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tral radius of sets ofmatri
es in the max-algebra is NP-hardVin
ent D. Blondel, St�ephane Gaubert, John N. TsitsiklisAbstra
t| The lower and average spe
tral radii measurerespe
tively the minimal and average growth rates of longprodu
ts of matri
es taken from a �nite set. The logarithmof the average spe
tral radius is traditionally 
alled Lya-punov exponent. When one performs these produ
ts in themax-algebra, we obtain quantities that measure the perfor-man
e of Dis
rete Event Systems. We show that approxi-mating the lower and average max-algebrai
 spe
tral radiiis NP-hard. I. Introdu
tionFor all positive real numbers p, the semiring Rp is theset of real nonnegative numbers, R+ , equipped with theaddition a+p b def= (ap + bp) 1p ; (1)together with the usual multipli
ation (of 
ourse, when p isan odd integer, Rp 
an be embedded in the �eld (R;+p ;�),but for the de
ision issues studied here, the spe
ializationto nonnegative elements is essential). This family of semir-ings was introdu
ed independently by Maslov and Pap (seee.g. [20℄, [22℄ and the referen
es therein). It has the follow-ing remarkable property: all the semirings Rp are isomor-phi
 to the ordinary semiring R1 of real nonnegative num-bers equipped with the usual operations. Letting p tend to1 in (1), we obtain:a+1 b = max(a; b) :The 
orresponding semiring R1 (the set R+ , equipped with+1 and the usual multipli
ation) is the max-times semir-ing or \max-algebra", whose role in dynami
 programming,dis
rete event system theory, optimal 
ontrol, and asymp-toti
 analysis is well known (see e.g. [1℄, [21℄, [20℄, [16℄,[19℄). In 
ontrast to the semirings Rp for �nite p, thissemiring is not isomorphi
 to R1 . In dis
rete event sys-tems appli
ations, the max-algebra more frequently ap-pears in an isomorphi
 additive form, the semiring Rmax ,whi
h is the set R [ f�1g, equipped with max as addi-tion, and + as multipli
ation. The isomorphism is given byx 7! logx : R1 ! Rmax . To emphasize the parallel withThis work was partly supported by a grant Tournesol (Pro-gramme de 
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existing results, we will state all our results in terms of R1(see Table I).In the sequel, we will use the familiar algebrai
 notationin the 
ontext of the semiring Rp , without further 
om-ments: e.g., if A 2 Rr�sp and B 2 Rs�tp , AB is the r � tmatrix with entries Aij = Ai1B1j+p � � �+pAisBsj . Let k�kdenote a (
onventional) norm on Rr�r . To a �nite set ofmatri
es fA1; : : : ; Alg � Rr�rp , we asso
iate:�max(A1; : : : ; Al) def= limk!1 maxi1;::: ;ik2f1;::: ;lg kAi1 � � �Aikk 1k ; (2a)�min(A1; : : : ; Al) def= limk!1 mini1;::: ;ik2f1;::: ;lg kAi1 � � �Aikk 1k ; (2b)�E(A1; : : : ; Al) def=a.s. limk!1 kAi1 � � �Aikk 1k ; (2
)where in (2
), i1; i2; : : : is sequen
e of independent, i-denti
ally distributed, random variables with values inf1; : : : ; lg, drawn with the uniform distribution, and where\a.s. lim" means that the limit exists almost surely. Theexisten
e and values of all the limits in (2) are 
learly inde-pendent of the 
hoi
e of the norm. In parti
ular, we maytake the norm kAk = max1�i�r jAi1j+p jAi2j+p � � �+p jAir jwhi
h satis�es kABk � kAkkBk. Then, by a 
lassi
al ar-gument, the existen
e of the limit (2a) follows easily fromthe fa
t that the sequen
e wk = maxi1;::: ;ik kAi1 � � �Aikk issubmultipli
ative, i.e. wk+r � wkwr. The existen
e of �minis proved by the same argument. As shown in [7℄ and [1,Chap. 7℄, the existen
e of �E follows from Kingman's subad-ditive ergodi
 theorem. We will 
all �max, �min and �E theupper, lower, and average spe
tral radius of fA1; : : : ; Alg,respe
tively. The logarithm of �E is traditionally 
alled theLyapunov exponent or Lyapunov indi
ator. We note that,trivially, �min � �E � �max : (3)When p = 1, both the upper and average spe
tral radiusare mu
h studied quantities whi
h are notoriously diÆ
ultto 
ompute or approximate in pra
ti
e. In [4, Th. 1 and 2℄,it was shown that even in the 
ase of two matri
es A0; A1with entries in f0; 1g, approximating �max, �min and �E isNP-hard.1Using the fa
t that all the semirings Rp with �nite pare isomorphi
, it follows that analogous results hold forall semirings Rp . In [4, Th. 1 and 2℄ it was also shownthat, if we allow the entries of A0; A1 to be in Z, there isno algorithm that 
an distinguish between instan
es with�min = 0 from instan
es with �min = 1, and similarly for�E . In parti
ular, �min and �E 
annot be approximatedalgorithmi
ally, and the problem of de
iding whether theyare zero is unde
idable. The situation for �max is di�erent.Using the inequalities derived in [8℄, it is immediate to see1A problem A is NP-hard if it is at least as hard as some NP-
omplete problem B, in the sense that B 
an be redu
ed to A inpolynomial time. A polynomial time algorithm for a NP-hard prob-lem would provide polynomial time algorithms for all NP-
ompleteproblems, and would imply that the 
onje
ture P 6=NP is false; see[11℄ for more details. This 
onje
ture is widely believed to be true.
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an be approximated algorithmi
ally to arbitrarypre
ision. One su
h algorithm is given in [18℄.When p = 1, the quantities �max, �min, and �E havebeen mu
h studied by the Dis
rete Event Systems 
om-munity. As shown in [1℄, the Lyapunov exponent log �Emeasures the 
y
le time (inverse of the throughput) of ran-dom max-plus linear dis
rete event systems. The mostintuitive parti
ular interpretation of �E is probably the fol-lowing: if you \play" in a Tetris game of in�nite height,without applying any 
ontrol, just letting pie
es fall downrandomly, you will see, asymptoti
ally, the heap of pie
esgrow at a 
ertain mean speed: this speed is pre
isely log �E(see [12℄, [6℄, [14℄, [9℄, and also x III below for details). Theproblem of 
omputing �E also arises in Statisti
al Physi
s,in the study of disordered systems (log �E yields the freeenergy per site, at zero temperature, for some random onedimensional Ising models [10℄). The study of �E (stru
turalproperties, bounds, et
.) is one of the 
entral themes of [1℄.The logarithm of �max was 
alled worst 
ase Lyapunov ex-ponent in [12℄, for it measures the worst 
ase 
y
le timeof 
ertain max-plus linear dis
rete event systems. For adual reason, the logarithm of �min was 
alled optimal 
aseLyapunov exponent.Sin
e the maximization operation whi
h is involved inthe de�nition of �max is somehow 
ompatible with thestru
ture laws of the max-algebra, �max 
an be 
omputedquite easily: as shown in [12℄, it 
oin
ides with the spe
tralradius of the single matrix A = A1 +1 � � � +1 Al, whi
h
an be 
omputed in polynomial time. So far, the basi
 gen-eral te
hnique to 
ompute �min and �E 
onsists of using an\indu
ed Markov 
hain" 
onstru
tion in the max-algebrai
proje
tive spa
e [1, x8.4℄,[12, xVII℄: when this 
hain is �-nite, both �min and �E 
an be 
omputed with a number ofarithmeti
 operations whi
h is polynomial in the number ofstates of the 
hain. In some other spe
ial 
ases, �E 
an alsobe 
omputed via generating series te
hniques [17℄, or, as il-lustrated in [6℄, by �nding a 
losed form expression for theinvariant measure of the above mentioned Markov 
hain,whi
h is denumerable, in general. A di�erent approa
hwas used in [2℄: we 
an de�ne more generally �E in (2
) bytaking a sequen
e of independent, identi
ally distributed,random variables i1; : : : ; ik, drawn from f1; : : : ; lg with anon uniform distribution � = (�1; �2; : : : ; �l), where �j isthe probability of fi1 = jg.Under some te
hni
al restri
tions, �E is an analyti
 fun
-tion of �1; : : : ; �l near � = (1; 0; : : : ; 0), and the 
oeÆ
ientsof its power series expansion 
an be e�e
tively 
omputed.When this series is still 
onvergent at � = (1=l; : : : ; 1=l),this gives a way of approximating the average spe
tral ra-dius.The purpose of this paper is to analyze the 
omplexityof 
omputing �min and �E when p =1.In a �rst se
tion (xII below) we show that, when p =1,approximating �min or �E is NP-hard. Our proof of thisresult is based on a reworking of the argument given in [4,Proof of Th. 1℄. We build an automaton whose numberof a

epting paths measures the number of satis�ed 
laus-es in a given instan
e of the satis�ability problem SAT.

Our proof then follows from the fa
t that the satis�abilityproblem SAT is known to be NP-
omplete (see the prob-lem LO1 in [11℄) and that the number of a

epting pathsin this spe
ial automaton determines the spe
tral radius ofan asso
iated set of matri
es.This argument does not work when p =1: sin
e +1 isidempotent (i.e. a+1 a = a), several paths 
ount as one.However, a variant of the redu
tion of [5, Proof of Th. 2℄
an be used to prove that approximating �min and �E isNP-hard.In a se
ond se
tion (x3 below) we give a simple, inde-pendent, geometri
al argument that shows that 
omputing�min is NP-hard. The argument is based on an intuitive in-terpretation of produ
ts of matri
es in terms of the heightof a heap of pie
es. In [13℄, [14℄, it was shown that thetotal height of a Tetris-like heap of k pie
es is equal tolog kAi1 : : : Aikk, where Ai1 ; : : : ; Aik are matri
es asso
iat-ed to the pie
es, and kAk = maxij Aij . When all the pie
esare of height 1, log �min 
oin
ides with the inverse of thelargest number of mutually disjoint pie
es. NP-hardness of
omputing �min then follows from the fa
t that 
omputingthe largest number of mutually disjoint pie
es is a problemthat is known to be NP-hard.II. Redu
tion from SATIn the remaining part of the paper, we will assume thatp =1 and we will use the matrix norm kAk = maxij Aij .Let � 7! �(�) be a non-negative fun
tion that we wish to
ompute. We say that � is polynomial-time approximable ifthere exists an algorithm whi
h, for every rational numbers�; �0 > 0 and every �, returns an approximation ��(�; �; �0)su
h that j�� � �j � �� + �0, in time polynomial in thedes
ription size of �; �0 and �. This allows for both anabsolute and a relative error.Theorem 1. Unless P=NP, the lower and average spe
-tral radii of pairs of matri
es with entries in f0; 1g are notpolynomial-time approximable.Proof: Let A1; A2 be square matri
es with entries inf0; 1g. We 
laim that�min(A1; A2) = �E(A1; A2) 2 f0; 1g : (4)Indeed, in the max-algebra, any produ
t of matri
es withentries in f0; 1g gives a matrix with entries in f0; 1g. Afortiori, kAi1 � � �Aikk 2 f0; 1g for all i1; : : : ; ik. Hen
e,if none of the produ
ts Ai1 � � �Aik is 0, �min(A1; A2) =�E(A1; A2) = 1. But if one of these produ
ts is 0, then�min(A1; A2) = 0 and the produ
t that gives 0 will appearalmost surely as a fa
tor of any in�nite produ
t Aj1Aj2 : : :of independent, identi
ally distributed, random matri
es,drawn from fA1; A2g with the uniform distribution. Thisimplies that �E(A1; A2) = 0.Due to (4), it suÆ
es to establish the theorem for �min.Any polynomial time approximation algorithm for �mingives a polynomial time algorithm for distinguishing the
ases �min = 0 and �min = 1. Thus, in order to establish



APPEARS IN: IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEP. 2000, PP. 1762{1765 3�max �min and �E(R;+;�) Approximation algorithm [8℄ No approximation algorithm [4℄Rp = (R+;+p;�) (�nite p) Approximation is NP-hard [4℄ Approximation is NP-hard [4℄R1 = (R+;+1;�) Exa
t polynomial time algorithm [12℄ Approximation is NP-hard [this paper℄TABLE ISummary of 
omplexity results available for �max; �min; �E.the theorem, it suÆ
es to show that the problem of deter-mining whether �min(A1; A2) = 0 is NP-hard, even for the
ase of binary matri
es. The proof is by redu
tion fromSAT and is inspired by [5, Proof. of Th. 2℄.Consider an instan
e of SAT [11℄, with n variablesx1; : : : ; xn and m 
lauses C1; : : : ; Cm. We 
an write ea
h
lause Ci as Ci = Ci;1 or � � � orCi;n, where Ci;j is eitherxj , or not(xj), or the Boolean 
onstant false.Let C = C1 and � � � andCm. For any y 2 ftrue; falsegand k 2 f1; : : : ; ng, let Mk(y) denote the diagonal m�mBoolean matrix with diagonal entries:(Mk(y))i;i = (1 if Ci;k(y) = false,0 if Ci;k(y) = true.Then, for all x 2 ftrue; falsegn,M1(x1) � � �Mn(xn) = 0 if and only if x satis�es C. (5)Let U denote the m�m matrix whose entries are all equalto one. We now 
onsider the nm � nm matri
es A1 =M(false), A2 =M(true), whereM(y) = 0BBBBB� UM1(y) M2(y) . . . Mn�1(y)Mn(y)U
1CCCCCA(the blo
ks whi
h are not shown are zero). We 
laim thatC is not satis�able =) �min(A1; A2) = 1 ;C is satis�able =) �min(A1; A2) = 0 :In order to establish our 
laim, note �rst that for all k, andfor all Boolean sequen
es y of length kn,M(y1) � � �M(ykn)is a blo
k diagonal matrix with diagonal blo
ks:B1;k =UM1(y1) � � �Mn(yn)UUM1(yn+1) � � �Mn(ykn)U; (6a)B2;k =M2(y1) � � �UM1(yn)M2(yn+1) � � �UM1(ykn); (6b)...Bn;k =Mn(y1)U � � �Mn�1(yn)Mn(yn+1) � � �Mn�1(ykn): (6
)Assume that C is not satis�able. Using (5), we get thatB1;k = 1 for all possible Boolean sequen
es y of length kn.This implies that �min(A1; A2) = 1.Next, assume that C is satis�ed by the Boolean sequen
ex1 : : : xn, and 
onsider the in�nite sequen
e of period n+1:y = x1 : : : xn℄x1 : : : xn℄x1 : : : xn℄ : : : ;

where ℄ 
an take an arbitrary Boolean value. For k =n+1, ea
h of the n produ
ts that give B1;k; : : : ; Bn;k in (6)
ontains a fa
tor of the form M1(x1) : : :Mn(xn). Sin
eM1(x1) � � �Mn(xn) = 0 we 
on
lude that �min(A1; A2) =0.Remark. It is not known whether the statement of the the-orem remains valid if we require that the matri
es havepositive entries, or have a �xed, large enough, dimension.III. Redu
tion from SET PACKINGIn Dis
rete Event Systems appli
ations, the quantity ofinterest is the logarithm of �min, rather than �min. In thisse
tion we show that the following problem is NP-hard.Problem (Computing �min).Instan
e: Matri
es A1; : : : ; Al 2 f0; 1; 2gn�n, a rationalnumber q.Question: Does log2 �min(A1; : : : ; Al) < q?Theorem 2. Computing �min is NP-hard.Proof: The proof is based on a simple geometri
alargument that involves a Tetris-like heap of pie
es.Consider a horizontal axis with n � 1 slots labelledf1; 2; : : : ; ng. A pie
e is a solid, possibly dis
onne
ted,blo
k of height one o

upying some of the slots. Considernow a set of pie
es A = fa1; : : : ; alg ea
h pie
e ai beingde�ned by the subset R(ai) � f1; 2; : : : ; ng of slots it o
-
upies. To an ordered sequen
e of pie
es w = ai1 : : : aik weasso
iate a heap by piling up the pie
es in the given orderon a horizontal ground. Pie
es are only subje
t to verti
altranslations and o

upy the lowest possible position thatis above the ground and above the pie
es previously piledup. The height of a heap w on slot i is denoted by hi(w).The height h(w) of a heap w = ai1 : : : aik is the largestof the heights on all slots. For instan
e, when n = 3,A = fa1; a2; a3g, R(a1) = f1; 2g; R(a2) = f3g; R(a3) =f1; 3g, and w = a1a3a2a1a3, we obtain the heap with heighth(w) = 4 depi
ted at the right of Fig. 1.To k � 1, we asso
iate the lowest possible height of aheap of k pie
es taken from A�k = minfh(ai1 : : : aik) j ai1 ; : : : ; aik 2 Ag :We 
laim that the limit� = limk!+1 �kkis equal to 1=M , where M is equal to the maximal num-ber of pie
es in a heap of height one. Indeed, a heap w
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a1Fig. 1. A sequen
e of pie
es and its asso
iated heap.with k pie
es has at most M pie
es per height level, andthus k � h(w)�M . This implies that �k=k � 1=M . More-over, if z is a heap of height one with M pie
es, the heapw obtained by repeating k-times z satis�es h(w) = k and
ontains kM pie
es. Thus, �kM=kM � 1=M , and the 
laimis established.For instan
e, for the pie
es a1; a2, and a3 depi
ted inFig. 1, the set of heaps of height one is fa1; a2; a3; a1a2g,and � = 1=2.Consider now the following NP-hard problem (see theproblem SP3 in [11℄):Problem (Set Pa
king).Instan
e: a 
olle
tion C of �nite sets, a positive integerK � jCj.Question: does C 
ontain at least K mutually disjoint sets?Modulo some 
hanges of notation, this result 
an berephrased in our framework by saying that, for a giv-en set of pie
es A = fa1; : : : ; alg and a positive integerK � jAj = l, the problem of determining if K is largerthan the maximal number of pie
es in a heap of heightone, is NP-hard. Sin
e � = 1=M an analogous statementis possible for �.To 
on
lude, we des
ribe a 
onne
tion between height-s of heaps of pie
es and norms of produ
ts of matri-
es in the semiring R1 . To a pie
e ak 2 A o

upyingthe slots R(ak) � f1; 2; : : : ; ng we asso
iate the matrixAk 2 f0; 1; 2gn�n whose entries are identi
al to the entriesof the identity matrix, with the ex
eption of the elements(Ak)ij whi
h are set to 2 whenever i; j 2 R(ak). It is shownin [14℄ that the height h(w) of the heap w = ai1 : : : aik isgiven by h(w) = log2 kAi1 � � �Aikk:From this it follows that� = limk!1 mini1;::: ;ik2f1;::: ;lg log2 kAi1 � � �Aikk= log2 �min(A1; : : : ; Al):Sin
e the instan
e of Computing �min is 
onstru
ted fromthe instan
e of Set Pa
king in polynomial time, it followsthat Computing �min is NP-hard.

IV. Con
lusionOf 
ourse, the interest of the NP-hardness results of thispaper is mostly theoreti
al: Theorems 1 and 2 show thatthere is little hope to �nd a polynomial algorithm to 
om-pute �E or �min. But the situation seems mu
h simpler inthe 
ase of the max-algebra, R1 , than in the 
ase of theusual algebra (R;+;�). For instan
e, as summarized inTable I above, the problem of approximating �max, whi
his NP-hard in (R;+;�) be
omes polynomially solvable inR1 . Moreover, in this paper, we only proved that in thesemiring R1 , approximating �min or �E is NP-hard: thisis a weak \impossibility" result, by 
omparison to the fa
tthat the 
orresponding problems in (R;+;�) are unde
id-able. Indeed, unlike in the usual algebra (R;+;�), in themax-algebra, �min and �E 
an be approximated (with anexponential exe
ution time), at least in some importantspe
ial 
ases [17℄, [12℄, [15℄, [2℄. Improving and generaliz-ing these algorithms, as well as identifying new examples ofexa
tly solved models, is 
ertainly an interesting resear
hdire
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