EXISTENCE OF EIGENVECTORS FOR MONOTONE HOMOGENEOUS FUNCTIONS

STÉPHANE GAUBERT AND JEREMY GUNAWARDENA

Abstract. We consider functions \(f : \mathbb{R}^n \to \mathbb{R}^n \) which are additively homogeneous and monotone in the product ordering on \(\mathbb{R}^n \) (topical functions). We show that if some non-empty sub-eigen-space of \(f \) is bounded in the Hilbert semi-norm then \(f \) has an additive eigenvector and we give a Collatz-Wielandt characterisation of the corresponding eigenvalue. The boundedness condition is satisfied if a certain directed graph associated to \(f \) is strongly connected.

The Perron-Frobenius theorem for non-negative matrices, its analogue for the max-plus semiring, a version of the mean ergodic theorem for Markov chains and theorems of Bather and Zijn all follow as immediate corollaries.

1. Introduction

1.1. Notation. The partial order on \(\mathbb{R} \) will be extended pointwise to functions \(f, g : X \to \mathbb{R} \) so that \(f \leq g \) if and only if \(f(x) \leq g(x) \) for all \(x \in X \). The least upper bound and greatest lower bound with respect to this ordering, will be denoted in infix form by \(\vee \) and \(\wedge \), respectively: \((f \vee g)(x) = \max(f(x), g(x)) \) and \((f \wedge g)(x) = \min(f(x), g(x)) \). In particular, taking \(X = \{1, \ldots, n\} \), this gives the product ordering on \(\mathbb{R}^n \) with its usual structure as a distributive lattice.

It will also be convenient to use the following “vector-scalar” convention: if, in an operation or a relation, a vector and a scalar appear together, then the operation is applied to, or the relation is taken to hold for, each component of the vector. For example, if \(\lambda \in \mathbb{R} \) and \(x \in \mathbb{R}^n \), then \(\lambda + x = (\lambda + x_1, \ldots, \lambda + x_n) \) and \(x \leq \lambda \) if and only if \(x_i \leq \lambda \) for \(1 \leq i \leq n \).

1.2. Topical functions. A function \(f : \mathbb{R}^n \to \mathbb{R}^n \) is (additively) homogeneous if

\[
\forall \lambda \in \mathbb{R} \text{ and } \forall x \in \mathbb{R}^n, \quad f(\lambda + x) = \lambda + f(x),
\]

and monotone if

\[
\forall x, y \in \mathbb{R}^n, \quad x \leq y \implies f(x) \leq f(y).
\]

Functions which are monotone and homogeneous have been called “topical functions” in [12] and we adopt this terminology here. If \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a topical function, we say that \(x \in \mathbb{R}^n \) is an (additive) eigenvector for the eigenvalue \(\lambda \in \mathbb{R} \) if \(f(x) = \lambda x \).

The main results of this paper are existence theorems for eigenvectors, Theorems 1 and 2, and a Collatz-Wielandt characterisation of the eigenvalue. Proposition 1. Our methods are elementary.

Key words and phrases. Collatz-Wielandt property, Hilbert projective metric, nonexpansive function, nonlinear eigenvalue, Perron-Frobenius theorem, strongly connected graph, sub-eigenspace.

Topical functions include many examples that have been extensively studied: non-negative matrices (see below); max-plus matrices, (see §4 and [2]), and other models of discrete event systems, [3, 9, 10, 22]; operators arising in Markov decision theory and the theory of stochastic games, [6, 13]; problems in fixed point theory, [17, 19]; matrix scaling problems and related problems of entropy minimisation, [15, 20]. This paper shows the emergence of elementary general results of wide applicability: we recover some well-known theorems as immediate corollaries of our main results.

1.3. The multiplicative context. Non-negative matrices are familiar in a multiplicative form so it will be helpful to note first that the additive and multiplicative contexts are interchangeable.

Let \(\mathbb{R}^+ \) denote the positive reals; \(\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\} \). The whole space \(\mathbb{R}^n \), can be placed in bijective correspondence with the positive cone, \((\mathbb{R}^+)^n\), via the mutually inverse functions \(\exp: \mathbb{R}^n \to (\mathbb{R}^+)^n \) and \(\log: (\mathbb{R}^+)^n \to \mathbb{R}^n \), where \(\exp(x)_i = \exp(x_i) \), for \(x \in \mathbb{R}^n \), and \(\log(x) = \log(x) \), for \(x \in (\mathbb{R}^+)^n \). If \(A : (\mathbb{R}^+)^n \to (\mathbb{R}^+)^n \) is any self-map of the positive cone then \(\mathcal{E}(A) : \mathbb{R}^n \to \mathbb{R}^n \) will denote the function defined by \(\mathcal{E}(A)(x) = \log(A(\exp(x))). \) This induces a bijective functional between self-maps of \((\mathbb{R}^+)^n\) and self-maps of \(\mathbb{R}^n \). Clearly, \(\mathcal{E}(AB) = \mathcal{E}(A)\mathcal{E}(B) \), so that the dynamics of \(A \) on \((\mathbb{R}^+)^n\) and \(\mathcal{E}(A) \) on \(\mathbb{R}^n \) are equivalent.

If \(A : (\mathbb{R}^+)^n \to (\mathbb{R}^+)^n \) is represented by a non-negative matrix in the standard basis (for which the same notation, \(A \), will be used) then it is easy to see that \(\mathcal{E}(A) \) is a topical function. Furthermore, \(x \in \mathbb{R}^n \) is an (additive) eigenvector of \(\mathcal{E}(A) \), with eigenvalue \(\lambda \in \mathbb{R} \), if and only if, \(\exp(x) \in (\mathbb{R}^+)^n \) is an eigenvector of \(A \) in the usual sense, with eigenvalue \(\exp(\lambda) : A \exp(x) = \exp(\lambda) \exp(x) \).

Note that (additive) eigenvectors of \(\mathcal{E}(A) \) correspond bijectively to the (multiplicative) eigenvectors of \(A \) all of whose components are positive. The word eigenvector will be used in both contexts; the reader should have no difficulty inferring the right meaning. Note further that a non-negative matrix \(A \) corresponds to a topical function under \(\mathcal{E} \) if, and only if, no row of \(A \) is the zero vector:

\[
\forall i, \exists j \text{ such that } A_{ij} \neq 0.
\]

1.4. Nonexpansiveness. A key property of topical functions is their nonexpansiveness with respect to certain norms. Let \(t, b : \mathbb{R}^n \to \mathbb{R} \) be defined as ("top") \(t(x) = x_1 \lor \cdots \lor x_n \), and ("bottom") \(b(x) = -t(-x) = x_1 \land \cdots \land x_n \), both of which are topical functions. The supremum, or \(\ell^\infty \), norm on \(\mathbb{R}^n \) can then be defined as \(||x||_{\infty} = t(x)\lor b(x) \). We shall also need the Hilbert semi-norm, \(||x||_{H} = t(x) - b(x) \), which defines a metric on the space of lines parallel to the main diagonal in \(\mathbb{R}^n \).

This metric is the additive version of the Hilbert projective metric while \(||x||_{\infty} \) gives rise to the additive version of Thompson’s “part” metric on \((\mathbb{R}^+)^n\), [17].

An elementary application of (1) and (2), [12, Proposition 1.1], shows that a function \(f : \mathbb{R}^n \to \mathbb{R}^n \) is topical if, and only if,

\[
\forall x, y \in \mathbb{R}^n, t(f(x) - f(y)) \leq t(x - y) \; .
\]

(This provides some justification for the term topical.) We see immediately that a topical function is nonexpansive with respect to both the supremum norm and the Hilbert semi-norm: \(\forall x, y \in \mathbb{R}^n \),

\[
\|f(x) - f(y)\|_{\infty} \leq \|x - y\|_{\infty} \; ,
\]

\[
\|f(x) - f(y)\|_{H} \leq \|x - y\|_{H} \; .
\]

2
In fact, as first observed by Crandall and Tartar [7], if \(f \) is homogeneous, then it is monotone if, and only if, it is nonexpansive in the supremum norm, [12, Proposition 1.1].

2. Sub-eigenspaces and the Collatz-Wielandt property

The results of the present paper originate in the study of sub-eigenspaces. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \). For any \(\lambda \in \mathbb{R} \), define the sub-eigenspace of \(f \) associated to \(\lambda \),

\[S_\lambda(f) = \{ x \in \mathbb{R}^n \mid f(x) \leq \lambda + x \} . \]

If \(S_\lambda(f) \neq \emptyset \) then \(\lambda \) is said to be a sub-eigenvalue, and any \(x \in S_\lambda(f) \) is a sub-eigenvector. Let \(\Lambda(f) \subseteq \mathbb{R} \) denote the set of sub-eigenvalues: \(\Lambda(f) = \{ \lambda \in \mathbb{R} \mid S_\lambda(f) \neq \emptyset \} \). For any functions \(f, g : \mathbb{R}^n \to \mathbb{R}^n \) and any \(\lambda, \mu \in \mathbb{R} \), the following are easily seen to hold.

\[
\begin{align*}
(6a) & \quad f \leq g \quad \Rightarrow \quad S_\lambda(f) \supseteq S_\lambda(g) , \\
(6b) & \quad \lambda \leq \mu \quad \Rightarrow \quad S_\lambda(f) \subseteq S_\mu(f) , \\
(6c) & \quad S_{\lambda+\mu}(f) = S_\lambda(f - \mu) .
\end{align*}
\]

It follows immediately from (6b) that for any function \(f : \mathbb{R}^n \to \mathbb{R}^n \), \(\Lambda(f) \) must be an interval of the form \((-\infty, \infty)\), \((\alpha, \infty)\) or \([\alpha, \infty)\) and it is easy to see that all three forms can appear. For a topical function the first form can be ruled out. To see this, it is helpful to recall first some well-understood facts about the asymptotic dynamics of a topical function. \(f : \mathbb{R}^n \to \mathbb{R}^n \).

First, (4) implies that all trajectories of \(f \) are asymptotically the same:

\[f^k(x) = f^k(y) + O(1) \quad \text{as } k \to \infty . \]

Second, an elementary argument using (1) and (2) shows that the sequence \(t(f^k(0)) \) is sub-additive,

\[t(f^{k+l}(0)) \leq t(f^k(0)) + t(f^l(0)) . \]

It follows from (7) that the sequence \(t(f^k(x)/k) \) converges as \(k \to \infty \) and that the limit is independent of \(x \), [12, 22]. The upper cycle-time of \(f \), \(\overline{\lambda}(f) \in \mathbb{R} \) is defined as

\[\overline{\lambda}(f) = \lim_{k \to \infty} t(f^k(x)/k) . \]

Dually, the lower cycle-time is \(\underline{\lambda}(f) = \lim_{k \to \infty} b(f^k(x)/k) \). The existence of the cycle-time vector of \(f \), \(\lambda(f) = \lim_{k \to \infty} f^k(x)/k \), is another matter altogether. It does not always exist. [12, Theorem 3.1], and one of the central problems in the field is to characterise those topical functions for which it does.

Now suppose that \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a topical function and that \(f(x) \leq \lambda + x \) for some \(x \in \mathbb{R}^n \) and some \(\lambda \in \mathbb{R} \). Using (1) and (2), \(f^k(x) \leq k\lambda + x \). Hence,

\[t(f^k(x)/k) \leq \lambda + t(x/k) , \]

from which the following lemma immediately follows.

Lemma 1. If \(f : \mathbb{R}^n \to \mathbb{R}^n \) is a topical function then either \(\Lambda(f) = (a, \infty) \) or \(\Lambda(f) = [a, \infty) \), where \(\overline{\lambda}(f) \leq a \).
Both possibilities can occur. It follows from Proposition 1 and (10a) below that if \(f \) has an eigenvector, \(f(x) = \lambda + x \), then \(\Lambda(f) = [\lambda, \infty) \). If \(f = \mathcal{E}(A) \) where \(A \) is the non-negative matrix below

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}
\]

then it is easy to see that \(\Lambda(f) = (0, \infty) \).

We shall now show that \(\overline{\Lambda}(f) = a \). This requires the following simple but crucial observation.

Lemma 2. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a topical function and let \(k \) be any positive integer. If \(S_{\lambda}(f^k) \neq \emptyset \), then \(S_{\overline{\Lambda}(f)}(f^k) \neq \emptyset \).

Proof. If \(S_{\lambda}(f^k) \neq \emptyset \), then \(f^k(x) \leq \lambda + x \) for some \(x \in \mathbb{R}^n \). Let

\[
y = x \land (f(x) - \lambda/k) \land \cdots \land (f^{k-1}(x) - (k-1)\lambda/k).
\]

Using (1) and (2) we see that

\[
f(y) \leq f(x) \land (f^2(x) - \lambda/k) \land \cdots \land (f^k(x) - (k-1)\lambda/k) \\
\leq f(x) \land (f^2(x) - \lambda/k) \land \cdots \land (x + \lambda/k) \\
= y + \lambda/k.
\]

Thus, \(y \in S_{\overline{\Lambda}(f)}(f^k) \neq \emptyset \). \(\square \)

Lemma 2 allows us to give the following characterisation of \(\overline{\Lambda}(f) \) which may be thought of as a generalised Collatz-Wielandt formula. [16, §1.3].

Proposition 1. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a topical function. Then,

\[
\inf \Lambda(f) = \inf_{x \in \mathbb{R}^n} t(f(x) - x) = \overline{\Lambda}(f).
\]

Proof. Let \(a = \inf \Lambda(f) \). Since \(f(x) \leq x + \lambda \) if, and only if, \(t(f(x) - x) \leq \lambda \) the first equality in (8) follows easily. Lemma 1 has already shown that \(\overline{\Lambda}(f) \leq a \). Now choose \(\epsilon > 0 \). For sufficiently large \(k \), \(f^k(0) \leq (\overline{\Lambda}(f) + \epsilon)k \). Hence, \(S_{\overline{\Lambda}(f) + \epsilon}(f^k) \neq \emptyset \). By Lemma 2, \(S_{\overline{\Lambda}(f) + \epsilon}(f^k) \neq \emptyset \). Hence, \(a \leq \overline{\Lambda}(f) + \epsilon \). Since \(\epsilon \) was chosen arbitrarily, \(a \leq \overline{\Lambda}(f) \) and so \(a = \overline{\Lambda}(f) \). \(\square \)

A result on topical functions can be dualised by applying it to the topical function \(-f(-x)\). Using this method on the Collatz-Wielandt formula, we deduce that

\[
\underline{\Lambda}(f) = \sup_{x \in \mathbb{R}^n} b(f(x) - x).
\]

If \(f \) has an eigenvector, so that \(f(x) = \lambda + x \) then it follows from (1) that

\[
(10a) \quad \underline{\Lambda}(f) = \lambda = \overline{\Lambda}(f)
\]

and

\[
(10b) \quad \Lambda(f) = (\lambda, \ldots, \lambda).
\]

3. Existence of eigenvectors

3.1. The main result. It is convenient for the proofs that follow to make use of the normalised sub-eigenspace, \(S'_{\lambda}(f) \subseteq \mathbb{R}^n \), defined by

\[
S'_{\lambda}(f) = \{ x \in \mathbb{R}^n \mid f(x) \leq \lambda + x \text{ and } b(x) = 0 \}.
\]
If $b(x) = 0$ then $\|x\|_H = \|x\|_\infty$. It follows that if f is homogeneous then $S_\lambda(f)$ is non-empty and bounded in the Hilbert semi-norm if, and only if, $S'_\lambda(f)$ is non-empty and bounded in the supremum norm.

Theorem 1. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function for which some sub-eigenspace is non-empty and bounded in the Hilbert semi-norm. Then f has an eigenvector.

Proof. Assume that $S_\mu(f)$ is non-empty and bounded in the Hilbert semi-norm. Let $a = \inf \Lambda(f)$. Evidently $a \leq \mu$. We may assume, without loss of generality, that $a = \mu$. To see why, suppose that $a < \mu$. Since $S_\mu(f)$ is bounded in the Hilbert semi-norm, the sets $S'_\mu(f)$, for $a < b \leq \mu$ are compact in the supremum norm. It follows easily from (6b) that $S'_\mu(f) = \bigcap_{a < b \leq \mu} S'_\lambda(f)$. The right hand side is a decreasing intersection of non-empty compact sets and so $S'_\lambda(f)$ is also non-empty and compact. Hence $S_\lambda(f)$ is non-empty and bounded in the Hilbert semi-norm as claimed.

Let $g = -a + f$. By (6c), $\Lambda(g) = [0, \infty)$, so that we can find $x \in \mathbb{R}^n$ such that $g(x) \leq x$. Hence $g^{k+1}(x) \leq g^k(x)$ and $g^k(x) \in S_\lambda(g) = S_\lambda(f)$ for all $k \in \mathbb{N}$. If $\lim_{k \to \infty} t(g^k(x)) = -\infty$, then $g^k(x) \leq -1 + x$, for some sufficiently large k and Lemma 2 shows that $S_{-1}\lambda(g) \neq \emptyset$, contradicting $\Lambda(g) = [0, \infty)$. Hence $t(g^k(x))$ is bounded from below as $k \to \infty$. By hypothesis, $||g^k(x)||_H$ remains bounded and this can only happen if $g^k(x)$ itself remains bounded. Let $y = \lim_{k \to \infty} g^k(x)$. Then by continuity of g, $g(y) = y$, so that $f(y) = a + y$. \qed

The following examples are instructive in the light of this result. Consider the topical functions $f, g : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f_1(x) = ((x_1 - 1) \lor x_2) \land (x_1 + 1) \quad \text{and} \quad g_1(x) = x_1 \land x_2$$

$$f_2(x) = x_1 \lor x_2 \quad \text{and} \quad g_2(x) = x_1 \lor x_2 .$$

We leave it to the reader to show that $\Lambda(f) = [0, \infty)$ and

$$S_\lambda(f) = \begin{cases}
\{ x \in \mathbb{R}^2 | -\lambda + x_1 \leq x_2 \leq \lambda + x_1 \} & \text{for } 0 \leq \lambda < 1 \\
\{ x \in \mathbb{R}^2 | -\lambda + x_1 \leq x_2 \leq \lambda + x_1 \} & \text{for } \lambda \geq 1 .
\end{cases}$$

It follows that $S_1(f)$ is bounded for $0 \leq \lambda < 1$ and unbounded for $1 \leq \lambda$. As for g, it has the eigenvector $(0, 0)$ and $\Lambda(g) = [0, \infty)$ but $S_\lambda(g) = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 \leq \lambda + x_2 \}$ is unbounded for all $\lambda \geq 0$. (The dual super-eigenspaces are also unbounded.)

3.2. Graphs associated to topical functions.

If A is a $n \times n$ non-negative matrix, its associated graph, $G(A)$, is the directed graph with vertices $\{1, \ldots, n\}$ and an edge from i to j if, and only if, $A_{ij} \neq 0$. [5, Chapter 2]. The matrix A is irreducible if, and only if, $G(A)$ is strongly connected if there is a directed path between any two vertices. The Perron-Frobenius theorem (see Corollary 1 below) asserts that an irreducible non-negative matrix has an eigenvector all of whose components are positive. We now generalise this to topical functions.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$. Define the associated graph of f, $G(f)$, to be the directed graph with vertices $\{1, \ldots, n\}$ and an edge from i to j if, and only if, $\lim_{\nu \to \infty} f_i(\nu e_j) = \infty$ where e_j is the j-th vector of the canonical basis of \mathbb{R}^n.

Theorem 2. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function whose associated graph is strongly connected. Then all non-empty sub-eigenspaces of f are bounded. In particular, f has an eigenvector.
Proof. For each edge from \(i \) to \(j \) of \(G(f) \) define \(h_{ij} : \mathbb{R} \to \mathbb{R} \cup \{-\infty\} \) by
\[
h_{ij}(x) = \sup \{ \nu \in \mathbb{R} \mid f_i(\nu e_j) \leq x \},
\]
where we use the convention that \(\sup \emptyset = -\infty \). For any \(\lambda \in \mathbb{R} \), let \(h_{ij}^\lambda(x) = h_{ij}(\lambda + x) \). Let \(S_\lambda(f) \) be any non-empty sub-eigenspace of \(f \) and choose \(x \in S_\lambda(f) \), which we may assume to satisfy \(b(x) = 0 \). Let \(i \in \{1, \cdots, n\} \) be the component for which \(x_i = 0 \). Choose any other component \(j \in \{1, \cdots, n\} \). By hypothesis there exists a directed path from \(i \) to \(j \) in \(G(f) \). Suppose that the nodes on this are \(i = i_1, \cdots, i_k = j \), where there is an edge from \(i_{p-1} \) to \(i_p \) for \(1 \leq p \leq k \). Since \(b(x) = 0 \), we must have \(x_{i_p} e_{i_p} \leq x \). Hence
\[
f_{i_{p-1}}(x_{i_p} e_{i_p}) \leq f_{i_{p-1}}(x) \leq \lambda + x_{i_{p-1}},
\]
and so \(x_{i_p} \leq h_{i_{p-1}i_p}^\lambda(x_{i_{p-1}}) \). Putting these together we find that
\[
x_j \leq h_{i_n i_{n-1}}^\lambda \circ \cdots \circ h_{i_1 i_2}^\lambda(0).
\]
It follows that \(S_\lambda(f) \) is bounded in the Hilbert semi-norm. By Theorem 1, \(f \) has an eigenvector.

Amghibech and Dellacherie state a similar but weaker result in [1]. They use a different graph which is, in general, not strongly connected for the examples studied in the next section. With the exception of that in Corollary 3. However, the proof technique of [1] based on an approximation procedure, could be used to obtain an independent proof of Theorem 2.

Consider the topical function \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) defined by
\[
f_1(x) = x_1 \vee (x_2 \wedge x_3),
\]
\[
f_2(x) = x_1 \vee x_2 \vee x_3,
\]
\[
f_3(x) = x_1 \vee x_2 \vee x_3.
\]
\(G(f) \) is not strongly connected since there are no edges from 1 to 2 and from 1 to 3. Nevertheless it is easy to check that \(f \) has bounded sub-eigenspaces. Is there a combinatorial object associated to a topical function which determines when the function has bounded sub-eigenspaces? This is an interesting problem which we hope to address elsewhere.

For convex topical functions, Theorem 2 has a converse. Recall that a function \(h : \mathbb{R}^n \to \mathbb{R} \) is convex if for all \(x, y \in \mathbb{R}^n \),
\[
h(\lambda x + \mu y) \leq \lambda h(x) + \mu h(y),
\]
where \(0 \leq \lambda, \mu \leq 1 \) and \(\lambda + \mu = 1 \). A function \(f : \mathbb{R}^n \to \mathbb{R}^n \) is convex if each component function \(f_i : \mathbb{R}^n \to \mathbb{R} \) is convex. A simple deduction from (11), which is left to the reader, captures the intuition that the derivative of \(h \) is increasing. With the same notation as above, let \(x' = \lambda x + \mu y = x + \mu(y - x) = y - \lambda(y - x) \). Then,
\[
\frac{h(x') - h(x)}{\mu} \leq \frac{h(y) - h(x')}{\lambda}.
\]

For any function \(f : \mathbb{R}^n \to \mathbb{R}^n \) define its syntactic graph, \(G^s(f) \), to be the directed graph with vertices \(1, \cdots, n \) and an edge from \(i \) to \(j \) if and only if \(f_i \) depends on \(x_j \) in the following sense: there is no map \(h : \mathbb{R}^{n-1} \to \mathbb{R} \) such that
\[
f_i(x) = h(x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n).
Proposition 2. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be a convex topical function. Then \(G(f) = G^s(f) \). Moreover, \(G^s(f) \) is strongly connected if, and only if, all sub-eigenspaces of \(f \) are bounded in the Hilbert semi-norm.

Proof. Clearly, an edge of \(G(f) \) is an edge of \(G^s(f) \). Conversely, if there is an edge from \(i \) to \(j \) in \(G^s(f) \), then we can find \(x, x' \in \mathbb{R}^n \) such that \(x_k = x'_k \) for all \(k \neq j \), \(x_j \neq x'_j \), and \(f_i(x) \neq f_i(x') \). Without loss of generality, assume that \(x'_j > x_j \). Choose \(\nu > 0 \) and let \(y = x' + \nu e_j \). Let \(\alpha = x'_j - x_j + \nu \), \(\lambda = \nu/\alpha \) and \(\mu = (x'_j - x_j)/\alpha \). Evidently, \(0 \leq \lambda, \mu \leq 1 \) and \(\lambda + \mu = 1 \) and it is easy to check that \(x' = \lambda x + \mu y \). In accordance with the notation used in (12). Using this inequality we see that

\[
\frac{f_i(y) - f_i(x')}{\lambda} \geq \frac{f_i(x') - f_i(x)}{\mu}
\]

which can be rewritten as

\[
f_i(x' + \nu e_j) \geq \frac{\nu}{x'_j - x_j}(f_i(x') - f_i(x)) + f_i(x').
\]

Since this holds for any \(\nu > 0 \), it follows that \(\lim_{\nu \to \infty} f_i(x' + \nu e_j) = \infty \). But, \(x' + \nu e_j \leq t(x') + \nu e_j \). Using (2), we see that \(f_i(\nu e_j) \leq f_i(x' + \nu e_j) - t(x') \) and so \(\lim_{\nu \to \infty} f_i(\nu e_j) = \infty \). It follows that there is an edge from \(i \) to \(j \) in \(G(f) \) and so \(G^s(f) \) is identical to \(G(f) \).

If \(G^s(f) = G(f) \) is strongly connected then Theorem 2 shows that all the sub-eigenspaces of \(f \) are bounded. Conversely, suppose that \(G^s(f) \) is not strongly connected. Then, by standard arguments, \([5, \text{Chapter 2}]\), we can, after possibly reordering the variables so that \(x = (y, z) \), where \(y \in \mathbb{R}^p \), \(z \in \mathbb{R}^q \), \(n = p + q \) and \(f(x) = (g(y, z), h(z)) \), for some topical functions \(g : \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p \) and \(h : \mathbb{R}^q \to \mathbb{R}^q \). Suppose that \(S_{\lambda}(f) \) is non-empty and choose \(x \in S_{\lambda}(f) \). Since \(f(x) \leq x \), we must have \(g(y, z) \leq \lambda + y \) and \(h(z) \leq \lambda + z \). Now choose \(\mu \geq 0 \). Using (1) and (2) it follows that \(g(\lambda + y, z) \leq g(\mu + y, \mu + z) \leq \lambda + \mu + y \). Hence \((\mu + y, z) \in S_{\lambda}(f) \) for all \(\mu > 0 \) and so all non-empty sub-eigenspaces of \(f \) are unbounded in the Hilbert semi-norm. \(\square\)

4. Applications

We now show that several well-known theorems are immediate corollaries of the elementary results above.

Corollary 1. (Perron-Frobenius theorem, [5]) Let \(A \) be a \(n \times n \) non-negative matrix. If \(A \) is irreducible then its spectral radius is an eigenvalue, for which \(A \) has an eigenvector all of whose components are positive.

Proof. Since \(A \) is irreducible the nondegeneracy condition (3) holds. Let \(f = \mathcal{E}(A) \). It is easy to see that \(G(f) \), the graph associated to \(f \), is identical to \(G(A) \), the graph associated to \(A \). Since \(A \) is irreducible, \(G(A) \) is strongly connected and so, by Theorem 2, \(f \) has an eigenvector: \(f(x) = r + x \). Evidently, \(A \exp(x) = \exp(r) \exp(x) \), where \(\exp(x) \) has all its components positive. It remains to show that \(\exp(r) \) is the spectral radius of \(A \). For completeness, we reproduce the standard argument using the Collatz-Wielandt property. Suppose that \(z \in \mathbb{C}^n \) is a (multiplicative) eigenvector of \(A \) with eigenvalue \(\lambda \in \mathbb{C} \). \(Az = \lambda z \). Let \(|z| \in \mathbb{R}^n \) be the vector of absolute values: \(|z| = (|z_1|, \cdots, |z_n|) \) and let \(x = \log(|z|) \). A simple application
of the triangle inequality shows that $A|z| \geq |\lambda||z|$. Hence $f(x) \geq \log(|\lambda|) + x$. It follows, using (9) and (10a), that
\[
\log(|\lambda|) \leq b(f(x) - x) \leq \Delta(f) = r
\]
and so $\exp(r)$ is the spectral radius of A. \qed

The function $\mathbb{R}^2 \to \mathbb{R}$ which takes $x \mapsto \log(\exp(x_1) + \exp(x_2))$ is convex, from which it follows that $\mathcal{E}(A)$ is a convex topical function. Hence we could have used Proposition 2 together with Theorem 1 in the proof of Corollary 1. This applies also to the topical functions in the corollaries below, which are all convex.

Property (1) applied to the function $t : \mathbb{R}^2 \to \mathbb{R}$ illustrates that addition distributes over maximum. It follows that the set $\mathbb{R} \cup \{-\infty\}$ equipped with the operations of maximum (as addition) and addition (as multiplication) forms an idempotent semiring (a semiring whose addition satisfies $a + a = a$), called the \textit{max-plus semiring} and denoted \mathbb{R}_{\max}. [11]. Suppose that A is a $n \times n$ matrix over \mathbb{R}_{\max} which satisfies a similar nondegeneracy condition to (3):
\[
\forall i, \exists j \text{ such that } A_{ij} \neq -\infty.
\]
If $x \in \mathbb{R}^n$ then it is easy to see that $x \mapsto Ax$ defines a topical function. For instance, the matrix on the left below gives rise to the function on the right.
\[
\begin{pmatrix}
2 & -1 \\
-\infty & 4
\end{pmatrix}
\begin{pmatrix}
\begin{array}{c}
f_1(x) \\
f_2(x)
\end{array}
\end{pmatrix}
= \begin{pmatrix}
(x_1 + 2) \vee (x_2 - 1) \\
x_2 + 4
\end{pmatrix}.
\]

If A is a $n \times n$ matrix over \mathbb{R}_{\max}, its associated graph, $G(A)$, is the directed graph with vertices $\{1, \ldots, n\}$ and an edge from i to j if, and only if, $A_{ij} \neq -\infty$. It is customary, in max-plus theory, to adjoin labels ("weights") to the edges in $G(A)$. [2]. This unlabelled version will be sufficient for our purposes. A is said to be irreducible if $G(A)$ is strongly connected. It is easy to see that if f is the topical function corresponding to A then the graphs $G(A)$ and $G(f)$ coincide. The following result follows immediately. The cited reference is to a standard source but the result has been proved independently many times.

Corollary 2. (Perron-Frobenius for max-plus. [2, Theorem 3.28]) An irreducible max-plus matrix has an eigenvector.

In max-plus theory, the eigenvectors of a matrix lie in $(\mathbb{R} \cup \{-\infty\})^n$. The point of Corollary 2 is that such an eigenvector can be found in \mathbb{R}^n. The formula for the eigenvalue, based on the structure of the circuits of $G(A)$, lies outside the scope of the present paper. [2].

For the next result, assume that P is the transition matrix of a Markov chain (so that P is row-stochastic) and let $f(x) = c + Px$, for some $c \in \mathbb{R}^n$. Evidently, f is a topical function. By (10b), if f has an eigenvector with eigenvalue λ, then
\[
\frac{(1 + P + \cdots + P^{k-1})c}{k} \leadsto \frac{f^k(0)}{k}
\]
converges to $(\lambda, \ldots, \lambda)$. The next result can hence be thought of as a version of the mean ergodic theorem for Markov chains, [23, Chapter XIII, §1, Theorem 2].

Corollary 3. Let $c \in \mathbb{R}^n$ and let P denote a $n \times n$ irreducible row-stochastic matrix. The function $f(x) = c + Px$ has an eigenvector.

\[Proof.\] f is a topical function and $G(f)$ is strongly connected so the result follows from Theorem 2. \qed
A family of non-negative matrices \(\{ P^u \}_{u \in U} \) is said to be communicating if the matrix \(\sup_{u \in U} P^u \), obtained by taking entrywise suprema, has finite entries and is irreducible. The following result is due to Bather.

Corollary 4. (Bather’s theorem, [4, Theorem 2.4]) Let \(\{ P^u \}_{u \in U} \) be a communicating family of row-stochastic matrices, and let \(\{ e^u \}_{u \in U} \) be a family of vectors \(e^u \in \mathbb{R}^n \) that is bounded above. Then the function \(f(x) = \sup_{u \in U}(e^u + P^u x) \) has an eigenvector.

Proof. It is easy to check that \(G(f) = G(\sup_{u \in U} P^u) \). Since the latter is strongly connected by hypothesis, the result follows immediately from Theorem 2. \(\Box \)

The next result was proved by Zijm in the special case of a finite communicating family. It follows by combining the argument of Corollary 4 with that of Corollary 1.

Corollary 5. (Zijm’s theorem, [24, Theorem 3.4]) Let \(\{ A^u \}_{u \in U} \) be a communicating family of non-negative matrices. Then the function \(f(x) = \sup_{u \in U} A^u x \) has a (multiplicative) eigenvector.

As a last illustration of the ideas developed here, consider the topological function \(\mathcal{E}(f) \) where \(f : (\mathbb{R}^+)^3 \to (\mathbb{R}^+)^3 \) is defined by:

\[
\begin{align*}
f_1(x) &= 2x_1 \lor 3x_2 \\
f_2(x) &= \sqrt{x_1(4x_2 + 15x_3)} \\
f_3(x) &= x_2.
\end{align*}
\]

None of the above corollaries can be applied to \(f \). However, \(G(\mathcal{E}(f)) \) is strongly connected. By Theorem 2, \(f \) has a (multiplicative) eigenvector. In fact, \(f(3, 3, 1) = 3(3, 3, 1) \).

5. Conclusions

An alternative approach to the eigenvector problem stems from the observation in (7) that all trajectories of a topological function \(f \) are asymptotically equivalent. This suggests that the asymptotics of \(f^k(x) \) contain information on the existence of fixed points, an idea confirmed in recent work, [8, 10].

Topological functions can be defined and studied on cones in Banach spaces, as Krein and Rutman have done for Perron-Frobenius theory. Some attractive examples have emerged here, [21], but with the exception of Nussbaum’s work, [17, 18], little general progress has been made.

References

INRIA, DOMAINE DE VOLUCEAU, B.P. 105, 78153 LE CRENAY CÉDEX, FRANCE.
E-mail address: Stéphane.Gaubert@inria.fr

BRIMS, HEWLETT-PACKARD LABS, Filton Road, Stoke Gifford, Bristol BS34 8QZ, UK
E-mail address: jhcg@hplb.hpl.hp.com