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Abstract— The lower and average spectral radii measure
respectively the minimal and average growth rates of long
products of matrices taken from a finite set. The logarithm
of the average spectral radius is traditionally called Lya-
punov exponent. When one performs these products in the
max-algebra, we obtain quantities that measure the perfor-
mance of Discrete Event Systems. We show that approxi-
mating the lower and average max-algebraic spectral radii
is NP-hard.

I. INTRODUCTION

For all positive real numbers p, the semiring R, is the
set of real nonnegative numbers, R, equipped with the
addition

atpbE (@ +0)r 1)
together with the usual multiplication (of course, when p is
an odd integer, R, can be embedded in the field (R, +,, x),
but for the decision issues studied here, the specialization
to nonnegative elements is essential). This family of semir-
ings was introduced independently by Maslov and Pap (see
e.g. [20], [22] and the references therein). It has the follow-
ing remarkable property: all the semirings R, are isomor-
phic to the ordinary semiring R; of real nonnegative num-
bers equipped with the usual operations. Letting p tend to
oo in (1), we obtain:

a +~ b = max(a,b) .

The corresponding semiring R, (the set RT, equipped with
+o and the usual multiplication) is the max-times semir-
ing or “max-algebra”, whose role in dynamic programming,
discrete event system theory, optimal control, and asymp-
totic analysis is well known (see e.g. [1], [21], [20], [16],
[19]). In contrast to the semirings R, for finite p, this
semiring is not isomorphic to R;. In discrete event sys-
tems applications, the max-algebra more frequently ap-
pears in an isomorphic additive form, the semiring Ry, .y,
which is the set R U {—o00}, equipped with max as addi-
tion, and + as multiplication. The isomorphism is given by
z — logx : Ry = Ryax. To emphasize the parallel with
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existing results, we will state all our results in terms of Ry,
(see Table I).

In the sequel, we will use the familiar algebraic notation
in the context of the semiring R,, without further com-
ments: e.g., if A € R)** and B € ]R;Xt, AB is the r x t
matrix with entries Aij = A“Blj +p te +p Aisst- Let || . ||
denote a (conventional) norm on R"*". To a finite set of
matrices {A1,..., A} CRI*", we associate:

pax (A1, -, A) © lim max |4, -+ A ||+, (2a)
k—00 i1,...,0i,€{1,... [}
pmin (A1, ..., A) ¥ lim min | 4s, -+ A ||F, (2D)
k—00 i1,...ix€{1,...,l}
def . 1
pE(Ar, ..., A) =as. lim ||A; - Ay ||*, (2¢)
k—o0

where in (2c¢), i1,i2,... is sequence of independent, i-
dentically distributed, random variables with values in
{1,...,1}, drawn with the uniform distribution, and where
“a.s. lim” means that the limit exists almost surely. The
existence and values of all the limits in (2) are clearly inde-
pendent of the choice of the norm. In particular, we may
take the norm [|A|| = maxi<i<, |Ait|+p|Ai| +p - - +p | Air]
which satisfies ||AB]| < ||A]|[|B||- Then, by a classical ar-
gument, the existence of the limit (2a) follows easily from
the fact that the sequence wy, = max;, .. 4, ||A:i -+ A || is
submultiplicative, i.e. wg4, < wgw,. The existence of pyiy
is proved by the same argument. As shown in [7] and [1,
Chap. 7], the existence of pg follows from Kingman’s subad-
ditive ergodic theorem. We will call pmax, pmin and pg the
upper, lower, and average spectral radius of {Ay,..., A},
respectively. The logarithm of pg is traditionally called the
Lyapunov exponent or Lyapunov indicator. We note that,
trivially,

Pmin S PE S Pmax - (3)

When p = 1, both the upper and average spectral radius
are much studied quantities which are notoriously difficult
to compute or approximate in practice. In [4, Th. 1 and 2],
it was shown that even in the case of two matrices Ay, Ay
with entries in {0, 1}, approximating pmax, Pmin and pg is
NP-hard.!

Using the fact that all the semirings R, with finite p
are isomorphic, it follows that analogous results hold for
all semirings R,. In [4, Th. 1 and 2] it was also shown
that, if we allow the entries of Ay, A; to be in Z, there is
no algorithm that can distinguish between instances with
Pmin = 0 from instances with ppi, = 1, and similarly for
pE. In particular, pni, and pg cannot be approximated
algorithmically, and the problem of deciding whether they
are zero is undecidable. The situation for pp,ax is different.
Using the inequalities derived in [8], it is immediate to see

LA problem A is NP-hard if it is at least as hard as some NP-
complete problem B, in the sense that B can be reduced to A in
polynomial time. A polynomial time algorithm for a NP-hard prob-
lem would provide polynomial time algorithms for all NP-complete
problems, and would imply that the conjecture P#NP is false; see
[11] for more details. This conjecture is widely believed to be true.



that pmax can be approximated algorithmically to arbitrary
precision. One such algorithm is given in [18].

When p = oo, the quantities pmax, Pmin, and pg have
been much studied by the Discrete Event Systems com-
munity. As shown in [1], the Lyapunov exponent log pg
measures the cycle time (inverse of the throughput) of ran-
dom max-plus linear discrete event systems. The most
intuitive particular interpretation of pg is probably the fol-
lowing: if you “play” in a Tetris game of infinite height,
without applying any control, just letting pieces fall down
randomly, you will see, asymptotically, the heap of pieces
grow at a certain mean speed: this speed is precisely log pg
(see [12], [6], [14], [9], and also § III below for details). The
problem of computing pg also arises in Statistical Physics,
in the study of disordered systems (log pr yields the free
energy per site, at zero temperature, for some random one
dimensional Ising models [10]). The study of pg (structural
properties, bounds, etc.) is one of the central themes of [1].
The logarithm of pax was called worst case Lyapunov ex-
ponent in [12], for it measures the worst case cycle time
of certain max-plus linear discrete event systems. For a
dual reason, the logarithm of pn;, was called optimal case
Lyapunov exponent.

Since the maximization operation which is involved in
the definition of ppax is somehow compatible with the
structure laws of the max-algebra, pmax can be computed
quite easily: as shown in [12], it coincides with the spectral
radius of the single matrix A = A; + -+ +o0 4;, which
can be computed in polynomial time. So far, the basic gen-
eral technique to compute pnin, and pg consists of using an
“induced Markov chain” construction in the max-algebraic
projective space [1, §8.4],[12, §VII]: when this chain is fi-
nite, both pmin and pg can be computed with a number of
arithmetic operations which is polynomial in the number of
states of the chain. In some other special cases, pr can also
be computed via generating series techniques [17], or, as il-
lustrated in [6], by finding a closed form expression for the
invariant measure of the above mentioned Markov chain,
which is denumerable, in general. A different approach
was used in [2]: we can define more generally pg in (2¢) by
taking a sequence of independent, identically distributed,
random variables i1,... i, drawn from {1,...,[} with a
non uniform distribution © = (w1, m2,... ,m), where 7; is
the probability of {i; = j}.

Under some technical restrictions, pg is an analytic func-
tion of 7y, ... ,m near w = (1,0,...,0), and the coefficients
of its power series expansion can be effectively computed.
When this series is still convergent at = = (1/1,...,1/1),
this gives a way of approximating the average spectral ra-
dius.

The purpose of this paper is to analyze the complexity
of computing pmin and pg when p = oo.

In a first section (§II below) we show that, when p = oo,
approximating ppmin or pg is NP-hard. Our proof of this
result is based on a reworking of the argument given in [4,
Proof of Th. 1]. We build an automaton whose number
of accepting paths measures the number of satisfied claus-
es in a given instance of the satisfiability problem SAT.

Our proof then follows from the fact that the satisfiability
problem SAT is known to be NP-complete (see the prob-
lem LO1 in [11]) and that the number of accepting paths
in this special automaton determines the spectral radius of
an associated set of matrices.

This argument does not work when p = co: since + is
idempotent (i.e. a +. a = a), several paths count as one.
However, a variant of the reduction of [5, Proof of Th. 2]
can be used to prove that approximating pni, and pg is
NP-hard.

In a second section (83 below) we give a simple, inde-
pendent, geometrical argument that shows that computing
Pmin i NP-hard. The argument is based on an intuitive in-
terpretation of products of matrices in terms of the height
of a heap of pieces. In [13], [14], it was shown that the
total height of a Tetris-like heap of k pieces is equal to
log||4;, ... Ai ||, where 4;,, ..., A;, are matrices associat-
ed to the pieces, and ||A|| = max;; A;;. When all the pieces
are of height 1, log pmin coincides with the inverse of the
largest number of mutually disjoint pieces. NP-hardness of
computing pui, then follows from the fact that computing
the largest number of mutually disjoint pieces is a problem
that is known to be NP-hard.

II. REDUCTION FROM SAT

In the remaining part of the paper, we will assume that
p = o0 and we will use the matrix norm ||A]| = max;; 4;;.

Let ¥ — p(X) be a non-negative function that we wish to
compute. We say that p is polynomial-time approzimable if
there exists an algorithm which, for every rational numbers
€, > 0 and every ¥, returns an approximation p*(X, ¢, €')
such that |p* — p| < ep + €, in time polynomial in the
description size of €,¢' and ¥. This allows for both an
absolute and a relative error.

Theorem 1. Unless P=NP, the lower and average spec-
tral radii of pairs of matrices with entries in {0,1} are not
polynomial-time approximable.

Proof: Let A, As be square matrices with entries in
{0,1}. We claim that

Pmin(A1, A2) = pe(A1, A2) € {0,1} . (4)

Indeed, in the max-algebra, any product of matrices with
entries in {0,1} gives a matrix with entries in {0,1}. A
fortiori, [|A4;, ---Ai. || € {0,1} for all 41,...,ix. Hence,
if none of the products A;, ---A4;, is 0, pmin(A1,42) =
pr(A1,A2) = 1. But if one of these products is 0, then
Pmin(A1, A2) = 0 and the product that gives 0 will appear
almost surely as a factor of any infinite product A4; A;, ...
of independent, identically distributed, random matrices,
drawn from {A;, A>} with the uniform distribution. This
implies that pr(A;, A3) = 0.

Due to (4), it suffices to establish the theorem for pmin.
Any polynomial time approximation algorithm for ppi,
gives a polynomial time algorithm for distinguishing the
cases pmin = 0 and pmin = 1. Thus, in order to establish



Pmax

Pmin and PE

(R, +, x)

Approximation algorithm [8]

No approximation algorithm [4]

R, = (RT, +p, x) (finite p)

Approximation is NP-hard [4]

Approximation is NP-hard [4]

ROO = (R+7+00a X)

Exact polynomial time algorithm [12]

Approximation is NP-hard [this paper]

TABLE 1
SUMMARY OF COMPLEXITY RESULTS AVAILABLE FOR pPmax, fmin, PE-

the theorem, it suffices to show that the problem of deter-
mining whether pmin(A1, A2) = 0 is NP-hard, even for the
case of binary matrices. The proof is by reduction from
SAT and is inspired by [5, Proof. of Th. 2].

Consider an instance of SAT [11], with n variables
Z1,...,T, and m clauses C,...,C,,. We can write each
clause C; as C; = C; 1 or --- or C; , where C; ; is either
xj, or not(z;), or the Boolean constant false.

Let C = C)and --- andC,,. For any y € {true, false}
and k € {1,...,n}, let My (y) denote the diagonal m x m
Boolean matrix with diagonal entries:

1 if Cix(y) = false,
0 if Cj(y) = true.

(M (y))ii = {
Then, for all z € {true, false}”,
Mi(z1) -+ - My(zy,) = 0 if and only if z satisfies C.  (5)

Let U denote the m x m matrix whose entries are all equal
to one. We now consider the nm x nm matrices A; =
M(false), Ay = M(true), where

UM, (y)
M>(y)

Mp-1(y)

(the blocks which are not shown are zero). We claim that

C'is not satisfiable
C is satisfiable

- pmin(AlaAZ) =1 ’

- pmin(AlaAZ) =0 .

In order to establish our claim, note first that for all &, and
for all Boolean sequences y of length kn, M(y1) - - M(ygn)
is a block diagonal matrix with diagonal blocks:
Biy=UMi(y1) -+ Myp(yn)UUMi(yn+1) - - - Mu(yen)U, (6a)
By =M>(y1) - - UMi(yn) M2 (yns1) - - - UMi(Yrn), (6b)

Bk = My (y1)U -+ - My—1(Yn) My (Yn1) -+ - Mp—1(Yin)- (6€)

Assume that C is not satisfiable. Using (5), we get that
By, =1 for all possible Boolean sequences y of length kn.
This implies that pyin (41, 42) = 1.

Next, assume that C' is satisfied by the Boolean sequence
Ty ...T,, and consider the infinite sequence of period n +1:

Y=T1 .- Tplly .. Tpllxy . xpd. ..

where § can take an arbitrary Boolean value. For k =
n+1, each of the n products that give By j, ..., By in (6)
contains a factor of the form M;(z1)... My (zy). Since
Mi(zy)--- M,(x,) = 0 we conclude that pyin(41,A2) =
0. O

Remark. It is not known whether the statement of the the-
orem remains valid if we require that the matrices have
positive entries, or have a fixed, large enough, dimension.

III. RepuctioN FROM SET PACKING

In Discrete Event Systems applications, the quantity of
interest is the logarithm of ppyi,, rather than ppi,. In this
section we show that the following problem is NP-hard.

Problem (COMPUTING pmin)-
Instance: Matrices Ay, ..., A € {0,1,2}"*", a rational
number q.

Question: Does 10gy pmin(A1,...,4;) <q?

Theorem 2. COMPUTING ppin s NP-hard.

Proof:  The proof is based on a simple geometrical

argument that involves a Tetris-like heap of pieces.

Consider a horizontal axis with n > 1 slots labelled
{1,2,...,n}. A piece is a solid, possibly disconnected,
block of height one occupying some of the slots. Consider
now a set of pieces A = {ay,...,a;} each piece a; being
defined by the subset R(a;) C {1,2,...,n} of slots it oc-
cupies. To an ordered sequence of pieces w = a;, ...a;, we
associate a heap by piling up the pieces in the given order
on a horizontal ground. Pieces are only subject to vertical
translations and occupy the lowest possible position that
is above the ground and above the pieces previously piled
up. The height of a heap w on slot ¢ is denoted by h;(w).
The height h(w) of a heap w = a;, ...a;, is the largest
of the heights on all slots. For instance, when n = 3,
A= {a17a27a3}7 R(al) = {172}7R(a2) = {3},R(03) =
{1,3}, and w = ayazaza;a3, we obtain the heap with height
h(w) = 4 depicted at the right of Fig. 1.

To k > 1, we associate the lowest possible height of a
heap of k pieces taken from A

Ak :min{h(ail ...aik) | Qjyy - - 5 A5y € A} .

We claim that the limit

M

A=

lim
k—+oo k

is equal to 1/M, where M is equal to the maximal num-
ber of pieces in a heap of height one. Indeed, a heap w



C %)

1 2 3 1 2 3

Fig. 1. A sequence of pieces and its associated heap.

with k pieces has at most M pieces per height level, and
thus k£ < h(w) x M. This implies that A\ /k > 1/M. More-
over, if z is a heap of height one with M pieces, the heap
w obtained by repeating k-times z satisfies h(w) = k and
contains kM pieces. Thus, Agpr/kM < 1/M, and the claim
is established.

For instance, for the pieces ay,as, and a3 depicted in
Fig. 1, the set of heaps of height one is {a1,as, a3, a1as},
and A =1/2.

Consider now the following NP-hard problem (see the
problem SP3 in [11]):

Problem (SET PACKING).

Instance: a collection C of finite sets, a positive integer
K <|C|.

Question: does C contain at least K mutually disjoint sets?

Modulo some changes of notation, this result can be
rephrased in our framework by saying that, for a giv-
en set of pieces A = {aj,...,q;} and a positive integer
K < |A| =1, the problem of determining if K is larger
than the maximal number of pieces in a heap of height
one, is NP-hard. Since A = 1/M an analogous statement
is possible for .

To conclude, we describe a connection between height-
s of heaps of pieces and norms of products of matri-
ces in the semiring R,,. To a piece ar € A occupying
the slots R(ax) C {1,2,...,n} we associate the matrix
Ay, € {0,1,2}™*™ whose entries are identical to the entries
of the identity matrix, with the exception of the elements
(Ay)i; which are set to 2 whenever i, j € R(ay). It is shown
in [14] that the height h(w) of the heap w = a;, ...a;, is
given by

h(w) = log, [|Ai, - - A |-

From this it follows that

A = i i log, ||A4;, -+ - A;
Pl i17...7irknel?17...7l} 02 [|4i, iel
= 10g2 pmin(Ala"' 7Al)‘

Since the instance of COMPUTING ppiy, is constructed from
the instance of SET PACKING in polynomial time, it follows
that COMPUTING ppin is NP-hard.

O

IV. CONCLUSION

Of course, the interest of the NP-hardness results of this
paper is mostly theoretical: Theorems 1 and 2 show that
there is little hope to find a polynomial algorithm to com-
pute pg or pmin. But the situation seems much simpler in
the case of the max-algebra, Ry, than in the case of the
usual algebra (R,+, x). For instance, as summarized in
Table I above, the problem of approximating pyax, which
is NP-hard in (R, +, x) becomes polynomially solvable in
R+ . Moreover, in this paper, we only proved that in the
semiring Ry, approximating pmin or pg is NP-hard: this
is a weak “impossibility” result, by comparison to the fact
that the corresponding problems in (R, +, X) are undecid-
able. Indeed, unlike in the usual algebra (R, +, X), in the
max-algebra, pmin and pg can be approximated (with an
exponential execution time), at least in some important
special cases [17], [12], [15], [2]. Improving and generaliz-
ing these algorithms, as well as identifying new examples of
exactly solved models, is certainly an interesting research
direction.
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