EXISTENCE OF EIGENVECTORS FOR MONOTONE
HOMOGENEOUS FUNCTIONS

STEPHANE GAUBERT AND JEREMY GUNAWARDENA

ABSTRACT. We consider functions f : R™ — R™ which are additively homo-
geneous and monotone in the product ordering on R™ (topical functions). We
show that if some non-empty sub-eigenspace of f is bounded in the Hilbert
semi-norm then f has an additive eigenvector and we give a Collatz-Wielandt
characterisation of the corresponding eigenvalue. The boundedness condition
is satisfied if a certain directed graph associated to f is strongly connected.
The Perron-Frobenius theorem for non-negative matrices, its analogue for the
max-plus semiring, a version of the mean ergodic theorem for Markov chains
and theorems of Bather and Zijm all follow as immediate corollaries.

1. INTRODUCTION

1.1. Notation. The partial order on R will be extended pointwise to functions
frg: X — Rso that f < g if, and only if, f(z) < g(z) for all z € X. The
least upper bound and greatest lower bound with respect to this ordering, will be
denoted in infix form by V and A, respectively: (f V ¢)(z) = max(f(z),g(z)) and
(f A g)(x) = min(f(z),g(z)). In particular, taking X = {1,---,n}, this gives the
product ordering on R” with its usual structure as a distributive lattice.

It will also be convenient to use the following vector-scalar convention: if, in an
operation or a relation, a vector and a scalar appear together, then the operation is
applied to, or the relation is taken to hold for, each component of the vector. For
example, if A € R and z € R, then A\ + 2z = (A+ 21, --- ,A\+x,) and z < X if, and
only if, z; < Afor 1 <i <mn.

1.2. Topical functions. A function f : R" — R™ is (additively) homogeneous if

(1) VAeRandVz € R?, f(A+2)=A+ f(z) ,
and monotone if
@) Voy €RY, o<y = f2) < f(y) -

Functions which are monotone and homogeneous have been called topical functions
in [12] and we adopt this terminology here. If f : R® — R" is a topical function, we
say that z € R" is an (additive) eigenvector for the eigenvalue A € Rif f(z) = A+z.
The main results of this paper are existence theorems for eigenvectors, Theorems 1
and 2, and a Collatz-Wielandt characterisation of the eigenvalue, Proposition 1.
Our methods are elementary.
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Topical functions include many examples that have been extensively studied:
non-negative matrices (see below); max-plus matrices, (see §4 and [2]), and other
models of discrete event systems, [3, 9, 10, 22]; operators arising in Markov decision
theory and the theory of stochastic games, [6, 13]; problems in fixed point theory,
[17, 19]; matrix scaling problems and related problems of entropy minimisation,
[15, 20]. This paper shows the emergence of elementary general results of wide
applicability: we recover some well-known theorems as immediate corollaries of our
main results.

1.3. The multiplicative context. Non-negative matrices are familiar in a multi-
plicative form so it will be helpful to note first that the additive and multiplicative
contexts are interchangeable.

Let R™ denote the positive reals: Rt = {x € R | z > 0}. The whole space,
R"™, can be placed in bijective correspondence with the positive cone, (R*)", via
the mutually inverse functions exp : R* — (RT)" and log : (RT)" — R", where
exp(z); = exp(w;), for z € R", and log(z); = log(w;), forx € (RT™)™. If A : (R*)" —
(Rt)™ is any self-map of the positive cone then £(4) : R* — R” will denote the
function defined by £(A)(z) = log(A(exp(x))). This induces a bijective functional
between self-maps of (RT)” and self-maps of R". Clearly, £(AB) = £(A)E(B), so
that the dynamics of A on (R")” and £(A4) on R™ are equivalent.

If A:(RT)" — (RT)™ is represented by a non-negative matrix in the standard
basis (for which the same notation, A, will be used) then it is easy to see that £(A)
is a topical function. Furthermore, z € R" is an (additive) eigenvector of £(A),
with eigenvalue A € R, if, and only if, exp(z) € (R*)™ is an eigenvector of A in the
usual sense, with eigenvalue exp()\): Aexp(z) = exp(A) exp(z).

Note that (additive) eigenvectors of £(A) correspond bijectively to the (multi-
plicative) eigenvectors of A all of whose components are positive. The word eigen-
vector will be used in both contexts; the reader should have no difficulty inferring
the right meaning. Note further that a non-negative matrix A corresponds to a
topical function under £ if, and only if, no row of A is the zero vector:

(3) Vi, 3j such that A;; #0 .

1.4. Nonexpansiveness. A key property of topical functions is their nonexpan-
siveness with respect to certain norms. Let t,b : R* — R be defined as (“top”)
t(z) =z1V---Vz,, and (“bottom”) b(z) = —t(—z) = 21 A--- Az, both of which
are topical functions. The supremum, or £°°, norm on R" can then be defined as
[|z||oo = t(z)V—b(z). We shall also need the Hilbert semi-norm, ||z||y = t(z) —b(z),
which defines a metric on the space of lines parallel to the main diagonal in R™.
This metric is the additive version of the Hilbert projective metric while ||z||~ gives
rise to the additive version of Thompson’s “part” metric on (R*)", [17].

An elementary application of (1) and (2), [12, Proposition 1.1], shows that a
function f : R® — R" is topical if, and only if,

Vr,y € R", t(f(z) — f(y)) <tle —y) .
(This provides some justification for the term topical.) We see immediately that a

topical function is nonexpansive with respect to both the supremum norm and the
Hilbert semi-norm: Vx,y € R™,

(4) 1f(@) = fWllee < [z =yl
(5) 1f@) = fWln < e =yl
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In fact, as first observed by Crandall and Tartar [7], if f is homogeneous, then it
is monotone if, and only if, it is nonexpansive in the supremum norm, [12, Propo-
sition 1.1].

2. SUB-EIGENSPACES AND THE COLLATZ-WIELANDT PROPERTY

The results of the present paper originate in the study of sub-eigenspaces. Let
f:R* - R*. For any A € R, define the sub-eigenspace of f associated to A,
Sx(f) CR", by

Sx(f) ={z e R"| f(z) <A+a} .

If Sx(f) # 0 then X is said to be a sub-eigenvalue, and any = € Sy(f) is a sub-
eigenvector. Let A(f) C R denote the set of sub-eigenvalues: A(f) = {A € R |
SA(f) # 0}. For any functions f,g : R* — R™ and any A, u € R, the following are
easily seen to hold.

(6a) f<g = S\(f)DS\g) ,
(6b) AZp = S\(f)CSuf)
(6¢) Soan)(f) = Sax(f—n) .

It follows immediately from (6b) that for any function f : R®* — R, A(f) must
be an interval of the form (—o0, 00), (a,00) or [a,00) and it is easy to see that all
three forms can appear. For a topical function the first form can be ruled out. To
see this, it is helpful to recall first some well-understood facts about the asymptotic
dynamics of a topical function, f : R* — R"”.

First, (4) implies that all trajectories of f are asymptotically the same:

(7) )= fHy) +0(1) ask — oo .

Second, an elementary argument using (1) and (2) shows that the sequence t(f*(0))
is sub-additive,

t(fH(0)) < t(f5(0)) +t(£(0)) -

It follows from (7) that the sequence t(f*(z)/k) converges as k — oo and that the
limit is independent of z, [12, 22]. The upper cycle-time of f, X(f) € R, is defined
as
X(f) = lim (75 (2)/k) -
— 00

Dually, the lower cycle-time is X(f) = limg_y00 b(f*(2)/k). The existence of the
cycle-time vector of f, X(f) = limy_,o f*(z)/k, is another matter altogether. Tt
does not always exist, [12, Theorem 3.1], and one of the central problems in the
field is to characterise those topical functions for which it does.

Now suppose that f: R* — R" is a topical function and that f(z) < A + z for
some z € R” and some A € R. Using (1) and (2), f*(z) < kX + z. Hence,

t(f*(@)/k) <A +t(z/k)
from which the following lemma immediately follows.

Lemma 1. If f : R* — R" is a topical function then either A(f) = (a,00) or
A(f) = [a, 00), where X(f) < a.
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Both possibilities can occur. It follows from Proposition 1 and (10a) below that
if f has an eigenvector, f(z) = A + z, then A(f) = [A,00]. If f = E(A) where A is
the non-negative matrix below

11
0 1

then it is easy to see that A(f) = (0, 00).
We shall now show that X(f) = a. This requires the following simple but crucial
observation.

Lemma 2. Let f : R — R™ be a topical function and let k be any positive integer.

If S\(f*) # 0, then Sy (f) # 0.
Proof. If S\(f*) # 0, then f*(x) < X\ + x for some x € R”. Let
y =z A(f(@) = ME) A A(F @) = (k= 1)A/K) -

Using (1) and (2) we see that
fly) < f@)AfP) = ME)A - A(fE (@) = (k= 1))/k)
< @A) = MER) A A+ A R)
= y+Ak.
Thus, y € S)\/k(f) 75 0. O

Lemma 2 allows us to give the following characterisation of X(f) which may be
thought of as a generalised Collatz-Wielandt formula, [16, §1.3].

Proposition 1. Let f : R® — R" be a topical function. Then,
(8) inf A(f) = inf t(f(x) ~7) = X(/) -

Proof. Let a = inf A(f). Since f(z) < = + A if, and only if, t(f(z) — x) < A the
first equality in (8) follows easily. Lemma 1 has already shown that X(f) < a. Now

choose € > 0. For sufficiently large k, f*(0) < (X(f) +e€)k. Hence, S(Y(f)+e)k(fk) #
(. By Lemma 2, SY(f)-;-e(f) # (. Hence, a < X(f) + €. Since ¢ was chosen
arbitrarily, a < X(f) and so a = X(f). O

A result on topical functions can be dualised by applying it to the topical function
—f(—z). Using this method on the Collatz-Wielandt formula, we deduce that

) X(f) = sup b(f(a) ~3) .

If f has an eigenvector, so that f(z) = A + z then it follows from (1) that
(10a) X(f) = A =X(f) and

(10Db) X(fy=MO,0) .

3. EXISTENCE OF EIGENVECTORS

3.1. The main result. It is convenient for the proofs that follow to make use of
the normalised sub-eigenspace, S} (f) C R", defined by

S\(f)={z eR"| f(z) <A+ zandb(z) =0} .
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If b(z) = 0 then ||z||n = ||#]|lco- It follows that if f is homogeneous then Sy(f)
is non-empty and bounded in the Hilbert semi-norm if, and only if, S} (f) is non-
empty and bounded in the supremum norm.

Theorem 1. Let f : R” — R” be a topical function for which some sub-eigenspace
is non-empty and bounded in the Hilbert semi-norm. Then f has an eigenvector.

Proof. Assume that S,(f) is non-empty and bounded in the Hilbert semi-norm.
Let a = inf A(f). Evidently a < p. We may assume, without loss of generality,
that a = p. To see why, suppose that a < p. Since S, (f) is bounded in the Hilbert
semi-norm, the sets S;(f), for a < b < p are compact in the supremum norm.
It follows easily from (6b) that S} (f) = (1,4<, S;(f). The right hand side is a
decreasing intersection of non-empty compact sets and so S’ (f) is also non-empty
and compact. Hence S,(f) is non-empty and bounded in the Hilbert semi-norm,
as claimed.

Let g = —a+ f. By (6¢), A(g) = [0, ) so that we can find z € R” such that
g(z) < z. Hence g*t'(z) < ¢g*(z) and g*(z) € So(g9) = S,(f) for all k € N. If
limy_ o t(g*(z)) = —o0, then g*(z) < —1 + z, for some sufficiently large k and
Lemma 2 shows that S—l/k( ) # 0, contradicting A(g) = [0,00). Hence t(g*(x))
is bounded from below as k — co. By hypothesis, ||g*(z)||n remains bounded and
this can only happen if ¢g¥ () itself remains bounded. Let y = limy_, o, ¢*(2). Then
by continuity of g, g(y) = v, so that f(y) =a+y. O

The following examples are instructive in the light of this result. Consider the
topical functions f, g : R> — R? defined by

filz) = ((z1—1)Va)A(x+1) and g1(x) = z Az
fa(x) = 2V g2(x) = z VI .

We leave it to the reader to show that A(f) = [0, c0) and

S\(f) = {2 eR? | “A4z1 <za < A4z} for0<A<1
MWV {zeR | =M+ 2 <m0} for A>1.

It follows that Sx(f) is bounded for 0 < A < 1 and unbounded for 1 < X. As for
g, it has the eigenvector (0,0) and A(g) = [0,00) but Sx(g9) = {(z1,22) € R |
x1 < A+ z3} is unbounded for all A > 0. (The dual super-eigenspaces are also
unbounded.)

3.2. Graphs associated to topical functions. If A is a n X n non-negative
matrix, its associated graph, G(A), is the directed graph with vertices {1,---,n}
and an edge from ¢ to j if, and only if, 4;; # 0, [5, Chapter 2]. The matrix A is
irreducible if, and only if, G(A) is strongly connected: if there is a directed path
between any two vertices. The Perron-Frobenius theorem (see Corollary 1 below)
asserts that an irreducible non-negative matrix has an eigenvector all of whose
components are positive. We now generalise this to topical functions.

Let f : R* — R". Define the associated graph of f, G(f), to be the di-
rected graph with vertices {1,---,n} and an edge from i to j if, and only if,
lim, _,« fi(vej) = 0o, where e; is the j-th vector of the canonical basis of R".

Theorem 2. Let f : R* — R" be a topical function whose associated graph is
strongly connected. Then all non-empty sub-eigenspaces of f are bounded. In par-
ticular, f has an eigenvector.
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Proof. For each edge from i to j of G(f) define hj; : R - RU {—o0} by
hji(x) =sup{v € R| fi(ve;) <z} ,

where we use the convention that supf) = —co. For any A € R, let h]*l(:v) =
hji(A+x). Let Sx(f) be any non-empty sub-eigenspace of f and choose z € Sx(f),
which we may assume to satisfy b(z) = 0. Let ¢ € {1,---,n} be the component
for which z; = 0. Choose any other component j € {1,---,n}. By hypothesis
there exists a directed path from i to j in G(f). Suppose that the nodes on this
are ¢ =41, ,t; = j, where there is an edge from i,_; to i, for 1 < p < k. Since
b(z) = 0, we must have z;,e;, < x. Hence

finor (@iveq,) < fip_ (@) <X+,

and so x;, < h} (zi,_,). Putting these together we find that

Iplp—1

zj < h) o---oh, (0) .

Tik—1 i201

It follows that S\(f) is bounded in the Hilbert semi-norm. By Theorem 1, f has
an eigenvector. |

Amghibech and Dellacherie state a similar but weaker result in [1]. They use a
different graph which is, in general, not strongly connected for the examples studied
in the next section, with the exception of that in Corollary 3. However, the proof
technique of [1], based on an approximation procedure, could be used to obtain an
independent proof of Theorem 2.

Consider the topical function f : R* — R? defined by

fl(iL”) = I V (ZL”Q A :Ug)
fg(l‘) = x1Vz2ViI3
fg(l') = I \Y T2 \Y I3 .

G(f) is not strongly connected since there are no edges from 1 to 2 and from 1 to
3. Nevertheless it is easy to check that f has bounded sub-eigenspaces. Is there
a combinatorial object associated to a topical function which determines when the
function has bounded sub-eigenspaces? This is an interesting problem which we
hope to address elsewhere.

For convex topical functions, Theorem 2 has a converse. Recall that a function
h:R® — R is convex if, for all z,y € R?,

(11) h(Az + py) < Ah(z) + ph(y) ,

where 0 < \,up < 1and A+ p = 1. A function f : R* — R™ is convex if each
component function f; : R* — R is convex. A simple deduction from (11), which
is left to the reader, captures the intuition that the derivative of h is increasing.
With the same notation as above, let 2’ = Az +py =z + puly —z) =y — My — z).
Then,

12

(12) - .
For any function f : R® — R" define its syntactic graph, G*(f), to be the

directed graph with vertices 1,--- ,n and an edge from ¢ to j if, and only if, f;

depends on z; in the following sense: there is no map h : R®™" — R such that
fl(w) = h(il?l, AR B R S R 73771)'
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Proposition 2. Let f : R* — R" be a convex topical function. Then G(f) =
G*(f). Moreover, G*(f) is strongly connected if, and only if, all sub-eigenspaces of
f are bounded in the Hilbert semi-norm.

Proof. Clearly, an edge of G(f) is an edge of G*(f). Conversely, if there is an
edge from i to j in G*(f), then we can find z,2’ € R" such that z;, = =} for
all k # j, z; # 2}, and fi(z) # fi(z'). Without loss of generality, assume that
z; > zj. Choose v > 0 and let y = 2’ + ve;. Let a =2} —z; + v, A = v/a and
p = (2% —z;)/a. Evidently, 0 <A, pu < 1and A+ p = 1 and it is easy to check that
' = Az + py, in accordance with the notation used in (12). Using this inequality
we see that
fily) = file)) _ fil@') = fi(=)
A - I ’

which can be rewritten as

fi(z' +ve;) > v

! !
o )~ ) + i)
Since this holds for any v > 0, it follows that lim,_, fi(z' + ve;) = co. But,
z' +ve; <t(z') + ve;. Using (2), we see that f;(ve;) > fi(z' + ve;) —t(z') and so
lim,_, fi(vej) = oo. It follows that there is an edge from i to j in G(f) and so
G*(f) is identical to G(f).

If G°(f) = G(f) is strongly connected then Theorem 2 shows that all the sub-
eigenspaces of f are bounded. Conversely, suppose that G*(f) is not strongly
connected. Then, by standard arguments, [5, Chapter 2], we can, after possibly
reordering, partition the variables so that z = (y,2), where y € R, z € R?,
n=p+qand f(z) = (9(y, 2), h(z)), for some topical functions g: R x R? — RP,
and h : R? — RY. Suppose that Sy(f) is non-empty and choose z € Sx(f). Since
f(z) < X+ 2z, we must have g(y,z) < A+ y and h(z) < XA+ z. Now choose p > 0.
Using (1) and (2) it follows that g(u +y,2) < g(p+y,u+ 2) < X+ p +y. Hence
(n+y,z) € Sx(f) for all 4 > 0 and so all non-empty sub-eigenspaces of f are
unbounded in the Hilbert semi-norm. |

4. APPLICATIONS

We now show that several well-known theorems are immediate corollaries of the
elementary results above.

Corollary 1. (Perron-Frobenius theorem, [5]) Let A be a n X n non-negative ma-
triz. If A is irreducible then its spectral radius is an eigenvalue, for which A has
an eigenvector all of whose components are positive.

Proof. Since A is irreducible the nondegeneracy condition (3) holds. Let f = £(A).
It is easy to see that G(f), the graph associated to f, is identical to G(A), the graph
associated to A. Since A is irreducible, G(A) is strongly connected and so, by The-
orem 2, f has an eigenvector: f(xz) = r + z. Evidently, Aexp(z) = exp(r) exp(z),
where exp(z) has all its components positive. It remains to show that exp(r) is
the spectral radius of A. For completeness, we reproduce the standard argument
using the Collatz-Wielandt property. Suppose that z € C" is a (multiplicative)
eigenvector of A with eigenvalue A € C: Az = Az. Let |z| € R” be the vector of
absolute values: |z| = (|z1],--+,|zn|) and let & = log(|z]). A simple application
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of the triangle inequality shows that A|z| > [A||z|. Hence f(z) > log(|A]) + z. It
follows, using (9) and (10a), that

log(|A) < b(f(z) —2z) < X(f) =r
and so exp(r) is the spectral radius of A. O

The function R? — R which takes z — log(exp(z1) + exp(z2)) is convex, from
which it follows that £(A) is a convex topical function. Hence we could have used
Proposition 2, together with Theorem 1 in the proof of Corollary 1. This applies
also to the topical functions in the corollaries below, which are all convex.

Property (1) applied to the function t : R? — R illustrates that addition dis-
tributes over maximum. It follows that the set RU {—o0o0} equipped with the oper-
ations of maximum (as addition) and addition (as multiplication) forms an idem-
potent semiring (a semiring whose addition satisfies a + a = a), called the maz-plus
semiring and denoted Rmax, [11]. Suppose that A is a n X n matrix over Ruyax
which satisfies a similar nondegeneracy condition to (3):

Vi, 35 such that A;; # —o0 .

If x € R™ then it is easy to see that  — Az defines a topical function. For instance,
the matrix on the left below gives rise to the function on the right.

2 -1 fi (:U) = (2131 + 2) \% (ZL”Q — 1)
<—oo 4 ) fo(x) = z2+4 .

If Ais an xn matrix over Rpyax, its associated graph, G(A), is the directed
graph with vertices {1,--- ,n} and an edge from i to j if, and only if, A;; # —oc.
It is customary, in max-plus theory, to adjoin labels (“weights”) to the edges in
G(A), [2]. This unlabelled version will be sufficient for our purposes. A is said
to be irreducible if G(A) is strongly connected. It is easy to see that if f is the
topical function corresponding to A then the graphs G(A) and G(f) coincide. The

following result follows immediately. The cited reference is to a standard source
but the result has been proved independently many times.

Corollary 2. (Perron-Frobenius for max-plus, [2, Theorem 3.28]) An irreducible
maz-plus matrixz has an eigenvector.

In max-plus theory, the eigenvectors of a matrix lie in (R U {—o00})”. The point
of Corollary 2 is that such an eigenvector can be found in R”. The formula for the
eigenvalue, based on the structure of the circuits of G(A), lies outside the scope of
the present paper, [2].

For the next result, assume that P is the transition matrix of a Markov chain
(so that P is row-stochastic) and let f(z) = ¢+ Pz, for some ¢ € R”. Evidently, f
is a topical function. By (10b), if f has an eigenvector with eigenvalue A, then

(14+P+---+ PN f¥0)
k Tk

converges to (\,---, ). The next result can hence be thought of as a version of
the mean ergodic theorem for Markov chains, [23, Chapter XIII, §1, Theorem 2].

Corollary 3. Letc € R" and let P denote a nxn irreducible row-stochastic matrix.
The function f(x) = ¢+ Pz has an eigenvector.

Proof. f is a topical function and G(f) is strongly connected so the result follows
from Theorem 2. O
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A family of non-negative matrices {P"},cr is said to be communicating if the
matrix sup,cy P*, obtained by taking entrywise suprema, has finite entries and is
irreducible. The following result is due to Bather.

Corollary 4. (Bather’s theorem, [4, Theorem 2.4]) Let {P"},cv be a communi-
cating family of row-stochastic matrices, and let {c*}ycu be a family of vectors
c* € R" that is bounded above. Then the function f(x) = sup,cy(c* + P"x) has
an eigenvector.

Proof. It is easy to check that G(f) = G(sup,cy P*). Since the latter is strongly
connected by hypothesis, the result follows immediately from Theorem 2. O

The next result was proved by Zijm in the special case of a finite communicating
family. It follows by combining the argument of Corollary 4 with that of Corollary 1.

Corollary 5. (Zijm’s theorem, [24, Theorem 3.4]) Let {A"},cv be a communicat-
ing family of non-negative matrices. Then the function f(x) = sup,cy A%z has a
(multiplicative) eigenvector.

As a last illustration of the ideas developed here, consider the topical function
E(f) where f: (Rt)? — (R")3 is defined by:

f1 (1‘) = 2x1 V31,
fo(x) = z1 (4o + 1523)
fg(l‘) = T2 .

None of the above corollaries can be applied to f. However, G(£(f)) is strongly
connected. By Theorem 2, f has a (multiplicative) eigenvector. In fact, f(3,3,1) =
3(3,3,1).

5. CONCLUSIONS

An alternative approach to the eigenvector problem stems from the observation
in (7) that all trajectories of a topical function f are asymptotically equivalent.
This suggests that the asymptotics of f*(z) contain information on the existence
of fixed points, an idea confirmed in recent work, [8, 10].

Topical functions can be defined and studied on cones in Banach spaces, as Krein
and Rutman have done for Perron-Frobenius theory. Some attractive examples
have emerged here, [21], but with the exception of Nussbaum’s work, [17, 18], little
general progress has been made.
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