
APPEARS IN: IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEP. 2000, PP. 1762{1765 1Approximating the spetral radius of sets ofmatries in the max-algebra is NP-hardVinent D. Blondel, St�ephane Gaubert, John N. TsitsiklisAbstrat| The lower and average spetral radii measurerespetively the minimal and average growth rates of longproduts of matries taken from a �nite set. The logarithmof the average spetral radius is traditionally alled Lya-punov exponent. When one performs these produts in themax-algebra, we obtain quantities that measure the perfor-mane of Disrete Event Systems. We show that approxi-mating the lower and average max-algebrai spetral radiiis NP-hard. I. IntrodutionFor all positive real numbers p, the semiring Rp is theset of real nonnegative numbers, R+ , equipped with theaddition a+p b def= (ap + bp) 1p ; (1)together with the usual multipliation (of ourse, when p isan odd integer, Rp an be embedded in the �eld (R;+p ;�),but for the deision issues studied here, the speializationto nonnegative elements is essential). This family of semir-ings was introdued independently by Maslov and Pap (seee.g. [20℄, [22℄ and the referenes therein). It has the follow-ing remarkable property: all the semirings Rp are isomor-phi to the ordinary semiring R1 of real nonnegative num-bers equipped with the usual operations. Letting p tend to1 in (1), we obtain:a+1 b = max(a; b) :The orresponding semiring R1 (the set R+ , equipped with+1 and the usual multipliation) is the max-times semir-ing or \max-algebra", whose role in dynami programming,disrete event system theory, optimal ontrol, and asymp-toti analysis is well known (see e.g. [1℄, [21℄, [20℄, [16℄,[19℄). In ontrast to the semirings Rp for �nite p, thissemiring is not isomorphi to R1 . In disrete event sys-tems appliations, the max-algebra more frequently ap-pears in an isomorphi additive form, the semiring Rmax ,whih is the set R [ f�1g, equipped with max as addi-tion, and + as multipliation. The isomorphism is given byx 7! logx : R1 ! Rmax . To emphasize the parallel withThis work was partly supported by a grant Tournesol (Pro-gramme de oop�eration sienti�que entre la Frane et la ommunaut�eFran�aise de Belgique), by the European Community Framework IVprogram through the researh network ALAPEDES (\The Algebra-i Approah to Performane Evaluation of Disrete Event Systems",RB-FMRX-CT-96-0074), and by the National Siene Foundation un-der grant ACI-9873339.V. D. Blondel is with Cesame, Bâtiment Euler, University of Lou-vain, Av. G. Lemaitre 4, B-1348 Louvain-la-Neuve, Belgium; email:blondel�inma.ul.a.beS. Gaubert is with ENSTA and INRIA. Postal address: UMA,ENSTA, 32 Bd. Vitor, 75739 Paris Cedex 15, Frane; email:Stephane.Gaubert�inria.frJ. N. Tsitsiklis is with the Laboratory for Information and De-ision Systems, Massahusetts Institute of Tehnology, Cambridge,MA 02139, USA; email: jnt�mit.edu

existing results, we will state all our results in terms of R1(see Table I).In the sequel, we will use the familiar algebrai notationin the ontext of the semiring Rp , without further om-ments: e.g., if A 2 Rr�sp and B 2 Rs�tp , AB is the r � tmatrix with entries Aij = Ai1B1j+p � � �+pAisBsj . Let k�kdenote a (onventional) norm on Rr�r . To a �nite set ofmatries fA1; : : : ; Alg � Rr�rp , we assoiate:�max(A1; : : : ; Al) def= limk!1 maxi1;::: ;ik2f1;::: ;lg kAi1 � � �Aikk 1k ; (2a)�min(A1; : : : ; Al) def= limk!1 mini1;::: ;ik2f1;::: ;lg kAi1 � � �Aikk 1k ; (2b)�E(A1; : : : ; Al) def=a.s. limk!1 kAi1 � � �Aikk 1k ; (2)where in (2), i1; i2; : : : is sequene of independent, i-dentially distributed, random variables with values inf1; : : : ; lg, drawn with the uniform distribution, and where\a.s. lim" means that the limit exists almost surely. Theexistene and values of all the limits in (2) are learly inde-pendent of the hoie of the norm. In partiular, we maytake the norm kAk = max1�i�r jAi1j+p jAi2j+p � � �+p jAir jwhih satis�es kABk � kAkkBk. Then, by a lassial ar-gument, the existene of the limit (2a) follows easily fromthe fat that the sequene wk = maxi1;::: ;ik kAi1 � � �Aikk issubmultipliative, i.e. wk+r � wkwr. The existene of �minis proved by the same argument. As shown in [7℄ and [1,Chap. 7℄, the existene of �E follows from Kingman's subad-ditive ergodi theorem. We will all �max, �min and �E theupper, lower, and average spetral radius of fA1; : : : ; Alg,respetively. The logarithm of �E is traditionally alled theLyapunov exponent or Lyapunov indiator. We note that,trivially, �min � �E � �max : (3)When p = 1, both the upper and average spetral radiusare muh studied quantities whih are notoriously diÆultto ompute or approximate in pratie. In [4, Th. 1 and 2℄,it was shown that even in the ase of two matries A0; A1with entries in f0; 1g, approximating �max, �min and �E isNP-hard.1Using the fat that all the semirings Rp with �nite pare isomorphi, it follows that analogous results hold forall semirings Rp . In [4, Th. 1 and 2℄ it was also shownthat, if we allow the entries of A0; A1 to be in Z, there isno algorithm that an distinguish between instanes with�min = 0 from instanes with �min = 1, and similarly for�E . In partiular, �min and �E annot be approximatedalgorithmially, and the problem of deiding whether theyare zero is undeidable. The situation for �max is di�erent.Using the inequalities derived in [8℄, it is immediate to see1A problem A is NP-hard if it is at least as hard as some NP-omplete problem B, in the sense that B an be redued to A inpolynomial time. A polynomial time algorithm for a NP-hard prob-lem would provide polynomial time algorithms for all NP-ompleteproblems, and would imply that the onjeture P 6=NP is false; see[11℄ for more details. This onjeture is widely believed to be true.



APPEARS IN: IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEP. 2000, PP. 1762{1765 2that �max an be approximated algorithmially to arbitrarypreision. One suh algorithm is given in [18℄.When p = 1, the quantities �max, �min, and �E havebeen muh studied by the Disrete Event Systems om-munity. As shown in [1℄, the Lyapunov exponent log �Emeasures the yle time (inverse of the throughput) of ran-dom max-plus linear disrete event systems. The mostintuitive partiular interpretation of �E is probably the fol-lowing: if you \play" in a Tetris game of in�nite height,without applying any ontrol, just letting piees fall downrandomly, you will see, asymptotially, the heap of pieesgrow at a ertain mean speed: this speed is preisely log �E(see [12℄, [6℄, [14℄, [9℄, and also x III below for details). Theproblem of omputing �E also arises in Statistial Physis,in the study of disordered systems (log �E yields the freeenergy per site, at zero temperature, for some random onedimensional Ising models [10℄). The study of �E (struturalproperties, bounds, et.) is one of the entral themes of [1℄.The logarithm of �max was alled worst ase Lyapunov ex-ponent in [12℄, for it measures the worst ase yle timeof ertain max-plus linear disrete event systems. For adual reason, the logarithm of �min was alled optimal aseLyapunov exponent.Sine the maximization operation whih is involved inthe de�nition of �max is somehow ompatible with thestruture laws of the max-algebra, �max an be omputedquite easily: as shown in [12℄, it oinides with the spetralradius of the single matrix A = A1 +1 � � � +1 Al, whihan be omputed in polynomial time. So far, the basi gen-eral tehnique to ompute �min and �E onsists of using an\indued Markov hain" onstrution in the max-algebraiprojetive spae [1, x8.4℄,[12, xVII℄: when this hain is �-nite, both �min and �E an be omputed with a number ofarithmeti operations whih is polynomial in the number ofstates of the hain. In some other speial ases, �E an alsobe omputed via generating series tehniques [17℄, or, as il-lustrated in [6℄, by �nding a losed form expression for theinvariant measure of the above mentioned Markov hain,whih is denumerable, in general. A di�erent approahwas used in [2℄: we an de�ne more generally �E in (2) bytaking a sequene of independent, identially distributed,random variables i1; : : : ; ik, drawn from f1; : : : ; lg with anon uniform distribution � = (�1; �2; : : : ; �l), where �j isthe probability of fi1 = jg.Under some tehnial restritions, �E is an analyti fun-tion of �1; : : : ; �l near � = (1; 0; : : : ; 0), and the oeÆientsof its power series expansion an be e�etively omputed.When this series is still onvergent at � = (1=l; : : : ; 1=l),this gives a way of approximating the average spetral ra-dius.The purpose of this paper is to analyze the omplexityof omputing �min and �E when p =1.In a �rst setion (xII below) we show that, when p =1,approximating �min or �E is NP-hard. Our proof of thisresult is based on a reworking of the argument given in [4,Proof of Th. 1℄. We build an automaton whose numberof aepting paths measures the number of satis�ed laus-es in a given instane of the satis�ability problem SAT.

Our proof then follows from the fat that the satis�abilityproblem SAT is known to be NP-omplete (see the prob-lem LO1 in [11℄) and that the number of aepting pathsin this speial automaton determines the spetral radius ofan assoiated set of matries.This argument does not work when p =1: sine +1 isidempotent (i.e. a+1 a = a), several paths ount as one.However, a variant of the redution of [5, Proof of Th. 2℄an be used to prove that approximating �min and �E isNP-hard.In a seond setion (x3 below) we give a simple, inde-pendent, geometrial argument that shows that omputing�min is NP-hard. The argument is based on an intuitive in-terpretation of produts of matries in terms of the heightof a heap of piees. In [13℄, [14℄, it was shown that thetotal height of a Tetris-like heap of k piees is equal tolog kAi1 : : : Aikk, where Ai1 ; : : : ; Aik are matries assoiat-ed to the piees, and kAk = maxij Aij . When all the pieesare of height 1, log �min oinides with the inverse of thelargest number of mutually disjoint piees. NP-hardness ofomputing �min then follows from the fat that omputingthe largest number of mutually disjoint piees is a problemthat is known to be NP-hard.II. Redution from SATIn the remaining part of the paper, we will assume thatp =1 and we will use the matrix norm kAk = maxij Aij .Let � 7! �(�) be a non-negative funtion that we wish toompute. We say that � is polynomial-time approximable ifthere exists an algorithm whih, for every rational numbers�; �0 > 0 and every �, returns an approximation ��(�; �; �0)suh that j�� � �j � �� + �0, in time polynomial in thedesription size of �; �0 and �. This allows for both anabsolute and a relative error.Theorem 1. Unless P=NP, the lower and average spe-tral radii of pairs of matries with entries in f0; 1g are notpolynomial-time approximable.Proof: Let A1; A2 be square matries with entries inf0; 1g. We laim that�min(A1; A2) = �E(A1; A2) 2 f0; 1g : (4)Indeed, in the max-algebra, any produt of matries withentries in f0; 1g gives a matrix with entries in f0; 1g. Afortiori, kAi1 � � �Aikk 2 f0; 1g for all i1; : : : ; ik. Hene,if none of the produts Ai1 � � �Aik is 0, �min(A1; A2) =�E(A1; A2) = 1. But if one of these produts is 0, then�min(A1; A2) = 0 and the produt that gives 0 will appearalmost surely as a fator of any in�nite produt Aj1Aj2 : : :of independent, identially distributed, random matries,drawn from fA1; A2g with the uniform distribution. Thisimplies that �E(A1; A2) = 0.Due to (4), it suÆes to establish the theorem for �min.Any polynomial time approximation algorithm for �mingives a polynomial time algorithm for distinguishing theases �min = 0 and �min = 1. Thus, in order to establish



APPEARS IN: IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 9, SEP. 2000, PP. 1762{1765 3�max �min and �E(R;+;�) Approximation algorithm [8℄ No approximation algorithm [4℄Rp = (R+;+p;�) (�nite p) Approximation is NP-hard [4℄ Approximation is NP-hard [4℄R1 = (R+;+1;�) Exat polynomial time algorithm [12℄ Approximation is NP-hard [this paper℄TABLE ISummary of omplexity results available for �max; �min; �E.the theorem, it suÆes to show that the problem of deter-mining whether �min(A1; A2) = 0 is NP-hard, even for thease of binary matries. The proof is by redution fromSAT and is inspired by [5, Proof. of Th. 2℄.Consider an instane of SAT [11℄, with n variablesx1; : : : ; xn and m lauses C1; : : : ; Cm. We an write eahlause Ci as Ci = Ci;1 or � � � orCi;n, where Ci;j is eitherxj , or not(xj), or the Boolean onstant false.Let C = C1 and � � � andCm. For any y 2 ftrue; falsegand k 2 f1; : : : ; ng, let Mk(y) denote the diagonal m�mBoolean matrix with diagonal entries:(Mk(y))i;i = (1 if Ci;k(y) = false,0 if Ci;k(y) = true.Then, for all x 2 ftrue; falsegn,M1(x1) � � �Mn(xn) = 0 if and only if x satis�es C. (5)Let U denote the m�m matrix whose entries are all equalto one. We now onsider the nm � nm matries A1 =M(false), A2 =M(true), whereM(y) = 0BBBBB� UM1(y) M2(y) . . . Mn�1(y)Mn(y)U
1CCCCCA(the bloks whih are not shown are zero). We laim thatC is not satis�able =) �min(A1; A2) = 1 ;C is satis�able =) �min(A1; A2) = 0 :In order to establish our laim, note �rst that for all k, andfor all Boolean sequenes y of length kn,M(y1) � � �M(ykn)is a blok diagonal matrix with diagonal bloks:B1;k =UM1(y1) � � �Mn(yn)UUM1(yn+1) � � �Mn(ykn)U; (6a)B2;k =M2(y1) � � �UM1(yn)M2(yn+1) � � �UM1(ykn); (6b)...Bn;k =Mn(y1)U � � �Mn�1(yn)Mn(yn+1) � � �Mn�1(ykn): (6)Assume that C is not satis�able. Using (5), we get thatB1;k = 1 for all possible Boolean sequenes y of length kn.This implies that �min(A1; A2) = 1.Next, assume that C is satis�ed by the Boolean sequenex1 : : : xn, and onsider the in�nite sequene of period n+1:y = x1 : : : xn℄x1 : : : xn℄x1 : : : xn℄ : : : ;

where ℄ an take an arbitrary Boolean value. For k =n+1, eah of the n produts that give B1;k; : : : ; Bn;k in (6)ontains a fator of the form M1(x1) : : :Mn(xn). SineM1(x1) � � �Mn(xn) = 0 we onlude that �min(A1; A2) =0.Remark. It is not known whether the statement of the the-orem remains valid if we require that the matries havepositive entries, or have a �xed, large enough, dimension.III. Redution from SET PACKINGIn Disrete Event Systems appliations, the quantity ofinterest is the logarithm of �min, rather than �min. In thissetion we show that the following problem is NP-hard.Problem (Computing �min).Instane: Matries A1; : : : ; Al 2 f0; 1; 2gn�n, a rationalnumber q.Question: Does log2 �min(A1; : : : ; Al) < q?Theorem 2. Computing �min is NP-hard.Proof: The proof is based on a simple geometrialargument that involves a Tetris-like heap of piees.Consider a horizontal axis with n � 1 slots labelledf1; 2; : : : ; ng. A piee is a solid, possibly disonneted,blok of height one oupying some of the slots. Considernow a set of piees A = fa1; : : : ; alg eah piee ai beingde�ned by the subset R(ai) � f1; 2; : : : ; ng of slots it o-upies. To an ordered sequene of piees w = ai1 : : : aik weassoiate a heap by piling up the piees in the given orderon a horizontal ground. Piees are only subjet to vertialtranslations and oupy the lowest possible position thatis above the ground and above the piees previously piledup. The height of a heap w on slot i is denoted by hi(w).The height h(w) of a heap w = ai1 : : : aik is the largestof the heights on all slots. For instane, when n = 3,A = fa1; a2; a3g, R(a1) = f1; 2g; R(a2) = f3g; R(a3) =f1; 3g, and w = a1a3a2a1a3, we obtain the heap with heighth(w) = 4 depited at the right of Fig. 1.To k � 1, we assoiate the lowest possible height of aheap of k piees taken from A�k = minfh(ai1 : : : aik) j ai1 ; : : : ; aik 2 Ag :We laim that the limit� = limk!+1 �kkis equal to 1=M , where M is equal to the maximal num-ber of piees in a heap of height one. Indeed, a heap w
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a1Fig. 1. A sequene of piees and its assoiated heap.with k piees has at most M piees per height level, andthus k � h(w)�M . This implies that �k=k � 1=M . More-over, if z is a heap of height one with M piees, the heapw obtained by repeating k-times z satis�es h(w) = k andontains kM piees. Thus, �kM=kM � 1=M , and the laimis established.For instane, for the piees a1; a2, and a3 depited inFig. 1, the set of heaps of height one is fa1; a2; a3; a1a2g,and � = 1=2.Consider now the following NP-hard problem (see theproblem SP3 in [11℄):Problem (Set Paking).Instane: a olletion C of �nite sets, a positive integerK � jCj.Question: does C ontain at least K mutually disjoint sets?Modulo some hanges of notation, this result an berephrased in our framework by saying that, for a giv-en set of piees A = fa1; : : : ; alg and a positive integerK � jAj = l, the problem of determining if K is largerthan the maximal number of piees in a heap of heightone, is NP-hard. Sine � = 1=M an analogous statementis possible for �.To onlude, we desribe a onnetion between height-s of heaps of piees and norms of produts of matri-es in the semiring R1 . To a piee ak 2 A oupyingthe slots R(ak) � f1; 2; : : : ; ng we assoiate the matrixAk 2 f0; 1; 2gn�n whose entries are idential to the entriesof the identity matrix, with the exeption of the elements(Ak)ij whih are set to 2 whenever i; j 2 R(ak). It is shownin [14℄ that the height h(w) of the heap w = ai1 : : : aik isgiven by h(w) = log2 kAi1 � � �Aikk:From this it follows that� = limk!1 mini1;::: ;ik2f1;::: ;lg log2 kAi1 � � �Aikk= log2 �min(A1; : : : ; Al):Sine the instane of Computing �min is onstruted fromthe instane of Set Paking in polynomial time, it followsthat Computing �min is NP-hard.

IV. ConlusionOf ourse, the interest of the NP-hardness results of thispaper is mostly theoretial: Theorems 1 and 2 show thatthere is little hope to �nd a polynomial algorithm to om-pute �E or �min. But the situation seems muh simpler inthe ase of the max-algebra, R1 , than in the ase of theusual algebra (R;+;�). For instane, as summarized inTable I above, the problem of approximating �max, whihis NP-hard in (R;+;�) beomes polynomially solvable inR1 . Moreover, in this paper, we only proved that in thesemiring R1 , approximating �min or �E is NP-hard: thisis a weak \impossibility" result, by omparison to the fatthat the orresponding problems in (R;+;�) are undeid-able. Indeed, unlike in the usual algebra (R;+;�), in themax-algebra, �min and �E an be approximated (with anexponential exeution time), at least in some importantspeial ases [17℄, [12℄, [15℄, [2℄. Improving and generaliz-ing these algorithms, as well as identifying new examples ofexatly solved models, is ertainly an interesting researhdiretion. Referenes[1℄ F. Baelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synhro-nization and Linearity. Wiley, 1992.[2℄ F. Baelli and D. Hong. Analyti expansions of (max,+) Lya-punov exponents. Researh Report 3427, INRIA, 1998.[3℄ A. Berman and R.J. Plemmons. Nonnegative matries in themathematial sienes. Aademi Press, 1979.[4℄ V.D. Blondel and J.N. Tsitsiklis. The Lyapunov exponent andjoint spetral radius of pairs of matries are hard { when notimpossible { to ompute and to approximate. Mathematis ofControl, Signals, and Systems, 10:31{40, 1997.[5℄ V.D. Blondel and J.N. Tsitsiklis. When is a pair of matriesmortal? Information Proessing Letters, 63:283{286, 1997.[6℄ M. Brilman and J.M. Vinent. Dynamis of synhronized par-allel systems. Comm. Statist. Stohasti Models, 13(3):605{617,1997.[7℄ J.E. Cohen. Subadditivity, generalized produts of random ma-tries and Operations Researh. SIAM Review, 30:69{86, 1988.[8℄ I. Daubehies and J. C. Lagarias. Sets of matries all in�niteproduts of whih onverge. Linear Algebra Appl., 220:151{159,1992.[9℄ V. Dumas and Ph. Robert. On the maximal throughput of a syn-hronization proess. Submitted to Mathematis of Operationresearh, 1998.[10℄ E. Gardner and B. Derrida. Zero temperature magnetization ofa one-dimensional spin glass. J. Stat. Phys., 39:367{377, 1985.[11℄ M.R. Garey and D.S. Johnson. Computers and Intratability:A Guide to the Theory of NP-Completeness. Freeman and Co.,New York, 1979.[12℄ S. Gaubert. Performane evaluation of (max,+) automata. IEEETrans. on Automati Control, 40(12), De. 1995.[13℄ S. Gaubert and J. Mairesse. Task resoure systems and (max,+)automata. Appears in [19℄, Aug. 1995.[14℄ S. Gaubert and J. Mairesse. Modeling and analysis of timedPetri nets using heaps of piees. IEEE Trans. on AutomatiControl, 44(4), April 1999.[15℄ S. Gaubert and J. Mairesse. Asymptoti analysis of heapsof piees and appliation to timed Petri nets. In PNPM'99,Saragoza, Spain, Sep. 1999.[16℄ S. Gaubert and M. Plus. Methods and appliations of (max,+)linear algebra. In R. Reishuk and M. Morvan, editors, STAC-S'97, number 1200 in LNCS, L�ubek, Marh 1997. Springer.[17℄ B. Gaujal and A. Jean-Marie. Computational issues in reursivestohasti systems. Appears in [19℄, Aug. 1995.[18℄ G. Gripenberg. Computing the joint spetral radius. LinearAlgebra Appl., 234:43{60, 1996.[19℄ J. Gunawardena, editor. Idempoteny. Publiations of the New-ton Institute. Cambridge University Press, 1998.
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