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1. Introduction

This survey paper concerns the application of non-linear Perron-Frobenius theory
to the analysis of discrete event systems.

Discrete event systems can often be modelled by a dynamics of the form

w(k) = f(z(k = 1)) (1]

where f is a monotone self-map of a subset®f. The coordinates of the vector
x(k) yield quantitative measures of performance: datels-thf occurrence of certain
repetitive events, quantities of parts of certain kinds produced up tojete. Mono-
tonicity is a natural assumption: it means that the earlier a job is started, the earlier it
is finished.

Questions of interest include computing fixed points, sometimes in a generalised
sense, and determining the asymptotic behaviour of orbits. For instance, one may
expect every coordinate af k) to growth arithmetically ag tends to infinity. Arith-
metical growth rate give performance measures caleslighputor cycle time One
may also ask whether(k) will approach or reach a periodic orbit, perhaps after a
suitable normalisation, or one may look for an initial conditiaf) whose orbit is
stationary, in a suitable sense.

Nonlinear Perron-Frobenius theory gives methods to address these questions. It
deals with the nonlinear extensions of the spectral theory of linear monotone maps. It
has been developed by many researchers and schools, and arises in several fields, such
as control and game theory, linear algebra, mathematical biology, or mathematical
economics. We shall not attempt to survey the field here, see (Nussbaum, 1988) and
the reference therein for an overview. We shall rather emphasise aspects which seem
relevant to discrete event systems, paying a special attention to related problems in
optimal control and game theory.

Several authors have developed monotone dynamical models of timed discrete
event systems, in order to generalise the min-plus or max-plus linear representations of
timed event graphs. The present approach grew out, in particular, after (Olsder, 1991),
(Gunawardena, 1994), (Vincent, 1997), (Cohen, Gaubert and Quadrat, 1995, 1997).
This survey is based specially on (Gaubert and Gunawardena, 1998b, 2004), (Cochet-
Terrasson, Gaubert and Gunawardena, 1999), (Akian and Gaubert, 2003). We could
not list all the relevant works, due to the short space, so the reader is invited to look at
the references of our references.

2. General definitions and basic properties

2.1. Monotonicity, homogeneity, and nonexpansiveness

We say that a self-map or R™ is monotonef

r<y= f(x) < fy)
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where< denotes the standard orderingRf. We say thatf is additively homoge-
neousf it commutes with the addition of a constant, meaning that

fA+z) =+ f(2) ,

forallz € R™ andX € R, whereA + z := (A + z1,..., A + z,). We say thatf is
additively subhomogeneoifsf (A + ) < A + f(x), forallz € R™ and\ € R,
whereR . denotes the set of nonnegative real numbers. Monotone (sub)homogeneous
maps are nonlinear generalisations of (sub)stochastic matrices.

Additive homogeneity is a natural assumption for discrete event systems: if the
entries of the vectog (k) in [[] represent dates, it means that if we delay\dime
units the initial condition, the whole trajectory will be delayed\dime units.

We say that a may is nonexpansiven a metricd if d(f(z), f(y)) < d(z,y). In
particular,f is nonexpansive in the sup-norm if

1 (@) = FW)llse < llz = ylloo -

Crandall and Tartar (1980) observed that an additively homogeneous map is monotone
if and only if it is nonexpansive in the sup-norm. It is also known that a monotone
map is nonexpansive in the sup-norm if and only if it is subhomogeneous, see for
instance (Akiaret al.,2004, Lemma 3.3). Monotone additively homogeneous maps
have been calletbpical functionsdy Gunawardena and Keane (1995). They observed
that topical functions are characterised by the property of being “nonexpansive” with
respect to the map

tz) =1 V-V, ,
meaning that:

t(f(z) = f(y) <tz —y) .
The quantity t(x)” should be read as “top af’, which explains the name “topical”.

TheHilbert’'s seminornis defined by

ol = max x; — min z;

so that||z||y = 0 if and only if z is a constant vector. Monotone and additively
homogeneous maps are nonexpansive in Hilbert’s seminorm.

A monotone additively subhomogeneous self-nfegf R™ can be represented by
a monotone additively homogeneous self-rgayd R™*! as follows:

wherez € R™ andy € R. This is analogue to addingcemetery stato a substochas-
tic matrix to make it stochastic. Singé(z,0) = (f*(z),0), the behaviour off can
be deduced from the one gf
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If f is nonexpansive in any norm, we may consider the following limit, called
cycle time

X(f) = lim fHa)/k

where f* denotes thé-th iterate off. Sincef is nonexpansive, the limit, if it exists,
is independent of. We shall discuss further the problem of the existence of the cycle
time in Section 4.

We say that: € R” is anadditive eigenvectowith additive eigenvalue € R of
a monotone additively homogeneous self-nfapf R™ if

flwy=A+u .

Then, f*(u) = kX +u , forall k > 1. Sincef is nonexpansive, it follows that for
all z € R, f¥(x) stays at bounded distance frdm + u ask tends to infinity. In
particular,

X(f)=(...,A) .

The existence of an additive eigenvector is a central problem: we discuss it in Sec-
tion[4.1.

Examples of monotone additively homogeneous maps can be easily constructed,
because monotonicity and additive homogeneity are preserved by the operations of
pointwise supremum, pointwise infimum, convex combination, and composition.

2.2. The multiplicative setting

It f is a monotone self-map @", it is convenient to consider the conjugate map
E(f) = expofolog , R}, —R%,

whereR ., denotes the set of positive real numbers, denotes the map froR"

to R”, which doesexp entrywise, andog := exp~!. The conjugate) := E(f) is
also monotone. Wheyf is additively homogeneousg, is multiplicatively homoge-
neous, meaning that(uz) = pg(x), for all positive scalarg:.. Similarly, when f

is additively subhomogeneoug,is multiplicatively subhomogeneous, meaning that
g(px) < ug(x), for all scalargu > 1.

The sup-norm onR™ corresponds to th&hompson’s part metrion R?,,
dr(z,y) = ||logz — logy|l-, and Hilbert's seminorm corresponds to the Hilbert’s
projective metricdy (z,y) = ||logx — logy||z. This is a projective metric, since
dg(xz,y) = 0 if and only if the vectorse andy are scalar multiples. Nonexpan-
siveness properties gfin terms of the sup-norm or of Hilbert’'s seminorm translate to
nonexpansiveness propertiegoh terms of Thompson'’s part metric, or Hilbert's pro-
jective metric, respectively. The multiplicative cycle timegof(g) € R, measures
the geometric growth rate of the orbits,

dilg) = lim (fF())V* .
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Of course@(g) = exp(x(f)), and the existence of(f) is equivalent to the existence
of 9(g). We shall see in Sectidr} 4 that by considerjhgnd £(f), we get two points
of views on the same dynamics, bringing complementary informations.

3. A guided tour of monotone homogeneous maps
3.1. Max-plus linear maps, min-plus linear maps, and timed event graphs

The coordinates of max-plus lineamap f : R? — R™ are given by:

filz) = 1213'8%{;; Fij+xj, forl <i<n,
with F;; € RU {—oc}. If every row of the matriX F;;) has at least one finite entry,
the mapf sendsR? to R™. Obviously, f is monotone and additively homogeneous.
The dater functions of timed event graphs, firing at the earliest, are given by a dynam-
ics of the formz(k) = f(x(k — 1)), wheref is a max-plus linear self-map &”.
See (Baccellet al.,1992) for more background.

We say that a map is min-plus linearif the mapz — — f(—x) is max-plus linear.
The counter functions of timed event graphs, firing at the earliest, are governed by a
dynamics of the formx:(k) = f(x(k — 1)), wheref is min-plus linear (Baccelkt al.,
1992).

3.2. Monotone linear maps and their conjugates

If M is an x n nonnegative matrix with no zero row, then, the map
g(z) =Mz

is a monotone and multiplicatively homogeneous self-mag’of. Max-plus (or min-
plus) linear maps arise as limits of suitably scaled conjugates of such maps. Indeed,
f = E(g) is given by

fi(z) = log Z exp(log M;; +z;) , [2]

1<j<n

andlimg o 87" 1og 35, ,, exp(B(log Myj + ;7)) = maxi <<y log My; + ;.

3.3. Convex monotone additively subhomogeneous maps and stochastic control

Dynamic programming operators of stochastic control problems with state space
{1,...,n} and action spacd can be written as

flz) = 51613 Py +r® . [3]



180 RS -JESA -39/2005. MSR'05

Foralla € A, P*is anxn substochastic matri¥{;; gives the probability of transition
from 4 to j when actiorz is chosen), and® is a vector (¢ gives the reward received
in statei, when actioru is chosen). The set of actioasis possibly infinite, but we

requiresup,¢ 4 7 to be finite, so thaf takes finite values.

Since the matrice®“ are nonnegative, the mgpis monotone. It is also convex,
meaning that its coordinates are convex functions. Using Legendre-Fenchel duality,
one can show that any monotone additively subhomogeneous convex function can be
written as [[3], see (Akian and Gaubert, 2003). A remarkable case arises fnisen
polyhedral meaning thaR™ can be covered by finitely many polyedra on whjtks
affine. Then, the sed can be chosen to be finite.

The mapf in [2] is monotone, additively homogeneous, and convex. A way to see
this is to write it explicitly as a supremum of affine maps:

fi(z) = sup p-xz+p-log M;. — S(p) ,

PEX,

whereY,, := {z € R} | z1 + - -- 4+ x,, = 1} is the simplex ;. denotes theé-th row
of M, andS(p) = p1 logp1 + - - - + p, log p,, is theentropyfunction. More generally,
if (M*?)qca is afamily of nonnegative matrices, and if the mattiop,, 4 M * is finite
and has no zero row, then, the map

g(z) = Sug Mz [4]
ac

is such thatZ—!(g) is monotone, additively homogeneous, and convex.

3.4. Concave monotone maps leaving the nonnegative cone invariant and fluid
approximation of time Petri nets

Maps of the form
g(z) = inf Mz +c* (5]

where thel/® are nonnegative matrices, and tlieare nonnegative vectors, arise from
the following fluid approximation of timed Petri nets (Cohen, Gaubert and Quadrat,
1995, 1998).

Consider a timed Petri net, with transitiogs . . ., ¢, and place9, ..., p.. We
denote byu,;; the number of arcs from plagg to transitiong;, and byu;; the number
of arcs from transitiom; to placep;. We denote byn; the initial marking of place;,
and byT; the holding time of this place. In order to write a fluid approximation, we
assume that for every plage, some numbers;; > 0 are given: a proportion;; of
the tokens of place, is assigned to transitioy. We denote by, (¢) the cumulated
number of firings of transition; up to timet, and byz;(t) the cumulated number of
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tokens that have completed their sojourn time in placeefore or at time. The fluid
behaviour is represented by the following dynamics

zi(t) = min it vigzi(), 20 =my+ > et — 1) [6]
By writing “j — 4" in the first equation, we mean that the minimum is taken over the
indices; such that the placg; is a predecessor of transitign Similarly, the sum is
taken over all indiceg such that the transitiog, is a predecessor of plage.

If 7; = 1 for all placesp;, by eliminating the variables;, we getz(t) = g(x(t —
1)) whereg is of the form [3]. The case of integer holding times can be treated along
the same lines, provided that there is no circuit consisting only of places with zero
holding time.

The following example of timed Petri net, together with its fluid approximation, is
taken from (Cohen, Gaubert and Quadrat, 1995). The routing proportions are shown
on the arcs: for instance, a proportigrof the tokens of place, are reserved for the
firing of transitiongs,.

. z1(t) = min(yz1(t),nz4(t))
JZQ(t) = gZQ(t)
@ @ z3(t) = aza(t)
q6 1‘4(t) = (SZl (t)
I M z5(t) = 23(t)
§ IR ot S S
1 z1(t = mit+x2(t—1)+x4(t —1
q3 @ @ 4 Zz(t) = T712—|—2333(t— 1)—|—x1(t— 1)
o * z3(t) = maz+axi1(t—1)
q2 Z4(t) = m4+z5(t— 1)+5L‘6(t— 1)

3.5. Min-max functions and beyond

Min-max functions have been introduced by Olsder, (1991) and Gunawardena,
(1994). They are obtained by composing max-plus linear and min-plus linear maps.
They occur as dynamic programming operators of deterministic zero-sum two-players
games, like the following. Consider a digraph with set of nofles. ., n}, and with
set of arcsE. To every arc(i,j) € E is attached a payofiy;; € R. Two players,
call “Max” and “Min”, will move alternatively a token on this graph. A turn consists
of two moves, by “Max and “Min”, successively. If the token is in nagdé& must be
moved to a nodg such that there is an arc froirto j. At every move froni to j,

“Min” pays to “Max” the amountC;;. If the two players agree to play exaciyurns,
and if the initial position of the token i5 the value of the player “Max” (which is the
same as the opposite of the value of the player “Min”) is given byittteentry of
7%(0), where

fi(z) = max C;; + min Cj+zp .
1<j<n 1<k<n
(i,5)€eE (J:k)eE



182 RS- JESA -39/2005. MSR'05

We next give an example of graph, together with two coordinates of thefmap

3
@Q
. X fi(z) = max(2 + z1, min(8 + x1, 13 + z3))
9 ‘1¥
0

\6 fo(z) = min(9 + 21, —5 + z2)
T

T o
-5

The circles represent nodes at which “Max” plays, and the squares represent nodes at
which “Min” plays. The initial node, labelled1”, is shown by an input arrow.

Min-max functions arise when modelling limited synchronisation phenomena: for
instance, a professor hawvestudents arriving at times,, ..., z,, may wait for the
first ¢ students among to be present to start his lecture. Then, the lecture will start
at time

min maxz; ,
Ic{1,....n} i€l
[I]=q

where|I| denotes the cardinality of the skt

Min-max functions are a tool. For instance, the general system of max-plus linear

equations can be written as
1rélj'a§Xn Aij+zj = 1réljaugxn Bij+zj, forl1<i<p, [7]

where theA;;, B;; are given numbers it U {—oo}. This is equivalent to the sys-
tem of inequalitiesr; < —A;; + maxi<p<p Bir + 2, When4;; # —oo, and
xz; < —Bj; + maxi<k<n Air + zx, WhenB;; # —oo. Except in trivial cases,
this can be rewritten as < f(z) for some min-max functiorf. Some problems
of feedback synthesis for timed event graphs reduce to systems of equations of this
kind (Katz, 2005). Min-max functions also arise in certain discretisation schemes of
Hamilton-Jacobi equations (Akian, Gaubert and Lakhoua, 2004a), and in static anal-
ysis of programs (Costaet al.,2005).

Min-max functions play a remarkable role in the class of monotone additively
homogeneous maps. An observation of Gunawardena and Sparrow (Gunawardena,
2003), and Rubinov and Singer (2001), shows that any monotone additively homo-
geneous map can be written as an (infinite) supremum of min-plus linear maps,
f(z) = supyern mini<j<n(x; — y;) + f(y). This implies that any monotone ad-
ditively homogeneous map can be uniformly approximated by min-max functions on
compact sets. This also implies that any periodic orbit of a monotone additively ho-
mogeneous map is a periodic orbit of a min-max function.
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Min-max functions can be obtained as limits from a family of maps arising in the
study of matrix scaling problems (Menon and Schneider, 1969), by a deformation
similar to the one shown in Sectibn B.2.

To complete this guided tour of monotone homogeneous maps, let us mention that
stochastic repeated games have dynamic programming operators of the form:
—g : f Pab + ab , 8
f(z) sup inf P%z+v 8]

where theP?’ are nonnegative matrices, and #4€ are vectors, corresponding to the
actionsa andb of the two players.

4. Spectral theory of monotone homogeneous maps
4.1. Existence of an additive eigenvector

If f is nonexpansive in some norm and has a fixed point, every orhitrofist
be bounded. A theorem of Nussbaum, stated in the more general context of cones of
Banach spaces, provides a converse.

Theorem 4.1 See Th. 4.1 of Nussbaum, (1988A self map ofR™ that is nonexpan-
sive in some norm has a fixed point if and only if it has one bounded orbit.

Nussbaum proved this by constructing, from thdimit set of one orbit, a com-
pact convex set that is invariant by the map, to which he applied Leray-Schauder’s
fixed point theorem. Let us now apply Nussbaum’s theorem to show the existence of
additive eigenvectors. li,v € R", we setu ~ v if u = A 4+ v for some\ € R. The
quotientR™/ ~ is a vector space, which is a normed by Hilbert's seminorm. A mono-
tone and additively homogeneous self-mapr R™ induces a self-map dR™/ ~
which is nonexpansive in Hilbert's seminorm, afithas an eigenvector if and only if
its quotient map has a fixed point. It remains to find invariant sets that are bounded in
Hilbert’s seminorm. Natural invariant sets are #lieesof f, which are of the form
SMf) ={z e R" | p+ =z < f(z) < X+ x}, for somex € R U {+oo} and
1 € RU{—o0}. We get as a corollary of Theorgdm J4.1:

Corollary 4.1. If f is a monotone additively homogeneous self-map'and if some
inceSﬁ is non-empty and bounded in Hilbert's seminorm, theadmits an additive
eigenvector.

Checking whether a particular slicﬁlﬁ is bounded in Hilbert’s seminorm can be
difficult. However, there are general methods to check whetlhetices are bounded.
We callrecession functionf f the mapf(x) := lim, .., v~ ! f(va).

Theorem 4.2 (Th. 13 of Gaubert and Gunawardena (2Q0#ssume thaf is a mono-
tone additively homogeneous self-mafkéfwhose recession functighexists and has
only fixed points on the diagonal. Then, all the sliceg afre bounded in Hilbert’s
seminorm. In particularf has an additive eigenvector.
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There is an even simpler condition involving the addituper-eigenspacé™ :=
S*. ={x € R*" | f(x) < X+ z}. Let G(f) denote the digraph with nodes
{1,...,n}, such that there is an arc frohto j if lim, .4 o fi(ve;) = +oo, wheree;
denote theg-th vector of the canonical basis Bf*.

Theorem 4.3 {Th. 10 of Gaubert and Gunawardena (2Q04)et f be a monotone
additively homogeneous self-mapRif. If G(f) is strongly connected, then all the
super-eigenspace$® are bounded in Hilbert's seminorm. In particulaf, has an
additive eigenvector.

A characterisation of thg for which all the super-eigenspaces are bounded in
Hilbert's seminorm is also given, in terms of aggregated graphs. A characterisation of
the boundedness of all the slices is lacking.

4.2. Some results concerning the cycle time

Thetop cycle timex(f), is defined byx(f) = lims_.o t(f*(z))/k. A subaddi-
tive argument shows that:

Proposition 4.1 {/incent (1997), Gunawardena and Keane (1993he top cycle
time of a monotone additively homogeneous self-m&J‘ailways exists.

There is always one coordinate which realises the top cycle time:

Theorem 4.4 [Th. 8 of Gaubert and Gunawardena (2004)et f be a monotone
additively homogeneous self-mapRif, and letz € R™. There existd < ¢ < n,
such that, for alk € N, f¥(z) > z; + kx(f)-

For nonexpansive self-maps of Banach spaces, the existence of the cycle time is
related to the strict convexity of the balls (Kohlberg and Neyman, 1981). In partic-
ular, a self-map ofR? that is nonexpansive in the sup-norm need not have a cycle
time (Kohlberg and Neyman, 1981), and a monotone additively homogeneous self-
map ofR? need not have a cycle time (Gunawardena and Keane, 1995).

A useful notion in the study of the cycle time problem is the followingw,lfy €
R™, we say that — v + t7 is aninvariant half-lineof f if f(v+tn) =v+ (t+ 1)p
forallt > 0.

Theorem 4.5 Kohlberg (1980). If f is a polyhedral self-map dR™ that is non-
expansive in some norm, thgrhas an invariant half-line. In particulan (f) exists.

Bewley and Kohlberg (1976) showed that dynamic programming operators of cer-
tain stochastic games with finite state and action spaces have a cycle time, because the
discounted valug, € R", solution of f(a&,) = £,, for 0 < a < 1, has a Puiseux
series expansion in. More generally,
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Theorem 4.6 Neyman (2003) A semi-algebraic self-map dR™ that is non-
expansive in some norm has a cycle time.

Neyman showed that ifl — «)¢, has bounded variation astends tol—, then
x(f) = lim,_;- (1 — a)&,. Other results, also exploiting vanishing discount, ap-
peared in (Rosenberg and Sorin, 2001). A different method relies on the observation
that the set of self-maps @" that are non-expansive in a given norm is closed for
the topology of uniform convergence @i (Gaubert and Gunawardena, 2000), see
also (Bousch and Mairesse, 2003), where a related idea is used. As an application,
let us denote by?’ the set of monotone additively subhomogeneous self-maR$ of
whose coordinates can be written as terms in the grammar:

X —=0,21,...,Zp, A+ X, max(X, X), min(X, X),aX + (1 — o)X,

B~ log(exp(8X) + exp(8X)) ,

whereA € R, 0 < a < 1, andg € R\ {0}. For instance, the term
min(9, 7+log(exp(z1) +exp(max(za, (x3+x1)/2)))) is produced by this grammar.

Up to a trivial generalisation, the clasg’ is equivalent to some classes considered

in (Nussbaum, 1988), (Gaubert and Gunawardena, 1998), and (Gunawardena, 2003).
All the examples of monotone additively subhomogeneous maps presented in this pa-
per belong to the clasg”. One can check that every mgpc ¢ can be uniformly
approximated by polyhedral monotone additively homogeneous self-mdps ¢t
suffices to check this property for atomic expressions). It follows that:

Corollary 4.2 (Gaubert and Gunawardena (2000Every map inz’ admits a cycle
time.

The mapg governing the fluid approximation of timed Petri nets can be written
as E], where the set is finite. SinceE~1(g) belongs tos#’, we deduce that:

Corollary 4.3 (Existence of the growth rate of fluid Petri netdf 2(¢) denotes the
counter function of the fluid approximation of a timed Petri net, governed by the dy-
namics[g], if all the holding times are integers, and if there is no circuit with zero
holding time, then, the limits

Jim ()Y i=1,...,n
exist, and are independent of the initial conditions, provided these are positive.

Cohen, Gaubert and Quadrat (1995) showed that for a subclass of fluid Petri nets,
called undiscounted, and characterised by the existence of certain invariants, the limits
lim;_,~ x;(t)/t does exist.

4.3. Eigenvectors in the closed cone

If fis a monotone additively homogeneous self-ma®Réf we introduced in
Sectior 2.p the conjugate= E(f), which is monotone and multiplicatively homo-
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geneous. The additive eigenproblem fbcorresponds to theultiplicative eigen-
problemfor g, consisting in finding) € R}, andi € R, such that

g(v) = pv .

The multiplicative eigenproblem is better posed if we alloto be a non-zero vector

in the closed con&R’} . This is licit becausg extends continuously &’} (Burbanks,
Nussbaum and Sparrow, 2003). By applying Brouwer’s fixed point theorem to the
mapz — g(x)/(3>_,; 9:(x)) which is well defined and preserves the simplex (except
in the trivial case whep(z) = 0 for some non-zere < R), we get thay has always

at least one eigenvector. We callpportof an eigenvectop the setS(v) := {1 <

i < n | v; # 0}. If a nonnegative vector has the same support as the eigenvector
we can writeaw < z < Sv, for somea, 8 > 0, and so

Oe,ukv < gk(x) < 5//“1), forallk >1 .
We deduce that

lim (g5 (2))"/% = u Vi € S(v) .

k—oo

Thus, the eigenvalug determines the geometric growth rate of all the orbits starting
from a point which has the same support as the eigenvectaiparticular, the number

of eigenvalues, which cannot exceed the number of supports of non-zero vectors, is
bounded by2™ — 1. We call spectral radiusof ¢ its maximal eigenvalue, and we
denote it byp(g). A result of Nussbaum, stated more generally for self-maps of finite
dimensional cones, yields the following.

Proposition 4.2 (Nussbaum (1986) The spectral radius of a continuous monotone
multiplicatively homogeneous self-mapf R’} coincides with
gi(u)

inf ——= =inf < pu for som R?.} .
uéﬁi*lrg%xn " inf{p >0 g(u) < pu for someu € R, }

The functionu — max; <;<,, gié") is sometimes called theollatz-Wielandt func-
tion, it is used to provide a short proof of the Perron-Frobenius theorem. One can
deduce from the previous proposition, or show directly (Gaubert and Gunawardena,
2004), that

X(f)=inf{reR|Fv eR", f(v)<A+v}. [9]

This characterisation is particularly useful whéns convex. It allows one to com-
putex(f) as the value of a convex program. It also allows one to solve non-linear
eigenvalue optimisatioproblems. Indeed, iff,).ca is a family of monotone ad-
ditively homogeneous maps, if the sétis convex, and if the mafu, z) — f,(x)

is convey, it follows from ] the problem of finding € A minimising x(f,) re-

duces to the following convex programming problem: minimlsever the set of

(M a,v) € R x A x R™ such thatf,(v) < A + v. This idea was used in (Gaubert,
1995) to show that the problem of minimising a linear function of the initial mark-
ing of a timed event graph (the cost of the resources), in order to guarantee a given
throughput, reduces to a mixted linear program.
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4.4, Cyclicity theorems

If fis a self-map ofR™ that is nonexpansive in a polyhedral norm, then, it is
known that every bounded orbit gfconverges to a periodic orbit, whose length can
be bounded by a function depending only of the norm (and of course of the integer
n), see (Nussbaum, 1990) and (Sine, 1990). In the case of the sup-norm, Nussbaum,
(1990) has conjectured that the optimal upper bourtf isFor monotone additively
subhomogeneous self-mapsk®f, Lemmens and Scheutzow (2003) have confirmed
a conjecture of Gunawardena and Sparrow, by showing that the optimal bound is
({)2)), the maximal cardinality of an antichain {19, 1}".

It follows that if f is a monotone additively homogeneous map with additive eigen-
value A, for all x € R", there exists an integer < (Ln72j) such that the sequence
f%¢(c) — ke converges ak tends to infinity. Whery is a min-max function, the limit

is attained in finite time (Olsder and Perennes, 1997).

Whenf is monotone, additively subhomogeneous, emavex the structure of the
periodic orbits off and of its eigenspace is relatively well understood, particularly
when f is polyhedral, (Akian and Gaubert, 2003).

The behaviour on thelosedcone of the conjugat&—!(f) is somehow more
complex: any bounded orbit of a continuous monotone multiplicatively homoge-
neous self-map dR’; still converges to a periodic orbit, but its length is now at most
nl/([ 2121 242 ]1), see (Akiaret al.,2004).

4.5, Algorithmic issues

If fis monotone and additively subhomogeneous, we wish to find a fixed point
v € R™, or an additive eigenvectar € R™ and its eigenvalua € R, or an invariant
half linet — v + tn, wherev,n € R™. Such quantities allow one to determine the
cycle timex(f). Whenf(z) = Px + cis affine, an invariant half-line is characterised
by the system of equation8n = n and Pv 4+ ¢ = v + n, which is well known in
potential theory.

When f is a stochastic control operator liKg| [3], with a finite action space
Newton-type algorithm, called policy iteration, initially developed by Howard, is ex-
perimentally efficient. Invariant half-lines can be computed by the multichain policy
iteration algorithm of Denardo and Fox (1968).

We now present a generalisation of Howard’s policy iteration, which applies to
games. We assume that

:.f
f ;gAfa,

where(f.)ac 4 is a finite family of monotone homogeneous self-mapR®fand that
the family (f,).c 4 has alower selectionmeaning that for all: € R", there exists
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a € A such thatf(z) = f,(x). This assumption is satisfied in game problems if we
take for A the set of pure strategies of one player (then, the fijamvhich is usually

of the form [3], possibly with a different set of actiods models the reply of the other
player). The fact that the cardinality of may be large is not an obstacle, it suffices
to have an efficient oracle returning the mgpsuch thatf (z) = f.(z). We have the
following general method to find a fixed point ¢f

Algorithm 4.1 (Basic policy iteration algorithm).

1) Initialisation Setk = 1 and select any action' € A.

2) Value determinationCompute a fixed point* of f,.

3) Computef (z*).

4)If f(2*) = 2F, returnz*.

5) Policy improvement Takea®*! such thatf(z*) = f,x11(2%). Incrementk
and goto Step]2.

If every map f, has only one fixed point, and if the mags are monotone
and additively subhomogeneous, one can show that the sequérisestrictly de-
creasing (Cochet-Terrasson, Gaubert and Gunawardena, 2001), (EostaB005).
Hence, the algorithm converges in finite time. The algorithm converges if, more gen-
erally, every magy,, has a smallest fixed point, and if this fixed point is chosen at every
iteration.

More refined policy iteration algorithms allow one to solve the additive eigen-
problem, and more generally, to compute an invariant half line, see (Gaubert and Gu-
nawardena, 1998) and (Cochet-Terrasson, Gaubert and Gunawardena 1999), for the
case of min-max functions, and (Cochet-Terrasson, 2001) for the more general case of
polyhedral dynamic programming operators of the fdrin [8]. Combined with the ap-
proximation method of Corollafy 4.2, this allows one to approximate the cycle time of
any map ins”. Systematic tests in the special case of max-plus linear maps (Cochet-
Terrassoret al.,1998), as well as examples of monotone fixed point equations coming
from abstract interpretation (Costahal., 2005), suggest that policy iteration is ex-
perimentally efficient, even if its theoretical complexity is still unknown. See (Zwick
and Paterson, 1996) for a discussion of complexity issues concerning deterministic
repeated games.
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