t�1 : : : t�r t in the original net.Clearly, all the �rable sequences of transitions of G0 correspond to �rable sequences oftransitions of the original net, which in addition lead to the same marking. Conversely, toeach minimal sequence of the original net ending with a transition t 2 T� corresponds a�rable sequence ofG0, which also leads to the same marking. Moreover this correspondencepreserves labels.We still have to take into account, however, the possibility that some minimal sequenceaccepted by G may end with a sequence ��k of �-transitions. Since the length of ��k is
16



bounded by q we let:F 0 = F +[j�qV j; where V = fPre(�; t�) j t� 2 T �g :Theorem 12. The classes of ��free PN languages are ordered as shown on the followingdiagram. All the inclusions are strict.LTriv (= P)! LId (= G)! LFin (= L) = LSCyl = LSf = LRec = LRat :Proof. The �rst two strict inclusions are well known [16, 19]. Peterson [21] has shown thatLSCyl = LFin. To prove the other relations, note �rst that X � X 0 implies LX � LX 0.Hence by Proposition 7, it follows that LFin � LSCyl � LSf � LRec � LRat. We provethat LRat � LFin.Let G be a Petri net generator with initial marking M0 and a linear set of �nal markingsF = v+fu1; : : : ; urg� (with v; u1; : : : ; ur 2 Nm). Construct a new net G0 by adding to G aset of r new �-transitions t�i with Pre(�; t�i ) = ui and Post(�; t�i ) = (0 � � � 0). Consider F 0 =fvg as set of �nal markings for G0. It is easy to check that L(G;M0; F ) = L(G0;M0; F 0).Even if G0 is an arbitrary labeled Petri net, Lemma 11 shows that L(G0;M0; F 0) 2 LFin.Now, let G be a Petri net generator with a semilinear set of �nal markings F . Thesemilinear set can be written as the union of a �nite number of linear sets F i. NowL(G;M0; F ) = [iL(G;M0; F i). But we have shown that for all i, L(G;M0; F i) 2 LFinand since LFin is closed under union [16] we have proved that LRat � LFin.Theorem 13. The classes of arbitrary PN languages are ordered as shown on the follow-ing diagram. The �rst inclusion is strict.L�Triv ! L�Id! L�Fin = L�SCyl = L�Sf = L�Rec = L�Rat :Proof. The �rst two inclusions are classical [16, 19], but it is not known if the secondis strict. The construction of the previous theorem may be used to prove that L�Fin =L�Rat.
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6 Deterministic Petri Net LanguagesIn this section we consider deterministic Petri net generators. We show that the di�erentclasses of �nal marking sets create a proper hierarchy of deterministic languages similarto that described in Proposition 7. We also show that the complement of a deterministiclanguage is a PN language.Theorem 14. The classes of deterministic PN languages are ordered as shown on thefollowing diagram. All inclusions are strict. Classes that are not connected by a directpath are incomparable. LdFin!LdSCyl&% LdSf=LdRec!LdRatLdTriv! LdId %Proof. Note �rst that X � X 0 implies LdX � LdX 0. Hence by Proposition 7, it followsthat LdFin � LdSCyl � LdSf � LdRat, LdTriv � LdId � LdSf. We are left to prove thatthe inclusions are strict and to prove that the other relations holds.1. (LdTriv= LdFin) See [11].2. (LdId = LdFin) See [11]. It also holds (LdId \ LdFin = Rat), where Rat denotes theset of regular languages [9].3. (LdId= LdSCyl) Since LdId= LdFin � LdSCyl, LdSCyl 6� LdId. We just need to provethat LdId 6� LdSCyl.Consider the language L = fw 2 fa; bg� j (8s � w) jsja � jsjb; jwja � jwjb + 1g. L 2 LdIdsince it is the language of the net in Figure 1.a with F =" (1). We will prove, bycontradiction, that L 62 LdSCyl.In fact, assume L = L(G0;M0; F 0) for a deterministic PN generator G0 with m places andfor a semicylindrical set F 0 = Srj=1C(Ij; vj). For i > 0, let Mi be the unique markingreached in G0 by generating the string ai. It is possible to extract from the sequenceM1;M2; : : : a subsequence M�(1);M�(2); : : : such that M�(k) < M�(k+1) and such thatthere exists I � f1; : : : ; mg with (8i 2 I) M�(k)(i) = M�(k+1)(i), and (8i 62 I) M�(k)(i) <M�(k+1)(i). Now let � be the �ring sequence from M�(1) such that `(�) = b�(1). Thesame sequence � may be �red from all markingsM�(k). Thus we can writeM�(k)[�iM 0�(k).18
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Figure 1: Two Petri nets.Clearly M 0�(k) < M 0�(k+1) and (8i 2 I) M 0�(k)(i) = M 0�(k+1)(i), while (8i 62 I) M 0�(k)(i) <M 0�(k+1)(i). Then M 0�(1) 62 F 0, while for all k > 1, M 0�(k) 2 F 0. Now for k > 1 choosevjk 2 fv1; � � � ; vrg such that M 0�(k) 2 C(Ijk ; vjk). Clearly, Ijk 6� I, otherwise M 0�(1) wouldbe in C(Ijk ; vjk) and hence would be �nal. However, if Ijk nI 6= ;, thenM 0�(k0) 62 C(Ijk ; vjk)if k 6= k0. Hence there must exists an in�nite set of vectors vjk and this contradicts thehypothesis that r be �nite.4. (LdFin ( LdSCyl) and (LdTriv ( LdSCyl). Follows from the fact that LdTriv � LdSCyl,LdFin � LdSCyl, while LdTriv= LdFin.5. (LdTriv ( LdId) Follows from the fact that also LdTriv � LdSCyl and from the incom-parability of LdId and LdSCyl.6. (LdSCyl ( LdSf) and (LdId ( LdSf) Follows from the fact that LdId � LdSf, LdSCyl �LdSf, while LdId= LdSCyl.7. (LdSf = LdRec) Let L = L(G;M0; F ) be the language generated by a deterministicPN generator G with initial marking M0 and with recognizable set F 2 Rec(Nm) of �nalmarkings. We will show how to construct a new labeled netG0 such that L = L(G0;M 00; F 0)for a suitable choice of initial marking M 00 2 Nm0 and �nal set F 0 2 Sf(Nm0 ).We will �rst consider the case where F is a single subset of the form (2), i.e., the �nalperiodicity of each place pi (as in Proposition 2) is given by the integer ai, while thecorresponding maximal integer is vi. Let P = fp1; � � � ; pmg be the set of places of G. The19



following algorithm may be used to construct the new generator G0.beginG0 = G.for i = 1 to m doif ai � 2 then� Add to G0 a set of ai new places P inew = fpji j 0 � j � ai � 1g.� The place pji , with j = M0(pi) mod ai, will contain one token. All othernew places will not be marked, while the places from P will be marked asby M0.� for each transition t of G0 inputing to or outputing from place pi do� Remove t.� Add to G0 a set of ai new transitions T inew = ftj j 0 � j � ai � 1gwith the same label as t.� The pre arcs of each new transition tj are as follows. If p 62 P inew thenPre(p; tj) = Pre(p; t) else if p = pji then Pre(p; tj) = 1 else Pre(p; tj) =0.� The post arcs of each new transition tj are as follows. If p 62 P inewthen Post(p; tj) = Post(p; t) else if p = pj0i , with j 0 = [Post(pi; t) �Pre(pi; t) + j] mod ai, then Post(p; tj) = 1 else Post(p; tj) = 0.endforendifendforendThis construction preserves the determinism. To each �ring sequence � of G correspondsone and only one �ring sequence �0 of G0 with the same label (and vice versa). Fur-thermore, if M0[�iM and M 00[�0iM 0 we have that (8pi 2 P );M 0(pi) = M(pi), while(8pji 2 P inew);M 0(pji ) = 1 if j =M(pi) mod ai, and M 0(pji ) = 0 otherwise.20
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Figure 2: Petri net obtained by modi�cation of the net in Figure 1.a.Then given a set F = D(v; a) as given by equation (2) we have that L(G;M0; F ) =L(G0;M 00; F 0), whereF 0 = fM 0 j (8i 2 I)M 0(pi) = vi and (8i 62 I)M 0(pi) � viand if ai � 2 thenM 0(pjii ) = 1 andM 0(pji ) = 0 for j 6= jig ;I = fi 2 f1; : : : ; mg j ai = 0g and ji = vi mod ai. Since it is in the form of Eq. (8),F 0 2 Sf.As an example, consider the net in Figure 1.a with a recognizable set of of �nal markingsF = f3 + 2k j k 2 Ng. The generator G0 with marking M 00, constructed following thealgorithm, is shown in Figure 2. The star-free set of �nal markings for G0 is F 0 = fM 0 jM 0(p1) � 3;M 0(p11) = 1g.If F is a �nite union of sets Fr = D(vr; ar), we have to perform the same construction,replacing in the algorithm ai by the least common multiple ai of the (ar)i associated withthe di�erent Fr, and taking for F 0 the union of the sets:F 0r = fM 0 j (8i 2 Ir)M 0(pi) = (vr)i and (8i 62 Ir)M 0(pi) � (vr)iand if (ar)i � 2 thenM 0(pji ) = 1 for j 2 Jri; andM 0(pji ) = 0 for j 62 Jrig ;where Ir = fi 2 f1; : : : ; mg j (ar)i = 0g and Jri = fk 2 f0; : : : ; ai � 1g j kmod (ar)i =21



(vr)imod (ar)ig.8. (LdRec ( LdRat) Since LdSf = LdRec, it is su�cient to show that the languageL = fw 2 fa; bg� j jwja = jwjbg| that is in LdRat since it is accepted by the deterministicnet in Figure 1.b with F = f(k; k) j k 2 Ng | is not in LdSf. To show this we will usethe characterization of star-free sets given in Eq. (8).In fact, assume L = L(G0;M0; F 0) for a deterministic PN generator G0 with a star-free set F 0 = Srj=1K(Ij; vj). For i > 0, let Mi be the unique marking reached in G0by generating the string ai. It is possible to extract from the sequence M1;M2; : : : asubsequence M�(1);M�(2); : : : with M�(k) < M�(k+1) and with the property that thereexists a �| 2 f1; � � � ; rg such that for all k the marking reached from M�(k) by �ring thestring b�(k) belongs to K(I�|; v�|). The following is a legal move of in�nite length that startsfrom M�(1) M�(1)[�1iM 01[�2iM 02[�3iM 03 � � � (10)with `(�1) = b�(1), and `(�k) = b�(k) � �(k�1) for k > 1. It is possible to prove that each ofthe �ring sequences �k, for k � 2 strictly decreases the token count in the subset of placeswith index in I�|. In fact, since M�(2) > M�(1), the following is a legal move as well:M�(2)[�1iM 001 [�2iM 002 � � �Now M 001 > M 01 and since M 01 2 K(I�|; v�|) is �nal while M 001 is not �nal, then M 001 jI�|>M 01 jI�|, where jI�| denotes the projection on the subset of places with index in I�|. Also,M 002 2 K(I�|; v�|), hence M 001 jI�|> M 01 jI�|= M 002 jI�|. This shows that the sequence �2 reducesthe token counts in the places with index in I�|. A similar reasoning can be applied to allother markings M�(k) and �ring sequences �k, for k > 2. Hence the move given by (10)cannot be legal, clearly a contradiction.A further restriction of deterministic languages is given by free-labeled languages. Theuse of di�erent classes of �nal marking set, leads to di�erent classes of free-labeled Petrinet languages as well.Theorem 15. The classes of free-labeled PN languages are ordered as shown on the fol-lowing diagram. All inclusions are strict. Classes that are not connected by a direct path22



are incomparable. LfFin!LfSCyl&% LfSf!LfRec!LfRatLfTriv! Lf Id %Proof. Note �rst that X � X 0 implies LfX � LfX 0. Hence by Proposition 7, it followsthat LfFin � LfSCyl � LfSf � LfRat, LfTriv � LdId � LfSf. We are left to prove thatthe inclusions are strict and to prove that the other relations holds.1. (LfTriv= LfFin) and (Lf Id= LfFin). To prove this, we show that (LfTriv 6� LfFin)and (LfFin 6� Lf Id). Consider the free-labeled net G in Figure 3, and let F = f(0 0 1)g.One can immediately see that the language accepted by G with �nal set Nm is L1 =fa�g [ fambcn j m � n � 0g, while the language accepted by G with �nal set F isL2 = fambcm j m � 0g, hence L1 2 LfTriv and L2 2 LfFin.We prove L1 62 LfFin by contradiction. In fact, assume L1 = L(G0;M0; F 0) for a free-labeled PN generator G0 and a �nite set F 0. For i � 0, let Mi be the unique markingreached in G0 by generating the string ai. Since the labeling of G0 is free and the singletransition labeled a may �re in�nitely often, then Mi � Mj for i < j. Furthermore,L(G0;Mi; F 0) 6= L(G0;Mj; F 0) for i 6= j, hence Mi < Mj for i < j. Thus there arein�nitely many Mi (i � 0) and all these markings must be �nal, hence F 0 must bein�nite, contradicting the assumption.We prove L2 62 Lf Id by contradiction. In fact, assume L2 = L(G0;M0; F 0) for a free-labeled PN generator G0 and an ideal set F 0. As above, we can de�ne Mi (i � 0) asabove and we can show that Mi < Mj for i < j. Let �i be the sequence of transitionssuch that `(�i) = bci. Now aibci 2 L2, hence Mi[�iiM 0i and M 0i 2 F 0. Choose any j > i;since Mj > Mi, we have that Mj[�iiM 0j and M 0j > M 0i , hence M 0j 2 F 0. Thus the stringajbci 62 L2 is also accepted, thus contradicting the assumption.2. (Lf Id = LfSCyl) Since Lf Id = LfFin � LfSCyl, LfSCyl 6� Lf Id. We just need toprove that Lf Id 6� LfSCyl. This can been done using the same language L considered inthe proof of Theorem 14, part 3, since L 2 Lf Id.3. (LfFin ( LfSCyl) and (LfTriv ( LfSCyl). Follows from the fact that LfTriv � LfSCyl,LfFin � LfSCyl, while LfTriv= LfFin. 23
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Figure 3: A free-labeled Petri net.4. (LfTriv ( Lf Id) Follows from the fact that also LfTriv � LfSCyl and from theincomparability of Lf Id and LfSCyl.5. (LfSCyl ( LfSf) and (Lf Id ( LfSf) Follows from the fact that Lf Id � LfSf, LfSCyl �LfSf, while Lf Id= LfSCyl.6. (LfSf ( LfRec) Consider the language L = fw 2 fa; bg� j (8s � w)jsja � jsjb; (9k 2N)jwja = jwjb + 2kg. L 2 LfRec, since it is accepted by the free-labeled net in Figure 1.awith F = f2k j k 2 Ng. Assume L = L(G0;M0; F 0) for a free-labeled PN generatorG0 with a star-free set F 0 = Srj=1K(Ij; vj). Consider the legal move of in�nite length ofG0: M0[�iM1[�iM2[�iM3 � � � where `(�) = a. Mi+1 = Mi + �, and since the markingsM0;M2; � � � are �nal while the markings M1;M3; � � � are not �nal it is clear that no twomarkings in the in�nite sequence M0;M2; � � � may belong to the same K(Ij; vj). Thiscontradicts the assumption that r be �nite.7. (LfRec ( LfRat) To prove this we may use the same language L considered in theproof of Theorem 14, part 8, since L 2 LfRat.Finally, we show that language containment remains decidable for all these new deter-ministic classes. First, we prove that the complement of a deterministic PN language isa PN language.Theorem 16. Let LdX with X 2 fTriv; Fin; Id; SCyl; Sf;Rec;Ratg be a class of determin-istic Petri net languages. Then co-LdX def= f{L j L 2 LdXg � LFin.24



Proof. Pelz has shown that co-LdTriv � LFin [20]. Let G be a deterministic PN generator,and let L = L(G;M0; F ) with F 2 Rat. Let also L0 = L(G;M0; F 0) (with F 0 = Nm) bethe Triv-type language of G. Since L � L0, it follows that {L = {L0 [ (L0 n L). Now(L0 n L) = L(G;M0; {F ), and from Proposition 8 we know that {F 2 Rat, hence byTheorem 12 (L0 n L) 2 LdRat � LFin. Since co-LdTriv � LFin, {L0 2 LFin. Finally, fromthe closure of LFin under union [16] follows that {L 2 LFin.Corollary 17. The containment problem "Is L � L0 ?" is decidable for L 2 LFin andL0 2 LdRat.Proof. Indeed, L � L0 reduces to L\ {L0 = ;. Since {L0 2 LFin, LFin being closed underintersection [16], this reduces to the emptiness problem for a language L00 2 LFin, whichreduces to the reachability problem known to be decidable [25].Corollary 18. Let X 2 H. ThenLfX ( LdX ( LX ( L�XProof. Some of these results are already known.It has been shown in [14] that LTriv ( L�Triv and that LFin ( L�Fin. With the samereasoning it is immediate to show that LId ( L�Id.The other strict inclusions for X = Triv have been proved in [27].The strict inclusion LdId ( LId follows from a result of [10], where is was shown thatthe language L = fambnc j m > n � 0g [ fa+b�g does not belong to LdId, while thislanguage is accepted by the �-free labeled net in Figure 4 with set of �nal markingsF ="(0 0 1 0 0) [ "(0 0 0 1 0) [ "(0 0 0 0 1).The strict inclusions LfX ( LdX for X 2 fFin; Id; SCyl; Sf;Rec;Ratg follow from the factthat LdX contains all regular languages, while the regular language L = ab2 + ba cannotbe in LfX . In fact, the string ab is not �nal while ba is �nal, but on free-labeled netstheir �ring yields the same marking.The strict inclusions LdX ( LX for X 2 fFin; SCyl; Sf;Rec;Ratg follow from the fact thatLX = LFin (see Theorem 12) and LFin is not closed under complementation [16], whilethe complement of a language L 2 LdX is in LFin (see Theorem 16).25
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Figure 4: A �-free labeled net.The strict inclusions LX ( L�X for X 2 fSCyl; Sf;Rec;Ratg follow from the fact thatLX = LFin and L�X = L�Fin (see Theorem 13). It is clear that for all X 2 H, LfX �LdX � LX � L�X .7 ConclusionIn this paper we have introduced new tractable classes of deterministic PN languages,which allow the speci�cation of rather general conditions on accepting markings. As afuture work we will study the complexity of decision procedures to check the propertiesof interest (controllability, etc.) of discrete event systems modeled by these classes ofdeterministic languages. Dually, the speci�cation of a (�nite or in�nite) set of initialmarkings leads to other related interesting classes of PN languages.References[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling withGeneralized Stochastic Petri Nets, Wiley Series in Parallel Computing, John Wiley andsons, 1995. 26
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