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Abstract

We consider the projection problem for linear spaces and
operators over dioids such as the (max, +) semiring. We
give existence and uniqueness conditions for the projec-
tion onto the image of an operator, parallel to the kernel
of another one, together with an explicit formula for the
projector. The theory is not limited to linear operators:
the result holds more generally for residuated operators
over complete dioids. Illustrative examples are provided.

1 Introduction

One of the most regrettable gaps in the theory of (max, +)

linear Discrete Event Systems is the lack of a geometric
understanding, in the spirit of the ‘geometric approach’
initiated by Wonham [17] for conventional linear systems.
The main obstacle in this direction is the lack of a power-
ful theory on images and kernels of linear operators over

the ‘(max, +) semiring’ Rmax
def= (R ∪ {−∞}, max, +),

similar to the rank theory for vector spaces or to the theory
of modules over principal rings.

Finite dimensional images, or equivalently, finitely
generated Rmax-semimodules, have been seriously inves-
tigated. We refer the reader to [14, 15, 16] for existing
results (existence of basis, classification tools). Compar-
atively, kernels seem to have attracted very little atten-
tion. Indeed, in the (max, +) context, one has to define
the kernel (or perhaps the ‘bikernel’) of a linear map-
ping A as an equivalence relation, namely as the set of
pairs (x, y) such that Ax = Ay (the usual definition
ker A = {x | Ax = ε}, where ε denotes the zero ele-
ment, carries little information in the (max, +) case, due
the noninvertibility of addition).

In this paper, we study the simplest geometrical prob-
lem which consists in projecting onto the image of an
operator B : U → X parallel to the kernel of an operator
C : X → Y . For linear operators over vector spaces, the
answer is well known: the existence of such a projector
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5 : X → im B, parallel to ker C , is equivalent to the
direct-sum decomposition X = im B + ker C . Moreover,
as soon as B is injective and C is surjective1, we have

5 = B(C B)−1C . (1)

The main difficulty in extending this result is that linear op-
erators over idempotent semimodules are generically not
invertible (even not injective, and not surjective). How-
ever, they satisfy a suitably relaxed invertibility condi-
tion (residuability), which is enough for our purpose. We
provide a characterization based on the residuated maps
of B, C , and give a formula similar to (1) involving the
residual of C B instead of its inverse. The class of residu-
ated mappings (over general ordered structures) is indeed
much wider than that of linear ‘continuous’2 operators
over idempotent semimodules.

The paper is organized as follows: in §2, we recall
the few algebraic elements needed in the paper. Kernels
and images are introduced in §3: intrinsic (operator inde-
pendent) characterizations are provided in terms of fac-
torizations (or Green classes) of residuated mappings. In
§4, the operator of projection parallel to the kernel of a
residuated operator in isolation (without reference to an
image) is determined. Dually, in §5, the operator of pro-
jection onto the image of a residuated operator in isolation
(without reference to a kernel) is given. These two pro-
jection results use the order relation to canonically select
a (maximal or minimal) solution to these ill-posed prob-
lems, in a way very much analogous to the specification
of conventional quasi-inverses by norm minimization ar-
guments. Next (§6), we address the complete projection
problem. We conclude with illustrating examples for Rmax

semimodules.

Of course, projection operators are instrumental in lin-
ear algebra and in control, and the study of their (max, +)

and dioid analogues needs almost no justification. How-
ever, we would like to mention a specific application to
aggregation and lumpability problems. One may formu-
late aggregation problems for Markov chains (and more
generally, for linear dynamical systems) in a purely al-
gebraic way using projection operators, as in [6]. With
the projection theorem given here at hand, this approach

1These conditions are not too restrictive in the case of linear oper-
ators over vector spaces. Indeed, what is important is the geometric
objects im B and ker C rather than the representative operators B and C
themselves.

2Precisely, lower semicontinuous, as defined below.



extends verbatim to the (max, +) case. Then, one ob-
tains aggregation conditions for Timed Event Graphs, i.e.
conditions for the existence of (usually physically mean-
ingful) aggregated variables (typically the maximal com-
pletion time of all the tasks within a certain relevant class),
from which the complete behavior can be retraced. This
is reported in [4].

2 Algebraic preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioids
and ordered sets, and in [9] for semirings and semimod-
ules. A seminal reference in residuation theory is [2]. See
also [5].

2.1 Order properties of dioids

A dioid (D, ⊕, ⊗) is a semiring in which addition is idem-
potent: a ⊕ a = a. The zero and unit elements will be
denoted ε and e respectively. A dioid (or more gener-
ally, an idempotent additive monoid) is equipped with the
natural order relation:

a ≤ b ⇐⇒ a ⊕ b = b . (2)

Then, a ⊕ b coincides with the upper bound sup{a, b} for
the natural order ≤. Note that ε is the bottom element of
D: ∀x ∈ D, ε ≤ x . Indeed, (2) sets up a one to one
correspondence between ordered sets (D, ≤) with upper
bounds for any pairs of elements and a bottom element for
the whole set on the one hand, and commutative idempo-
tent monoids on the other hand. We say that an idempotent
monoid is complete whenever an arbitrary (possibly infi-
nite) set X ⊂ D admits an upper bound sup X . Then, we
define infinite sums by setting:

⊕

x∈X

x
def= sup X .

We say that an isotone3 mapping f from a complete idem-
potent monoid E to a complete idempotent monoid F is
lower semicontinuous4 (for short, l.s.c.) [1] if for all (pos-
sibly infinite) nonempty subsets X ⊂ E ,

f

(⊕

x∈X

x

)
=

⊕

x∈X

f (x) . (3)

A dioid is complete whenever its underlying additive
monoid is complete, and when for all a ∈ D, the op-
erators of right and left multiplication by a, x 7→ xa, and
x 7→ ax are l.s.c.

Example 1. The dioid Rmax which is not complete can
be embedded in the complete dioid Rmax = (R ∪
{±∞}, max, +), with the convention −∞ + (+∞) =
−∞.

3A mapping f : (E, ≤) → (F , ≤) is isotone if it is a morphism of
ordered sets, i.e. if x ≤ y H⇒ f (x) ≤ f (y).

4The specialization of this definition to isotone mappings R → R
coincides with the usual lower semicontinuity notion. Lower semicon-
tinuity can also be seen as a special case of Scott continuity defined for
(possibly non isotone) mappings over continuous lattices. See [8].

2.2 Residuation

A mapping f from an ordered set (E, ≤) to an ordered set
(F, ≤) is residuated if it is isotone, and if for all y ∈ F ,
the set {x ∈ E | f (x) ≤ y} admits a maximal element,
denoted f ](y). The isotone mapping f ] : (F, ≤) →
(E, ≤) is called the residual of f . The residual f ] is the
only isotone mapping satisfying the following relations5:

f ◦ f ] ≤ I , (4a)

f ] ◦ f ≥ I . (4b)

A simple characterization holds in the case of complete
idempotent monoids E,F . Then, f is residuated iff f
is l.s.c.6 and f (ε) = ε. The following identities can be
easily derived from (4).

f ◦ f ] ◦ f = f , (5a)

f ] ◦ f ◦ f ] = f ] , (5b)

( f ◦ h)] = h] ◦ f ] , (5c)

where f, h are residuated mappings, f : E → F , h :
H → E , respectively.

The notion of dually residuated mapping is defined
naturally by reversing the order in the above definitions.
See [1] for details. We use the notation f [ for the dual
residual of f . An immediate consequence of characteri-
zation (4) and its dual is that a residuated map f ] is itself
dually residuated. Indeed:

(
f ]

)[ = f . (6)

3 Kernels, images, and factorization of
isotone maps

Definition 1 (Kernel). Let C denote a mapping7 X →
Y . We call kernel of C (denoted ker C), the equivalence
relation over X :

x
ker C∼ y ⇔ C(x) = C(y) . (7)

We will write

[x]C = x ⊕ ker C
def= C−1(C(x))

for the equivalence class of x . The notation x ⊕ker C , (to
be used whenX ,Y are equipped with additive structures),
is introduced by analogy with conventional linear algebra,

5We denote I the identity map, without reference to the underlying
set, which should be clear from the context. E.g., in (4a), I stands for
the identity map F → F .

6All the examples of linear operators we have in mind for control
purposes, and in particular general input-output operators with kernel
representation, as in [1, Th.6.5], are l.s.c., and therefore, residuated.

7We need not restrict the definition of kernels to morphisms as usual
[3]. Indeed, definition (7) is a purely set-theoretic one.



although a kernel is not8 a ‘subspace’ of X . It may be
thought of as a ‘fibration’ ofX by the equivalence classes.
Even when C is linear, these equivalence classes may
have no uniform ‘dimension’ in that some may be reduced
to singletons whereas other may contain infinitely many
elements (see the examples in §7).

Lemma 1. Let C : X → Y be a residuated (resp. dually
residuated) mapping. Then ker C = ker(C] ◦ C) (resp.
ker C = ker(C[ ◦ C)).

Proof: By this statement, we mean that the equivalence
classes are the same with both mappings. We must prove
that

C(x) = C(y) ⇔ C] ◦ C(x) = C] ◦ C(y) ,

for all x, y, which follows from (5a). The same for [

instead of ].

Remark 1. In conventional algebra, if C and D are lin-
ear operators, ker(D ◦ C) = ker C iff im C ∩ker D = {0}.
Therefore, here, we may say that im C is ‘transverse’ to
ker C] (which is reminiscent of the fact that im C is or-
thogonal to ker CT — T denotes transposition — for ma-
trices in conventional algebra). A more accurate way of
saying this is to say that the intersection of any equiv-
alence class defined by ker C] (or ker C[) with im C is
reduced to a singleton. Indeed, the previous proof es-
tablishes uniqueness (it may be read as follows: if two
elements are both equivalent mod ker C] and belong to
im C , they are equal). To prove that there exists at least
one element in every class which lies also in im C , it suf-
fices to observe that, for any x , C ◦ C](x) ∈ x ⊕ ker C]

(since C] ◦ C ◦ C](x) = C](x)), and that, in addition, it
belongs to im C . This operator C ◦ C] will later on be
denoted 5C and called ‘least projector onto im C’.

Identifying the equivalence relation
ker C∼ with its graph

{(x, y) | x
ker C∼ y}, we naturally order kernels by inclu-

sion. This allows us to state the following isotone version
of a familiar result for vector spaces.

Lemma 2. Consider an isotone mapping G : X → G,
together with a residuated mapping F : X → F . The
following conditions are equivalent

1. ker F ⊂ ker G

2. there exists an isotone mapping H : such that G =
H ◦ F

3. G = G ◦ F] ◦ F.

Proof: 3 H⇒ 2 H⇒ 1 is straightforward. We prove that
1 H⇒ 3. By (5a), we have (x, F] ◦ F(x)) ∈ ker F ⊂
ker G, hence G(x) = G ◦ F] ◦ F(x).

8The linearity of C is reflected by the fact that
ker C∼ is a congruence,

that is for all x, x ′, y ∈ X and for all scalars λ, x
ker C∼ x ′ H⇒ x⊕y

ker C∼
x ′ ⊕ y, and x

ker C∼ x ′ H⇒ λx
ker C∼ λx ′.

For the sake of symmetry, we give the dual results for
images. Given a mapping9 B : U → X , we define as
usual im B = {B(u) | u ∈ U}.

Lemma 3. Let B : U → X be a residuated (resp. dually
residuated) mapping. Then im B = im (B ◦ B]) (resp.
im B = im (B ◦ B[)).

Proof: When B is residuated, this follows readily from
(5a). Dual argument for B[.

Lemma 4. Consider an isotone mapping F : F → X ,
together with a residuated mapping G : G → X . The
following conditions are equivalent

1. im F ⊂ im G

2. there exists an isotone mapping H : F → G such
that F = G ◦ H

3. F = G ◦ G] ◦ F.

Proof: 3 H⇒ 2 H⇒ 1 is straightforward. We prove that
1 H⇒ 3. Indeed, for all x ∈ F , there exists y ∈ G such
that F(x) = G(y). Therefore, by (5a), G ◦ G] ◦ F(x) =
G ◦ G] ◦ G(y) = G(y) = F(x).

Remark 2. Let us write G ≡L F if G = H ◦ F and
F = H ′ ◦ G for some residuated mappings H, H ′. By
Lemma 2, two isotone mappings F and G have the same
ker iff G = H ◦ F and F = H ′ ◦ G for some residuated
mappings H, H ′, which allows us to identify kernels to
equivalence classes modulo the left Green relation ≡L
[11]. Dually, defining the right Green relation G ≡R F
iff G = F ◦ H and F = G ◦ H ′ for some isotone mappings
H, H ′, we may identify images with equivalences classes
modulo ≡R.

Remark 3. The interest of the last statement in Lemma 2
and 4 is the effectivity. When dealing with linear map-
pings over Rn

max, residuals are easily computed (see [5] and
[1, Lemma 4.83]). Thus, the inclusion and equality of ker-
nels and images can be effectively checked. Note that in
the (max, +) case, by composition of linear mappings and
their residuals, we obtain special cases of ‘(min, max)’
homogeneous mappings studied by Olsder and Gunawar-
dena (see [10]).

Remark 4. When F, G are linear operators, one may nat-
urally ask for analogues of Lemma 2 and 4 restricted to
linear mappings (the isotone mappings H = G ◦ F] or
H = G] ◦ F are in general nonlinear). Observing that the
restriction to im F of a mapping H satisfying condition 2
of Lemma 2 is linear, we see that one part of the problem
is equivalent to extending a linear mapping defined on a
subspace to a globally defined linear mapping. See [7,
Ch.0,Th.7.1.1] for a particular case of this result.

9We do not reserve the term image to morphisms.



4 Projection parallel to the kernel of an
operator

From Remark 1 (or rather, its dual), for any x , there exists
a single element in (x ⊕ ker C) ∩ im C] and it is given by
C] ◦ C(x). The following lemma gives other properties of
this element.

Lemma 5. Let C : X → Y be a residuated mapping and
let 5C = C] ◦ C. We have that

1. 5C is a projector, i.e. 5C ◦ 5C = 5C ;

2. 5C ≥ I (identity over X );

3. 5C(x) is the unique element equivalent to x
mod ker C which also lies in im C];

4. 5C(x) is the greatest element in the equivalence
class of x;

5. C ◦ 5C = C;

6. C is injective iff 5C = I and iff C] is surjective.

Proof: The first two statements follow from (5a) and (4b).
The third one was already explained in Remark 1. As for
the fourth one, it is also a direct consequence of residuation
theory: for any x , let y ∈ x ⊕ ker C , hence C(y) = C(x);
the greatest y which satisfies such an equation is, by defini-
tion, C]

(
C(x)

)
. The fifth statement is another well known

formula (it expresses that 5C(x) ∈ x ⊕ ker C). Finally,
the last statement is extracted from [1, Theorem 4.56].

Remark 5. From this lemma, we may call 5C ‘the great-
est projector parallel to ker C’, or, alternatively, ‘the pro-
jector onto im C] parallel to ker C’. In [1, Definition 4.58],
an operator satisfying the first two statements of Lemma 5
was called a closure mapping. Suppose C itself is a clo-
sure mapping which is, in addition, residuated. Then,
according to [1, Theorem 4.59], 5C = C .

Remark 6. Needless, to say, if C is dually residuated,
dual statements of Lemma 5 can be made: for example,
C[ ◦ C(x) is the unique element of x ⊕ ker C which lies
at the same time in im C[, and also the least element in
x ⊕ ker C .

5 Projection onto the image of an operator

As noticed in Remark 1, for any residuated operator B :
U → X and any x ∈ X , B ◦ B](x) is the unique element
of im B which is equivalent to x mod ker B]. By apply-
ing what was said in Remark 6 to the dually residuated
operator B], it may be seen that B ◦ B](x) is also the least
element in x ⊕ ker B]. The following lemma adds the
interpretation that, among all isotone operators M which
preserve im B, that is, M ◦ B(x) = B(x) for all x ∈ U ,
B ◦ B] is the least one (in addition, it is a projector).

Lemma 6. Let B : U → X be a residuated mapping and
let 5B = B ◦ B].10 We have that

1. 5B is a projector;

2. 5B ≤ I ;

3. 5B(x) is the unique element equivalent to x
mod ker B] which also lies in im B;

4. 5B(x) is the least element in the equivalence class
of x mod ker B];

5. 5B is the least operator such that 5B ◦ B = B;

6. B is surjective iff 5B = I and iff B] is injective.

Proof: Given that the other statements can be easily de-
rived from Lemma 3 and (4), (5) or have already been
established, only statement 5 needs some argument. In-
deed, this statement will be reformulated in another way
in the next lemma, and then proved.

Lemma 7. Let B be a residuated mapping from U to X
and RB (11) be the operator, defined over isotone mappings
over X , which associates the mapping M ◦ B with M.
Then RB is dually residuated12 and (RB)[ is equal to RB] .

Proof: By definition, R[

B(9) is the least operator M such
that

M ◦ B ≥ 9 . (8)

Therefore, since B ◦ B] ≤ I ,

M ≥ M ◦ B ◦ B] ≥ 9 ◦ B] .

Moreover, 9 ◦ B] itself satisfies (8) since B] ◦ B ≥ I .
Hence, it is the solution to the dual residuation problem.

Remark 7. From Lemma 6, we may call 5B ‘the least
projector onto im B’, or, alternatively, ‘the projector onto
im B parallel to ker B]’, or even ‘the least projector par-
allel to ker B]. In [1, Definition 4.58], an operator sat-
isfying the first two statements of Lemma 6 was called
a dual closure mapping. However, if B itself is a dual
closure mapping which is residuated — and not dually
residuated —, it does not seem possible to state in general
that 5B = B.

Remark 8. If B is dually residuated, dual statements of
Lemma 6 can be made: for example, B ◦ B[(x) is the
unique element of x ⊕ ker B[ which lies at the same time
in im B, and also the greatest element in x ⊕ ker B[, and
B ◦ B[ is the greatest operator which preserves im B.

10Note that B as a subscript refers to the expression B ◦ B] whereas
B as a superscript refers to B] ◦ B.

11 R for composition to the ‘right’
12It is also residuated but we do not have a closed-form expression for

(RB)] since B is not necessarily dually residuated.



6 Projection on the image of an operator
parallel to the kernel of another operator

6.1 Discussion

LetX ,U,Y be three ordered sets and B : U → X and C :
X → Y be two isotone operators. Given any x ∈ X , we
now raise the problem of finding y ∈ im B ∩ (x ⊕ ker C),
that is,

find y ∈ X , s.t. ∃z ∈ U : C(y) = C(x) , (9a)

B(z) = y . (9b)

If such a y exists and is unique, it will be called the pro-
jection of x onto im B parallel to ker C . This, in turn,
may raise the problem of existence (is im B ∩ (x ⊕ ker C)

nonempty?) or uniqueness (is im B ∩ (x ⊕ ker C) re-
duced to a singleton?). It is known that residuation theory
is a way around the problems of nonexistence (by relax-
ing equalities to inequalities) and of nonuniqueness (by
looking for some ‘extremal’ — either greatest or least —
solution), provided that the direction of inequalities be
consistent with the notion of extremality chosen (greatest
‘subsolution’ or least ‘supersolution’) and that the oper-
ators involved have consistent residuation properties (see
[1, §4.4.2]). Also, if equalities can finally be satisfied,
residuation will always provide an answer with equalities
holding true.

Linear l.s.c. operators are residuated. Therefore, it is
justified to privilege the theory in which B] and C] do ex-
ist. This is what we do hereafter. The dual situation when
B and C are dually residuated can be studied similarly.

6.2 Existence

The following lemma gives several necessary and suffi-
cient conditions for the fact that im B ‘crosses’ ker C .

Lemma 8. Let B : U → X and C : X → Y be two
residuated operators. Let

5C
B = B ◦ (C ◦ B)] ◦ C . (10)

The following statements are all equivalent:

1. for all x ∈ X , there exists an element y ∈ im B ∩
(x ⊕ ker C) and 5C

B(x) is such a y;

2. for all x ∈ X and w ∈ Y such that w = C(x),
there exists a z ∈ U such that w = C ◦ B(z);

3. im (C ◦ B) = im C;

4. 5C ◦ B = 5C , that is, (C ◦ B) ◦ (C ◦ B)] = C ◦ C];

5. C ◦ 5C
B = C, that is, C ◦ B ◦ (C ◦ B)] ◦ C = C.

Proof:

1 ⇒ 2: Item 2 is a rephrasing of item 1 with w = C(y).

2 ⇒ 3: Straightforward.

3 ⇒ 4: Straightforward by recalling that, e.g., 5C is the
least projector onto im C .

4 ⇒ 5: It suffices to post-compose with C to pass from
the equality in 4 to the equality in 5.

5 ⇒ 1: By application to x , the equality in 5 says nothing
but 1.

6.3 Uniqueness

The following lemma gives several necessary and suffi-
cient conditions for the fact that im B ‘crosses’ ker C at at
most one point.

Lemma 9. Let B : U → X and C : X → Y be two
residuated operators. The following statements are all
equivalent:

1. for all x ∈ X , there exists at most one element in
im B ∩ (x ⊕ ker C);

2. for all z, z′ ∈ U such that C ◦ B(z) = C ◦ B(z′), we
have B(z) = B(z′);

3. ker(C ◦ B) = ker B;

4. 5C ◦ B = 5B , that is, (C ◦ B)] ◦ (C ◦ B) = B] ◦ B;

5. 5C
B ◦ B = B, that is, B ◦ (C ◦ B)] ◦ C ◦ B = B.

Proof:

1 ⇒ 2: Item 2 is a rephrasing of item 1.

2 ⇒ 3: Straightforward.

3 ⇒ 4: Straightforward by recalling that, e.g., 5B is the
greatest projector parallel to ker B.

4 ⇒ 5: It suffices to pre-compose with B to pass from
the equality in 4 to the equality in 5.

5 ⇒ 1 (or 2): If C ◦ B(z) = C ◦ B(z′), apply B ◦ (C ◦ B)]

to both members and conclude, using the assumption.

6.4 Summary

We summarize the above results as follows.

Theorem 1. Consider two residuated operators

U B→ X C→ Y . (11)

There exists a unique projection operator 5C
B (on im B

parallel to ker C) iff conditions of Lemma 8 and 9 above
hold true. Then, 5C

B is given by (10). Equivalently:



5C
B = 5B ◦ 5C . (12)

Moreover, if B and C are linear, then 5C
B is linear.

Proof: The only points to check are: (i) factorization
(12) which follows from (10) and (5c), (ii) the linearity
of 5C

B , which follows from the linearity of the defining
relations (9).

Remark 9. When the existence and uniqueness condi-
tions are satisfied, (12) shows that projecting onto im B
parallel to ker C amounts to projecting onto im C] parallel
to ker C first, and then, to project this element onto im B
parallel to ker B]. Recall that ker(C] ◦ C) = ker C and
that im B = im (B ◦ B]). We thus might have replaced
from the beginning C , resp. B, by C] ◦ C , resp. B ◦ B],
but these operators are obviously neither residuated nor
dually residuated.

Remark 10. Note also that, in general,

5B ≤ 5C
B ≤ 5C ,

confirming the extremality of 5B and 5C observed earlier.
These two projectors are less — for the former — and
greater — for the latter — than identity, whereas 5C

B is
not comparable to identity in general.

6.5 Duality

Finally, we mention the following useful duality result.

Theorem 2 (Duality). Consider two residuated map-
pings B, C as in (11).

1. The existence of a projection onto im B parallel to
ker C is equivalent to the uniqueness of the projec-
tion onto im C] parallel to ker B].

2. The uniqueness of the projection onto im B parallel
to ker C is equivalent to the existence of a projection
onto im C] parallel to ker B].

Proof: 1. Using Lemma 8 (item 4) and the dual of
Lemma 9 (item 4) (stated for dually residuated mappings),
we write the existence condition of a projection onto im B
parallel to ker C and the uniqueness condition of the pro-
jection onto im C] parallel to ker B], respectively, as fol-
lows:

C ◦ C] = C ◦ B ◦ B] ◦ C] , (13a)
(
C]

)[
◦ C] =

(
C]

)[
◦
(
B]

)[
◦ B] ◦ C] . (13b)

Using (6), we see that (13a) and (13b) coincide, which
shows the equivalence of the two conditions stated in
item 1. The proof for item 2 is similar.

Remark 11. Observe that the theory with dually residu-
ated operators applies for 5B]

C] , and that the dual formula
of (10) yields

5B]

C] = C] ◦ C ◦ B ◦ B] = 5C ◦ 5B , (14)

which should be compared with (12).

Remark 12. Formulæ (12) and (14) give 5C
B and 5B]

C] as
a function of 5C and 5B . We note that, conversely:

5B = 5C
B ◦ 5B]

C] ,

5C = 5B]

C] ◦ 5C
B .

7 Illustrative examples

We start by observing that, if B is linear, im B is invariant
by translation along the vector 1 =

(
1 1 1 . . .

)T
.

Indeed, for all λ ∈ R, we have:

x ∈ im B ⇔ x + λ1 ∈ im B ,

where (exceptionally), the operations have to be inter-
preted in conventional algebra. Likewise, if C is linear,
the equivalence classes defined ker C are ‘reproducible’
by translations along 1 in the sense that

(x, y) ∈ ker C ⇔ (x + λ1, y + λ1) ∈ ker C .

Therefore,in the following examples, we can limit our-
selves to determine enough classes to fill in the whole
space by these translations.

Figure 1: Projection on a line parallel to an hyperplane

Example 2. Let X = R2
max, U = Rmax, Y = Rmax, and

consider the two linear mappings with respective matrices:

B =
(

a
b

)
, C =

(
c d

)
. (15)

As soon as ac ⊕ bd 6= ε, C B is invertible, and the ex-
istence/uniqueness conditions are trivially satisfied13. A
generic example is displayed in Fig 1. The image of B is
the conventional line crossing the point (0, 2) as shown in
the figure. The two broken lines (with arrows) represent
the preimage by 5C

B of the two points (bold circles) (2, 4)

and (−3, −1), respectively.

13The example extends immediately to X = Rn
max, when im B is a

line (i.e. when B has only one column) and ker C is an hyperplane (when
C has only one row).

x2
B =

(
0
2

)

x 1
=

x 2C =
(
0 0

)

im
B

x1

5

0 5
(
5C

B

)−1
(2, 4)

5C
B =

(
−2 −2
0 0

)

(
5C

B

)−1
(−3, −1)



Figure 2: Projection on a maximal rank strict subspace

Example 3. Consider the matrices

B =
(

0 0
−4 0

)
, C = B .

Note that C B = B is not invertible. Note also that the
columns of B span a strict subspace of R2

max, with ‘rank’
(minimal number of generators) 2: such a situation cannot
occur in conventional algebra. However, the projection
problem admits a unique solution depicted in Fig. 2. Three
types of classes are shown. If x2 + 4 > x1 > x2, then x
lies in the interior of im B. The equivalence class [x]C =
C−1

(
C(x)

)
is reduced to {x} itself, and thus 5C

B(x) = x .
If x2 ≥ x1 (x is above the upper boundary of im B), [x]C =
{(t, x2) | t ≤ x2} is an horizontal half line crossing im B
at the unique point (x2, x2), that is, 5C

B(t, x2) = (x2, x2)

for t ≤ x2. Dually, the points below the lower boundary
of im B are projected on this boundary along vertical half
lines, as shown in Fig 2.

Example 4. Ex. 3 is a special case of the following. Con-
sider an arbitrary idempotent matrix P (i.e. P = P2). We
note that 5P

P = P(P2)] P = P P] P = P (by (5a)), and
that 5P

P P = P5P
P = P . Thus, P = 5P

P is the unique
projector on im P parallel to ker P . This result can be in-
terpreted as an analogue of the familiar fact that with a con-
ventional idempotent matrix P is associated the projection
on im P parallel to the supplementary space im (I − P).

Remark 13. Conversely, when X = Dn is the free semi-
module with n generators over a dioid D, and when C, B
are linear operators satisfying the existence and unique-
ness condition of Theorem 1, 5C

B is a linear idempotent
operator Dn → Dn . Therefore, it is represented by an
idempotent matrix P in the canonical basis.

Example 5. Consider the matrices

B =




0 1

0.5 0
2 1



 , C =
(

0 0 0
2 1 0

)
.

The image of B and the equivalences classes modulo C
are represented in Fig. 3. Let us detail the construction of
this picture.

Figure 3: 3-dimensional case

Then, it is not difficult to see that there are exactly 5
types of equivalence classes, namely:

[(α, 1, 1)T ]C = {(α, s, t)T | max(s, t) = 1}
with 0 < α < 1 (type 1),

[(0, 1, α)T ]C = {(s, t, α)T | max(1 + s, t) = 1}
with 1 < α < 2 (type 2),

[(1, 1, 1)T ]C = {(1, s, t)T | s, t ≤ 1} (type 3),

[(0, 1, 2)T ]C = {(s, t, 2)T | s ≤ 0, t ≤ 1} (type 4),

[(0, 1, 1)T ]C = {(s, 1, t)T | s ≤ 0, t ≤ 1}
∪ {(0, s, 1)T | s ≤ 1} (type 5).

Modulo the translations along 1, the last three types are
unique classes whereas type 1 and 2 classes fill in the
gaps left between the previous classes: this is achieved by
letting the parameter α vary within the given bounds. It
should be clear (by mere inspection of the picture) that
each equivalence class modulo C crosses im B at ex-
actly one point. Therefore, the ‘direct sum’ conditions
of Theorem 1 are satisfied. We may of course prove
this algebraically by checking the conditions expressed
in Lemma 8 (item 5) and Lemma 9 (item 5), but Fig. 3 is
probably more informative.

Remark 14. Consider the case where X = Rn
max and B

and C are linear. A necessary condition for the projection
5C

B to exist is that any basis [15] of im B has at most n
generators14. Indeed, when it exists, 5C

B is a linear oper-
ator from Rn

max → Rn
max with image im B, but the image

of such an operator is generated by at most n elements.
Since a basis of im B is obtained by eliminating elements
from an arbitrary generating family [15], the necessary
condition is proved.

14As shown in [5], a basis of a finitely generated subspace of Rn
max

(with n ≥ 3) may have arbitrarily many elements.

x
y

z

x2

5

0 5

im
B

=
{(x

1,
x 2)

| x 2
+

4 ≥
x 1

≥
x 2}

(
5C

B

)−1
(4, 4)

(
5C

B

)−1
(−1, −1)

(
5C

B

)−1
(7, 3)

C = B =
(

0 0
−4 0

)



Remark 15. Using the duality theorem 2, we obtain an-
other obstruction dual to that stated in Remark 14: for
the projection 5C

B to exist, it is necessary that any basis

of im C], seen as a semimodule over the dual Rmin
def=

(R ∪ {±∞}, min, +) semiring, has at most n elements.
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