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Max-plus algebra has been discovered more or less independently by several schools, in relation
with various mathematical fields. This chapter is limited to finite dimensional linear algebra. For
more information, the reader may consult the books [CG79, Zim81, CKR84, BCOQ92, KM97,
GM02]. The collections of articles [MS92, Gun98, LM05] give a good idea of current developments.

1 Preliminaries

Definitions

The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b)
and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and
the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of
the results, the generic notations ++, �, ×× (or concatenation), 0 and 1 are used for the addition,
the sum, the multiplication, the zero and the unit of Rmax respectively, so that when a, b belong
to Rmax, a++ b will mean max(a, b), a×× b or ab will mean the usual sum a + b. We use blackboard
(double struck) fonts to denote the max-plus operations (compare “++” with “+”).

The min-plus semiring Rmin is the set R ∪ {+∞} equipped with the addition (a, b) 7→ min(a, b)
and the multiplication (a, b) 7→ a+ b. The zero is +∞, the unit 0. The name tropical is now also
used essentially as a synonym of min-plus. Properly speaking, it refers to the tropical semiring,
which is the subsemiring of Rmin consisting of the elements in N ∪ {+∞}.

The completed max-plus semiring Rmax is the set R∪{±∞} equipped with the addition (a, b) 7→
max(a, b) and the multiplication (a, b) 7→ a+b, with the convention that−∞+(+∞) = +∞+(−∞) =
−∞. The completed min-plus semiring, Rmin, is defined in a dual way.

Many classical algebraic definitions have max-plus analogues. For instance, Rnmax is the set of
n-dimensional vectors and Rn×pmax is the set of n × p matrices with entries in Rmax. They are
equipped with the vector and matrix operations, defined, and denoted, in the usual way. The n× p
zero matrix, 0np or 0, has all its entries equal to 0. The n × n identity matrix, In or I, has
diagonal entries equal 1, and non-diagonal entries equal to 0. Given a matrix A = (Aij) ∈ Rn×pmax ,
we denote by Ai· and A·j the i-th row and the j-th column of A. We also denote by A the linear
map Rpmax → Rnmax sending a vector x to Ax. Semimodules and subsemimodules over the
semiring Rmax are defined as the analogues of modules and submodules over rings. A subset F of
a semimodule M over Rmax spans M , or is a spanning family of M if every element x of M
can be expressed as a finite linear combination of the elements of F , meaning that x = �f∈F λf .f ,
where (λf )f∈F is a family of elements of Rmax such that λf = 0 for all but finitely many f ∈ F . A
semimodule is finitely generated if it has a finite spanning family.

The sets Rmax and Rmax are ordered by the usual order of R ∪ {±∞}. Vectors and matrices over
Rmax are ordered with the product ordering. The supremum and the infimum operations are denoted
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by ∨ and ∧, respectively. Moreover, the sum of the elements of an arbitrary set X of scalars, vectors
or matrices with entries in Rmax is by definition the supremum of X.

If A ∈ Rn×nmax , the Kleene star of A is the matrix A? = I ++A++A2 ++ · · · .

The digraph Γ(A) associated to a n × n matrix A with entries in Rmax consists of the vertices
1, . . . , n, with an arc from vertex i to vertex j when Aij 6= 0. The weight of a walk W given by
(i1, i2), . . . , (ik−1, ik) is |W |A := Ai1i2 · · ·Aik−1ik , and its length is |W | := k − 1. The matrix A is
irreducible if Γ(A) is strongly connected.

Facts

1. When A ∈ Rn×nmax , the weight of a walk W = ((i1, i2), . . . , (ik−1, ik)) in Γ(A) is given by the usual
sum |W |A = Ai1i2 + · · ·+ Aik−1ik , and A?ij gives the maximal weight |W |A of a walk from vertex i

to vertex j. One can also define the matrix A? when A ∈ Rn×nmin . Then, A?ij is the minimal weight of
a walk from vertex i to vertex j. Computing A? is the same as the all pairs shortest path problem.

2. [CG79], [BCOQ92, Th. 3.20] If A ∈ Rn×nmax and the weights of the cycles of Γ(A) do not exceed 1,
then A? = I ++A++ · · ·++An−1.

3. [BCOQ92, Th. 4.75 and Rk. 80] If A ∈ Rn×nmax and b ∈ Rnmax, then the smallest x ∈ Rnmax such
that x = Ax ++ b coincides with the smallest x ∈ Rnmax such that x ≥ Ax ++ b, and it is given by
A?b.

4. [BCOQ92, Th. 3.17] When A ∈ Rn×nmax , b ∈ Rnmax, and when all the cycles of Γ(A) have a weight
strictly less than 1, then A?b is the unique solution x ∈ Rnmax of x = Ax ++ b.

5. Let A ∈ Rn×nmax and b ∈ Rnmax. Construct the sequence:

x0 = b, x1 = Ax0 ++ b, x2 = Ax1 ++ b, . . .

The sequence xk is nondecreasing. If all the cycles of Γ(A) have a weight less than or equal to 1,
then, xn−1 = xn = · · · = A?b. Otherwise, xn−1 6= xn. Computing the sequence xk to determine
A?b is a special instance of label correcting shortest path algorithm [GP88].

6. [BCOQ92, Lemma 4.101] For all a ∈ Rn×nmax , b ∈ Rn×pmax , c ∈ Rp×nmax , and d ∈ Rp×pmax, we have[
a b
c d

]?
=
[
a? ++ a?b(ca?b++ d)?ca? a?b(ca?b++ d)?

(ca?b++ d)?ca? (ca?b++ d)?

]
.

This fact and the next one are special instances of well known results of language theory [Eil74],
concerning unambiguous rational identities. Both are valid in more general semirings.

7. [MY60] Let A ∈ Rn×nmax . Construct the sequence of matrices A(0), . . . , A(n) such that A(0) = A and

A
(k)
ij = A

(k−1)
ij ++A

(k−1)
ik (A(k−1)

kk )?A(k−1)
kj ,

for i, j = 1, . . . , n and k = 1, . . . , n. Then, A(n) = A++A2 ++ · · · .

Example

1. Consider the matrix

A =
[
4 3
7 −∞

]
.

The digraph Γ(A) is

2714

3
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We have

A2 =
[
10 7
11 10

]
.

For instance, A2
11 = A1·A·1 = [4 3][4 7]T = max(4 + 4, 3 + 7) = 10. This gives the maximal weight of

a walk of length 2 from vertex 1 to vertex 1, which is attained by the walk (1, 2), (2, 1). Since there
is one cycle with positive weight in Γ(A) (for instance, the cycle (1, 1) has weight 4), and since A is
irreducible, the matrix A? has all its entries equal to +∞. To get a Kleene star with finite entries,
consider the matrix

C = (−5)A =
[
−1 −2
2 −∞

]
.

The only cycles in Γ(A) are (1, 1) and (1, 2), (2, 1) (up to a cyclic conjugacy). They have weights −1
and 0. Applying Fact 2, we get:

C? = I ++C =
[
0 −2
2 0

]
.

Applications

1. Dynamic programming. Consider a deterministic Markov decision process, with a set of states
{1, . . . , n}, in which one player can move from state i to state j, receiving a payoff of Aij ∈ R∪{−∞}.
To every state i, associate an initial payoff ci ∈ R ∪ {−∞} and a terminal payoff, bi ∈ R ∪ {−∞}.
The value in horizon k is by definition the maximum of the sums of the payoffs (including the
initial and terminal payoffs) corresponding to all the trajectories consisting exactly of k moves. It
is given by cAkb, where the product and the power are understood in the max-plus sense. The
special case where the initial state is equal to some given m ∈ {1, . . . , n} (and where there is no
initial payoff) can be modeled by taking c := em, the m-th max-plus basis vector (whose entries are
all equal to 0, except the m-th entry which is equal to 1). The case where the final state is fixed
can be represented in a dual way. Deterministic Markov decision problems (which are the same
as shortest path problems) are ubiquitous in Operations Research, Mathematical Economics and
Optimal Control.

2. [BCOQ92] Discrete event systems. Consider a system in which certain repetitive events, denoted
by 1, . . . , n, occur. To every event i is associated a dater function xi : Z→ R, where xi(k) represents
the date of the k-th occurrence of event i. Precedence constraints between the repetitive events are
given by a set of arcs E ⊂ {1, . . . , n}2, equipped with two valuations ν : E → N and τ : E → R: if
(i, j) ∈ E, the k-th execution of event i cannot occur earlier than τij time units before the (k−νij)-th
execution of event j, so that xi(k) ≥ maxj: (i,j)∈E τij + xj(k− νij). This can be rewritten, using the
max-plus notation, as

x(k) ≥ A0x(k) ++ · · ·++Aν̄x(k − ν̄) ,

where ν̄ := max(i,j)∈E νij and x(k) ∈ Rnmax is the vector with entries xi(k). Often, the dates
xi(k) are only defined for positive k, then, appropriate initial conditions must be incorporated in
the model. One is particularly interested in the earliest dynamics, which, by Fact 3, is given by
x(k) = A?0A1x(k−1) ++ · · ·++A?0Aν̄x(k−ν̄). The class of systems following dynamics of these forms is
known in the Petri net literature as timed event graphs. It is used to model certain manufacturing
systems [CDQV85], or transportation or communication networks [BCOQ92].

3. N. Bacaër [Bac03] observed that max-plus algebra appears in a familiar problem, crop rotation.
Suppose n different crops can be cultivated every year. Assume for simplicity that the income of the
year is a deterministic function, (i, j) 7→ Aij , depending only on the crop i of the preceding year,
and of the crop j of the current year (a slightly more complex model in which the income of the year
depends on the crops of the two preceding years is needed to explain the historical variations of crop
rotations [Bac03]). The income of a sequence i1, . . . , ik of crops can be written as ci1Ai1i2 · · ·Aik−1ik ,
where ci1 is the income of the first year. The maximal income in k years is given by cAk−1b, where
b = (1, . . . ,1). We next show an example.
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A =

−∞ 11 8
2 5 7
2 6 4

 2

7

6

8
2

2 3

1

11

45

Here, vertices 1, 2, and 3 represent fallow (no crop), wheat, and oat, respectively. (We put no arc
from 1 to 1, setting A11 = −∞, to disallow two successive years of fallow.) The numerical values
have no pretension to realism, however, the income of a year of wheat is 11 after a year of fallow, this
is greater than after a year of cereal (5 or 6, depending on whether wheat or oat was cultivated). An
initial vector coherent with these data may be c = [−∞ 11 8], meaning that the income of the first
year is the same as the income after a year of fallow. We have cAb = 18, meaning that the optimal
income in two years is 18. This corresponds to the optimal walk (2, 3), indicating that wheat and
oat should be successively cultivated during these two years.

2 The maximal cycle mean

Definitions

The maximal cycle mean, ρmax(A), of a matrix A ∈ Rn×nmax , is the maximum of the weight-to-length
ratio over all cycles c of Γ(A), that is:

ρmax(A) = max
c cycle of Γ(A)

|c|A
|c|

= max
k≥1

max
i1,...,ik

Ai1i2 + · · ·+Aiki1
k

. (1)

Denote by Rn×n+ the set of real n× n matrices with nonnegative entries. For A ∈ Rn×n+ and p > 0,
A(p) is by definition the matrix such that (A(p))ij = (Aij)p, and

ρp(A) := (ρ(A(p)))1/p ,

where ρ denotes the (usual) spectral radius. We also define ρ∞(A) = limp→+∞ ρp(A).

Facts

1. [CG79], [Gau92, Ch. IV], [BSvdD95] Max-plus Collatz-Wielandt formula, I. Let A ∈ Rn×nmax and
λ ∈ R. The following assertions are equivalent: (i) there exists u ∈ Rn such that Au ≤ λu; (ii)
ρmax(A) ≤ λ. It follows that:

ρmax(A) = inf
u∈Rn

max
1≤i≤n

(Au)i //ui

(the product Au and the division by ui should be understood in the max-plus sense). If ρmax(A) > 0,
then this infimum is attained by some u ∈ Rn. If in addition A is irreducible, then Assertion (i) is
equivalent to the following: (i’) there exists u ∈ Rnmax \ {0} such that Au ≤ λu.

2. [Gau92, Ch. IV], [BSvdD95] Max-plus Collatz-Wielandt formula, II. Let λ ∈ Rmax. The following
assertions are equivalent: (i) there exists u ∈ Rnmax \ {0} such that Au ≥ λu; (ii) ρmax(A) ≥ λ. It
follows that:

ρmax(A) = max
u∈Rn

max\{0}
min

1≤i≤n
ui 6=0

(Au)i //ui .

3. [Fri86] For A ∈ Rn×n+ , we have ρ∞(A) = exp(ρmax(log(A))), where log is interpreted entrywise.

4. [KO85] For all A ∈ Rn×n+ , and 1 ≤ q ≤ p ≤ ∞, we have ρp(A) ≤ ρq(A).
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5. For all A,B ∈ Rn×n+ , we have

ρ(A ◦B) ≤ ρp(A)ρq(B) for all p, q ∈ [1,∞] such that
1
p

+
1
q

= 1 .

This follows from the classical Kingman’s inequality [Kin61] which states that the map log ◦ρ ◦ exp
is convex (exp is interpreted entrywise). We have in particular ρ(A ◦B) ≤ ρ∞(A)ρ(B).

6. [Fri86] For all A ∈ Rn×n+ , we have

ρ∞(A) ≤ ρ(A) ≤ ρ∞(A)ρ(Â) ≤ ρ∞(A)n ,

where Â is the pattern matrix of A, that is, Âij = 1 if Aij 6= 0 and Âij = 0 if Aij = 0.

7. [Bap98, EvdD99] For all A ∈ Rn×n+ , we have limk→∞(ρ∞(Ak))1/k = ρ(A).

8. [CG79] Computing ρmax(A) by linear programming. For A ∈ Rn×nmax , ρmax(A) is the value of the
linear program

inf λ s.t. ∃u ∈ Rn,∀(i, j) ∈ E, Aij + uj ≤ λ+ ui

where E = {(i, j) | 1 ≤ i, j ≤ n, Aij 6= 0} is the set of arcs of Γ(A).

9. Dual linear program to compute ρmax(A). Let C denote the set of nonnegative vectors x =
(xij)(i,j)∈E such that

∀1 ≤ i ≤ n,
∑

1≤k≤n, (k,i)∈E

xki =
∑

1≤j≤n,(i,j)∈E

xij , and
∑

(i,j)∈E

xij = 1 .

To every cycle c of Γ(A) corresponds bijectively the extreme point of the polytope C which is given by
xij = 1/|c| if (i, j) belongs to c, and xij = 0 otherwise. Moreover, ρmax(A) = sup{

∑
(i,j)∈E Aijxij |

x ∈ C }.

10. [Kar78] Karp’s formula. If A ∈ Rn×nmax is irreducible, then, for all 1 ≤ i ≤ n,

ρmax(A) = max
1≤j≤n
An

ij 6=0

min
1≤k≤n

(An)ij − (An−k)ij
k

. (2)

To evaluate the right hand side expression, compute the sequence u0 = ei, u1 = u0A, un = un−1A,
so that uk = Aki· for all 0 ≤ k ≤ n. This takes a time O(nm), where m is the number of arcs
of Γ(A). One can avoid storing the vectors u0, . . . ,un, at the price of recomputing the sequence
u0, . . . ,un−1 once un is known. The time and space complexity of Karp’s algorithm are O(nm) and
O(n), respectively. The policy iteration algorithm of [CTCG+98] seems experimentally more efficient
than Karp’s algorithm. Other algorithms are given in particular in [CGL96], [BO93], [EvdD99]. A
comparison of maximal cycle mean algorithms appears in [DGI98]. When the entries of A take only
two finite values, the maximal cycle mean of A can be computed in linear time [CGB95]. The Karp
and policy iteration algorithms, as well as the general max-plus operations (full and sparse matrix
products, matrix residuation, etc.) are implemented in the Maxplus toolbox of Scilab, freely
available in the contributed section of the web site www.scilab.org.

Example

1. For the matrix A in Application 3 of Section 1, we have ρmax(A) = max(5, 4, (2 + 11)/2, (2 +
8)/2, (7 + 6)/2, (11 + 7 + 2)/3, (8 + 6 + 2)/3) = 20/3, which gives the maximal reward per year. This
is attained by the cycle (1, 2), (2, 3), (3, 1), corresponding to the rotation of crops: fallow, wheat, oat.
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3 The max-plus eigenproblem

The results of this section and of the next one constitute max-plus spectral theory. Early and
fundamental contributions are due to Cuninghame-Green (see [CG79]), Vorobyev [Vor67], Ro-
manovskĭı [Rom67], Gondran and Minoux [GM77], and Cohen, Dubois, Quadrat, and Viot [CDQV83].
General presentations are included in [CG79, BCOQ92, GM02]. The infinite dimensional max-plus
spectral theory (which is not covered here) has been developed particularly after Maslov, in relation
with Hamilton-Jacobi partial differential equations, see [MS92, KM97]. See also [MPN02, AGW05,
Fat05] for recent developments.

In this section and in the two next ones, A denotes a matrix in Rn×nmax .

Definitions

An eigenvector of A is a vector u ∈ Rnmax \ {0} such that Au = λu, for some scalar λ ∈ Rmax,
which is called the (geometric) eigenvalue corresponding to u. With the notation of classical
algebra, the equation Au = λu can be rewritten as

max
1≤j≤n

Aij + uj = λ+ ui, ∀1 ≤ i ≤ n .

If λ is an eigenvalue of A, the set of vectors u ∈ Rnmax such that Au = λu is the eigenspace of A
for the eigenvalue λ.

The saturation digraph with respect to u ∈ Rnmax, Sat(A,u), is the digraph with vertices 1, . . . , n
and an arc from vertex i to vertex j when Aijuj = (Au)i.

A cycle c = ((i1, i2), . . . , (ik, i1)) that attains the maximum in (1) is called critical. The critical
digraph is the union of the critical cycles. The critical vertices are the vertices of the critical
digraph.

The normalized matrix is Ã = ρmax(A)−1A (when ρmax(A) 6= 0).

For a digraph Γ, vertex i has access to a vertex j, if there is a walk from i to j in Γ. The (access
equivalent) classes of Γ are the equivalence classes of the set of its vertices for the relation “i has
access to j and j has access to i”. A class C has access to a class C ′ if some vertex of C has access
to some vertex of C ′. A class is final if it has access only to itself.

The classes of a matrix A are the classes of Γ(A), and the critical classes of A are the classes of
the critical digraph of A. A class C of A is basic if ρmax(A[C,C]) = ρmax(A).

Facts The proof of most of the following facts can be found in particular in [CG79] or [BCOQ92,
Section 3.7], we give specific references when needed.

1. For any matrix A, ρmax(A) is an eigenvalue of A, and any eigenvalue of A is less than or equal to
ρmax(A).

2. An eigenvalue of A associated with an eigenvector in Rn must be equal to ρmax(A).

3. [ES75] Max-plus diagonal scaling. Assume that u ∈ Rn is an eigenvector of A. Then the matrix
B such that Bij = u−1

i Aijuj has all its entries less than or equal to ρmax(A), and the maximum of
every of its rows is equal to ρmax(A).

4. If A is irreducible, then ρmax(A) > 0 and it is the only eigenvalue of A.

From now on, we assume that Γ(A) has at least one cycle, so that ρmax(A) > 0.

5. For all critical vertices i of A, the column Ã?·i is an eigenvector of A for the eigenvalue ρmax(A).
Moreover, if i and j belong to the same critical class of A, then Ã?·i = Ã?·jÃ

?
ji.
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6. Eigenspace for the eigenvalue ρmax(A). Let C1, . . . , Cs denote the critical classes of A, and let us
choose arbitrarily one vertex it ∈ Ct, for every t = 1, . . . , s. Then, the columns Ã?·,it , t = 1, . . . , s span
the eigenspace of A for the eigenvalue ρmax(A). Moreover, any spanning family of this eigenspace
contains some scalar multiple of every column Ã?·,it , t = 1, . . . , s.

7. Let C denote the set of critical vertices, and let T = {1, . . . , n}\C. The following facts are proved
in a more general setting in [AG03, Th. 3.4], with the exception of (ii), which follows from Fact 4 of
Section 1.

(i) The restriction v 7→ v[C] is an isomorphism from the eigenspace of A for the eigenvalue ρmax(A)
to the eigenspace of A[C,C] for the same eigenvalue.

(ii) An eigenvector u for the eigenvalue ρmax(A) is determined from its restriction u[C] by u[T ] =
(Ã[T, T ])?Ã[T,C]u[C].

(iii) Moreover, ρmax(A) is the only eigenvalue of A[C,C] and the eigenspace of A[C,C] is stable by
infimum and by convex combination in the usual sense.

8. Complementary slackness. If u ∈ Rnmax is such that Au ≤ ρmax(A)u, then (Au)i = ρmax(A)ui,
for all critical vertices i.

9. Critical digraph vs saturation digraph. Let u ∈ Rn be such that Au ≤ ρmax(A)u. Then, the union
of the cycles of Sat(A,u) is equal to the critical digraph of A.

10. [CQD90], [Gau92, Ch. IV], [BSvdD95] Spectrum of reducible matrices. A scalar λ 6= 0 is an
eigenvalue of A if and only if there is at least one class C of A such that ρmax(A[C,C]) = λ and
ρmax(A[C,C]) ≥ ρmax(A[C ′, C ′]) for all classes C ′ that have access to C.

11. [CQD90], [BSvdD95] The matrix A has an eigenvector in Rn if and only if all its final classes
are basic.

12. [Gau92, Ch. IV] Eigenspace for an eigenvalue λ. Let C1, . . . , Cm denote all the classes C of
A such that ρmax(A[C,C]) = λ and ρmax(A[C ′, C ′]) ≤ λ for all classes C ′ that have access to C.
For every 1 ≤ k ≤ m, let Ck1 , . . . , C

k
sk

denote the critical classes of the matrix A[Ck, Ck]. For all
1 ≤ k ≤ m and 1 ≤ t ≤ sk, let us choose arbitrarily an element jk,t in Ckt . Then, the family of
columns (λ−1A)?·,jk,t

, indexed by all these k and t, spans the eigenspace of A for the eigenvalue λ,
and any spanning family of this eigenspace contains a scalar multiple of every (λ−1A)?·,jk,t

.

13. Computing the eigenvectors. Observe first that any vertex j which attains the maximum in
Karp’s formula (2) is critical. To compute one eigenvector for the eigenvalue ρmax(A), it suffices to
compute Ã?·j for some critical vertex j. This is equivalent to a single source shortest path problem,
which can be solved in O(nm) time and O(n) space. Alternatively, one may use the policy iteration
algorithm of [CTCG+98] or the improvement in [EvdD99] of the power algorithm [BO93]. Once a
particular eigenvector is known, the critical digraph can be computed from Fact 9 in O(m) additional
time.

Examples

1. For the matrix A in Application 3 of Section 1, the only critical cycle is (1, 2), (2, 3), (3, 1) (up
to a circular permutation of vertices). The critical digraph consists of the vertices and arcs of this
cycle. By Fact 6, any eigenvector u of A is proportional to Ã?·1 = [0 −13/3 −14/3]T (or equivalently,
to Ã?·2 or Ã?·3). Observe that an eigenvector yields a relative price information between the different
states.

2. Consider the matrix and its associated digraph:
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A =

266666666664

0 · 0 · 7 · · ·
· · 3 0 · · · ·
· 1 · · · · · ·
· 2 · · · · · 10
· · · · 1 0 · ·
· · · · · · 0 ·
· · · · −1 2 · 23
· · · · · · · −3

377777777775 7

5

1

0

2

−1

4

3

2
0

1

0 7

0

10
−3

23

0

1

3

2

6

8

(We use · to represent the element −∞.) The classes of A are C1 = {1}, C2 = {2, 3, 4}, C3 = {5, 6, 7}
and C4 = {8}. We have ρmax(A) = ρmax(A[C2, C2]) = 2, ρmax(A[C1, C1]) = 0, ρmax(A[C3, C3]) = 1,
and ρmax(A[C4, C4]) = −3. The critical digraph is reduced to the critical cycle (2, 3)(3, 2). By
Fact 6, any eigenvector for the eigenvalue ρmax(A) is proportional to Ã?·2 = [−3 0 −1 0 −∞ −∞
−∞ −∞]T . By Fact 10, the other eigenvalues of A are 0 and 1. By Fact 12, any eigenvector for the
eigenvalue 0 is proportional to A?·1 = e1. Observe that the critical classes of A[C3, C3] are C3

1 = {5}
and C3

2 = {6, 7}. Therefore, by Fact 12, any eigenvector for the eigenvalue 1 is a max-plus linear
combination of (1−1A)?·5 = [6 −∞ −∞ −∞ 0 −3 −2 −∞]T and (1−1A)?·6 = [5 −∞ −∞ −∞ −1 0 1
−∞]T . The eigenvalues of AT are 2, 1 and −3. So A and AT have only two eigenvalues in common.

4 Asymptotics of matrix powers

Definitions

A sequence s0, s1, . . . of elements of Rmax is recognizable if there exists a positive integer p, vectors
b ∈ Rp×1

max and c ∈ R1×p
max, and a matrix M ∈ Rp×pmax such that sk = cMkb, for all nonnegative integers

k.

A sequence s0, s1, . . . of elements of Rmax is ultimately geometric with rate λ ∈ Rmax if sk+1 =
λsk for k large enough.

The merge of q sequences s1, . . . , sq is the sequence s such that skq+i−1 = sik, for all k ≥ 0 and
1 ≤ i ≤ q.

Facts

1. [Gun94, CTGG99] If every row of the matrix A has at least one entry different from 0, then, for
all 1 ≤ i ≤ n and u ∈ Rn, the limit

χi(A) = lim
k→∞

(Aku)1/k
i ,

exists and is independent of the choice of u. The vector χ(A) = (χi(A))1≤i≤n ∈ Rn is called the
cycle-time of A. It is given by

χi(A) = max{ρmax(A[C,C]) | C is a class of A to which i has access} .

In particular, if A is irreducible, then χi(A) = ρmax(A) for all i = 1, . . . , n.

2. The following constitutes the cyclicity theorem, due to Cohen, Dubois, Quadrat, and Viot [CDQV83].
See [BCOQ92] and [AGW05] for more accessible accounts.

(i) If A is irreducible, there exists a positive integer γ such that Ak+γ = ρmax(A)γAk for k large
enough. The minimal value of γ is called the cyclicity of A.

(ii) Assume again that A is irreducible. Let C1, . . . , Cs be the critical classes of A and for i = 1, . . . , s,
let γi denote the g.c.d. of the lengths of the critical cycles of A belonging to Ci. Then, the cyclicity
γ of A is the l.c.m. of γ1, . . . , γs.
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(iii) Assume that ρmax(A) 6= 0. The spectral projector of A is the matrix P := limk→∞ ÃkÃ? =
limk→∞ Ãk ++ Ãk+1 ++ · · · . It is given by P = �i∈C Ã

?
·iÃ

?
i·, where C denotes the set of critical vertices

of A. When A is irreducible, the limit is attained in finite time. If in addition A has cyclicity one,
then Ak = ρmax(A)kP for k large enough.

3. Assume that A is irreducible, and let m denote the number of arcs of its critical digraph. Then,
the cyclicity of A can be computed in O(m) time from the critical digraph of A, using the algorithm
of Denardo [Den77].

4. The smallest integer k such that Ak+γ = ρmax(A)γAk is called the coupling time. It is estimated
in [HA99, BG01, AGW05] (assuming again that A is irreducible).

5. [AGW05, Th. 7.5] Turnpike theorem. Define a walk of Γ(A) to be optimal if it has a maximal
weight amongst all walks with the same ends and length. If A is irreducible, then the number
of non-critical vertices of an optimal walk (counted with multiplicities) is bounded by a constant
depending only on A.

6. [Mol88, Gau94, KB94, DS00] A sequence of elements of Rmax is recognizable if and only if it is a
merge of ultimately geometric sequences. In particular, for all 1 ≤ i, j ≤ n, the sequence (Ak)ij is a
merge of ultimately geometric sequences.

7. [Sim78, Has90, Sim94, Gau96] One can decide whether a finitely generated semigroup S of ma-
trices with effective entries in Rmax is finite. One can also decide whether the set of entries in a
given position of the matrices of S is finite (limitedness problem). However [Kro94], whether this set
contains a given entry is undecidable (even when the entries of the matrices belong to Z ∪ {−∞}).

Examples

1. For the matrix A in Application 3 of Section 1, the cyclicity is 3, and the spectral projector is

P = Ã?·1Ã
?
1· =

 0
−13/3
−14/3

 [0 13/3 14/3
]T =

 0 13/3 14/3
−13/3 0 1/3
−14/3 −1/3 0

 .

2. For the matrix A in Example 2 of Section 3, the cycle-time is χ(A) = [2 2 2 2 1 1 1 −3]T .
The cyclicity of A[C2, C2] is 2, because there is only one critical cycle, which has length 2. Let
B := A[C3, C3]. The critical digraph of B has two strongly connected components, consisting
respectively of the cycles (5, 5) and (6, 7), (7, 6). So B has cyclicity lcm(1, 2) = 2. The sequence
sk := (Ak)18 is such that sk+2 = sk + 4, for k ≥ 24, with s24 = s25 = 51. Hence, sk is the merge
of two ultimately geometric sequences, both with rate 4. To get an example where different rates
appear, replace the entries A11 and A88 of A, by −∞. Then, the same sequence sk is such that
sk+2 = sk + 4, for all even k ≥ 24, and sk+2 = sk + 2, for all odd k ≥ 5, with s5 = 31 and s24 = 51.

5 The max-plus permanent

Definitions

The (max-plus) permanent of A is perA = �σ∈Sn
A1σ(1) · · ·Anσ(n), or with the usual notation of

classical algebra, perA = maxσ∈Sn
A1σ(1)+· · ·+Anσ(n), which is the value of the optimal assignment

problem with weights Aij .

A max-plus polynomial function P is a map Rmax → Rmax of the form P (x) = �
n
i=0 pix

i with
pi ∈ Rmax, i = 0, . . . , n. If pn 6= 0, P is of degree n.

The roots of a non-zero max-plus polynomial function P are the points of non-differentiability of
P , together with the point 0 when the derivative of P near −∞ is positive. The multiplicity of a
root α of P is defined as the variation of the derivative of P at the point α, P ′(α+)−P ′(α−), when
α 6= 0, and as its derivative near −∞, P ′(0+), when α = 0.
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The (max-plus) characteristic polynomial function of A is the polynomial function PA given by
PA(x) = per(A++xI) for x ∈ Rmax. The algebraic eigenvalues of A are the roots of PA.

Facts

1. [CGM80] Any non-zero max-plus polynomial function P can be factored uniquely as P (x) =
a(x++α1) · · · (x++αn), where a ∈ R, n is the degree of P and the αi are the roots of P , counted
with multiplicities.

2. [CG83], [ABG04, Th. 4.6 and 4.7]. The greatest algebraic eigenvalue of A is equal to ρmax(A).
Its multiplicity is less than or equal to the number of critical vertices of A, with equality if and only
if the critical vertices can be covered by disjoint critical cycles.

3. Any geometric eigenvalue of A is an algebraic eigenvalue of A (this can be deduced from Fact 2
of this section, and Fact 10 of Section 3).

4. [Yoe61] If A ≥ I and perA = 1, then A?ij = perA(j, i), for all 1 ≤ i, j ≤ n.

5. [But00] Assume that all the entries of A are different from 0. The following are equivalent: (i)
there is a vector b ∈ Rn that has a unique preimage by A; (ii) there is only one permutation σ such
that |σ|A := A1σ(1) · · ·Anσ(n) = perA. Further characterizations can be found in [But00, DSS05].

6. [Bap95] Alexandroff inequality over Rmax. Construct the matrix B with columns A·1, A·1, A·3,. . . ,
A·n and the matrix C with columns A·2, A·2, A·3,. . . , A·n. Then (perA)2 ≥ (perB)(perC), or with
the notation of classical algebra, 2× perA ≥ perB + perC.

7. [BB03] The max-plus characteristic polynomial function of A can be computed by solving O(n)
optimal assignment problems.

Example

1. For the matrix A in Example 2 of Section 3, the characteristic polynomial of A is the prod-
uct of the characteristic polynomials of the matrices A[Ci, Ci], for i = 1, . . . , 4. Thus, PA(x) =
(x++ 0)(x++ 2)2x(x++ 1)3(x++(−3)), and so, the algebraic eigenvalues of A are −∞,−3, 0, 1 and 2,
with respective multiplicities 1, 1, 1, 3 and 2.

6 Linear inequalities and projections

Definitions

If A ∈ Rn×pmax , the range of A, denoted rangeA, is {Ax | x ∈ Rpmax} ⊂ Rnmax. The kernel of A,
denoted kerA, is the set of equivalence classes modulo A, which are the classes for the equivalence
relation “x ∼ y if Ax = Ay”.

The support of a vector b ∈ Rnmax is supp b := {i ∈ {1, . . . , n} | bi 6= 0}.

The orthogonal congruence of a subset U of Rnmax is U⊥ := {(x,y) ∈ Rnmax × Rnmax | u · x =
u · y ∀u ∈ U}, where “·” denotes the max-plus scalar product. The orthogonal space of a subset
C of Rnmax × Rnmax is C> := {u ∈ Rnmax | u · x = u · y ∀(x,y) ∈ C}.

Facts

1. For all a, b ∈ Rmax, the maximal c ∈ Rmax such that ac ≤ b, denoted by a \\ b (or b // a), is given
by a \\ b = b− a if (a, b) 6∈ {(−∞,−∞), (+∞,+∞)}, and a \\ b = +∞ otherwise.
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2. [BCOQ92, Eqn 4.82] If A ∈ Rn×pmax and B ∈ Rn×qmax , then the inequation AX ≤ B has a maximal
solution X ∈ Rp×qmax given by the matrix A \\B defined by (A \\B)ij = ∧1≤k≤nAki \\Bkj . Similarly,
for A ∈ Rn×pmax and C ∈ Rr×pmax, the maximal solution C //A ∈ Rr×nmax of XA ≤ C exists and is given by
(C //A)ij =∧1≤k≤p Cik //Ajk.

3. The equation AX = B has a solution if and only if A(A \\B) = B.

4. For A ∈ Rn×pmax , the map A] : y ∈ Rnmin → A \\y ∈ Rpmin is linear. It is represented by the matrix
−AT .

5. [BCOQ92, Table 4.1] For matrices A,B,C with entries in Rmax and with appropriate dimensions,
we have:

A(A \\(AB)) = AB, A \\(A(A \\B)) = A \\B,
(A++B) \\C = (A \\C) ∧ (B \\C), A \\(B ∧ C) = (A \\B) ∧ (A \\C),

(AB) \\C = B \\(A \\C), A \\(B //C) = (A \\B) //C.

The first five identities have dual versions, with // instead of \\. Due to the last identity, we shall
write A \\B //C instead of A \\(B //C).

6. [CGQ97] Let A ∈ Rn×pmax , B ∈ Rn×qmax and C ∈ Rr×pmax. We have rangeA ⊂ rangeB ⇐⇒ A =
B(B \\A), and kerA ⊂ kerC ⇐⇒ C = (C //A)A.

7. [CGQ96] Let A ∈ Rn×pmax . The map ΠA := A ◦ A] is a projector on the range of A, meaning that
(ΠA)2 = ΠA and range ΠA = rangeA. Moreover, ΠA(x) is the greatest element of the range of A
which is less than or equal to x. Similarly, the map ΠA := A] ◦A is a projector on the range of A],
and ΠA(x) is the smallest element of the range of A] which is greater than or equal to x. Finally,
every equivalence class modulo A meets the range of A] at a unique point.

8. [CGQ04, DS04] For any A ∈ Rn×pmax , the map x 7→ A(−x) is a bijection from range(AT ) to range(A),
with inverse map x 7→ AT (−x).

9. [CGQ96, CGQ97] Projection onto a range parallel to a kernel. Let B ∈ Rn×pmax and C ∈ Rq×nmax .
For all x ∈ Rnmax, there is a greatest ξ on the range of B such that Cξ ≤ Cx. It is given by ΠC

B(x),
where ΠC

B := ΠB ◦ ΠC . We have (ΠC
B)2 = ΠC

B . Assume now that every equivalence class modulo
C meets the range of B at a unique point. This is the case if, and only if, range(CB) = rangeC
and ker(CB) = kerB. Then ΠC

B(x) is the unique element of the range of B which is equivalent to x
modulo C, the map ΠC

B is a linear projector on the range of B, and it is represented by the matrix
(B //(CB))C which is equal to B((CB) \\C).

10. [CGQ97] Regular matrices. Let A ∈ Rn×pmax . The following assertions are equivalent: (i) there is a
linear projector from Rnmax to rangeA; (ii) A = AXA for some X ∈ Rp×nmax ; (iii) A = A(A \\A//A)A.

11. [Vor67], [Zim76, Ch. 3] (see also [But94, AGK05]). Vorobyev-Zimmermann covering theorem.
Assume that A ∈ Rn×pmax and b ∈ Rnmax. For j ∈ {1, . . . , p}, let

Sj = {i ∈ {1, . . . , n} | Aij 6= 0 and Aij \\bi = (A \\b)j} .

The equationAx = b has a solution if and only if ∪1≤j≤pSj ⊃ supp b or equivalently ∪j∈supp(A \\b)Sj ⊃
supp b. It has a unique solution if, and only if, ∪j∈supp(A \\b)Sj ⊃ supp b and ∪j∈JSj 6⊃ supp b for
all strict subsets J of supp(A \\b).

12. [Zim77, SS92, CGQ04, CGQS05, DS04] Separation theorem. Let A ∈ Rn×pmax and b ∈ Rnmax. If
b 6∈ rangeA, then there exists c,d ∈ Rnmax such that the halfspace H := {x ∈ Rnmax | c · x ≥ d · x}
contains rangeA but not b. We can take c = −b and d = −ΠA(b). Moreover, when A and b have
entries in Rmax, c,d can be chosen with entries in Rmax.
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13. [GP97] For any A ∈ Rn×pmax , we have ((rangeA)⊥)> = rangeA.

14. [LMS01, CGQ04] A linear form defined on a finitely generated subsemimodule of Rnmax can be
extended to Rnmax. This is a special case of a max-plus analogue of the Riesz representation theorem.

15. [BH84, GP97] Let A,B ∈ Rn×pmax . The set of solutions x ∈ Rpmax of Ax = Bx is a finitely generated
subsemimodule of Rpmax.

16. [GP97, Gau98] LetX,Y be finitely generated subsemimodules of Rnmax, A ∈ Rn×pmax and B ∈ Rr×nmax .
Then X ∩ Y , X ++Y := {x ++ y | x ∈ X, y ∈ Y }, and X − Y := {z ∈ Rnmax | ∃x ∈ X,y ∈ Y, x =
y ++ z} are finitely generated subsemimodules of Rnmax. Also, A−1(X), B(X), and X⊥ are finitely
generated subsemimodules of Rpmax, Rrmax, and Rnmax×Rnmax, respectively. Similarly, if Z is a finitely
generated subsemimodule of Rnmax ×Rnmax, then Z> is a finitely generated subsemimodule of Rnmax.

17. Facts 13–16 still hold if Rmax is replaced by Rmax.

18. When A,B ∈ Rn×pmax , algorithms to find one solution of Ax = Bx are given in [WB98] or [CGB03].
One can also use the general algorithm of [GG98] to compute a finite fixed point of a min-max
function, together with the observation that x satisfies Ax = Bx if and only if x = f(x), where
f(x) = x ∧ (A \\(Bx)) ∧ (B \\(Ax)).

Examples

1. In order to illustrate Fact 11, consider

A =

0 0 0 −∞ 0.5
1 −2 0 0 1.5
0 3 2 0 3

 , b =

 3
0

0.5

 . (3)

Let x̄ := A \\b. We have x̄1 = min(−0 + 3,−1 + 0,−0 + 0.5) = −1, and so, S1 = {2}, because
the minimum is attained only by the second term. Similarly, x̄2 = −2.5, S2 = {3}, x̄3 = −1.5,
S3 = {3}, x̄4 = 0, S4 = {2}, x̄5 = −2.5, S5 = {3}. Since ∪1≤j≤5Sj = {2, 3} 6⊃ supp b = {1, 2, 3},
Fact 11 shows that the equation Ax = b has no solution. This also follows from the fact that
ΠA(b) = A(A \\b) = [−1 0 0.5]T < b.

2. The range of the previous matrix A is represented on the following picture (left).

e1 e2

p1

p4

p3

p2

e3

p5

e1 e2

e3

b H

ΠA(b)

A non-zero vector x ∈ R3
max is represented by the point that is the barycenter with weights

(exp(βxi))1≤i≤3 of the vertices of the simplex, where β > 0 is a fixed scaling parameter. Every
vertex of the simplex represents one basis vector ei. Proportional vectors are represented by the
same point. The i-th column of A, A·i, is represented by the point pi on the figure. Observe that the
broken segment from p1 to p2, which represents the semimodule generated by A·1 and A·2, contains
p5. Indeed, A·5 = 0.5A·1 ++A·2. The range of A is represented by the closed region in dark grey and
by the bold segments joining the points p1,p2,p4 to it.
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We next compute a half-space separating the point b defined in (3) from rangeA. Recall that
ΠA(b) = [−1 0 0.5]T . So, by Fact 12, a half-space containing rangeA and not b is H := {x ∈
R3

max | (−3)x1 ++ x2 ++(−0.5)x3 ≥ 1x1 ++ x2 ++(−0.5)x3}. We also have H ∩ R3
max = {x ∈ R3

max |
x2 ++(−0.5)x3 ≥ 1x1}. The set of non-zero points of H ∩ R3

max are represented by the light gray
region on the picture, at right.

7 Max-plus linear independence and rank

Definitions

If M is a subsemimodule of Rnmax, u ∈M is an extremal generator of M , or Rmaxu := {λ.u | λ ∈
Rmax} is an extreme ray of M , if u 6= 0 and if u = v ++ w with v,w ∈ M imply that u = v or
u = w.

A family u1, . . . ,ur of vectors of Rnmax is linearly independent in the Gondran-Minoux sense
if for all disjoints subsets I and J of {1, . . . , r}, and all λi ∈ Rmax, i ∈ I ∪ J , we have �i∈I λi.ui 6=
�j∈J λj .uj , unless λi = 0 for all i ∈ I ∪ J .

For A ∈ Rn×nmax , we define

det+A := �
σ∈S+

n

A1σ(1) · · ·Anσ(n), det−A := �
σ∈S−n

A1σ(1) · · ·Anσ(n) ,

where S+
n and S−n are respectively the sets of even and odd permutations of {1, . . . , n}. The bide-

terminant [GM84] of A is (det+A,det−A).

For A ∈ Rn×pmax \ {0}, we define

- the row rank (resp. the column rank) of A, denoted rkrow(A) (resp. rkcol(A)), as the number of
extreme rays of rangeAT (resp. rangeA);

- the Schein rank of A as rkSch(A) := min{r ≥ 1 | A = BC, with B ∈ Rn×rmax , C ∈ Rr×pmax}.
- the strong rank of A, denoted rkst(A), as the maximal r ≥ 1 such that there exists a r × r
submatrix B of A for which there is only one permutation σ such that |σ|B = perB;

- the row (resp. column) Gondran-Minoux rank of A, denoted rkGMr(A) (resp. rkGMc), as the
maximal r ≥ 1 such that A has r linearly independent rows (resp. columns) in the Gondran-Minoux
sense;

- the symmetrized rank of A, denoted rksym(A), as the maximal r ≥ 1 such that A has a r × r
submatrix B such that det+B 6= det−B.

(A new rank notion, Kapranov rank, which is not discussed here, has been recently studied [DSS05].
We also note that the Schein rank is called in this reference Barvinok rank.)

Facts

1. [Hel88, Mol88, Wag91, Gau98, DS04, CGQ05] Let M be a finitely generated subsemimodule of
Rnmax. A subset of vectors of M spans M if, and only if, it contains at least one non-zero element of
every extreme ray of M .

2. [GM02] The columns of A ∈ Rn×nmax are linearly independent in the Gondran-Minoux sense if and
only if det+A 6= det−A.

3. [Plu90], [BCOQ92, Th. 3.78]. Max-plus Cramer’s formula. Let A ∈ Rn×nmax , let b−,b+ ∈ Rnmax.
Define the i-th positive Cramer’s determinant by

D+
i := det+(A·1 . . . A·,i−1b+A·,i+1 . . . A·n) ++ det−(A·1 . . . A·,i−1b−A·,i+1 . . . A·n) ,
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and the i-th negative Cramer’s determinant, D−i , by exchanging b+ and b− in the definition of D+
i .

Assume that x+,x− ∈ Rnmax have disjoint supports. Then, Ax+ ++ b− = Ax−++ b+ implies that

(det+A)x+
i ++(det−A)x−i ++D−i = (det−A)x+

i ++(det+A)x−i ++D+
i ∀1 ≤ i ≤ n . (4)

The converse implication holds, and the vectors x+ and x− are uniquely determined by (4), if
det+A 6= det−A, and if D+

i 6= D−i or D+
i = D−i = 0, for all 1 ≤ i ≤ n. This result is formulated in a

simpler way in [Plu90, BCOQ92] using the symmetrization of the max-plus semiring, which leads to
more general results. We note that the converse implication relies on the following semiring analogue
of the classical adjugate identity: A adj+A++ det−AI = A adj−A++ det+AI, where adj±A :=
(det±A(j, i))1≤i,j≤n. This identity, as well as analogues of many other determinantal identities, can
be obtained using the general method of [RS84]. See for instance [GBCG98], where the derivation
of the Binet-Cauchy identity is detailed.

4. For A ∈ Rn×pmax , we have

rkst(A) ≤ rksym(A) ≤
{

rkGMr(A)
rkGMc(A)

}
≤ rkSch(A) ≤

{
rkrow(A)
rkcol(A) .

The second inequality follows from Fact 2, the third one follows from Facts 2 and 3. The other
inequalities are immediate. Moreover, all these inequalities become equalities if A is regular [CGQ05].

Example

1. The matrix A in Example 1 of Section 6 has column rank 4: the extremal rays of rangeA are
generated by the first four columns of A. All the other ranks of A are equal to 3.
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[But94] P. Butkovič. Strong regularity of matrices—a survey of results. Discrete Appl. Math.,
48(1):45–68, 1994.

[But00] P. Butkovic. Simple image set of (max, +) linear mappings. Discrete Appl. Math.,
105(1-3):73–86, 2000.

[CDQV83] G. Cohen, D. Dubois, J.-P. Quadrat, and M. Viot. Analyse du comportement périodique
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ces. Linear Algebra Appl., 222:77–89, 1995.

[CGB03] R. A. Cuninghame-Green and P. Butkovic. The equation A⊗x = B⊗y over (max,+).
Theoret. Comput. Sci., 293(1):3–12, 2003.

[CGL96] R. A. Cuninghame-Green and Y. Lin. Maximum cycle-means of weighted digraphs.
Appl. Math. JCU, 11B:225–234, 1996.

[CGM80] R. A. Cuninghame-Green and P. F. J. Meijer. An algebra for piecewise-linear minimax
problems. Discrete Appl. Math, 2:267–294, 1980.

[CGQ96] G. Cohen, S. Gaubert, and J.-P. Quadrat. Kernels, images and projections in dioids.
In Proceedings of WODES’96, pages 151–158, Edinburgh, August 1996. IEE.

[CGQ97] G. Cohen, S. Gaubert, and J.-P. Quadrat. Linear projectors in the max-plus algebra.
In Proceedings of the IEEE Mediterranean Conference, Cyprus, 1997. IEEE.

[CGQ04] G. Cohen, S. Gaubert, and J.-P. Quadrat. Duality and separation theorems in idem-
potent semimodules. Linear Algebra and Appl., 379:395–422, 2004.

[CGQ05] G. Cohen, S. Gaubert, and J.-P. Quadrat. Regular matrices in max-plus algebra.
preprint, 2005.

15



[CGQS05] G. Cohen, S. Gaubert, J.-P. Quadrat, and I. Singer. Max-plus convex sets and functions.
In Idempotent Mathematics and Mathematical Physics, Contemp. Math., pages 105–
129. Amer. Math. Soc., 2005.

[CKR84] Z.Q. Cao, K.H. Kim, and F.W. Roush. Incline algebra and applications. Ellis Horwood,
1984.

[CQD90] W. Chen, X. Qi, and S. Deng. The eigen-problem and period analysis of the discrete
event systems. Systems Science and Mathematical Sciences, 3(3), August 1990.

[CTCG+98] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. Mc Gettrick, and J.-P. Quadrat. Nu-
merical computation of spectral elements in max-plus algebra. In Proc. of the IFAC
Conference on System Structure and Control, Nantes, July 1998.

[CTGG99] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed point
theorem for min-max functions. Dynamics and Stability of Systems, 14(4):407–433,
1999.

[Den77] E. V. Denardo. Periods of connected networks and powers of nonnegative matrices.
Math. Oper. Res., 2(1):20–24, 1977.

[DGI98] A. Dasdan, R. K. Gupta, and S. Irani. An experimental study of minimum mean cycle
algorithms. Technical Report 32, UCI-ICS, 1998.

[DS00] B. De Schutter. On the ultimate behavior of the sequence of consecutive powers of a
matrix in the max-plus algebra. Linear Algebra Appl., 307(1-3):103–117, 2000.

[DS04] M. Develin and B. Sturmfels. Tropical convexity. Doc. Math., 9:1–27, 2004. (Erratum
pp. 205–206).

[DSS05] M. Develin, F. Santos, and B. Sturmfels. On the rank of a tropical matrix. In Combi-
natorial and computational geometry, volume 52 of Math. Sci. Res. Inst. Publ., pages
213–242. Cambridge Univ. Press, Cambridge, 2005.

[Eil74] S. Eilenberg. Automata, languages, and machines. Vol. A. Academic Press, New York,
1974. Pure and Applied Mathematics, Vol. 58.

[ES75] G. M. Engel and H. Schneider. Diagonal similarity and equivalence for matrices over
groups with 0. Czechoslovak Math. J., 25(100)(3):389–403, 1975.

[EvdD99] L. Elsner and P. van den Driessche. On the power method in max algebra. Linear
Algebra Appl., 302/303:17–32, 1999.

[Fat05] A. Fathi. Weak KAM theorem in Lagrangian dynamics. Lecture notes, to be published
by Cambridge University Press, 2005.

[Fri86] S. Friedland. Limit eigenvalues of nonnegative matrices. Linear Algebra Appl., 74:173–
178, 1986.
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