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Abstract from this set, either randomly, according to a given proba-
bility measure; or in order to maximize the density, accord-
What is the density of an infinite heap of pieces, if we let ing to some given logical constraints? When rephrased in
pieces fall down randomly, or if we select pieces to max- terms of timed Petri nets, these two questions become: how
imize the density? How many transitions of a safe timed many transitions will be fired per time unit when conflicts
Petri net can we fire per time unit? We reduce these ques-are resolved in a random way; or if we select the firing se-
tions to the computation of the average and optimal case quence precisely to maximize the associated firing rate?
Lyapunov exponents of max-plus automata, and we present In algebraic terms, we represent pieces and transitions
several techniques to compute these exponents. First, wéy letters: the height of a heap of pieces, or the execution
introduce a completed “non-linear automaton”, which es- time of a firing sequence, is computed by a max-plus au-
sentially fills incrementally all the gaps that can be filled i  tomaton. The above questions are equivalent to the compu-
a heap without changing its asymptotic height. Using this tation of Lyapunov exponents, which measure the growth
construction, when the pieces have integer valued shapestate of long products of matrices arising from the linearrep
and when any two pieces overlap, the Lyapunov exponentsesentation of the automaton. Our approach is a variation on
can be explicitly computed. We present two other con- Furstenberg’s cocycle technigue (see e.g. [4]), which ean b
structions (partly based on Cartier-Foata normal forms of translated in automata theoretical terms as follows. A max-
traces) which allow us to compute the optimal case Lya- plus automaton ideterminizablef there exists a determin-
punov exponent, assuming only that the pieces have integeistic max-plus automaton with the same output. When it
valued shapes. is effectively determinizable, the associated Lyapunov ex
ponents can be computed. However, as far as we know,
it remains an open problem to decide whether an integer-
1 Introduction valued max-plus automaton is determinizable. Here, we
use some specific features of heap automata to determinize
them, in some cases, and we introduce a weaker form of

Heap models, where solid blocks are piled up accordingd Do hich i h imal
to the Tetris game mechanism, are a good model of Discrete eterminization, which is enough to compute optimal case

Event Dynamic Systems. They offer a trade-off between Lyapun_ov exponents. Due to space restrictions, most proofs
modeling power and tractability: on the one hand, timed 1- are omitted.
bounded Petri nets can be represented by heap models [20]; . ) .
on the other hand, the height of a heap can be computed by Heaps of Pieces, Timed Petri Nets, and
a max-plus automaton [5, 19], which can be analyzed via  Max-Plus Automata
spectral theory techniques [1, 18, 19].
In this paper, we address the following questions. Given  In this section, we briefly recall the results of [19, 20].
a finite set of pieces, what is the density of the infinite heap
obtained by letting fall down a sequence of pieces taken2.1 Heaps of Pieces

*This work was partially supported by the European Community : s .,
Framework IV programme through the research network ALAEED Cons_lder a fmlt_e seR of COI.umnS.a.nd a flmte. set
(“The ALgebraic Approach to Performance Evaluation of Bise Event A of pieces _A piecea € A is a rigid p0|y0m|_n0'
Systems”) shaped, possibly non connected, “block” occupying the



subset of column®(a). It has a lower and an upper con-
tour which are represented by two row vectbfa) and
u(@) in (R U {—oo})®, respectively, with the conventions
[(@)r =u(@)r = —ooif r € R(@) and mincre ! (@)r = 0.
The upper contouu(a) must be above the lower contour
[(a), i.e. u(@ > I(a), where> denotes the usual (entry-
wise) order of R U {—oo})R.

With an ordered sequence of pieces, denoted by a'word

w = aj---a, We associate Aeapby piling up succes-
sively the piecesy, ..., ax on a ground whose shape is
determined by a row vectdr € R®. A piece is only sub-
ject to vertical translations and occupies the lowest fbessi

position, provided it is above the ground and the pieces pre-

viously piled up.
The 6-tuple” = (A4, R, R, u,l, 1) constitutes éheap

model To avoid trivial cases, we assume that each piece

occupies at least one columR(@) # @, Va € A), and that
each column is occupied by at least one pieRel(r) #
@,vr € R).

Theupper contounf the heapw is represented by a row
vector xy (w) in R®, wherexy (w); is the height of the
heap on columm. Theheightof the heapw is H(w) =
max cr Xz (W)r .

Example 2.1.Let us consider the heap modkk defined
as follows.

A={ab,c},R ={123, 4}

R@) = {1, 2}, R(b) = {2, 3}, R(c) = {3, 4};

u@ =[3,1, —oo0, —<],l(@) = [0, 0, —00, —oq];
u(by =[—o0, 1,2, —00],l(b) =[—00, 0,0, —o0];
u(c) = [—o0, —00, 2, 3],1(c) = [—00, —00, 0, 0];
| =[0,0,0,0].

We have represented, in Figure 1, the heap associated

with the wordw = bcah

We see thaky,, (bcab) = [4,5, 6, 5] andHp(bcab) =
6. Since the pieces and c do not overlap, we have
Xyp(bach = xy,(bcab and, a fortiori,Xp(bach =
Hp(bcab).

2.2 Timed Petri Nets

We denote byg = (P, T, F, M) a standard safe (i.e.
1-bounded) Petri net, whef is the set of placeg is the
set of transitionsF C (P x T)U (T x P) is the set of arcs,
andM : P — N is the initial marking. We denote by®

1Given a finite set (alphabet}, we denote by4A" the set of words of
lengthn on A. We denote byd* = Upcn.A" the free monoid o4, that
is, the set of finite words equipped with concatenation. Tihie (@mpty
word) will be denoted by. The length of the wordv will be denoted by
|lw|. We shall write|w|a for the number of occurrences of a leteein w.
An infinite word (or sequenceis a mappingu : N\ {0} - A. We write
u = uqUz---. The set of infinite words is denoted By°. An infinite word
u is periodicif there existd € N\ {0} such thauj4| = uj, Vi € N\ {0}.
In this case, we writel = (uq - - u)®.
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Figure 1. The heap mod&{p.

(resp. °x) the set of direct successors (resp. predecessors)
of a node (place or transitior. We calllanguageof the

Petri netG the setL ¢ 7* of firing sequences starting from

M. We calltimed Petri neta Petri net with a constafiting
timet(a) associated with each transitiare 7, and a con-
stantholding timez (p) associated with each plagee P.
Transitions are fired according to the following rule, which
has the same effect as the one of Ramchandani [28] on the
subclass of safe nets. We assume that transtibacomes
enabled at instarit Then, the firing ofa may beinitiated.

If initiated, the firing occurs in three steps.

1. At instantt, one token is removed from each input
place;

2. at instant 4 t(a), one token is added in each output
place;

3. afterinstant + r(a) + t(p), the token added in place
p € a°® can contribute to the enabling of the transitions
in p°.

With this semantic, if a transition fires, it doesa®soon as
possible Also, the decisions on which transitions are fired
are not based on time considerations. All logically feasibl
choices can be considered.

With a firing sequence € L, sending the initial mark-
ing M to M’, we associate theakesparor execution time
G(w), which is the first instant at which all transitionsof
have fired, and each token of the markMghas completed
the holding time in its current place.

We have shown in [20] that a heap mod¢lis canoni-
cally associated to a safe timed Petri getn such a way
that for allw € L, we haveG(w) = H(w). Thus, the
height of the heap is equal to the execution time of the
firing sequencey whenw € L (whenw ¢ L, H(w) has
no Petri net interpretation). We do not recall this construc



tion, but we next give two examples that we believe to be
self-explanatory.

Example 2.2.Let us consider the safe Petri @ of Fig-
ure 2. The transitiona andc can be fired concurrently,
while the transitionsa andb (or, b andc) are in mutual
exclusion. This net is a variant of the classical Dining
Philosophers model [14] (thP in Gp stands for “Paral-
lel” or “Philosopher”). The language of the Petri net is
T* ={a, b, c}*.

a b c
@v@@\/ﬂ\/@vﬂv@
1 2 3 4

Figure 2. The Dining Philosophers Petri id&t.

The firing and holding times are

(@ =1tb)=1(c) =1,
T(p1) =2, ©(P2) =0, (p3) =1, t(ps) = 2.

The heap model associated wiilp is Hp, which was

defined in Example 2.1. The pieces correspond to the tran

sitions, the columns correspond to the tokens (equivalentl

to the places). A piece occupies the columns that corre-

spond to the tokens involved in the firing of its associated
transition. The heighi(t); —1(t); is equal to the sum of the
firing time of transitiort and of the holding time of placg, .
The execution time of the firing sequenoeah Gp (bcab),
coincides with the height of the heap of Figure 1, that is
Hp(bcab = 6.

Example 2.3.This example is taken from [20]. We have
represented in Figure 3 the safe timed PetriGietind its
heap modeHs. The firing and holding times are

t@=1 t(h)y=2, 7(c) =2, 7(d) =1,
(p1) =1, t(pa) =2, t(p;)=0,i =2,3,5,6.
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Figure 3. The Petri ngjs and the heap modé!s.

There is no concurrency in this Petri net (t8dn Gs
stands for “Sequential”). The language of the Petri net is
L = {ab, cd}*{e, a, c}.

2.3 Automata with multiplicities over semirings

A set K equipped with two operation® and ® is a
semiringif & is associative and commutative, is asso-
ciative and distributive with respect @, there is a zero
elementd (a0 =a,a® 0 = 0 ®a = 0) and a unit
elementl (@ 1 =1®a=a).

For matricesA, B of appropriate sizes with entries in the
semiringK, we set(A @ B)ij; = Ajj & Bjj, (A ® B)jj
Dy Ak ® Bkj, and fora € K, (a® A)ij = a® Ajj. We
usually omit the® sign, writing for instanceA B instead of
A® B. We denote by (resp.1) the matrix whose elements
are all equal taD (resp. 1), the dimension depending on
the context. Several semirings are used in this paper, hence
the meaning of the symbo#s, ®, 0 and1 depends on the
context, but the symbols-, —, x, /,0 and 1 always have
to be interpreted in the usual algebra. We will also use the
“pseudo-norm’| - |, defined byl Ale = D Ajj.

The structuréRmax = (R U {—o0}, max +) is a semir-
ing, which is called themax-plus semiring Here,® =
max ® = 4,0 = —oo andl = 0. This semiring isdem-
potent a® a = a, for all a. The min-plus semirin@®min is
obtained by replacing max by min arebo by +o0 in the
definition of Rmax. The structur&R, = (R, +, x) is also
a semiring. The Boolean semirifgcan be identified with
the subsemiring{0, 1}, ®, ®) C Rmax-

An automatonof dimensionk, with multiplicities in a
semiringK, over an alphabet, is a triplet/ = («, 1, B),
wherea € Kk g ¢ K< and wherex : A* —
KKk<k is a morphism of monoids. The morphism is
uniquely defined by the family of matricegc(a)}ac.4,
sinceu(ay...an) = u(@)---u(an) forallag,... ,ay €
A. We say thatthe malg : A* - K, U(w) = apu(w)B, is
recognizedy the automaton.

Such an automaton is represented graphically by a la-
beled and weighted digraph withnodes. There is an arc
from nodei to nodej, with labela and weightu (a);j, if
w(@ij # 0. There is an unlabeled input arc at nodeith
weighte; if «j # 0, and there is an unlabeled output arc at
nodej with weight gj if 8j # 0 (then,i andj are called
input and output nodes).

An automaton(w, u, B) is deterministicif there is a
unigue input node, and if for ail and for alla € A, there
is at most ong such thaf.(a)ij # 0. When for alli anda,
there is exactly one nodgwith this property, we say that
the automaton isomplete If a deterministic automaton is
not complete, we can make it complete without changing its
output by introducing an extra node.

We call max-plus automatoan automaton with multi-
plicities over the max-plus semiring. SinBds a subsemir-
ing of Rmax, @ classical automaton, that is an automaton
with multiplicities overB, is a special case of a max-plus
automaton. In the graph associated with a Boolean automa-



ton, we do not represent the weights, see Figure 9 for in-Then, of course) .. 4 p(@) = 1. A measure on words is
stance. For more details on automata with multiplicities, rational if the map p is recognized by an automaton with

see [2, 16]. multiplicities in R, over the alphabetl. A rational mea-
For each pieca of a heap modet., we define the matrix ~ sure isBernoulliif it is recognized by an automaton of di-
M(a) € RExR by mension 1. Thenp(a: ...an) = p(ai) x --- x p(an), for
) allag, ... ,a, € A.
1 ifs=r.r ¢ R@, LetU/ = (a, i, B) be a max-plus automaton over the
M@sr = ju(@r —l(@s ifr € R@),se R@), (1) alphabet4 and letp be a measure on words. We define the
0 otherwise. following performance measures:
Equivalently, we have pmaxlU) = Iimsup} ma>§U(w) ’ 4)
M) = Id & [(@u@) , @) N>+ 1” wed
where 1d is the identity matrix (id = 1, Vi;Id;j = pmin@) = liminf— min 2/(w) . (5)
0, ¥i # j), andi(a) is the column vector defined by Uw)#0
I(a)i_ = —l(a@) if I(@)j # 0 andl(a);j = I(a)i = 0 oth- peU) = lim E Z p(w) x Uw) . (6)
erwise. n>toon £
We extendM : A — REXR to a morphismM : U (w)#0

A* — RExR settingM(ag...an) = M(a) - M (an)
(the products are of course in the max-plus semiring). The
following theorem was proved by the authors in [19, 20]
and, independently, with a different formulation, by Bril-
man and Vincent [5].

The “E” in pg stands for “expectation”. The limjpe (U/)
need not exist, but Theorem 3.2 below gives a sufficient
condition for its existence. We christemnax (/) (resp.
emind), peU)) worst (resp. optimal, averagé case Lya-
punov exponent

Theorem 2.4. LetH = (A, R, R,u,l, ) be aheap model. Given a language L c A* we define

The upper contour and the height of the heapE A* are pmax, L), pmin(i4,L) and pg(,L) by replacing

given respectively by A" by A" N L in the definitions (4),(5) and (6). These
aw) = | Mw) guantities are calledonstrained Lyapunov exponents
Hw) = IM@w) . 3) For a heap automatoH, the limits pmax(H), pmin(H)

and pe(#H) are equal respectively to the maximal, mini-
mal and average asymptotic growth rates of an infinite heap
Thus, #H is recognized by the max-plus automaton of pieces. For a Petri net, the constrained Lyapunov expo-

(I, M, 1). It will be convenient to use the notatid for nents are particularly relevant, as performances have to be
both the heap model and the associated max-plus automaevaluated over the language of admissible firing sequences,
ton. We also cal{ aheap automaton which is recognizable.
Example 2.5.The heap automaton associated with the COmputing Lyapunov exponents constrained by a recog-
heap model#p of Example 2.1 and 2.2 i$p = nizable language is not theoretically harder than in the un-
(1, M, 1), where the morphismM is defined by the ma-  constrained case. Indeed, etienote a Boolean automaton
trices M (a), M (b) andM(c), given respectively by: recognizingl. and letl/ © £ denote theensor product of
the two automata. Thed/ © £ is a max-plus automaton
31 1 1 and pmaxU, £) = pmax © L) (the corresponding identi-
31 1 2 1 ties hold forpmin andpg).
1 ' 12 ’ 2 3 We next recall when and how the three Lyapunov expo-
1 1 2 3

nents can be computed. Recall that an automatop, 8)

is trim if for all i, there existsw,z € 4* such that
(xp(w))i # 0and(u(2)B)i # 0, i.e. if each node is con-
. nected to an input node and to an output node.

3 Worst, Optimal, and Average case Lya- The following result, which is taken from [18], is an

punov Exponents immediate consequence of the max-plus spectral theorem

(theO entries are omitted).

FoIIowing [22] we say thap Y LN [0 1] is amea- 2In any semiring, the tensor product of a< s matrix A by ar’ x s’
sure on wordsf ’ ' ’ matrix A’ is therr/ x ss' matrix A© A with entries(A® A) iry(j j) =

Ajj Ai’/j,. The tensor product of the automata 1, g) and (', u', B’) is

pe) =1 and p(w) = Z p(wa) forallw e A*. (@od,noun,B o p). Wedo not use the classical symimlfor the
acA tensor product due to the conflict with the notation of theisegproduct.



(see [1, 26] and the references therein).

Theorem 3.1. If U = («, u, B) is a trim max-plus automa-
ton, thenpmax({) coincides with the maximal max-plus
eigenvalue of M= @, 4 u(@), which is given by

B P M, Mii)tP

1<p=k iz..ip

A= (7)

Misi; + -+ + Migiy
p

max max
1<p=k iz..ip

’

where k is the size of M.

Let aj € A be a letter which attains the maximum in
Daca n(@)ij. Let(ia, ... i) be such thatM;,i, + --- +
Mii,)/l = A and letw = a,j, - - - &i,. Thenworst case
wordsof increasing length can be obtained using the pattern
w. More precisely, ifu (resp.v) is the label of a path from
an input node ta; (resp. fromi; to an output node), we
have lim, U (Uuw"v) /|uw"v| = pmaxf).

Karp’s algorithm [23, 1] computes in time O(KE),
where E is the number of edges of the graphMf. The
max-plus version of Howard’s policy improvement algo-
rithm, presented in [10], is experimentally much faster, al
though no polynomial bound is known for its complexity.

There is no simple general formula fagin or pg, except
in an important special case, that we next present.

LetUd = (a, u, B) be a deterministic and trim max-plus
automaton. We denote bythemin-plusautomaton defined
by the same tripléw, i1, B) (but with0 = 400). As there
is at most one path with labal in the graph of(«, i, B),
we obtain easily thal/(w) = U(w) if U(w) # —oo (and
U(w) = +o0 if U(w) = —o0). We deduce from Theorem
3.1 thatpmin() = pminX) is equal to the minimal min-
plus eigenvalue of the matrid = P, 4 n(a) (with & =
min), which is given by (7).

We now consider the average case Lyapunov exponen
pe. LetlU (a, u, B) be a complete and determinis-
tic max-plus automaton and lgt be a Bernoulli measure.
Given a nodé and a lettem, we denote by - a the unique
node such that(a)i j.a # 0. We define theeward vector
¢ and thetransition matrix Pby

2.

=) p@xu@iia
acA acA,i-a=j

Rj = p@ . (8)

The next result, which is detailed in [18], is an immediate
consequence of the ergodic theorem for Markov chains.

Theorem 3.2. If p is a Bernoulli probability measure and
if Y = (o, u, B) is a complete and deterministic max-plus
automaton, with input node, and withZ/(w) # 0, for all

w, we have

pEU) = (Q x O , 9)

where Q= lim,(P + --- 4+ P™/n is the spectral projector
of P for the eigenvalu# (all the operations are iR ).

In particular, if P is irreducible or has a unique final
class, it has a unique invariant measttewhich is solu-
tionof ¥ x P = 7, we haveQ = [1,...,1]" x x, and
pE(U) =  x c. These results can be adapted to the case of
a rational measure, thanks to the following tensor prod-
uct construction. We take a representatiénv, y) of p,
and we introduce the representatién= (&, /i, B) over the
semiringR,. obtained from(«, w, B) by replacing all finite
entries by 1, and-co by 0. We denote by> the tensor
product of matrices in the usual algebra, and we set:

P = Y v@oi@, (10)
acA

c = Y @xpow@el (11
acA

(all the operations are in the usual algebra, exceptghe
which is in the max-plus semiring, aridddenotes the col-
umn vector with the same size gswhose entries are all
equal to 0). If(8, v, y) is trim, the matrixM =", 4 v(a)

has Perron root 1, this root is semisimple, and we may as-
sume thaiMl x y = y (see [22]). Then, an easy adaptation
of the proof of [18] shows that:

PEU) =B 0a)xQxc,

whereQ denotes the spectral projector Bffor the eigen-
value 1.

The exponentsmin and pe can be explicitly computed
for deterministic automata. This raises the following prob
lem: given a map( recognized by a non-deterministic max-
plus automaton, can we decidé{fis recognized by a deter-
ministic automaton, and if it is the case, can we find it effec-
tively? To the best of our knowledge, this problem remains
topen. See [9] (resp. [17]), for a noneffective characteriza
tion “a la Nerode” (resp. “a la Hankel”) of deterministic
series.

4 Completed Automaton

In this section, we give a determinization procedure for
a subclass of heap automata.

4.1 Determinization via normalization

Let us consider a non-deterministic automafén =
(a, u, B). The classical determinization algorithm of
Boolean automata admits the following extension.

Define the “normalization” operatar : RX, \ {0} —
RK o \ {0} bY 7 (X) = X — [X|g1, i.€. T(X)i = Xj —maX; Xj.



By construction;r(x) has maximum 0. We extend the op-
eratorr to RK .. by settingz(0) = 0. We define the set
) E (repw) | w e A7) If 2@ is finite, we
introduce thenormalized automatox, v, y), with set of
statest (I/), and

if u=m(x)
otherwise,

|

Ku={®

v(@)uy

yu = up, and,

if m(uu@) =v,
otherwise.

_un@le
o

By construction,(«, u, y) is complete, deterministic and

trim, and it is quite easy to see that it recognizes the same

map asi{. The only difficulty is thatz(U/) is not fi-

L Wi
nite, in general (as opposed to the Boolean case). In a
heap automaton, as soon as two pieces do not overlap (i.e.

Ja, b, R(a) N R(b) = ), the setz (i) is infinite and this
determinization procedure does not work.

For instance, for the heap modHls depicted in Fig-
ure 3, we haver (IM(@)") = (-2, —2,0, =3 x n), i.e., if
we pile upn times the piece, we obtain a hole of depth
3n on column 4 of the heap. This shows tha@l/) =
[r(AMw)) | w e A*}is infinite. However, the hole

on column 4 has no effect on the dynamics of the heap, and
a simple look at Figure 3 should convince the reader that

(=2,-2,0, -3 x nu(w) = (—2,-2,0, —=2)u(w), for all
w € A*. By filling all the gaps in the vectors of (i/),

we obtain in this case a finite number of possible contours,
hence a deterministic automaton with the same behavior as

‘Hs. We next formalize this idea, using residuation theory.

4.2 Completion of heaps, residuation, and non-
linear automata

We first recall some elements of residuation [15, 3]. In
a nutshell, residuation replaces the notion of inverseckvhi

A, B, C of compatible sizes with entries Rmax, We de-

fine by extensionA§{B max{X | AX < B} and

BfC = max{X | XC < B}. Then, it is not difficult to
check thatA§B and B¢C are given by { denotes the min
operation):

(AXB)uy = /\ AiuxBiv, (BfCluy = /\ BujfCyj -
i j

This can be rewritten aGA§B)y, = min; (B;j, — Ajy) and
(BFC)up = minj (Byj — Cyj).
The completion operator described informally in the pre-
ceding section can be expressed via residuation, as follows
Let us consider a heap modél= (4, R, R, u,l, 1) and
its associated heap automatdn= (I, M, 1). Fora € A,
e define the non-linear operator

P@) : Ry — R

u = ud(a), (12)

where

U®@)i = Aper-tiy [(UM@MD)IMD)]i
A Puma@y; . (13)
j

We extend the definition of® to words, by morphism. For
w=ap...an € A", we set:

O(w) R = Rlia (14)
u > udw) Eud@).. @y .
Clearly, we haveu®(a) > uM(a). The term

(uM (@) M(b))¢M(b) is, by definition, the maximal con-
tour v such thawv M (b) < uM (@) M (b). Using this prop-
erty, we can show thai®(a)M(w)1 = uM @M (w)1,

for all w € A*, which implies readily the following theo-

need not exist in some ordered algebraic structures, by thatem.

of maximal subinverse. We say that an ordered semiring

K is residuated if for alp, b, c, {x € K | ax < b} has
a greatest element, that we denoteayb, and if dually,

{x € K | xc < b} has a greatest element, that we denote by

bfc. Of course, if the product is commutatiggb = bfa.
The semiringRmax, equipped with its usual order struc-

ture, is not residuated, but it can be embedded in the com-

pleted semiring_%max = (RU {—00, +00}, max +), which
is residuated. Sincé —oo is absorbing, we have
(—o0) + (+00) = —oo in Rmax. With the convention
(+00) — (+00) = (—00) — (—o0) = +00, we have

Xy =X—-Y .

Matrices overRmax are equipped with the product order-
ing D < B iff Djj < Bjj, for alli, j. For matrices

Theorem4.1.Let H = (I, M, 1) be a heap automaton
and let® be defined as in (12)-(14). We have for alle
A*:

Hw) = 1 d(w)l .

By analogy, we can seé® = (I, @, 1) as a “non-linear
automaton” which recognizes the height of the heap.

Intuitively, for any row vectoru, u®(w) is the maxi-
mal upper contour such that the height of a heap piled up
onu®(w) is the same as the height of a heap piled up on
uM(w).

3For words are read from left to right, we write here the conitjurs
of operators from left to right. The conventional notatiendi(w)(u) =

D(ag) o...od(ag)(u).



The action ofb admits another geometric interpretation.
Let a be a piece and\(a) its associated matrix. We as-
sociate witha the piecesa anda, which both have height
0, and have the shapes of the upper and lower contoayr of
respectively. More preciselg anda are defined by their
matrices

M@ =Ilda t(au@), M@ =Ildai@l@, (15)

whereli(a) is defined a$(a), see (2).
An example is provided in Figure 4. For clarity, pieces
of height 0 are represented by thick broken lines. We have:

o
L

Figure 4. A piece and its associated upper and lower
contour pieces.

piecea

piecea

piecea

Lemma 4.2. Let M(a) € RRxF be the matrix associated
with the piece a of a heap model. For all@ RL<R and
v e RRx1 we have

M@¢M(a) = M(a),
M@ xM(@) = M@),

[uM@)]tM(a) = uM(a)
M@ [M@)v] = M@)v.

This lemma allows us to rewrite (13) in a geometrically
more appealing way:

we@)i = A [UM@MO] A PuM@); .

beR-1(i) J

This formula is illustrated, on the model of Example 2.3, in
Figure 5.

The operatob (w) is a min-max-plus function. In par-
ticular, it satisfies the following properties:

e monotonicity Yu,v € RR ,u < v = ud(w)
v®(w);

e homogeneityVz € R,u € RR, (A1 4+ u)®(w)
AL+ (Ud(w)), whererl = (A, ..., A);

e NON-expansivenessgu, v € ]RR, [U®(w)—v®(w)|
[u — v|, where| - | denotes the sup-norm.

=<

IA

h_'_‘ 1IM(b) =(3,2,1,1)

Figure 5. The contoursM (b) and1®(b)

to this class. For instance, as illustrated in the nextgecti
the normalization procedure of 84.1 only needs the homo-
geneity property.

4.3 Determinization via Completion

LetH = (I, M, 1) be a heap automaton, and Jétd =
(I, @, 1) be the associated non-linear automaton. We define

the set ofhormalized completed contours
A(H®) = (r (1 D (w)), w e A*}. (16)

If 7 (H®) is finite, we define th@ormalized completed au-
tomatonof . This is the deterministic max-plus automaton
H9e = (5, v, y) over the alphabetl, where

=]

V(@uy = {

if u=m(),
otherwise,

L

0 yu = ul, and,

if t(u®@) =v ,
otherwise.

ud(@lg
0
The proof of the following lemma is easy.

Lemma 4.3. If 7 (H®) is finite, the automata{ and 7det
recognize the same map, i.e.

I M(w)1 =sv(w)y, Yw € A*.

Thus, ifr (H®) is finite, the automato® is determiniz-
able.

Theorem4.4.LetH = (A, R, R,u,l, ) denote a heap
model. If the pieces have rational valued shapes (i.e.

The larger class of maps defined by these three properu(a),l(a) € (Q U {—oco})®,va e A), and if any two
ties has been studied by many authors [11, 27, 21, 24]. Wepieces overlap (i.e. ®) N R(b) # #,Va,b € A), then

note in passing that it is possible, and interesting, to ldgve

the setr (1 ®) if finite, and?{9%€tis a deterministic automa-

an automata theory in which the transition mappings belongton which recognizes the height functigi



In this case, as illustrated in the next section, the Lya- pmin(Hs) = 3/2, and infinite words realizing this optimum
punov exponentgmin and pg can be explicitly computed  are(ca)®, (cd)®, and(db)®.
using the results of §3. Let us come back to the Petri net of Example 2.3. Its

The completion procedure is central in [25], where the maximal firing rate is given by omin(Hs, L). The expo-
Lyapunov exponents of all heap models with two pieces arenentpmin(#s, L) is obtained from the automatdngete L
computed. (where £ is a deterministic automaton recognizihy as

The timed safe Petri nets for which the associated heaprecalled in 83. However, here, buildiﬁggetc)ﬁ is not nec-
model satisfies the assumptions of Theorem 4.4 are the onesssary as the finite prefixes ¢d)® belong toL. Thus,
for which any two transitions share at least one input or out- pmin(Hs, L) = pmin(Hs) and the maximal firing rate is

put place, i.e. the ones without concurrency. 2/3, aninfinite firing sequence of maximal rate bejnd)®.
The other optimal solutions for the heap model, for instance
4.4 Applications (db)*, have no interpretation in terms of the Petri net.

The Dining Philosophers heap modéb, described in  Average case behavior Let us compute the average be-
Example 2.1, does not verify the assumptions of Theo- havior of the heap modélls. Let p be a Bernoulli mea-
rem 4.4 since piecessandc do not overlap. The sequential sure. As in (8), we associate wit$|=l‘get a vectorc and a
heap model s, introduced in Example 2.3 does verify the matrix P, which is irreducible and has an unique invariant
assumptions of Theorem 4.4. We apply to this automatonprobability measurer = [p(c), p(b), p(a) + p(d)]. We

the procedure described in the previous sections. deduce an expression fpg (#s) as a polynomial function
The set of normalized completed contours is: of degree 2 of p(x), x € A}. For instance in the uniform
case,p(x) = 1/4,x € A, we obtainpg (Hs) = 35/16.
m(Hs®)={[0,0,0,0],[0, -1, -1, -1],[-2, 2,0, -2]}. Let us come back to the Petri nés. The languagé-

) ] o of the Petri net is recognized by the Boolean determinis-
The construction ofl ®(b) starting from1M(b) is illus- tic automaton’ of Figure 7 (forgetting the weights). The
trated in Figure 5. The normalized completed automaton

ngtis represented in Figure 6. . al p@) L cll-p@ .
t al3 d|2 t @ @ @
He = —ane
| C ‘\b_// al3 v*l\/

1
al3 d|3 bl dii
cll d
b\\ c|0
Figure 7. Automaton recognizirgandp.

random evolution ofjs is defined as follows. Each time
there is a token in places (see Figure 3), we choose to
fire transitiona with probability p(a) and transitiorc with
probability 1— p(a). The successive choices are indepen-
Figure 6. The automatdﬁget. dent. This defines a rational measure on waodsich that

p(w) > 0 if and only if w € L. In Figure 8, we have
represented the accessible part of the tensor productgin th
semiringR..) of the linear representation @fby the linear
representationd, /i, ) defined as in §3. The restriction to
accessible states of the transition matrix and of the reward
vector, defined by (10)-(11), are respectively

cl2

Optimal behavior. If follows from the min-plus analogue
of Theorem 3.1 that the optimal behavior Afs is deter-
mined by the min-plus matrix

2 33 0 0 0 p@ 1-p@)
M= 13 2]). 0 00 p@ 1-p@
013 P=[0o0 0 pa 1-pa@ |,
, i ) 010 O 0
Its eigenvalue.” = 3/2 is equal to the average weight of the 001 0 0

circuits 3— 1 — 3 and 2— 3 — 2. These two circuits
correspond to paths with labed, cd, anddb in the graph andc = [2 + p(a), 2p(@) + 1, 3p(a), 1, 3]". The matrix
of Figure 6. Thus, the optimal case Lyapunov exponent is P has a unique final class, its stationary distribution is-
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mapH : A* — Rmax induces a mapl(A, R) — Rmax,
that we also denote .

We say that a non-empty sétc A is acliqueif a,b €
Canda #b = R(a) N R(b) = @. We denote by’
the set of cliques. Laf: C* — M(A, R) denote the unique
morphism of monoids such that@ = {a1,... ,a} € C,
q(C) = a1...& (this product is independent of the order
of a1, ..., ax by definition ofM(A, R)). ForC € C, we
denote byn(C) = |q(C)| the number of elements @f, and
we extench to C*, byn(Cy...Cp) = n(Cq) + - - - +n(Cp),
forall C1,...,Ch € C. We say thaC;...C, € C*is a
(Cartier-Foatanormal form[7, 13] if forall 2 < i < n,
aeC =— 3be Ci_1,R@ NRMD) # @. Foreach
w € A*, there is a unique normal form € C* such that

q(2) = p(w), and thisz is called the normal form of. The
heightof a piecea is maxcre@) U(@)i — MiNicr@ ! (@)i =
IM(a)|g. We say that a piecais rectangularif both u(a);
andl (a); are independent afe R(a).

Figure 8. The accessible part of the tensor product au-
tomaton which “computesie (Hs, L).

Lemma 5.1. If all pieces are rectangular and of height 1,

1/2[0, p(a), 1 — p(a), p(a), 1 — p(a)]. We deduce that then, we have forall z C*,

pE(Hs, L) = (1 + p(@))(3— p(a))/2. For instance, when
p(a) = 1/2, we obtainpg(Hs, L) = 15/8. The average
number of firings per time unit is/bg (Hs, L) = 8/15.

1z| = H(a(2) . (18)

The equality holds if z is a normal form.

The lemma follows from Viennot's observation [30] that
trace monoids are ‘isomorphic’ to heap models with rect-
angular pieces of height 1. Cliques can be identified with
height 1 slices of heaps, and the height of the heap associ-

In this section, we give two constructions, based on a ated withw € A* coincides with the number of cliques of
“partial determinization” idea. We build deterministic-au the normal form ofw (see [20, § 111.B] for details).
tomata whose behaviors coincide with the behavior of the We say that a language C 4* is saturatedif L =
original heap automato®, only on some specific words. p~*p(L). We will need the (one-dimensional) max-plus au-
This is enough to computemin(H, L) whenL has a suit-  tomaton’ = (1, n, 1) over the alphabet, together with
able saturation property. Throughout this sectigh,= the languagd.’ = q~1(p(L)) C C*.

(A, R, R u,l, ) denotes a heap model, with heap automa-
ton (1, M, 1).

5 Partial Determinization and Optimal Case
Lyapunov Exponents

Theorem 5.2. If all pieces are rectangular and of height 1,
andif L c A* is saturated, then we have

5.1 Using Cartier-Foata Normal Forms 1
pmin(H, L) = T

Proof. Using the first part of Lemma 5.1, we get that for all
w € A* andforallz € C*,

(19)

With the heap model, we associate thigace monoid
M(A, R), which is the quotient of{* by the congruence
generated by the relatiom = ba if R(a) N R(b) = 0.
Two words are representatives of the same trace if they can
be obtained one from the other by repeatedly interchanging 1(2) = p(w) = lw]
adjacent commuting letters. More details on trace monoids o
can be found in [13]. We denote by, A* — M(A, R) the iminf | o0,wel H(w)/Iw] =<

i _ ’oyr ; _
canonical morphism. Our interest in trace monoids stems M iNfjzi—c0.zeL 12I/1(2) = 1/pmax(#', L). |f/L is sat
from the following observation: urated, the normal form o> € L belongs toL’, and the

equality follows from the second part of Lemma 5.1. O

Hw) _ 12

UC

Hence, pmin(H,L) =

Yw,ze A*, w~z2 = Mw)=M(2) 17)

SincelL = A* is saturated, we have by Theorem 5.2,

(exchanging the piling order of pieces that do not share a 1
column does not change the shape of a heap). Hence, the pmin(H) = omax(H)



which allows us to comput@min(H). More generally,
pmin(H, L) can be computed wheh is recognizable and
saturated. Them(L) is a recognizable trace language [13,
Chap. 6], and.’ = g 1(p(L)) is a recognizable language.
Indeed, if L is recognized by a deterministic (Boolean)
automaton withN nodes, the Nerode construction of the
minimal automaton of.” shows that we can build a deter-
ministic automaton recognizing 1(p(L)) with at mostN
nodes andN x |C| arcs. Then, using the results of §3, we
obtain pmax(’, L) (and thus, pmin(#, L)) in O(N2|C|)
time. Note also that ilL is the language of a safe timed
Petri net, it is automatically recognizable and saturai€d [
Prop. 1.8.2.].

The idea of using cliques of the Cartier-Foata normal
form to compute Lyapunov exponents is inspired by Cérin
and Petit [8], but the use of max-plus spectral theory and the

trick of Lemma 5.1 reduce the complexity.

Example 5.3.We consider the simplified version of the
Philosophers heap mod&lp (see Figure 1), in which all

c

TN

O- b Q a O —=
a {a,c}
C “‘/b ‘/‘77\/; c

T

O O O —=
a

Figure 9. Lifting to the clique alphabet an automaton
recognizing{abc, cba}*.

which appear in all possible heaps. We present here a sim-

pieces have height 1. This corresponds to firing times Pler method.

1 for all the transitions and holding times 0 for all the
places of the Petri net of Figure 2. The languégef this
Petri net is the whole sdh, b, c}*. The set of cliques is
C = {{a}, {b}, {c}, {a, c}}, and we have({a}) = n({b}) =
n({ch = 1 andn({a,c}) = 2. Thus, pmin(Hp,L) =
pmin(Hp) = 1/pmax(H'), whereH’ = (1,n, 1), and, by
Theorem 3.1pmax(H") = p(Bcee n(C)) = 2: any infi-
nite heap off{ contains an average number of at most two
pieces per slice of height 1.

To give a less trivial illustration, we take the recogniz-
able languagé. = {abc, cba}*. This language is not sat-
urated, forL > abcabc~ abacbc¢ L, but Ochmanski's
theorem [13, Prop. 6.3.11] shows that the languhge-
{z| z ~ w € L} obtained by saturating is still recog-
nizable. Alternatively, we can check thhtis recognized

Recall thatxy (w) denotes the upper contour vector of
the heapy (see 82). We say that a pieaés piled at depth
d > 0 in the heapw if the bottom of piecea, piled on
the heapw, is at heightH(w) — d. The following lemma
states that it is always possible to build incrementallyaphe
of pieces, from bottom to top, without piling pieces at a
large depth. The congruenceis defined as in the previous
section.

Lemma 5.4. There is an integeH with the following prop-
erty. For alln > 2 and for allw € A", we can find a word
ap...an ~ w,withg € A4, suchthatforall2 <i <n, g
is piled at depth at mogtl in the heap a...a; 1.

Let H Madge A MaX er@) (U@ — (@)
@Dac 4 IM(a)|g denote the maximal height of a piece. We

by the automaton of Figure 9, taking into account only the can show that the lemma holds with= |R|H, for general

plain arcs. The automaton that recognige$(p(L)) c C*,

pieces. When all pieces have an horizontal basis, i.e. when

whose arcs are labeled by cliques, is obtained on Figure 9 (a), = 0foralla € .4 andr € R(a), we can takeH = H.

by identifying a letterx € 4 with the clique{x}, and by

From now on, we assume that the pieces have integer

adding the two dashed lines. The method of 83 shows thatya|ued shapes. We introduce the down shift operator

pmin(H, L) is equal to the inverse of the maximum of the
quantityn(z)/|z|, wherez is a label of a circuit of the au-
tomaton. Here, an optimal circuitzs= ({b}, {a, c}), which
has ratio 32. Thus,pmin is equal to 23, and completing
the circuit by a path from the input node, we obtain di-
rectly the minimizing sequencegbac)® = abacbac..
andc(bac)® = chacbhac..

5.2 Remembering the Top Rows is Enough

NR — NR, 9(x); = maxx; — 1,0). ForL € N\ {0}, we
define the normalization operatdfi (x) = 6*le=L(x), if
IX|le > L, andN| (x) = x, otherwise. By construction, for
all x e N®,y = N (x) is such thay € N® and|y|g < L.
We next define a deterministic max-plus automatdn,
by its graph. The input node af is the contoux = 1 €
]Riﬁax. The corresponding input arc has weight There
is an arc fromx to V5 (x M (a)), with labela and weight
max|xM(a)|e — H, 0). All nodes are output nodes, and
the output arcs have weiglit There is a finite number of

The preceding technique could be extended to piecesnodes since all the vectors arising in this constructiorehav
of general (integer valued) shapes, by replacing the set ofinteger coordinates between 0 ad

cligues of the normal form by the set of slices of height 1

10

The automata?’{ and V do not recognize the same



map, but their output coincide on the words defined as in
Lemma 5.4. Next theorem follows readily.

Theorem 5.5. For all heap model with integer valued
shapes of pieces, and for all saturated language L, there
holds:

pmin(H, L) = pmin(V, L) . (20) / > \
In particular, pomin() = pmin(V). Since the automaton @__ F‘-*.Q
Y is deterministic, the min-plus analogue of Theorem 3.1
allows us to computemin()/, L). Note that it is possible / /
to reduce the number of nodes Wfby incorporating the

completion procedure of §4 in the constructionof
When the heap modé{ arises from a timed Petri Net, E- #i o

the construction of Theorem 5.5 coincides essentially with

the construction of Carlier and Chretienne [6], which holds l /é /l/'

more generally for bounded (possibly not safe) timed Petri
nets

Example 5.6.The automaton)’ corresponding to the E\’\
Philosopher’s Petri net is depicted in Figure 10. Outpus arc

are omitted. For readability, only a few weights and labels

are displayed. We havemin(V) = pmin(H) = 6/5, hence

the maximal firing rate is 8. This quantity is given by the

circuit displayed in bold lines on the figure. From this cir-

cuit, we obtain the optimal firing sequen@ebab®, which

corresponds to the infinite heap whose first pieces are shown

on Figure 11.
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