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Abstrat. We onsider funtions f : R

n

! R

n

whih are additively homo-

geneous and monotone in the produt ordering on R

n

(topial funtions). We

show that if some non-empty sub-eigenspae of f is bounded in the Hilbert

semi-norm then f has an additive eigenvetor and we give a Collatz-Wielandt

haraterisation of the orresponding eigenvalue. The boundedness ondition

is satis�ed if a ertain direted graph assoiated to f is strongly onneted.

The Perron-Frobenius theorem for non-negative matries, its analogue for the

max-plus semiring, a version of the mean ergodi theorem for Markov hains

and theorems of Bather and Zijm all follow as immediate orollaries.

1. Introdution

1.1. Notation. The partial order on R will be extended pointwise to funtions

f; g : X ! R so that f � g if, and only if, f(x) � g(x) for all x 2 X . The

least upper bound and greatest lower bound with respet to this ordering, will be

denoted in in�x form by _ and ^, respetively: (f _ g)(x) = max(f(x); g(x)) and

(f ^ g)(x) = min(f(x); g(x)). In partiular, taking X = f1; � � � ; ng, this gives the

produt ordering on R

n

with its usual struture as a distributive lattie.

It will also be onvenient to use the following vetor-salar onvention: if, in an

operation or a relation, a vetor and a salar appear together, then the operation is

applied to, or the relation is taken to hold for, eah omponent of the vetor. For

example, if � 2 R and x 2 R

n

, then �+ x = (�+ x

1

; � � � ; �+ x

n

) and x � � if, and

only if, x

i

� � for 1 � i � n.

1.2. Topial funtions. A funtion f : R

n

! R

m

is (additively) homogeneous if

8� 2 R and 8x 2 R

n

; f(�+ x) = �+ f(x) ;(1)

and monotone if

8x; y 2 R

n

; x � y =) f(x) � f(y) :(2)

Funtions whih are monotone and homogeneous have been alled topial funtions

in [12℄ and we adopt this terminology here. If f : R

n

! R

n

is a topial funtion, we

say that x 2 R

n

is an (additive) eigenvetor for the eigenvalue � 2 R if f(x) = �+x.

The main results of this paper are existene theorems for eigenvetors, Theorems 1

and 2, and a Collatz-Wielandt haraterisation of the eigenvalue, Proposition 1.

Our methods are elementary.
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Topial funtions inlude many examples that have been extensively studied:

non-negative matries (see below); max-plus matries, (see x4 and [2℄), and other

models of disrete event systems, [3, 9, 10, 22℄; operators arising in Markov deision

theory and the theory of stohasti games, [6, 13℄; problems in �xed point theory,

[17, 19℄; matrix saling problems and related problems of entropy minimisation,

[15, 20℄. This paper shows the emergene of elementary general results of wide

appliability: we reover some well-known theorems as immediate orollaries of our

main results.

1.3. The multipliative ontext. Non-negative matries are familiar in a multi-

pliative form so it will be helpful to note �rst that the additive and multipliative

ontexts are interhangeable.

Let R

+

denote the positive reals: R

+

= fx 2 R j x > 0g. The whole spae,

R

n

, an be plaed in bijetive orrespondene with the positive one, (R

+

)

n

, via

the mutually inverse funtions exp : R

n

! (R

+

)

n

and log : (R

+

)

n

! R

n

, where

exp(x)

i

= exp(x

i

), for x 2 R

n

, and log(x)

i

= log(x

i

), for x 2 (R

+

)

n

. If A : (R

+

)

n

!

(R

+

)

n

is any self-map of the positive one then E(A) : R

n

! R

n

will denote the

funtion de�ned by E(A)(x) = log(A(exp(x))). This indues a bijetive funtional

between self-maps of (R

+

)

n

and self-maps of R

n

. Clearly, E(AB) = E(A)E(B), so

that the dynamis of A on (R

+

)

n

and E(A) on R

n

are equivalent.

If A : (R

+

)

n

! (R

+

)

n

is represented by a non-negative matrix in the standard

basis (for whih the same notation, A, will be used) then it is easy to see that E(A)

is a topial funtion. Furthermore, x 2 R

n

is an (additive) eigenvetor of E(A),

with eigenvalue � 2 R, if, and only if, exp(x) 2 (R

+

)

n

is an eigenvetor of A in the

usual sense, with eigenvalue exp(�): A exp(x) = exp(�) exp(x).

Note that (additive) eigenvetors of E(A) orrespond bijetively to the (multi-

pliative) eigenvetors of A all of whose omponents are positive. The word eigen-

vetor will be used in both ontexts; the reader should have no diÆulty inferring

the right meaning. Note further that a non-negative matrix A orresponds to a

topial funtion under E if, and only if, no row of A is the zero vetor:

8i; 9j suh that A

ij

6= 0 :(3)

1.4. Nonexpansiveness. A key property of topial funtions is their nonexpan-

siveness with respet to ertain norms. Let t; b : R

n

! R be de�ned as (\top")

t(x) = x

1

_ � � � _ x

n

, and (\bottom") b(x) = �t(�x) = x

1

^ � � � ^ x

n

, both of whih

are topial funtions. The supremum, or `

1

, norm on R

n

an then be de�ned as

kxk

1

= t(x)_�b(x). We shall also need the Hilbert semi-norm, kxk

H

= t(x)�b(x),

whih de�nes a metri on the spae of lines parallel to the main diagonal in R

n

.

This metri is the additive version of the Hilbert projetive metri while kxk

1

gives

rise to the additive version of Thompson's \part" metri on (R

+

)

n

, [17℄.

An elementary appliation of (1) and (2), [12, Proposition 1.1℄, shows that a

funtion f : R

n

! R

n

is topial if, and only if,

8x; y 2 R

n

; t(f(x)� f(y)) � t(x� y) :

(This provides some justi�ation for the term topial.) We see immediately that a

topial funtion is nonexpansive with respet to both the supremum norm and the

Hilbert semi-norm: 8x; y 2 R

n

,

kf(x)� f(y)k

1

� kx� yk

1

(4)

kf(x)� f(y)k

H

� kx� yk

H

:(5)
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In fat, as �rst observed by Crandall and Tartar [7℄, if f is homogeneous, then it

is monotone if, and only if, it is nonexpansive in the supremum norm, [12, Propo-

sition 1.1℄.

2. Sub-eigenspaes and the Collatz-Wielandt property

The results of the present paper originate in the study of sub-eigenspaes. Let

f : R

n

! R

n

. For any � 2 R, de�ne the sub-eigenspae of f assoiated to �,

S

�

(f) � R

n

, by

S

�

(f) = fx 2 R

n

j f(x) � �+ xg :

If S

�

(f) 6= ; then � is said to be a sub-eigenvalue, and any x 2 S

�

(f) is a sub-

eigenvetor. Let �(f) � R denote the set of sub-eigenvalues: �(f) = f� 2 R j

S

�

(f) 6= ;g. For any funtions f; g : R

n

! R

n

and any �; � 2 R, the following are

easily seen to hold.

f � g ) S

�

(f) � S

�

(g) ;(6a)

� � � ) S

�

(f) � S

�

(f) ;(6b)

S

(�+�)

(f) = S

�

(f � �) :(6)

It follows immediately from (6b) that for any funtion f : R

n

! R

n

, �(f) must

be an interval of the form (�1;1), (a;1) or [a;1) and it is easy to see that all

three forms an appear. For a topial funtion the �rst form an be ruled out. To

see this, it is helpful to reall �rst some well-understood fats about the asymptoti

dynamis of a topial funtion, f : R

n

! R

n

.

First, (4) implies that all trajetories of f are asymptotially the same:

f

k

(x) = f

k

(y) +O(1) as k !1 :(7)

Seond, an elementary argument using (1) and (2) shows that the sequene t(f

k

(0))

is sub-additive,

t(f

k+l

(0)) � t(f

k

(0)) + t(f

l

(0)) :

It follows from (7) that the sequene t(f

k

(x)=k) onverges as k !1 and that the

limit is independent of x, [12, 22℄. The upper yle-time of f ,

�

(f) 2 R, is de�ned

as

�

(f) = lim

k!1

t(f

k

(x)=k) :

Dually, the lower yle-time is

�

(f) = lim

k!1

b(f

k

(x)=k). The existene of the

yle-time vetor of f ,

�

(f) = lim

k!1

f

k

(x)=k, is another matter altogether. It

does not always exist, [12, Theorem 3.1℄, and one of the entral problems in the

�eld is to haraterise those topial funtions for whih it does.

Now suppose that f : R

n

! R

n

is a topial funtion and that f(x) � � + x for

some x 2 R

n

and some � 2 R. Using (1) and (2), f

k

(x) � k�+ x. Hene,

t(f

k

(x)=k) � �+ t(x=k) ;

from whih the following lemma immediately follows.

Lemma 1. If f : R

n

! R

n

is a topial funtion then either �(f) = (a;1) or

�(f) = [a;1), where

�

(f) � a.
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Both possibilities an our. It follows from Proposition 1 and (10a) below that

if f has an eigenvetor, f(x) = �+ x, then �(f) = [�;1℄. If f = E(A) where A is

the non-negative matrix below

�

1 1

0 1

�

then it is easy to see that �(f) = (0;1).

We shall now show that

�

(f) = a. This requires the following simple but ruial

observation.

Lemma 2. Let f : R

n

! R

n

be a topial funtion and let k be any positive integer.

If S

�

(f

k

) 6= ;, then S

�=k

(f) 6= ;.

Proof. If S

�

(f

k

) 6= ;, then f

k

(x) � �+ x for some x 2 R

n

. Let

y = x ^ (f(x)� �=k) ^ � � � ^ (f

k�1

(x)� (k � 1)�=k) :

Using (1) and (2) we see that

f(y) � f(x) ^ (f

2

(x) � �=k) ^ � � � ^ (f

k

(x) � (k � 1)�=k)

� f(x) ^ (f

2

(x) � �=k) ^ � � � ^ (x + �=k)

= y + �=k :

Thus, y 2 S

�=k

(f) 6= ;.

Lemma 2 allows us to give the following haraterisation of

�

(f) whih may be

thought of as a generalised Collatz-Wielandt formula, [16, x1.3℄.

Proposition 1. Let f : R

n

! R

n

be a topial funtion. Then,

inf �(f) = inf

x2R

n

t(f(x) � x) =

�

(f) :(8)

Proof. Let a = inf �(f). Sine f(x) � x + � if, and only if, t(f(x) � x) � � the

�rst equality in (8) follows easily. Lemma 1 has already shown that

�

(f) � a. Now

hoose � > 0. For suÆiently large k, f

k

(0) � (

�

(f)+�)k. Hene, S

(

�

(f)+�)k

(f

k

) 6=

;. By Lemma 2, S

�

(f)+�

(f) 6= ;. Hene, a �

�

(f) + �. Sine � was hosen

arbitrarily, a �

�

(f) and so a =

�

(f).

A result on topial funtions an be dualised by applying it to the topial funtion

�f(�x). Using this method on the Collatz-Wielandt formula, we dedue that

�

(f) = sup

x2R

n

b(f(x) � x) :(9)

If f has an eigenvetor, so that f(x) = �+ x then it follows from (1) that

�

(f) = � =

�

(f) and(10a)

�

(f) = (�; � � � ; �) :(10b)

3. Existene of eigenvetors

3.1. The main result. It is onvenient for the proofs that follow to make use of

the normalised sub-eigenspae, S

0

�

(f) � R

n

, de�ned by

S

0

�

(f) = fx 2 R

n

j f(x) � �+ x and b(x) = 0g :
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If b(x) = 0 then kxk

H

= kxk

1

. It follows that if f is homogeneous then S

�

(f)

is non-empty and bounded in the Hilbert semi-norm if, and only if, S

0

�

(f) is non-

empty and bounded in the supremum norm.

Theorem 1. Let f : R

n

! R

n

be a topial funtion for whih some sub-eigenspae

is non-empty and bounded in the Hilbert semi-norm. Then f has an eigenvetor.

Proof. Assume that S

�

(f) is non-empty and bounded in the Hilbert semi-norm.

Let a = inf �(f). Evidently a � �. We may assume, without loss of generality,

that a = �. To see why, suppose that a < �. Sine S

�

(f) is bounded in the Hilbert

semi-norm, the sets S

0

b

(f), for a < b � � are ompat in the supremum norm.

It follows easily from (6b) that S

0

a

(f) =

T

a<b��

S

0

b

(f). The right hand side is a

dereasing intersetion of non-empty ompat sets and so S

0

a

(f) is also non-empty

and ompat. Hene S

a

(f) is non-empty and bounded in the Hilbert semi-norm,

as laimed.

Let g = �a+ f . By (6), �(g) = [0;1), so that we an �nd x 2 R

n

suh that

g(x) � x. Hene g

k+1

(x) � g

k

(x) and g

k

(x) 2 S

0

(g) = S

a

(f) for all k 2 N. If

lim

k!1

t(g

k

(x)) = �1, then g

k

(x) � �1 + x, for some suÆiently large k and

Lemma 2 shows that S

�1=k

(g) 6= ;, ontraditing �(g) = [0;1). Hene t(g

k

(x))

is bounded from below as k ! 1. By hypothesis, kg

k

(x)k

H

remains bounded and

this an only happen if g

k

(x) itself remains bounded. Let y = lim

k!1

g

k

(x). Then

by ontinuity of g, g(y) = y, so that f(y) = a+ y.

The following examples are instrutive in the light of this result. Consider the

topial funtions f; g : R

2

! R

2

de�ned by

f

1

(x) = ((x

1

� 1) _ x

2

) ^ (x

1

+ 1)

f

2

(x) = x

1

_ x

2

and

g

1

(x) = x

1

^ x

2

g

2

(x) = x

1

_ x

2

:

We leave it to the reader to show that �(f) = [0;1) and

S

�

(f) =

�

fx 2 R

2

j ��+ x

1

� x

2

� �+ x

1

g for 0 � � < 1

fx 2 R

2

j ��+ x

1

� x

2

g for � � 1 :

It follows that S

�

(f) is bounded for 0 � � < 1 and unbounded for 1 � �. As for

g, it has the eigenvetor (0; 0) and �(g) = [0;1) but S

�

(g) = f(x

1

; x

2

) 2 R

2

j

x

1

� � + x

2

g is unbounded for all � � 0. (The dual super-eigenspaes are also

unbounded.)

3.2. Graphs assoiated to topial funtions. If A is a n � n non-negative

matrix, its assoiated graph, G(A), is the direted graph with verties f1; � � � ; ng

and an edge from i to j if, and only if, A

ij

6= 0, [5, Chapter 2℄. The matrix A is

irreduible if, and only if, G(A) is strongly onneted: if there is a direted path

between any two verties. The Perron-Frobenius theorem (see Corollary 1 below)

asserts that an irreduible non-negative matrix has an eigenvetor all of whose

omponents are positive. We now generalise this to topial funtions.

Let f : R

n

! R

n

. De�ne the assoiated graph of f , G(f), to be the di-

reted graph with verties f1; � � � ; ng and an edge from i to j if, and only if,

lim

�!1

f

i

(�e

j

) =1, where e

j

is the j-th vetor of the anonial basis of R

n

.

Theorem 2. Let f : R

n

! R

n

be a topial funtion whose assoiated graph is

strongly onneted. Then all non-empty sub-eigenspaes of f are bounded. In par-

tiular, f has an eigenvetor.
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Proof. For eah edge from i to j of G(f) de�ne h

ji

: R ! R [ f�1g by

h

ji

(x) = supf� 2 R j f

i

(�e

j

) � xg ;

where we use the onvention that sup ; = �1. For any � 2 R, let h

�

ji

(x) =

h

ji

(�+x). Let S

�

(f) be any non-empty sub-eigenspae of f and hoose x 2 S

�

(f),

whih we may assume to satisfy b(x) = 0. Let i 2 f1; � � � ; ng be the omponent

for whih x

i

= 0. Choose any other omponent j 2 f1; � � � ; ng. By hypothesis

there exists a direted path from i to j in G(f). Suppose that the nodes on this

are i = i

1

; � � � ; i

k

= j, where there is an edge from i

p�1

to i

p

for 1 < p � k. Sine

b(x) = 0, we must have x

i

p

e

i

p

� x. Hene

f

i

p�1

(x

i

p

e

i

p

) � f

i

p�1

(x) � �+ x

i

p�1

and so x

i

p

� h

�

i

p

i

p�1

(x

i

p�1

). Putting these together we �nd that

x

j

� h

�

i

k

i

k�1

Æ � � � Æ h

�

i

2

i

1

(0) :

It follows that S

�

(f) is bounded in the Hilbert semi-norm. By Theorem 1, f has

an eigenvetor.

Amghibeh and Dellaherie state a similar but weaker result in [1℄. They use a

di�erent graph whih is, in general, not strongly onneted for the examples studied

in the next setion, with the exeption of that in Corollary 3. However, the proof

tehnique of [1℄, based on an approximation proedure, ould be used to obtain an

independent proof of Theorem 2.

Consider the topial funtion f : R

3

! R

3

de�ned by

f

1

(x) = x

1

_ (x

2

^ x

3

)

f

2

(x) = x

1

_ x

2

_ x

3

f

3

(x) = x

1

_ x

2

_ x

3

:

G(f) is not strongly onneted sine there are no edges from 1 to 2 and from 1 to

3. Nevertheless it is easy to hek that f has bounded sub-eigenspaes. Is there

a ombinatorial objet assoiated to a topial funtion whih determines when the

funtion has bounded sub-eigenspaes? This is an interesting problem whih we

hope to address elsewhere.

For onvex topial funtions, Theorem 2 has a onverse. Reall that a funtion

h : R

n

! R is onvex if, for all x; y 2 R

n

,

h(�x+ �y) � �h(x) + �h(y) ;(11)

where 0 � �; � � 1 and � + � = 1. A funtion f : R

n

! R

m

is onvex if eah

omponent funtion f

i

: R

n

! R is onvex. A simple dedution from (11), whih

is left to the reader, aptures the intuition that the derivative of h is inreasing.

With the same notation as above, let x

0

= �x+ �y = x+ �(y � x) = y � �(y � x).

Then,

h(x

0

)� h(x)

�

�

h(y)� h(x

0

)

�

:(12)

For any funtion f : R

n

! R

n

de�ne its syntati graph, G

s

(f), to be the

direted graph with verties 1; � � � ; n and an edge from i to j if, and only if, f

i

depends on x

j

in the following sense: there is no map h : R

n�1

! R suh that

f

i

(x) = h(x

1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

).
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Proposition 2. Let f : R

n

! R

n

be a onvex topial funtion. Then G(f) =

G

s

(f). Moreover, G

s

(f) is strongly onneted if, and only if, all sub-eigenspaes of

f are bounded in the Hilbert semi-norm.

Proof. Clearly, an edge of G(f) is an edge of G

s

(f). Conversely, if there is an

edge from i to j in G

s

(f), then we an �nd x; x

0

2 R

n

suh that x

k

= x

0

k

for

all k 6= j, x

j

6= x

0

j

, and f

i

(x) 6= f

i

(x

0

). Without loss of generality, assume that

x

0

j

> x

j

. Choose � > 0 and let y = x

0

+ �e

j

. Let � = x

0

j

� x

j

+ �, � = �=� and

� = (x

0

j

�x

j

)=�. Evidently, 0 � �; � � 1 and �+� = 1 and it is easy to hek that

x

0

= �x + �y, in aordane with the notation used in (12). Using this inequality

we see that

f

i

(y)� f

i

(x

0

)

�

�

f

i

(x

0

)� f

i

(x)

�

;

whih an be rewritten as

f

i

(x

0

+ �e

j

) �

�

x

0

j

� x

j

(f

i

(x

0

)� f

i

(x)) + f

i

(x

0

) :

Sine this holds for any � > 0, it follows that lim

�!1

f

i

(x

0

+ �e

j

) = 1. But,

x

0

+ �e

j

� t(x

0

) + �e

j

. Using (2), we see that f

i

(�e

j

) � f

i

(x

0

+ �e

j

)� t(x

0

) and so

lim

�!1

f

i

(�e

j

) = 1. It follows that there is an edge from i to j in G(f) and so

G

s

(f) is idential to G(f).

If G

s

(f) = G(f) is strongly onneted then Theorem 2 shows that all the sub-

eigenspaes of f are bounded. Conversely, suppose that G

s

(f) is not strongly

onneted. Then, by standard arguments, [5, Chapter 2℄, we an, after possibly

reordering, partition the variables so that x = (y; z), where y 2 R

p

, z 2 R

q

,

n = p+ q and f(x) = (g(y; z); h(z)), for some topial funtions g : R

p

� R

q

! R

p

,

and h : R

q

! R

q

. Suppose that S

�

(f) is non-empty and hoose x 2 S

�

(f). Sine

f(x) � � + x, we must have g(y; z) � � + y and h(z) � � + z. Now hoose � � 0.

Using (1) and (2) it follows that g(�+ y; z) � g(�+ y; �+ z) � � + � + y. Hene

(� + y; z) 2 S

�

(f) for all � > 0 and so all non-empty sub-eigenspaes of f are

unbounded in the Hilbert semi-norm.

4. Appliations

We now show that several well-known theorems are immediate orollaries of the

elementary results above.

Corollary 1. (Perron-Frobenius theorem, [5℄) Let A be a n� n non-negative ma-

trix. If A is irreduible then its spetral radius is an eigenvalue, for whih A has

an eigenvetor all of whose omponents are positive.

Proof. Sine A is irreduible the nondegeneray ondition (3) holds. Let f = E(A).

It is easy to see that G(f), the graph assoiated to f , is idential to G(A), the graph

assoiated to A. Sine A is irreduible, G(A) is strongly onneted and so, by The-

orem 2, f has an eigenvetor: f(x) = r + x. Evidently, A exp(x) = exp(r) exp(x),

where exp(x) has all its omponents positive. It remains to show that exp(r) is

the spetral radius of A. For ompleteness, we reprodue the standard argument

using the Collatz-Wielandt property. Suppose that z 2 C

n

is a (multipliative)

eigenvetor of A with eigenvalue � 2 C : Az = �z. Let jzj 2 R

n

be the vetor of

absolute values: jzj = (jz

1

j; � � � ; jz

n

j) and let x = log(jzj). A simple appliation
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of the triangle inequality shows that Ajzj � j�jjzj. Hene f(x) � log(j�j) + x. It

follows, using (9) and (10a), that

log(j�j) � b(f(x)� x) �

�

(f) = r

and so exp(r) is the spetral radius of A.

The funtion R

2

! R whih takes x 7! log(exp(x

1

) + exp(x

2

)) is onvex, from

whih it follows that E(A) is a onvex topial funtion. Hene we ould have used

Proposition 2, together with Theorem 1 in the proof of Corollary 1. This applies

also to the topial funtions in the orollaries below, whih are all onvex.

Property (1) applied to the funtion t : R

2

! R illustrates that addition dis-

tributes over maximum. It follows that the set R [ f�1g equipped with the oper-

ations of maximum (as addition) and addition (as multipliation) forms an idem-

potent semiring (a semiring whose addition satis�es a+a = a), alled the max-plus

semiring and denoted R

max

, [11℄. Suppose that A is a n � n matrix over R

max

whih satis�es a similar nondegeneray ondition to (3):

8i; 9j suh that A

ij

6= �1 :

If x 2 R

n

then it is easy to see that x 7! Ax de�nes a topial funtion. For instane,

the matrix on the left below gives rise to the funtion on the right.

�

2 �1

�1 4

�

f

1

(x) = (x

1

+ 2) _ (x

2

� 1)

f

2

(x) = x

2

+ 4 :

If A is a n � n matrix over R

max

, its assoiated graph, G(A), is the direted

graph with verties f1; � � � ; ng and an edge from i to j if, and only if, A

ij

6= �1.

It is ustomary, in max-plus theory, to adjoin labels (\weights") to the edges in

G(A), [2℄. This unlabelled version will be suÆient for our purposes. A is said

to be irreduible if G(A) is strongly onneted. It is easy to see that if f is the

topial funtion orresponding to A then the graphs G(A) and G(f) oinide. The

following result follows immediately. The ited referene is to a standard soure

but the result has been proved independently many times.

Corollary 2. (Perron-Frobenius for max-plus, [2, Theorem 3.28℄) An irreduible

max-plus matrix has an eigenvetor.

In max-plus theory, the eigenvetors of a matrix lie in (R [ f�1g)

n

. The point

of Corollary 2 is that suh an eigenvetor an be found in R

n

. The formula for the

eigenvalue, based on the struture of the iruits of G(A), lies outside the sope of

the present paper, [2℄.

For the next result, assume that P is the transition matrix of a Markov hain

(so that P is row-stohasti) and let f(x) = + Px, for some  2 R

n

. Evidently, f

is a topial funtion. By (10b), if f has an eigenvetor with eigenvalue �, then

(1 + P + � � �+ P

k�1

)

k

=

f

k

(0)

k

onverges to (�; � � � ; �). The next result an hene be thought of as a version of

the mean ergodi theorem for Markov hains, [23, Chapter XIII, x1, Theorem 2℄.

Corollary 3. Let  2 R

n

and let P denote a n�n irreduible row-stohasti matrix.

The funtion f(x) = + Px has an eigenvetor.

Proof. f is a topial funtion and G(f) is strongly onneted so the result follows

from Theorem 2.
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A family of non-negative matries fP

u

g

u2U

is said to be ommuniating if the

matrix sup

u2U

P

u

, obtained by taking entrywise suprema, has �nite entries and is

irreduible. The following result is due to Bather.

Corollary 4. (Bather's theorem, [4, Theorem 2.4℄) Let fP

u

g

u2U

be a ommuni-

ating family of row-stohasti matries, and let f

u

g

u2U

be a family of vetors



u

2 R

n

that is bounded above. Then the funtion f(x) = sup

u2U

(

u

+ P

u

x) has

an eigenvetor.

Proof. It is easy to hek that G(f) = G(sup

u2U

P

u

). Sine the latter is strongly

onneted by hypothesis, the result follows immediately from Theorem 2.

The next result was proved by Zijm in the speial ase of a �nite ommuniating

family. It follows by ombining the argument of Corollary 4 with that of Corollary 1.

Corollary 5. (Zijm's theorem, [24, Theorem 3.4℄) Let fA

u

g

u2U

be a ommuniat-

ing family of non-negative matries. Then the funtion f(x) = sup

u2U

A

u

x has a

(multipliative) eigenvetor.

As a last illustration of the ideas developed here, onsider the topial funtion

E(f) where f : (R

+

)

3

! (R

+

)

3

is de�ned by:

f

1

(x) = 2x

1

_ 3x

2

f

2

(x) =

p

x

1

(4x

2

+ 15x

3

)

f

3

(x) = x

2

:

None of the above orollaries an be applied to f . However, G(E(f)) is strongly

onneted. By Theorem 2, f has a (multipliative) eigenvetor. In fat, f(3; 3; 1) =

3(3; 3; 1).

5. Conlusions

An alternative approah to the eigenvetor problem stems from the observation

in (7) that all trajetories of a topial funtion f are asymptotially equivalent.

This suggests that the asymptotis of f

k

(x) ontain information on the existene

of �xed points, an idea on�rmed in reent work, [8, 10℄.

Topial funtions an be de�ned and studied on ones in Banah spaes, as Krein

and Rutman have done for Perron-Frobenius theory. Some attrative examples

have emerged here, [21℄, but with the exeption of Nussbaum's work, [17, 18℄, little

general progress has been made.
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