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Abstract

What is the density of an infinite heap of pieces, if we let
pieces fall down randomly, or if we select pieces to max-
imize the density? How many transitions of a safe timed
Petri net can we fire per time unit? We reduce these ques-
tions to the computation of the average and optimal case
Lyapunov exponents of max-plus automata, and we present
several techniques to compute these exponents. First, we
introduce a completed “non-linear automaton”, which es-
sentially fills incrementally all the gaps that can be filled in
a heap without changing its asymptotic height. Using this
construction, when the pieces have integer valued shapes,
and when any two pieces overlap, the Lyapunov exponents
can be explicitly computed. We present two other con-
structions (partly based on Cartier-Foata normal forms of
traces) which allow us to compute the optimal case Lya-
punov exponent, assuming only that the pieces have integer
valued shapes.

1 Introduction

Heap models, where solid blocks are piled up according
to the Tetris game mechanism, are a good model of Discrete
Event Dynamic Systems. They offer a trade-off between
modeling power and tractability: on the one hand, timed 1-
bounded Petri nets can be represented by heap models [20];
on the other hand, the height of a heap can be computed by
a max-plus automaton [5, 19], which can be analyzed via
spectral theory techniques [1, 18, 19].

In this paper, we address the following questions. Given
a finite set of pieces, what is the density of the infinite heap
obtained by letting fall down a sequence of pieces taken
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Systems”)

from this set, either randomly, according to a given proba-
bility measure; or in order to maximize the density, accord-
ing to some given logical constraints? When rephrased in
terms of timed Petri nets, these two questions become: how
many transitions will be fired per time unit when conflicts
are resolved in a random way; or if we select the firing se-
quence precisely to maximize the associated firing rate?

In algebraic terms, we represent pieces and transitions
by letters: the height of a heap of pieces, or the execution
time of a firing sequence, is computed by a max-plus au-
tomaton. The above questions are equivalent to the compu-
tation of Lyapunov exponents, which measure the growth
rate of long products of matrices arising from the linear rep-
resentation of the automaton. Our approach is a variation on
Furstenberg’s cocycle technique (see e.g. [4]), which can be
translated in automata theoretical terms as follows. A max-
plus automaton isdeterminizableif there exists a determin-
istic max-plus automaton with the same output. When it
is effectively determinizable, the associated Lyapunov ex-
ponents can be computed. However, as far as we know,
it remains an open problem to decide whether an integer-
valued max-plus automaton is determinizable. Here, we
use some specific features of heap automata to determinize
them, in some cases, and we introduce a weaker form of
determinization, which is enough to compute optimal case
Lyapunov exponents. Due to space restrictions, most proofs
are omitted.

2 Heaps of Pieces, Timed Petri Nets, and
Max-Plus Automata

In this section, we briefly recall the results of [19, 20].

2.1 Heaps of Pieces

Consider a finite setR of columns and a finite set
A of pieces. A piece a 2 A is a rigid polyomino-
shaped, possibly non connected, “block” occupying the
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subset of columnsR.a/. It has a lower and an upper con-
tour which are represented by two row vectorsl .a/ and
u.a/ in .R [ f�1g/

R, respectively, with the conventions
l .a/r D u.a/r D �1 if r 62 R.a/ and minr2R.a/ l .a/r D 0.
The upper contouru.a/ must be above the lower contour
l .a/, i.e. u.a/ � l .a/, where� denotes the usual (entry-
wise) order of.R [ f�1g/

R.
With an ordered sequence of pieces, denoted by a word1

w D a1 � � � ak, we associate aheapby piling up succes-
sively the piecesa1; : : : ; ak on a ground whose shape is
determined by a row vectorI 2 R

R . A piece is only sub-
ject to vertical translations and occupies the lowest possible
position, provided it is above the ground and the pieces pre-
viously piled up.

The 6-tupleH D .A;R; R; u; l ; I / constitutes aheap
model. To avoid trivial cases, we assume that each piece
occupies at least one column (R.a/ 6D ;; 8a 2 A), and that
each column is occupied by at least one piece (R�1

.r / 6D
;; 8r 2 R).

Theupper contourof the heapw is represented by a row
vector x

H

.w/ in R

R , wherex
H

.w/r is the height of the
heap on columnr . Theheightof the heapw is H.w/ D

maxr2R x
H

.w/r .

Example 2.1.Let us consider the heap modelHP defined
as follows.

A D fa; b; cg,R D f1; 2; 3; 4g;
R.a/ D f1; 2g, R.b/ D f2; 3g, R.c/ D f3; 4g;
u.a/ D [3; 1;�1;�1]; l .a/ D [0; 0;�1;�1]I
u.b/ D [�1; 1; 2;�1]; l .b/ D [�1; 0; 0;�1]I
u.c/ D [�1;�1; 2; 3]; l .c/ D [�1;�1; 0; 0];
I D [0; 0; 0; 0].

We have represented, in Figure 1, the heap associated
with the wordw D bcab.

We see thatx
HP .bcab/ D [4; 5; 6; 5] andHP.bcab/ D

6. Since the piecesa and c do not overlap, we have
x
HP.bacb/ D x

HP.bcab/ and, a fortiori,HP.bacb/ D
HP.bcab/.

2.2 Timed Petri Nets

We denote byG D .P; T ;F; M/ a standard safe (i.e.
1-bounded) Petri net, whereP is the set of places,T is the
set of transitions,F � .P�T /[ .T �P/ is the set of arcs,
and M : P ! N is the initial marking. We denote byx�

1Given a finite set (alphabet)A, we denote byAn the set of words of
lengthn onA. We denote byA�

D [n2NA
n the free monoid onA, that

is, the set of finite words equipped with concatenation. The unit (empty
word) will be denoted bye. The length of the wordw will be denoted by
jwj. We shall writejwja for the number of occurrences of a lettera in w.
An infinite word(or sequence) is a mappingu : N n f0g ! A. We write
u D u1u2 � � � . The set of infinite words is denoted byA! . An infinite word
u is periodic if there existsl 2 N n f0g such thatuiCl D ui ;8i 2 N n f0g.
In this case, we writeu D .u1 � � � ul /

!.

b

a

c

b

b

c
a

b

Figure 1. The heap modelHP.

(resp. �x) the set of direct successors (resp. predecessors)
of a node (place or transition)x. We call languageof the
Petri netG the setL � T

� of firing sequences starting from
M. We calltimed Petri neta Petri net with a constantfiring
time�.a/ associated with each transitiona 2 T , and a con-
stantholding time�.p/ associated with each placep 2 P .
Transitions are fired according to the following rule, which
has the same effect as the one of Ramchandani [28] on the
subclass of safe nets. We assume that transitiona becomes
enabled at instantt . Then, the firing ofa may beinitiated.
If initiated, the firing occurs in three steps.

1. At instant t , one token is removed from each input
place;

2. at instantt C �.a/, one token is added in each output
place;

3. after instantt C �.a/C �.p/, the token added in place
p 2 a� can contribute to the enabling of the transitions
in p�.

With this semantic, if a transition fires, it does soas soon as
possible. Also, the decisions on which transitions are fired
are not based on time considerations. All logically feasible
choices can be considered.

With a firing sequencew 2 L, sending the initial mark-
ing M to M 0, we associate themakespanor execution time
G.w/, which is the first instant at which all transitions ofw

have fired, and each token of the markingM 0 has completed
the holding time in its current place.

We have shown in [20] that a heap modelH is canoni-
cally associated to a safe timed Petri netG, in such a way
that for all w 2 L, we haveG.w/ D H.w/. Thus, the
height of the heapw is equal to the execution time of the
firing sequencew whenw 2 L (whenw 62 L, H.w/ has
no Petri net interpretation). We do not recall this construc-
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tion, but we next give two examples that we believe to be
self-explanatory.

Example 2.2.Let us consider the safe Petri netGP of Fig-
ure 2. The transitionsa and c can be fired concurrently,
while the transitionsa and b (or, b and c) are in mutual
exclusion. This net is a variant of the classical Dining
Philosophers model [14] (theP in GP stands for “Paral-
lel” or “Philosopher”). The language of the Petri net is
T

�

D fa; b; cg�.

p4p3

cb

p2

a

p1

Figure 2. The Dining Philosophers Petri netGP.

The firing and holding times are

�.a/ D �.b/ D �.c/ D 1;
� .p1/ D 2; � .p2/ D 0; � .p3/ D 1; � .p4/ D 2 :

The heap model associated withGP is HP, which was
defined in Example 2.1. The pieces correspond to the tran-
sitions, the columns correspond to the tokens (equivalently
to the places). A piece occupies the columns that corre-
spond to the tokens involved in the firing of its associated
transition. The heightu.t/i � l .t/i is equal to the sum of the
firing time of transitiont and of the holding time of placepi .
The execution time of the firing sequencebcab, GP.bcab/,
coincides with the height of the heap of Figure 1, that is
HP.bcab/ D 6.

Example 2.3.This example is taken from [20]. We have
represented in Figure 3 the safe timed Petri netGS and its
heap modelHS. The firing and holding times are

�.a/ D 1; � .b/ D 2; � .c/ D 2; � .d/ D 1;
� .p1/ D 1; � .p4/ D 2; � .pi / D 0; i D 2; 3; 5; 6:

a

d

c

b

p4

a

p1

b

p2

p3

p5 p6

c

d

Figure 3. The Petri netGS and the heap modelHS.

There is no concurrency in this Petri net (theS in GS

stands for “Sequential”). The language of the Petri net is
L D fab; cdg�fe; a; cg.

2.3 Automata with multiplicities over semirings

A set K equipped with two operations� and
 is a
semiring if � is associative and commutative,
 is asso-
ciative and distributive with respect to�, there is a zero
element0 (a � 0 D a; a 
 0 D 0 
 a D 0) and a unit
element1 (a
 1 D 1
 a D a).

For matricesA; B of appropriate sizes with entries in the
semiringK , we set.A� B/i j D Ai j � Bi j , .A
 B/i j D
L

k Aik 
 Bkj , and fora 2 K , .a 
 A/i j D a 
 Ai j . We
usually omit the
 sign, writing for instanceAB instead of
A
B. We denote by0 (resp.1) the matrix whose elements
are all equal to0 (resp. 1), the dimension depending on
the context. Several semirings are used in this paper, hence
the meaning of the symbols�;
; 0 and1 depends on the
context, but the symbolsC;�;�; =; 0 and 1 always have
to be interpreted in the usual algebra. We will also use the
“pseudo-norm”j � j

�

, defined byjAj
�

D

L

i j Ai j .
The structureRmax D .R [ f�1g;max;C/ is a semir-

ing, which is called themax-plus semiring. Here,� D

max;
 D C; 0 D �1 and1 D 0. This semiring isidem-
potent: a� a D a, for all a. The min-plus semiringRmin is
obtained by replacing max by min and�1 byC1 in the
definition ofRmax. The structureR

C

D .R

C

;C;�/ is also
a semiring. The Boolean semiringB can be identified with
the subsemiring.f0; 1g;�;
/ � Rmax.

An automatonof dimensionk, with multiplicities in a
semiringK , over an alphabetA, is a tripleU D .�; �; �/,
where� 2 K 1�k, � 2 K k�1, and where� : A� !

K k�k is a morphism of monoids. The morphism� is
uniquely defined by the family of matricesf�.a/ga2A;
since�.a1 : : :an/ D �.a1/ � � ��.an/ for all a1; : : : ; an 2

A. We say that the mapU : A� ! K , U.w/ D ��.w/�, is
recognizedby the automaton.

Such an automaton is represented graphically by a la-
beled and weighted digraph withk nodes. There is an arc
from nodei to node j , with labela and weight�.a/i j , if
�.a/i j 6D 0. There is an unlabeled input arc at nodei with
weight�i if �i 6D 0, and there is an unlabeled output arc at
node j with weight� j if � j 6D 0 (then,i and j are called
input and output nodes).

An automaton.�; �; �/ is deterministic if there is a
unique input node, and if for alli , and for alla 2 A, there
is at most onej such that�.a/i j 6D 0. When for alli anda,
there is exactly one nodej with this property, we say that
the automaton iscomplete. If a deterministic automaton is
not complete, we can make it complete without changing its
output by introducing an extra node.

We call max-plus automatonan automaton with multi-
plicities over the max-plus semiring. SinceB is a subsemir-
ing of Rmax, a classical automaton, that is an automaton
with multiplicities overB , is a special case of a max-plus
automaton. In the graph associated with a Boolean automa-
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ton, we do not represent the weights, see Figure 9 for in-
stance. For more details on automata with multiplicities,
see [2, 16].

For each piecea of a heap modelH, we define the matrix
M.a/ 2 R

R�R

max by

M.a/sr D

8

>

<

>

:

1 if sD r; r 62 R.a/;

u.a/r � l .a/s if r 2 R.a/; s 2 R.a/;

0 otherwise.

(1)

Equivalently, we have

M.a/ D Id� Ql .a/u.a/ ; (2)

where Id is the identity matrix (Idi i D 1; 8i I Idi j D

0; 8i 6D j ), and Ql .a/ is the column vector defined by
Ql .a/i D �l .a/i if l .a/i 6D 0 and Ql .a/i D l .a/i D 0 oth-
erwise.

We extendM : A ! R

R�R

max to a morphismM :
A

�

! R

R�R

max , settingM.a1 : : :an/ D M.a1/ � � �M.an/

(the products are of course in the max-plus semiring). The
following theorem was proved by the authors in [19, 20]
and, independently, with a different formulation, by Bril-
man and Vincent [5].

Theorem 2.4. LetH D .A;R; R; u; l ; I / be a heap model.
The upper contour and the height of the heapw 2 A

� are
given respectively by

x
H

.w/ D IM.w/ ;

H.w/ D IM.w/1 :

(3)

Thus, H is recognized by the max-plus automaton
.I ;M; 1/. It will be convenient to use the notationH for
both the heap model and the associated max-plus automa-
ton. We also callH a heap automaton.

Example 2.5.The heap automaton associated with the
heap modelHP of Example 2.1 and 2.2 isHP D

.1;M; 1/, where the morphismM is defined by the ma-
tricesM.a/;M.b/ andM.c/, given respectively by:
0

B

B

�

3 1
3 1

1

1

1

C

C

A

;

0

B

B

�

1

1 2
1 2

1

1

C

C

A

;

0

B

B

�

1

1

2 3
2 3

1

C

C

A

(the0 entries are omitted).

3 Worst, Optimal, and Average case Lya-
punov Exponents

Following [22], we say thatp : A� ! [0; 1] is amea-
sure on wordsif

p.e/ D 1 and p.w/ D
X

a2A

p.wa/ for all w 2 A

�

:

Then, of course,
P

a2A p.a/ D 1. A measure on words is
rational if the map p is recognized by an automaton with
multiplicities inR

C

, over the alphabetA. A rational mea-
sure isBernoulli if it is recognized by an automaton of di-
mension 1. Then,p.a1 : : :an/ D p.a1/ � � � � � p.an/, for
all a1; : : : ; an 2 A.

Let U D .�; �; �/ be a max-plus automaton over the
alphabetA and letp be a measure on words. We define the
following performance measures:

�max.U/ D lim sup
n!C1

1

n
max
w2A

n
U.w/ ; (4)

�min.U/ D lim inf
n!C1

1

n
min
w2A

n

U.w/ 6D0

U.w/ ; (5)

�E.U/ D lim
n!C1

1

n

X

w2A

n

U.w/ 6D0

p.w/� U.w/ : (6)

The “E” in �E stands for “expectation”. The limit�E.U/

need not exist, but Theorem 3.2 below gives a sufficient
condition for its existence. We christen�max.U/ (resp.
�min.U/, �E.U/) worst (resp. optimal, average) case Lya-
punov exponent.

Given a language L � A

�, we define
�max.U; L/; �min.U; L/ and �E.U; L/ by replacing
A

n by An
\ L in the definitions (4),(5) and (6). These

quantities are calledconstrained Lyapunov exponents.
For a heap automatonH, the limits �max.H/; �min.H/

and �E.H/ are equal respectively to the maximal, mini-
mal and average asymptotic growth rates of an infinite heap
of pieces. For a Petri net, the constrained Lyapunov expo-
nents are particularly relevant, as performances have to be
evaluated over the language of admissible firing sequences,
which is recognizable.

Computing Lyapunov exponents constrained by a recog-
nizable language is not theoretically harder than in the un-
constrained case. Indeed, letL denote a Boolean automaton
recognizingL and letU � L denote thetensor product2 of
the two automata. Then,U � L is a max-plus automaton
and�max.U;L/ D �max.U � L/ (the corresponding identi-
ties hold for�min and�E).

We next recall when and how the three Lyapunov expo-
nents can be computed. Recall that an automaton.�; �; �/

is trim if for all i , there existsw; z 2 A

� such that
.��.w//i 6D 0 and.�.z/�/i 6D 0, i.e. if each node is con-
nected to an input node and to an output node.

The following result, which is taken from [18], is an
immediate consequence of the max-plus spectral theorem

2In any semiring, the tensor product of ar � s matrix A by a r 0 � s0

matrix A0 is therr 0 � ss0 matrix A� A0 with entries.A� A0/
.i;i 0 /. j ; j 0/ D

Ai j A0i 0 j 0 . The tensor product of the automata.�; �; �/ and.�0; �0; � 0/ is

.� � �

0

; � � �

0

; � � �

0

/. We do not use the classical symbol
 for the
tensor product due to the conflict with the notation of the semiring product.
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(see [1, 26] and the references therein).

Theorem 3.1. If U D .�; �; �/ is a trim max-plus automa-
ton, then�max.U/ coincides with the maximal max-plus
eigenvalue of MD

L

a2A�.a/, which is given by

� D

M

1�p�k

M

i1:::i p

.Mi1 i2 � � �Mi p i1/
1=p (7)

D max
1�p�k

max
i1:::i p

Mi1i2 C � � � C Mi p i1

p
;

where k is the size of M.

Let ai j 2 A be a letter which attains the maximum in
L

a2A�.a/i j . Let .i1; : : : ; i l / be such that.Mi1 i2 C � � � C

Mil i1/= l D � and letw D ai1i2 � � �ail i1 . Thenworst case
wordsof increasing length can be obtained using the pattern
w. More precisely, ifu (resp.v) is the label of a path from
an input node toi1 (resp. fromi1 to an output node), we
have limn U.uwn

v/=juwn
vj D �max.U/.

Karp’s algorithm [23, 1] computes� in time O.kE/,
whereE is the number of edges of the graph ofM. The
max-plus version of Howard’s policy improvement algo-
rithm, presented in [10], is experimentally much faster, al-
though no polynomial bound is known for its complexity.

There is no simple general formula for�min or�E, except
in an important special case, that we next present.

Let U D .�; �; �/ be a deterministic and trim max-plus
automaton. We denote byQU themin-plusautomaton defined
by the same triple.�; �; �/ (but with 0 D C1). As there
is at most one path with labelw in the graph of.�; �; �/,
we obtain easily thatQU.w/ D U.w/ if U.w/ 6D �1 (and
Q

U.w/ D C1 if U.w/ D �1). We deduce from Theorem
3.1 that�min.U/ D �min. QU/ is equal to the minimal min-
plus eigenvalue of the matrixM D

L

a2A �.a/ (with � D

min), which is given by (7).
We now consider the average case Lyapunov exponent

�E. Let U D .�; �; �/ be a complete and determinis-
tic max-plus automaton and letp be a Bernoulli measure.
Given a nodei and a lettera, we denote byi � a the unique
node such that�.a/i;i �a 6D 0. We define thereward vector
c and thetransition matrix Pby

ci D
X

a2A

p.a/� �.a/i;i �a ; Pi j D
X

a2A;i �aD j

p.a/ : (8)

The next result, which is detailed in [18], is an immediate
consequence of the ergodic theorem for Markov chains.

Theorem 3.2. If p is a Bernoulli probability measure and
if U D .�; �; �/ is a complete and deterministic max-plus
automaton, with input node i0, and withU.w/ 6D 0, for all
w, we have

�E.U/ D .Q� c/i0 ; (9)

where QD limn.PC � � � C Pn
/=n is the spectral projector

of P for the eigenvalue1 (all the operations are inR
C

).

In particular, if P is irreducible or has a unique final
class, it has a unique invariant measure� , which is solu-
tion of � � P D � , we haveQ D [1; : : : ; 1]T � � , and
�E.U/ D � � c. These results can be adapted to the case of
a rational measurep, thanks to the following tensor prod-
uct construction. We take a representation.Æ; �; 
 / of p,
and we introduce the representationOU D . O�; O�;

O

�/ over the
semiringR

C

obtained from.�; �; �/ by replacing all finite
entries by 1, and�1 by 0. We denote by� the tensor
product of matrices in the usual algebra, and we set:

P D

X

a2A

�.a/� O�.a/; (10)

c D

X

a2A

.�.a/� 
 /� .�.a/
 1/ (11)

(all the operations are in the usual algebra, except the


which is in the max-plus semiring, and1 denotes the col-
umn vector with the same size as� whose entries are all
equal to 0). If.Æ; �; 
 / is trim, the matrixM D

P

a2A �.a/
has Perron root 1, this root is semisimple, and we may as-
sume thatM � 
 D 
 (see [22]). Then, an easy adaptation
of the proof of [18] shows that:

�E.U/ D .Æ � O�/� Q� c ;

whereQ denotes the spectral projector ofP for the eigen-
value 1.

The exponents�min and�E can be explicitly computed
for deterministic automata. This raises the following prob-
lem: given a mapU recognized by a non-deterministic max-
plus automaton, can we decide ifU is recognized by a deter-
ministic automaton, and if it is the case, can we find it effec-
tively? To the best of our knowledge, this problem remains
open. See [9] (resp. [17]), for a noneffective characteriza-
tion “à la Nerode” (resp. “à la Hankel”) of deterministic
series.

4 Completed Automaton

In this section, we give a determinization procedure for
a subclass of heap automata.

4.1 Determinization via normalization

Let us consider a non-deterministic automatonU D

.�; �; �/. The classical determinization algorithm of
Boolean automata admits the following extension.

Define the “normalization” operator� : Rk
max n f0g !

R

k
maxnf0g by�.x/ D x�jxj

�

1, i.e.�.x/i D xi �maxj x j .
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By construction,�.x/ has maximum 0. We extend the op-
erator� to R

k
max by setting�.0/ D 0. We define the set

�.U/

def
D f�.��.w// j w 2 A

�

g. If �.U/ is finite, we
introduce thenormalized automaton.�; �; 
 /, with set of
states�.U/, and

�u D

(

j�j

�

if u D �.�/

0 otherwise,

u D u�; and,

�.a/uv D

(

ju�.a/j
�

if �.u�.a// D v ;

0 otherwise.

By construction,.�; �; 
 / is complete, deterministic and
trim, and it is quite easy to see that it recognizes the same
map asU . The only difficulty is that�.U/ is not fi-
nite, in general (as opposed to the Boolean case). In a
heap automaton, as soon as two pieces do not overlap (i.e.
9a; b; R.a/ \ R.b/ D ;), the set�.U/ is infinite and this
determinization procedure does not work.

For instance, for the heap modelHS depicted in Fig-
ure 3, we have�.1M.a/n/ D .�2;�2; 0;�3� n/, i.e., if
we pile upn times the piecea, we obtain a hole of depth
3n on column 4 of the heap. This shows that�.U/ D

f�.1M.w// j w 2 A

�

g is infinite. However, the hole
on column 4 has no effect on the dynamics of the heap, and
a simple look at Figure 3 should convince the reader that
.�2;�2; 0;�3� n/�.w/ D .�2;�2; 0;�2/�.w/, for all
w 2 A

�. By filling all the gaps in the vectors of�.U/,
we obtain in this case a finite number of possible contours,
hence a deterministic automaton with the same behavior as
HS. We next formalize this idea, using residuation theory.

4.2 Completion of heaps, residuation, and non-
linear automata

We first recall some elements of residuation [15, 3]. In
a nutshell, residuation replaces the notion of inverse, which
need not exist in some ordered algebraic structures, by that
of maximal subinverse. We say that an ordered semiring
K is residuated if for alla; b; c, fx 2 K j ax � bg has
a greatest element, that we denote bya Æ

nb, and if dually,
fx 2 K j xc� bg has a greatest element, that we denote by
bÆ=c. Of course, if the product is commutativea Æ

nb D bÆ=a.
The semiringRmax, equipped with its usual order struc-

ture, is not residuated, but it can be embedded in the com-
pleted semiringRmaxD .R [ f�1;C1g;max;C/, which
is residuated. Since0 D �1 is absorbing, we have
.�1/ C .C1/ D �1 in Rmax. With the convention
.C1/� .C1/ D .�1/� .�1/ D C1, we have

xÆ=y D x � y :

Matrices overRmax are equipped with the product order-
ing D � B iff Di j � Bi j , for all i ; j . For matrices

A; B;C of compatible sizes with entries inRmax, we de-
fine by extensionA Æ

nB D maxfX j AX � Bg and
BÆ=C D maxfX j XC � Bg. Then, it is not difficult to
check thatA Æ

nB andBÆ=C are given by (̂ denotes the min
operation):

.A Æ

nB/uv D
^

i

Aiu Æ

nBiv; .BÆ=C/uv D
^

j

Bu jÆ=Cv j :

This can be rewritten as.A Æ

nB/uv D mini .Biv � Aiu/ and
.BÆ=C/uv D min j .Bu j � C

v j /.
The completion operator described informally in the pre-

ceding section can be expressed via residuation, as follows.
Let us consider a heap modelH D .A;R; R; u; l ; I / and

its associated heap automatonH D .I ;M; 1/. Fora 2 A,
we define the non-linear operator

8.a/ : R

R

max ! R

R

max

u 7! u8.a/ ; (12)

where

.u8.a//i D
V

b2R�1
.i / [.uM.a/M.b//Æ=M.b/] i

^

M

j

.uM.a// j : (13)

We extend3 the definition of8 to words, by morphism. For
w D a1 : : :an 2 A

n, we set:

8.w/ : RRmax ! R

R

max (14)

u 7! u8.w/

def
D u8.a1/ : : :8.an/ :

Clearly, we haveu8.a/ � uM.a/. The term
.uM.a/M.b//Æ=M.b/ is, by definition, the maximal con-
tour v such thatvM.b/ � uM.a/M.b/. Using this prop-
erty, we can show thatu8.a/M.w/1 D uM.a/M.w/1,
for all w 2 A

�, which implies readily the following theo-
rem.

Theorem 4.1. Let H D .I ;M; 1/ be a heap automaton
and let8 be defined as in (12)-(14). We have for allw 2

A

�:

H.w/ D I8.w/1 :

By analogy, we can seeH8 D .I ; 8; 1/ as a “non-linear
automaton” which recognizes the height of the heap.

Intuitively, for any row vectoru, u8.w/ is the maxi-
mal upper contour such that the height of a heap piled up
on u8.w/ is the same as the height of a heap piled up on
uM.w/.

3For words are read from left to right, we write here the composition
of operators from left to right. The conventional notation is 8.w/.u/ D
8.ak/ Æ : : : Æ8.a1/.u/.
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The action of8 admits another geometric interpretation.
Let a be a piece andM.a/ its associated matrix. We as-
sociate witha the piecesa anda, which both have height
0, and have the shapes of the upper and lower contour ofa,
respectively. More precisely,a anda are defined by their
matrices

M.a/ D Id� Qu.a/u.a/; M.a/ D Id� Ql .a/l .a/ ; (15)

whereQu.a/ is defined asQl .a/, see (2).
An example is provided in Figure 4. For clarity, pieces

of height 0 are represented by thick broken lines. We have:

piecea

piecea

piecea

Figure 4. A piece and its associated upper and lower
contour pieces.

Lemma 4.2. LetM.a/ 2 R

R�R

max be the matrix associated
with the piece a of a heap model. For all u2 R

1�R
max and

v 2 R

R�1
max , we have

M.a/Æ=M.a/ DM.a/; [uM.a/]Æ=M.a/ D uM.a/

M.a/ ÆnM.a/ DM.a/; M.a/ Æn[M.a/v] DM.a/v :

This lemma allows us to rewrite (13) in a geometrically
more appealing way:

.u8.a//i D
^

b2R�1
.i /

[uM.a/M.b/] i ^
M

j

.uM.a// j :

This formula is illustrated, on the model of Example 2.3, in
Figure 5.

The operator8.w/ is a min-max-plus function. In par-
ticular, it satisfies the following properties:
� monotonicity: 8u; v 2 R

R

; u � v H) u8.w/ �

v8.w/;
� homogeneity: 8� 2 R; u 2 R

R

; .�1 C u/8.w/ D

�1C .u8.w//, where�1 D .�; : : : ; �/;
� non-expansiveness: 8u; v 2 R

R

; jju8.w/�v8.w/jj �

jju� vjj, wherejj � jj denotes the sup-norm.

The larger class of maps defined by these three proper-
ties has been studied by many authors [11, 27, 21, 24]. We
note in passing that it is possible, and interesting, to develop
an automata theory in which the transition mappings belong

bb b b

a
c d

b

b

b

1M.b/ D .3;2; 1;1/

18.b/ D .3;2;2; 2/

Figure 5. The contours1M.b/ and18.b/

to this class. For instance, as illustrated in the next section,
the normalization procedure of §4.1 only needs the homo-
geneity property.

4.3 Determinization via Completion

LetH D .I ;M; 1/ be a heap automaton, and letH8 D

.I ; 8; 1/ be the associated non-linear automaton. We define
the set ofnormalized completed contours

�.H8/ D f�.I8.w//; w 2 A

�

g : (16)

If �.H8/ is finite, we define thenormalized completed au-
tomatonofH. This is the deterministic max-plus automaton
H

det
D .Æ; �; 
 / over the alphabetA, where

Æu D

(

jI j
�

if u D �.I /;

0 otherwise,

u D u1; and,

�.a/uv D

(

ju8.a/j
�

if �.u8.a// D v ;

0 otherwise.

The proof of the following lemma is easy.

Lemma 4.3. If �.H8/ is finite, the automataH andHdet

recognize the same map, i.e.

IM.w/1 D Æ�.w/
; 8w 2 A

�

:

Thus, if�.H8/ is finite, the automatonH is determiniz-
able.

Theorem 4.4. Let H D .A;R; R; u; l ; I / denote a heap
model. If the pieces have rational valued shapes (i.e.
u.a/; l .a/ 2 .Q [ f�1g/

R

; 8a 2 A), and if any two
pieces overlap (i.e. R.a/ \ R.b/ 6D ;; 8a; b 2 A), then
the set�.H8/ if finite, andHdet is a deterministic automa-
ton which recognizes the height functionH.
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In this case, as illustrated in the next section, the Lya-
punov exponents�min and�E can be explicitly computed
using the results of §3.

The completion procedure is central in [25], where the
Lyapunov exponents of all heap models with two pieces are
computed.

The timed safe Petri nets for which the associated heap
model satisfies the assumptions of Theorem 4.4 are the ones
for which any two transitions share at least one input or out-
put place, i.e. the ones without concurrency.

4.4 Applications

The Dining Philosophers heap modelHP, described in
Example 2.1, does not verify the assumptions of Theo-
rem 4.4 since piecesa andc do not overlap. The sequential
heap modelHS, introduced in Example 2.3 does verify the
assumptions of Theorem 4.4. We apply to this automaton
the procedure described in the previous sections.

The set of normalized completed contours is:

�.HS8/Df[0; 0; 0; 0]; [0;�1;�1;�1]; [�2;�2; 0;�2]g:

The construction of18.b/ starting from1M.b/ is illus-
trated in Figure 5. The normalized completed automaton
H

det
S is represented in Figure 6.

����

b j 3

a j 3
d j 3c j 1

a j 3 d j 2

b j 1

c j 0b j 3

2

1

3

c j 2

a j 3
d j 3

Figure 6. The automatonHdet
S .

Optimal behavior. If follows from the min-plus analogue
of Theorem 3.1 that the optimal behavior ofHS is deter-
mined by the min-plus matrix

M 0

D

0

�

2 3 3
1 3 2
0 1 3

1

A

:

Its eigenvalue�0 D 3=2 is equal to the average weight of the
circuits 3! 1 ! 3 and 2! 3 ! 2. These two circuits
correspond to paths with labelca, cd, anddb in the graph
of Figure 6. Thus, the optimal case Lyapunov exponent is

�min.HS/ D 3=2, and infinite words realizing this optimum
are.ca/!, .cd/!, and.db/!.

Let us come back to the Petri net of Example 2.3. Its
maximal firing rate is given by 1=�min.HS; L/. The expo-
nent�min.HS; L/ is obtained from the automatonHdet

S �L

(whereL is a deterministic automaton recognizingL) as
recalled in §3. However, here, buildingHdet

S �L is not nec-
essary as the finite prefixes of.cd/! belong toL. Thus,
�min.HS; L/ D �min.HS/ and the maximal firing rate is
2=3, an infinite firing sequence of maximal rate being.cd/!.
The other optimal solutions for the heap model, for instance
.db/!, have no interpretation in terms of the Petri net.

Average case behavior Let us compute the average be-
havior of the heap modelHS. Let p be a Bernoulli mea-
sure. As in (8), we associate withHdet

S a vectorc and a
matrix P, which is irreducible and has an unique invariant
probability measure� D [ p.c/; p.b/; p.a/ C p.d/]. We
deduce an expression for�E.HS/ as a polynomial function
of degree 2 offp.x/; x 2 Ag. For instance in the uniform
case,p.x/ D 1=4; x 2 A, we obtain�E.HS/ D 35=16.

Let us come back to the Petri netGS. The languageL
of the Petri net is recognized by the Boolean determinis-
tic automatonL of Figure 7 (forgetting the weights). The

d j 1

c j1� p.a/

b j 1

a j p.a/

l2

1

l1 l3

1 1

1

Figure 7. Automaton recognizingL andp.

random evolution ofGS is defined as follows. Each time
there is a token in placep3 (see Figure 3), we choose to
fire transitiona with probability p.a/ and transitionc with
probability 1� p.a/. The successive choices are indepen-
dent. This defines a rational measure on wordsp such that
p.w/ > 0 if and only if w 2 L. In Figure 8, we have
represented the accessible part of the tensor product (in the
semiringR

C

) of the linear representation ofp by the linear
representation. O�; O�; O�/ defined as in §3. The restriction to
accessible states of the transition matrix and of the reward
vector, defined by (10)-(11), are respectively

P D

0

B

B

B

B

�

0 0 0 p.a/ 1� p.a/
0 0 0 p.a/ 1� p.a/
0 0 0 p.a/ 1� p.a/
0 1 0 0 0
0 0 1 0 0

1

C

C

C

C

A

;

andc D [2 C p.a/; 2p.a/C 1; 3p.a/; 1; 3]T . The matrix
P has a unique final class, its stationary distribution is� D
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�� ����

�
�
�
�
�
�
�
�
�
�
�
�

l1 l2

l1

l1 l3

a j p.a/

a j p.a/

c j 1� p.a/

c j 1� p.a/

1 1

11

11

a j p.a/

b j 1

d j 1

c j 1� p.a/

Figure 8. The accessible part of the tensor product au-
tomaton which “computes”�E.HS; L/.

1=2[0; p.a/; 1 � p.a/; p.a/; 1 � p.a/]. We deduce that
�E.HS; L/ D .1C p.a//.3� p.a//=2. For instance, when
p.a/ D 1=2, we obtain�E.HS; L/ D 15=8. The average
number of firings per time unit is 1=�E.HS; L/ D 8=15.

5 Partial Determinization and Optimal Case
Lyapunov Exponents

In this section, we give two constructions, based on a
“partial determinization” idea. We build deterministic au-
tomata whose behaviors coincide with the behavior of the
original heap automatonH, only on some specific words.
This is enough to compute�min.H; L/ when L has a suit-
able saturation property. Throughout this section,H D

.A;R; R; u; l ; I / denotes a heap model, with heap automa-
ton .1;M; 1/.

5.1 Using Cartier-Foata Normal Forms

With the heap modelH, we associate thetrace monoid
M .A; R/, which is the quotient ofA� by the congruence�
generated by the relationsab D ba if R.a/ \ R.b/ D ;.
Two words are representatives of the same trace if they can
be obtained one from the other by repeatedly interchanging
adjacent commuting letters. More details on trace monoids
can be found in [13]. We denote byp : A� ! M .A; R/ the
canonical morphism. Our interest in trace monoids stems
from the following observation:

8w; z 2 A�; w � z H) M.w/ DM.z/ (17)

(exchanging the piling order of pieces that do not share a
column does not change the shape of a heap). Hence, the

mapH : A� ! Rmax induces a mapM .A; R/ ! Rmax,
that we also denote byH.

We say that a non-empty setC � A is aclique if a; b 2
C and a 6D b H) R.a/ \ R.b/ D ;. We denote byC
the set of cliques. Letq: C� ! M .A; R/ denote the unique
morphism of monoids such that ifC D fa1; : : : ; akg 2 C,
q.C/ D a1 : : :ak (this product is independent of the order
of a1; : : : ; ak by definition ofM .A; R/). For C 2 C, we
denote byn.C/ D jq.C/j the number of elements ofC, and
we extendn to C�, byn.C1 : : :Cn/ D n.C1/C � � � C n.Cn/,
for all C1; : : : ;Cn 2 C. We say thatC1 : : :Cn 2 C

� is a
(Cartier-Foata)normal form[7, 13] if for all 2 � i � n,
a 2 Ci H) 9b 2 Ci�1; R.a/ \ R.b/ 6D ;. For each
w 2 A

�, there is a unique normal formz 2 C� such that
q.z/ D p.w/, and thisz is called the normal form ofw. The
heightof a piecea is maxi2R.a/ u.a/i � mini2R.a/ l .a/i D
jM.a/j

�

. We say that a piecea is rectangularif both u.a/i
andl .a/i are independent ofi 2 R.a/.

Lemma 5.1. If all pieces are rectangular and of height 1,
then, we have for all z2 C�,

jzj � H.q.z// : (18)

The equality holds if z is a normal form.

The lemma follows from Viennot’s observation [30] that
trace monoids are ‘isomorphic’ to heap models with rect-
angular pieces of height 1. Cliques can be identified with
height 1 slices of heaps, and the height of the heap associ-
ated withw 2 A

� coincides with the number of cliques of
the normal form ofw (see [20, § III.B] for details).

We say that a languageL � A

� is saturatedif L D

p

�1
p.L/. We will need the (one-dimensional) max-plus au-

tomatonH0

D .1; n; 1/ over the alphabetC, together with
the languageL 0 D q

�1
.p.L// � C�.

Theorem 5.2. If all pieces are rectangular and of height 1,
and if L � A� is saturated, then we have

�min.H; L/ D
1

�max.H
0

; L 0/
: (19)

Proof. Using the first part of Lemma 5.1, we get that for all
w 2 A

� and for allz 2 C�,

q.z/ D p.w/ H)

H.w/

jwj

�

jzj

n.z/
:

Hence, �min.H; L/ D lim inf
jwj!1;w2L H.w/=jwj �

lim inf
jzj!1;z2L 0

jzj=n.z/ D 1=�max.H
0

; L 0/. If L is sat-
urated, the normal form ofw 2 L belongs toL 0, and the
equality follows from the second part of Lemma 5.1.

SinceL D A

� is saturated, we have by Theorem 5.2,

�min.H/ D

1

�max.H
0

/

;
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which allows us to compute�min.H/. More generally,
�min.H; L/ can be computed whenL is recognizable and
saturated. Then,p.L/ is a recognizable trace language [13,
Chap. 6], andL 0 D q

�1
.p.L// is a recognizable language.

Indeed, if L is recognized by a deterministic (Boolean)
automaton withN nodes, the Nerode construction of the
minimal automaton ofL 0 shows that we can build a deter-
ministic automaton recognizingq�1

.p.L// with at mostN
nodes andN � jCj arcs. Then, using the results of §3, we
obtain �max.H

0

; L 0/ (and thus,�min.H; L/) in O.N2
jCj/

time. Note also that ifL is the language of a safe timed
Petri net, it is automatically recognizable and saturated [13,
Prop. 1.8.2.].

The idea of using cliques of the Cartier-Foata normal
form to compute Lyapunov exponents is inspired by Cérin
and Petit [8], but the use of max-plus spectral theory and the
trick of Lemma 5.1 reduce the complexity.

Example 5.3.We consider the simplified version of the
Philosophers heap modelHP (see Figure 1), in which all
pieces have height 1. This corresponds to firing times
1 for all the transitions and holding times 0 for all the
places of the Petri net of Figure 2. The languageL of this
Petri net is the whole setfa; b; cg�. The set of cliques is
C D ffag; fbg; fcg; fa; cgg, and we haven.fag/ D n.fbg/ D
n.fcg/ D 1 andn.fa; cg/ D 2. Thus,�min.HP; L/ D

�min.HP/ D 1=�max.H
0

/, whereH0

D .1; n; 1/, and, by
Theorem 3.1,�max.H

0

/ D �.

L

C2C n.C// D 2: any infi-
nite heap ofH contains an average number of at most two
pieces per slice of height 1.

To give a less trivial illustration, we take the recogniz-
able languageL D fabc; cbag�. This language is not sat-
urated, forL 3 abcabc� abacbc=2 L, but Ochmański’s
theorem [13, Prop. 6.3.11] shows that the languageL D

fz j z � w 2 Lg obtained by saturatingL is still recog-
nizable. Alternatively, we can check thatL is recognized
by the automaton of Figure 9, taking into account only the
plain arcs. The automaton that recognizesq

�1
.p.L// � C�,

whose arcs are labeled by cliques, is obtained on Figure 9
by identifying a letterx 2 A with the cliquefxg, and by
adding the two dashed lines. The method of §3 shows that
�min.H; L/ is equal to the inverse of the maximum of the
quantityn.z/=jzj, wherez is a label of a circuit of the au-
tomaton. Here, an optimal circuit iszD .fbg; fa; cg/, which
has ratio 3=2. Thus,�min is equal to 2=3, and completing
the circuit by a path from the input node, we obtain di-
rectly the minimizing sequencesa.bac/! D abacbac: : :
andc.bac/! D cbacbac: : :

5.2 Remembering the Top Rows is Enough

The preceding technique could be extended to pieces
of general (integer valued) shapes, by replacing the set of
cliques of the normal form by the set of slices of height 1

a

c
b

b

a

c

a

a

c

c

{a,c}

{a,c}

Figure 9. Lifting to the clique alphabet an automaton
recognizingfabc; cbag�.

which appear in all possible heaps. We present here a sim-
pler method.

Recall thatx
H

.w/ denotes the upper contour vector of
the heapw (see §2). We say that a piecea is piled at depth
d � 0 in the heapw if the bottom of piecea, piled on
the heapw, is at heightH.w/ � d. The following lemma
states that it is always possible to build incrementally a heap
of pieces, from bottom to top, without piling pieces at a
large depth. The congruence� is defined as in the previous
section.

Lemma 5.4. There is an integerH with the following prop-
erty. For all n� 2 and for allw 2 A

n, we can find a word
a1 : : :an � w, with ai 2 A, such that for all2 � i � n, ai

is piled at depth at mostH in the heap a1 : : :ai�1.

Let H D maxa2Amaxi2R.a/.u.a/i � l .a/i / D

L

a2A jM.a/j
�

denote the maximal height of a piece. We
can show that the lemma holds withH D jRjH , for general
pieces. When all pieces have an horizontal basis, i.e. when
l .a/r D 0 for all a 2 A andr 2 R.a/, we can takeH D H .

From now on, we assume that the pieces have integer
valued shapes. We introduce the down shift operator� :
N

R

! N

R

; �.x/i D max.xi � 1; 0/. For L 2 N n f0g, we
define the normalization operatorNL.x/ D �

jxj
�

�L
.x/, if

jxj
�

� L, andNL.x/ D x, otherwise. By construction, for
all x 2 N

R , y D NL.x/ is such thaty 2 N

R andjyj
�

� L.
We next define a deterministic max-plus automaton,V ,

by its graph. The input node ofV is the contourx D 1 2

R

R

max. The corresponding input arc has weight1. There
is an arc fromx to NH .xM.a//, with labela and weight
max.jxM.a/j

�

� H ; 0/. All nodes are output nodes, and
the output arcs have weight1. There is a finite number of
nodes since all the vectors arising in this construction have
integer coordinates between 0 andH .

The automataH and V do not recognize the same
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map, but their output coincide on the words defined as in
Lemma 5.4. Next theorem follows readily.

Theorem 5.5. For all heap model with integer valued
shapes of pieces, and for all saturated language L, there
holds:

�min.H; L/ D �min.V; L/ : (20)

In particular,�min.H/ D �min.V/. Since the automaton
V is deterministic, the min-plus analogue of Theorem 3.1
allows us to compute�min.V; L/. Note that it is possible
to reduce the number of nodes ofV by incorporating the
completion procedure of §4 in the construction ofV .

When the heap modelH arises from a timed Petri Net,
the construction of Theorem 5.5 coincides essentially with
the construction of Carlier and Chretienne [6], which holds
more generally for bounded (possibly not safe) timed Petri
nets.

Example 5.6.The automatonV corresponding to the
Philosopher’s Petri net is depicted in Figure 10. Output arcs
are omitted. For readability, only a few weights and labels
are displayed. We have,�min.V/ D �min.H/ D 6=5, hence
the maximal firing rate is 5=6. This quantity is given by the
circuit displayed in bold lines on the figure. From this cir-
cuit, we obtain the optimal firing sequence.acbab/!, which
corresponds to the infinite heap whose first pieces are shown
on Figure 11.
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