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1. Introduction

This survey paper concerns the application of non-linear Perron-Frobenius theory
to the analysis of discrete event systems.

Discrete event systems can often be modelled by a dynamics of the form

x(k) = f(x(k − 1)) [1]

wheref is a monotone self-map of a subset ofRn. The coordinates of the vector
x(k) yield quantitative measures of performance: dates ofk-th occurrence of certain
repetitive events, quantities of parts of certain kinds produced up to timek, etc. Mono-
tonicity is a natural assumption: it means that the earlier a job is started, the earlier it
is finished.

Questions of interest include computing fixed points, sometimes in a generalised
sense, and determining the asymptotic behaviour of orbits. For instance, one may
expect every coordinate ofx(k) to growth arithmetically ask tends to infinity. Arith-
metical growth rate give performance measures calledthroughputor cycle time. One
may also ask whetherx(k) will approach or reach a periodic orbit, perhaps after a
suitable normalisation, or one may look for an initial conditionx(0) whose orbit is
stationary, in a suitable sense.

Nonlinear Perron-Frobenius theory gives methods to address these questions. It
deals with the nonlinear extensions of the spectral theory of linear monotone maps. It
has been developed by many researchers and schools, and arises in several fields, such
as control and game theory, linear algebra, mathematical biology, or mathematical
economics. We shall not attempt to survey the field here, see (Nussbaum, 1988) and
the reference therein for an overview. We shall rather emphasise aspects which seem
relevant to discrete event systems, paying a special attention to related problems in
optimal control and game theory.

Several authors have developed monotone dynamical models of timed discrete
event systems, in order to generalise the min-plus or max-plus linear representations of
timed event graphs. The present approach grew out, in particular, after (Olsder, 1991),
(Gunawardena, 1994), (Vincent, 1997), (Cohen, Gaubert and Quadrat, 1995, 1997).
This survey is based specially on (Gaubert and Gunawardena, 1998b, 2004), (Cochet-
Terrasson, Gaubert and Gunawardena, 1999), (Akian and Gaubert, 2003). We could
not list all the relevant works, due to the short space, so the reader is invited to look at
the references of our references.

2. General definitions and basic properties

2.1. Monotonicity, homogeneity, and nonexpansiveness

We say that a self-mapf or Rn is monotoneif

x ≤ y ⇒ f(x) ≤ f(y) ,
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where≤ denotes the standard ordering ofRn. We say thatf is additively homoge-
neousif it commutes with the addition of a constant, meaning that

f(λ + x) = λ + f(x) ,

for all x ∈ Rn andλ ∈ R, whereλ + x := (λ + x1, . . . , λ + xn). We say thatf is
additively subhomogeneousif f(λ + x) ≤ λ + f(x), for all x ∈ Rn andλ ∈ R+,
whereR+ denotes the set of nonnegative real numbers. Monotone (sub)homogeneous
maps are nonlinear generalisations of (sub)stochastic matrices.

Additive homogeneity is a natural assumption for discrete event systems: if the
entries of the vectorx(k) in [1] represent dates, it means that if we delay ofλ time
units the initial condition, the whole trajectory will be delayed ofλ time units.

We say that a mapf is nonexpansivein a metricd if d(f(x), f(y)) ≤ d(x, y). In
particular,f is nonexpansive in the sup-norm if

‖f(x)− f(y)‖∞ ≤ ‖x− y‖∞ .

Crandall and Tartar (1980) observed that an additively homogeneous map is monotone
if and only if it is nonexpansive in the sup-norm. It is also known that a monotone
map is nonexpansive in the sup-norm if and only if it is subhomogeneous, see for
instance (Akianet al.,2004, Lemma 3.3). Monotone additively homogeneous maps
have been calledtopical functionsby Gunawardena and Keane (1995). They observed
that topical functions are characterised by the property of being “nonexpansive” with
respect to the map

t(x) := x1 ∨ · · · ∨ xn ,

meaning that:

t(f(x)− f(y)) ≤ t(x− y) .

The quantity “t(x)” should be read as “top ofx”, which explains the name “topical”.

TheHilbert’s seminormis defined by

‖x‖H = max
1≤i≤n

xi − min
1≤i≤n

xi ,

so that‖x‖H = 0 if and only if x is a constant vector. Monotone and additively
homogeneous maps are nonexpansive in Hilbert’s seminorm.

A monotone additively subhomogeneous self-mapf of Rn can be represented by
a monotone additively homogeneous self-mapg of Rn+1 as follows:

g(x, y) = (f(x− y) + y, y) ,

wherex ∈ Rn andy ∈ R. This is analogue to adding acemetery stateto a substochas-
tic matrix to make it stochastic. Sincegk(x, 0) = (fk(x), 0), the behaviour off can
be deduced from the one ofg.
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If f is nonexpansive in any norm, we may consider the following limit, called
cycle time,

χ(f) = lim
k→∞

fk(x)/k ,

wherefk denotes thek-th iterate off . Sincef is nonexpansive, the limit, if it exists,
is independent ofx. We shall discuss further the problem of the existence of the cycle
time in Section 4.2.

We say thatu ∈ Rn is anadditive eigenvectorwith additive eigenvalueλ ∈ R of
a monotone additively homogeneous self-mapf of Rn if

f(u) = λ + u .

Then,fk(u) = kλ + u , for all k ≥ 1. Sincef is nonexpansive, it follows that for
all x ∈ Rn, fk(x) stays at bounded distance fromkλ + u ask tends to infinity. In
particular,

χ(f) = (λ, . . . , λ) .

The existence of an additive eigenvector is a central problem: we discuss it in Sec-
tion 4.1.

Examples of monotone additively homogeneous maps can be easily constructed,
because monotonicity and additive homogeneity are preserved by the operations of
pointwise supremum, pointwise infimum, convex combination, and composition.

2.2. The multiplicative setting

It f is a monotone self-map ofRn, it is convenient to consider the conjugate map

E(f) = exp ◦f ◦ log , Rn
+∗ → Rn

+∗ ,

whereR+∗ denotes the set of positive real numbers,exp denotes the map fromRn

to Rn
+∗ which doesexp entrywise, andlog := exp−1. The conjugateg := E(f) is

also monotone. Whenf is additively homogeneous,g is multiplicatively homoge-
neous, meaning thatg(µx) = µg(x), for all positive scalarsµ. Similarly, whenf
is additively subhomogeneous,g is multiplicatively subhomogeneous, meaning that
g(µx) ≤ µg(x), for all scalarsµ ≥ 1.

The sup-norm onRn corresponds to theThompson’s part metricon Rn
+∗,

dT (x, y) = ‖ log x − log y‖∞, and Hilbert’s seminorm corresponds to the Hilbert’s
projective metric,dH(x, y) = ‖ log x − log y‖H . This is a projective metric, since
dH(x, y) = 0 if and only if the vectorsx and y are scalar multiples. Nonexpan-
siveness properties off in terms of the sup-norm or of Hilbert’s seminorm translate to
nonexpansiveness properties ofg in terms of Thompson’s part metric, or Hilbert’s pro-
jective metric, respectively. The multiplicative cycle time ofg, ϑ(g) ∈ Rn

+∗, measures
the geometric growth rate of the orbits,

ϑi(g) = lim
k→∞

(fk
i (x))1/k .
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Of course,ϑ(g) = exp(χ(f)), and the existence ofχ(f) is equivalent to the existence
of ϑ(g). We shall see in Section 4 that by consideringf andE(f), we get two points
of views on the same dynamics, bringing complementary informations.

3. A guided tour of monotone homogeneous maps

3.1. Max-plus linear maps, min-plus linear maps, and timed event graphs

The coordinates of amax-plus linearmapf : Rp → Rn are given by:

fi(x) = max
1≤j≤p

Fij + xj , for 1 ≤ i ≤ n,

with Fij ∈ R ∪ {−∞}. If every row of the matrix(Fij) has at least one finite entry,
the mapf sendsRp to Rn. Obviously,f is monotone and additively homogeneous.
The dater functions of timed event graphs, firing at the earliest, are given by a dynam-
ics of the formx(k) = f(x(k − 1)), wheref is a max-plus linear self-map ofRn.
See (Baccelliet al.,1992) for more background.

We say that a mapf is min-plus linearif the mapx 7→ −f(−x) is max-plus linear.
The counter functions of timed event graphs, firing at the earliest, are governed by a
dynamics of the formx(k) = f(x(k− 1)), wheref is min-plus linear (Baccelliet al.,
1992).

3.2. Monotone linear maps and their conjugates

If M is an× n nonnegative matrix with no zero row, then, the map

g(x) = Mx ,

is a monotone and multiplicatively homogeneous self-map ofRn
+∗. Max-plus (or min-

plus) linear maps arise as limits of suitably scaled conjugates of such maps. Indeed,
f = E(g) is given by

fi(x) = log
∑

1≤j≤n

exp(log Mij + xj) , [2]

andlimβ→∞ β−1 log
∑

1≤j≤n exp(β(log Mij + xj)) = max1≤j≤p log Mij + xj .

3.3. Convex monotone additively subhomogeneous maps and stochastic control

Dynamic programming operators of stochastic control problems with state space
{1, . . . , n} and action spaceA can be written as

f(x) = sup
a∈A

P ax + ra . [3]
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For alla ∈ A, P a is an×n substochastic matrix (P a
ij gives the probability of transition

from i to j when actiona is chosen), andra is a vector (ra
i gives the reward received

in statei, when actiona is chosen). The set of actionsA is possibly infinite, but we
requiresupa∈A ra to be finite, so thatf takes finite values.

Since the matricesP a are nonnegative, the mapf is monotone. It is also convex,
meaning that its coordinates are convex functions. Using Legendre-Fenchel duality,
one can show that any monotone additively subhomogeneous convex function can be
written as [3], see (Akian and Gaubert, 2003). A remarkable case arises whenf is
polyhedral, meaning thatRn can be covered by finitely many polyedra on whichf is
affine. Then, the setA can be chosen to be finite.

The mapf in [2] is monotone, additively homogeneous, and convex. A way to see
this is to write it explicitly as a supremum of affine maps:

fi(x) = sup
p∈Σn

p · x + p · log Mi· − S(p) ,

whereΣn := {x ∈ Rn
+ | x1 + · · ·+ xn = 1} is the simplex,Mi· denotes thei-th row

of M , andS(p) = p1 log p1 + · · ·+pn log pn is theentropyfunction. More generally,
if (Ma)a∈A is a family of nonnegative matrices, and if the matrixsupa∈A Ma is finite
and has no zero row, then, the map

g(x) = sup
a∈A

Max [4]

is such thatE−1(g) is monotone, additively homogeneous, and convex.

3.4. Concave monotone maps leaving the nonnegative cone invariant and fluid
approximation of time Petri nets

Maps of the form

g(x) = inf
a∈A

Max + ca , [5]

where theMa are nonnegative matrices, and theca are nonnegative vectors, arise from
the following fluid approximation of timed Petri nets (Cohen, Gaubert and Quadrat,
1995, 1998).

Consider a timed Petri net, with transitionsq1, . . . , qn and placesp1, . . . , pr. We
denote byµij the number of arcs from placepj to transitionqi, and byµji the number
of arcs from transitionqi to placepj . We denote bymj the initial marking of placepj ,
and byτj the holding time of this place. In order to write a fluid approximation, we
assume that for every placepj , some numbersνij ≥ 0 are given: a proportionνij of
the tokens of placepj is assigned to transitionqi. We denote byxi(t) the cumulated
number of firings of transitionqi up to timet, and byzj(t) the cumulated number of
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tokens that have completed their sojourn time in placepj before or at timet. The fluid
behaviour is represented by the following dynamics

xi(t) = min
j→i

µ−1
ij νijzj(t), zj(t) = mj +

∑
k→j

µjkxk(t− τj) . [6]

By writing “j → i” in the first equation, we mean that the minimum is taken over the
indicesj such that the placepj is a predecessor of transitionqi. Similarly, the sum is
taken over all indicesk such that the transitionqk is a predecessor of placepj .

If τj = 1 for all placespj , by eliminating the variableszj , we getx(t) = g(x(t−
1)) whereg is of the form [5]. The case of integer holding times can be treated along
the same lines, provided that there is no circuit consisting only of places with zero
holding time.

The following example of timed Petri net, together with its fluid approximation, is
taken from (Cohen, Gaubert and Quadrat, 1995). The routing proportions are shown
on the arcs: for instance, a proportionβ of the tokens of placep2 are reserved for the
firing of transitionq2.

p2
q4

q1

q2

q3

q6

q5

α β

γ δ

η ζ

p1

p3 p4

x1(t) = min(γz1(t), ηz4(t))

x2(t) = β
2
z2(t)

x3(t) = αz2(t)
x4(t) = δz1(t)
x5(t) = z3(t)
x6(t) = ζz4(t)
z1(t) = m1 + x2(t− 1) + x4(t− 1)
z2(t) = m2 + 2x3(t− 1) + x1(t− 1)
z3(t) = m3 + x1(t− 1)
z4(t) = m4 + x5(t− 1) + x6(t− 1)

3.5. Min-max functions and beyond

Min-max functions have been introduced by Olsder, (1991) and Gunawardena,
(1994). They are obtained by composing max-plus linear and min-plus linear maps.
They occur as dynamic programming operators of deterministic zero-sum two-players
games, like the following. Consider a digraph with set of nodes{1, . . . , n}, and with
set of arcsE. To every arc(i, j) ∈ E is attached a payoff,Cij ∈ R. Two players,
call “Max” and “Min”, will move alternatively a token on this graph. A turn consists
of two moves, by “Max and “Min”, successively. If the token is in nodei, it must be
moved to a nodej such that there is an arc fromi to j. At every move fromi to j,
“Min” pays to “Max” the amountCij . If the two players agree to play exactlyk turns,
and if the initial position of the token isi, the value of the player “Max” (which is the
same as the opposite of the value of the player “Min”) is given by thei-th entry of
fk(0), where

fi(x) = max
1≤j≤n
(i,j)∈E

Cij + min
1≤k≤n
(j,k)∈E

Cjk + xk .
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We next give an example of graph, together with two coordinates of the mapf :

1

2

7

6
1

4
9

5
0

−5

33

−1
f1(x) = max(2 + x1,min(8 + x1, 13 + x2))

f2(x) = min(9 + x1,−5 + x2)

The circles represent nodes at which “Max” plays, and the squares represent nodes at
which “Min” plays. The initial node, labelled “1”, is shown by an input arrow.

Min-max functions arise when modelling limited synchronisation phenomena: for
instance, a professor haven students arriving at timesx1, . . . , xn may wait for the
first q students amongn to be present to start his lecture. Then, the lecture will start
at time

min
I⊂{1,...,n}

|I|=q

max
i∈I

xi ,

where|I| denotes the cardinality of the setI.

Min-max functions are a tool. For instance, the general system of max-plus linear
equations can be written as

max
1≤j≤n

Aij + xj = max
1≤j≤n

Bij + xj , for 1 ≤ i ≤ p , [7]

where theAij , Bij are given numbers inR ∪ {−∞}. This is equivalent to the sys-
tem of inequalitiesxj ≤ −Aij + max1≤k≤n Bik + xk, when Aij 6= −∞, and
xj ≤ −Bij + max1≤k≤n Aik + xk, whenBij 6= −∞. Except in trivial cases,
this can be rewritten asx ≤ f(x) for some min-max functionf . Some problems
of feedback synthesis for timed event graphs reduce to systems of equations of this
kind (Katz, 2005). Min-max functions also arise in certain discretisation schemes of
Hamilton-Jacobi equations (Akian, Gaubert and Lakhoua, 2004a), and in static anal-
ysis of programs (Costanet al.,2005).

Min-max functions play a remarkable role in the class of monotone additively
homogeneous maps. An observation of Gunawardena and Sparrow (Gunawardena,
2003), and Rubinov and Singer (2001), shows that any monotone additively homo-
geneous mapf can be written as an (infinite) supremum of min-plus linear maps,
f(x) = supy∈Rn min1≤j≤n(xj − yj) + f(y). This implies that any monotone ad-
ditively homogeneous map can be uniformly approximated by min-max functions on
compact sets. This also implies that any periodic orbit of a monotone additively ho-
mogeneous map is a periodic orbit of a min-max function.
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Min-max functions can be obtained as limits from a family of maps arising in the
study of matrix scaling problems (Menon and Schneider, 1969), by a deformation
similar to the one shown in Section 3.2.

To complete this guided tour of monotone homogeneous maps, let us mention that
stochastic repeated games have dynamic programming operators of the form:

f(x) = sup
a∈A

inf
b∈B

P abx + rab , [8]

where theP ab are nonnegative matrices, and therab are vectors, corresponding to the
actionsa andb of the two players.

4. Spectral theory of monotone homogeneous maps

4.1. Existence of an additive eigenvector

If f is nonexpansive in some norm and has a fixed point, every orbit off must
be bounded. A theorem of Nussbaum, stated in the more general context of cones of
Banach spaces, provides a converse.

Theorem 4.1 (See Th. 4.1 of Nussbaum, (1988)). A self map ofRn that is nonexpan-
sive in some norm has a fixed point if and only if it has one bounded orbit.

Nussbaum proved this by constructing, from theω-limit set of one orbit, a com-
pact convex set that is invariant by the map, to which he applied Leray-Schauder’s
fixed point theorem. Let us now apply Nussbaum’s theorem to show the existence of
additive eigenvectors. Ifu, v ∈ Rn, we setu ∼ v if u = λ + v for someλ ∈ R. The
quotientRn/ ∼ is a vector space, which is a normed by Hilbert’s seminorm. A mono-
tone and additively homogeneous self-mapf or Rn induces a self-map ofRn/ ∼
which is nonexpansive in Hilbert’s seminorm, andf has an eigenvector if and only if
its quotient map has a fixed point. It remains to find invariant sets that are bounded in
Hilbert’s seminorm. Natural invariant sets are theslicesof f , which are of the form
Sλ

µ(f) = {x ∈ Rn | µ + x ≤ f(x) ≤ λ + x}, for someλ ∈ R ∪ {+∞} and
µ ∈ R ∪ {−∞}. We get as a corollary of Theorem 4.1:

Corollary 4.1. If f is a monotone additively homogeneous self-map ofRn and if some
sliceSλ

µ is non-empty and bounded in Hilbert’s seminorm, then,f admits an additive
eigenvector.

Checking whether a particular sliceSλ
µ is bounded in Hilbert’s seminorm can be

difficult. However, there are general methods to check whetherall slices are bounded.
We callrecession functionof f the mapf̂(x) := limν→∞ ν−1f(νx).

Theorem 4.2 (Th. 13 of Gaubert and Gunawardena (2004)). Assume thatf is a mono-
tone additively homogeneous self-map ofRn whose recession function̂f exists and has
only fixed points on the diagonal. Then, all the slices off are bounded in Hilbert’s
seminorm. In particular,f has an additive eigenvector.
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There is an even simpler condition involving the additivesuper-eigenspace, Sλ :=
Sλ
−∞ = {x ∈ Rn | f(x) ≤ λ + x}. Let G(f) denote the digraph with nodes
{1, . . . , n}, such that there is an arc fromi to j if limν→+∞ fi(νej) = +∞, whereej

denote thej-th vector of the canonical basis ofRn.

Theorem 4.3 (Th. 10 of Gaubert and Gunawardena (2004)). Let f be a monotone
additively homogeneous self-map ofRn. If G(f) is strongly connected, then all the
super-eigenspacesSλ are bounded in Hilbert’s seminorm. In particular,f has an
additive eigenvector.

A characterisation of thef for which all the super-eigenspaces are bounded in
Hilbert’s seminorm is also given, in terms of aggregated graphs. A characterisation of
the boundedness of all the slices is lacking.

4.2. Some results concerning the cycle time

The top cycle time, χ(f), is defined byχ(f) = limk→∞ t(fk(x))/k. A subaddi-
tive argument shows that:

Proposition 4.1 (Vincent (1997), Gunawardena and Keane (1995)). The top cycle
time of a monotone additively homogeneous self-map ofRn always exists.

There is always one coordinate which realises the top cycle time:

Theorem 4.4 (Th. 8 of Gaubert and Gunawardena (2004)). Let f be a monotone
additively homogeneous self-map ofRn, and letx ∈ Rn. There exists1 ≤ i ≤ n,
such that, for allk ∈ N, fk

i (x) ≥ xi + kχ(f).

For nonexpansive self-maps of Banach spaces, the existence of the cycle time is
related to the strict convexity of the balls (Kohlberg and Neyman, 1981). In partic-
ular, a self-map ofR2 that is nonexpansive in the sup-norm need not have a cycle
time (Kohlberg and Neyman, 1981), and a monotone additively homogeneous self-
map ofR3 need not have a cycle time (Gunawardena and Keane, 1995).

A useful notion in the study of the cycle time problem is the following. Ifv, η ∈
Rn, we say thatt 7→ v + tη is aninvariant half-lineof f if f(v + tη) = v + (t + 1)η
for all t > 0.

Theorem 4.5 (Kohlberg (1980)). If f is a polyhedral self-map ofRn that is non-
expansive in some norm, thenf has an invariant half-line. In particular,χ(f) exists.

Bewley and Kohlberg (1976) showed that dynamic programming operators of cer-
tain stochastic games with finite state and action spaces have a cycle time, because the
discounted valueξα ∈ Rn, solution off(αξα) = ξα, for 0 ≤ α < 1, has a Puiseux
series expansion inα. More generally,
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Theorem 4.6 (Neyman (2003)). A semi-algebraic self-map ofRn that is non-
expansive in some norm has a cycle time.

Neyman showed that if(1 − α)ξα has bounded variation asα tends to1−, then
χ(f) = limα→1−(1 − α)ξα. Other results, also exploiting vanishing discount, ap-
peared in (Rosenberg and Sorin, 2001). A different method relies on the observation
that the set of self-maps ofRn that are non-expansive in a given norm is closed for
the topology of uniform convergence onRn (Gaubert and Gunawardena, 2000), see
also (Bousch and Mairesse, 2003), where a related idea is used. As an application,
let us denote byH the set of monotone additively subhomogeneous self-maps ofRn,
whose coordinates can be written as terms in the grammar:

X → 0, x1, . . . , xn, λ + X, max(X, X),min(X, X), αX + (1− α)X,

β−1 log(exp(βX) + exp(βX)) ,

where λ ∈ R, 0 ≤ α ≤ 1, and β ∈ R \ {0}. For instance, the term
min(9, 7+log(exp(x1)+exp(max(x2, (x3+x1)/2)))) is produced by this grammar.
Up to a trivial generalisation, the classH is equivalent to some classes considered
in (Nussbaum, 1988), (Gaubert and Gunawardena, 1998), and (Gunawardena, 2003).
All the examples of monotone additively subhomogeneous maps presented in this pa-
per belong to the classH . One can check that every mapf ∈ H can be uniformly
approximated by polyhedral monotone additively homogeneous self-maps ofRn (it
suffices to check this property for atomic expressions). It follows that:

Corollary 4.2 (Gaubert and Gunawardena (2000)). Every map inH admits a cycle
time.

The mapg governing the fluid approximation of timed Petri nets can be written
as [5], where the setA is finite. SinceE−1(g) belongs toH , we deduce that:

Corollary 4.3 (Existence of the growth rate of fluid Petri nets). If x(t) denotes the
counter function of the fluid approximation of a timed Petri net, governed by the dy-
namics[6], if all the holding times are integers, and if there is no circuit with zero
holding time, then, the limits

lim
t→∞

(xi(t))1/t, i = 1, . . . , n

exist, and are independent of the initial conditions, provided these are positive.

Cohen, Gaubert and Quadrat (1995) showed that for a subclass of fluid Petri nets,
called undiscounted, and characterised by the existence of certain invariants, the limits
limt→∞ xi(t)/t does exist.

4.3. Eigenvectors in the closed cone

If f is a monotone additively homogeneous self-map ofRn, we introduced in
Section 2.2 the conjugateg = E(f), which is monotone and multiplicatively homo-
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geneous. The additive eigenproblem forf corresponds to themultiplicative eigen-
problemfor g, consisting in findingv ∈ Rn

+∗ andµ ∈ R+∗ such that

g(v) = µv .

The multiplicative eigenproblem is better posed if we allowv to be a non-zero vector
in the closed cone,Rn

+. This is licit becauseg extends continuously toRn
+ (Burbanks,

Nussbaum and Sparrow, 2003). By applying Brouwer’s fixed point theorem to the
mapx 7→ g(x)/(

∑
i gi(x)) which is well defined and preserves the simplex (except

in the trivial case wheng(x) = 0 for some non-zerox ∈ Rn
+), we get thatg has always

at least one eigenvector. We callsupportof an eigenvectorv the setS(v) := {1 ≤
i ≤ n | vi 6= 0}. If a nonnegative vectorx has the same support as the eigenvectorv,
we can writeαv ≤ x ≤ βv, for someα, β > 0, and so

αµkv ≤ gk(x) ≤ βµkv, for all k ≥ 1 .

We deduce that

lim
k→∞

(gk
i (x))1/k = µ , ∀i ∈ S(v) .

Thus, the eigenvalueµ determines the geometric growth rate of all the orbits starting
from a point which has the same support as the eigenvectorv. In particular, the number
of eigenvalues, which cannot exceed the number of supports of non-zero vectors, is
bounded by2n − 1. We call spectral radiusof g its maximal eigenvalue, and we
denote it byρ(g). A result of Nussbaum, stated more generally for self-maps of finite
dimensional cones, yields the following.

Proposition 4.2 (Nussbaum (1986)). The spectral radius of a continuous monotone
multiplicatively homogeneous self-mapg of Rn

+ coincides with

inf
u∈Rn

+∗

max
1≤i≤n

gi(u)
ui

= inf{µ > 0 | g(u) ≤ µu for someu ∈ Rn
+∗} .

The functionu 7→ max1≤i≤n
gi(u)

ui
is sometimes called theCollatz-Wielandt func-

tion, it is used to provide a short proof of the Perron-Frobenius theorem. One can
deduce from the previous proposition, or show directly (Gaubert and Gunawardena,
2004), that

χ(f) = inf{λ ∈ R | ∃v ∈ Rn, f(v) ≤ λ + v} . [9]

This characterisation is particularly useful whenf is convex. It allows one to com-
puteχ(f) as the value of a convex program. It also allows one to solve non-linear
eigenvalue optimisationproblems. Indeed, if(fa)a∈A is a family of monotone ad-
ditively homogeneous maps, if the setA is convex, and if the map(a, x) 7→ fa(x)
is convex, it follows from [9] the problem of findinga ∈ A minimising χ(fa) re-
duces to the following convex programming problem: minimiseλ over the set of
(λ, a, v) ∈ R × A × Rn such thatfa(v) ≤ λ + v. This idea was used in (Gaubert,
1995) to show that the problem of minimising a linear function of the initial mark-
ing of a timed event graph (the cost of the resources), in order to guarantee a given
throughput, reduces to a mixted linear program.
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4.4. Cyclicity theorems

If f is a self-map ofRn that is nonexpansive in a polyhedral norm, then, it is
known that every bounded orbit off converges to a periodic orbit, whose length can
be bounded by a function depending only of the norm (and of course of the integer
n), see (Nussbaum, 1990) and (Sine, 1990). In the case of the sup-norm, Nussbaum,
(1990) has conjectured that the optimal upper bound is2n. For monotone additively
subhomogeneous self-maps ofRn, Lemmens and Scheutzow (2003) have confirmed
a conjecture of Gunawardena and Sparrow, by showing that the optimal bound is(

n
bn/2c

)
, the maximal cardinality of an antichain in{0, 1}n.

It follows that iff is a monotone additively homogeneous map with additive eigen-
valueλ, for all x ∈ Rn, there exists an integerc ≤

(
n

bn/2c
)

such that the sequence

fkc(c)−kcλ converges ask tends to infinity. Whenf is a min-max function, the limit
is attained in finite time (Olsder and Perennes, 1997).

Whenf is monotone, additively subhomogeneous, andconvex, the structure of the
periodic orbits off and of its eigenspace is relatively well understood, particularly
whenf is polyhedral, (Akian and Gaubert, 2003).

The behaviour on theclosedcone of the conjugateE−1(f) is somehow more
complex: any bounded orbit of a continuous monotone multiplicatively homoge-
neous self-map ofRn

+ still converges to a periodic orbit, but its length is now at most
n!/(bn

3 c!b
n+1

3 c!bn+2
3 c!), see (Akianet al.,2004).

4.5. Algorithmic issues

If f is monotone and additively subhomogeneous, we wish to find a fixed point
v ∈ Rn, or an additive eigenvectorv ∈ Rn and its eigenvalueλ ∈ R, or an invariant
half line t 7→ v + tη, wherev, η ∈ Rn. Such quantities allow one to determine the
cycle timeχ(f). Whenf(x) = Px+ c is affine, an invariant half-line is characterised
by the system of equationsPη = η andPv + c = v + η, which is well known in
potential theory.

Whenf is a stochastic control operator like [3], with a finite action spaceA, a
Newton-type algorithm, called policy iteration, initially developed by Howard, is ex-
perimentally efficient. Invariant half-lines can be computed by the multichain policy
iteration algorithm of Denardo and Fox (1968).

We now present a generalisation of Howard’s policy iteration, which applies to
games. We assume that

f = inf
a∈A

fa ,

where(fa)a∈A is a finite family of monotone homogeneous self-maps ofRn, and that
the family (fa)a∈A has alower selection, meaning that for allx ∈ Rn, there exists
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a ∈ A such thatf(x) = fa(x). This assumption is satisfied in game problems if we
take forA the set of pure strategies of one player (then, the mapfa, which is usually
of the form [3], possibly with a different set of actionsA, models the reply of the other
player). The fact that the cardinality ofA may be large is not an obstacle, it suffices
to have an efficient oracle returning the mapfa such thatf(x) = fa(x). We have the
following general method to find a fixed point off .

Algorithm 4.1 (Basic policy iteration algorithm).

1) Initialisation. Setk = 1 and select any actiona1 ∈ A.

2) Value determination. Compute a fixed pointxk of fak .

3) Computef(xk).
4) If f(xk) = xk, returnxk.

5) Policy improvement. Takeak+1 such thatf(xk) = fak+1(xk). Incrementk
and goto Step 2.

If every mapfa has only one fixed point, and if the mapsfa are monotone
and additively subhomogeneous, one can show that the sequencexk is strictly de-
creasing (Cochet-Terrasson, Gaubert and Gunawardena, 2001), (Costanet al.,2005).
Hence, the algorithm converges in finite time. The algorithm converges if, more gen-
erally, every mapfa has a smallest fixed point, and if this fixed point is chosen at every
iteration.

More refined policy iteration algorithms allow one to solve the additive eigen-
problem, and more generally, to compute an invariant half line, see (Gaubert and Gu-
nawardena, 1998) and (Cochet-Terrasson, Gaubert and Gunawardena 1999), for the
case of min-max functions, and (Cochet-Terrasson, 2001) for the more general case of
polyhedral dynamic programming operators of the form [8]. Combined with the ap-
proximation method of Corollary 4.2, this allows one to approximate the cycle time of
any map inH . Systematic tests in the special case of max-plus linear maps (Cochet-
Terrassonet al.,1998), as well as examples of monotone fixed point equations coming
from abstract interpretation (Costanet al., 2005), suggest that policy iteration is ex-
perimentally efficient, even if its theoretical complexity is still unknown. See (Zwick
and Paterson, 1996) for a discussion of complexity issues concerning deterministic
repeated games.
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