EXISTENCE OF EIGENVECTORS FOR MONOTONE HOMOGENEOUS FUNCTIONS

STÉPHANE GAUBERT AND JEREMY GUNAWARDENA

ABSTRACT. We consider functions $f : \mathbb{R}^n \to \mathbb{R}^n$ which are additively homogeneous and monotone in the product ordering on \mathbb{R}^n (topical functions). We show that if some non-empty sub-eigenspace of f is bounded in the Hilbert semi-norm then f has an additive eigenvector and we give a Collatz-Wielandt characterisation of the corresponding eigenvalue. The boundedness condition is satisfied if a certain directed graph associated to f is strongly connected. The Perron-Frobenius theorem for non-negative matrices, its analogue for the max-plus semiring, a version of the mean ergodic theorem for Markov chains and theorems of Bather and Zijm all follow as immediate corollaries.

1. INTRODUCTION

1.1. Notation. The partial order on \mathbb{R} will be extended pointwise to functions $f, g : X \to \mathbb{R}$ so that $f \leq g$ if, and only if, $f(x) \leq g(x)$ for all $x \in X$. The least upper bound and greatest lower bound with respect to this ordering, will be denoted in infix form by \vee and \wedge , respectively: $(f \vee g)(x) = \max(f(x), g(x))$ and $(f \wedge g)(x) = \min(f(x), g(x))$. In particular, taking $X = \{1, \dots, n\}$, this gives the product ordering on \mathbb{R}^n with its usual structure as a distributive lattice.

It will also be convenient to use the following *vector-scalar* convention: if, in an operation or a relation, a vector and a scalar appear together, then the operation is applied to, or the relation is taken to hold for, each component of the vector. For example, if $\lambda \in \mathbb{R}$ and $x \in \mathbb{R}^n$, then $\lambda + x = (\lambda + x_1, \dots, \lambda + x_n)$ and $x \leq \lambda$ if, and only if, $x_i \leq \lambda$ for $1 \leq i \leq n$.

1.2. Topical functions. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is (additively) homogeneous if

$$\forall \lambda \in \mathbb{R} \text{ and } \forall x \in \mathbb{R}^n, \ f(\lambda + x) = \lambda + f(x) ,$$

and monotone if

(1)

(2)
$$\forall x, y \in \mathbb{R}^n, \ x \le y \implies f(x) \le f(y)$$

Functions which are monotone and homogeneous have been called *topical functions* in [12] and we adopt this terminology here. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a topical function, we say that $x \in \mathbb{R}^n$ is an (additive) *eigenvector* for the *eigenvalue* $\lambda \in \mathbb{R}$ if $f(x) = \lambda + x$. The main results of this paper are existence theorems for eigenvectors, Theorems 1 and 2, and a Collatz-Wielandt characterisation of the eigenvalue, Proposition 1. Our methods are elementary.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47J10, Secondary: 47H09, 47H07, 15A48. Key words and phrases. Collatz-Wielandt property, Hilbert projective metric, nonexpansive function, nonlinear eigenvalue, Perron-Frobenius theorem, strongly connected graph, subeigenspace.

Version of August 2, 1999. Hewlett-Packard Technical Report HPL-BRIMS-99-08.

Topical functions include many examples that have been extensively studied: non-negative matrices (see below); max-plus matrices, (see §4 and [2]), and other models of discrete event systems, [3, 9, 10, 22]; operators arising in Markov decision theory and the theory of stochastic games, [6, 13]; problems in fixed point theory, [17, 19]; matrix scaling problems and related problems of entropy minimisation, [15, 20]. This paper shows the emergence of elementary general results of wide applicability: we recover some well-known theorems as immediate corollaries of our main results.

1.3. The multiplicative context. Non-negative matrices are familiar in a multiplicative form so it will be helpful to note first that the additive and multiplicative contexts are interchangeable.

Let \mathbb{R}^+ denote the positive reals: $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$. The whole space, \mathbb{R}^n , can be placed in bijective correspondence with the positive cone, $(\mathbb{R}^+)^n$, via the mutually inverse functions $\exp : \mathbb{R}^n \to (\mathbb{R}^+)^n$ and $\log : (\mathbb{R}^+)^n \to \mathbb{R}^n$, where $\exp(x)_i = \exp(x_i)$, for $x \in \mathbb{R}^n$, and $\log(x)_i = \log(x_i)$, for $x \in (\mathbb{R}^+)^n$. If $A : (\mathbb{R}^+)^n \to (\mathbb{R}^+)^n$ is any self-map of the positive cone then $\mathcal{E}(A) : \mathbb{R}^n \to \mathbb{R}^n$ will denote the function defined by $\mathcal{E}(A)(x) = \log(A(\exp(x)))$. This induces a bijective functional between self-maps of $(\mathbb{R}^+)^n$ and self-maps of \mathbb{R}^n . Clearly, $\mathcal{E}(AB) = \mathcal{E}(A)\mathcal{E}(B)$, so that the dynamics of A on $(\mathbb{R}^+)^n$ and $\mathcal{E}(A)$ on \mathbb{R}^n are equivalent.

If $A : (\mathbb{R}^+)^n \to (\mathbb{R}^+)^n$ is represented by a non-negative matrix in the standard basis (for which the same notation, A, will be used) then it is easy to see that $\mathcal{E}(A)$ is a topical function. Furthermore, $x \in \mathbb{R}^n$ is an (additive) eigenvector of $\mathcal{E}(A)$, with eigenvalue $\lambda \in \mathbb{R}$, if, and only if, $\exp(x) \in (\mathbb{R}^+)^n$ is an eigenvector of A in the usual sense, with eigenvalue $\exp(\lambda)$: $A \exp(x) = \exp(\lambda) \exp(x)$.

Note that (additive) eigenvectors of $\mathcal{E}(A)$ correspond bijectively to the (multiplicative) eigenvectors of A all of whose components are positive. The word eigenvector will be used in both contexts; the reader should have no difficulty inferring the right meaning. Note further that a non-negative matrix A corresponds to a topical function under \mathcal{E} if, and only if, no row of A is the zero vector:

(3)
$$\forall i, \exists j \text{ such that } A_{ij} \neq 0$$
.

1.4. Nonexpansiveness. A key property of topical functions is their nonexpansiveness with respect to certain norms. Let $\mathbf{t}, \mathbf{b} : \mathbb{R}^n \to \mathbb{R}$ be defined as ("top") $\mathbf{t}(x) = x_1 \lor \cdots \lor x_n$, and ("bottom") $\mathbf{b}(x) = -\mathbf{t}(-x) = x_1 \land \cdots \land x_n$, both of which are topical functions. The supremum, or ℓ^{∞} , norm on \mathbb{R}^n can then be defined as $\|x\|_{\infty} = \mathbf{t}(x) \lor -\mathbf{b}(x)$. We shall also need the Hilbert semi-norm, $\|x\|_{\mathsf{H}} = \mathbf{t}(x) - \mathbf{b}(x)$, which defines a metric on the space of lines parallel to the main diagonal in \mathbb{R}^n . This metric is the additive version of the Hilbert projective metric while $\|x\|_{\infty}$ gives rise to the additive version of Thompson's "part" metric on $(\mathbb{R}^+)^n$, [17].

An elementary application of (1) and (2), [12, Proposition 1.1], shows that a function $f : \mathbb{R}^n \to \mathbb{R}^n$ is topical if, and only if,

$$\forall x, y \in \mathbb{R}^n, \mathsf{t}(f(x) - f(y)) \le \mathsf{t}(x - y)$$
.

(This provides some justification for the term *topical*.) We see immediately that a topical function is nonexpansive with respect to both the supremum norm and the Hilbert semi-norm: $\forall x, y \in \mathbb{R}^n$,

- (4) $||f(x) f(y)||_{\infty} \leq ||x y||_{\infty}$
- (5) $||f(x) f(y)||_{\mathsf{H}} \leq ||x y||_{\mathsf{H}}$.

In fact, as first observed by Crandall and Tartar [7], if f is homogeneous, then it is monotone if, and only if, it is nonexpansive in the supremum norm, [12, Proposition 1.1].

2. SUB-EIGENSPACES AND THE COLLATZ-WIELANDT PROPERTY

The results of the present paper originate in the study of sub-eigenspaces. Let $f : \mathbb{R}^n \to \mathbb{R}^n$. For any $\lambda \in \mathbb{R}$, define the sub-eigenspace of f associated to λ , $S_{\lambda}(f) \subseteq \mathbb{R}^n$, by

$$S_{\lambda}(f) = \{ x \in \mathbb{R}^n \mid f(x) \le \lambda + x \}$$
.

If $S_{\lambda}(f) \neq \emptyset$ then λ is said to be a *sub-eigenvalue*, and any $x \in S_{\lambda}(f)$ is a *sub-eigenvector*. Let $\Lambda(f) \subseteq \mathbb{R}$ denote the set of sub-eigenvalues: $\Lambda(f) = \{\lambda \in \mathbb{R} \mid S_{\lambda}(f) \neq \emptyset\}$. For any functions $f, g : \mathbb{R}^n \to \mathbb{R}^n$ and any $\lambda, \mu \in \mathbb{R}$, the following are easily seen to hold.

(6a) $f \leq g \Rightarrow S_{\lambda}(f) \supset S_{\lambda}(g)$,

(6b)
$$\lambda \le \mu \Rightarrow S_{\lambda}(f) \subset S_{\mu}(f)$$

(6c) $S_{(\lambda+\mu)}(f) = S_{\lambda}(f-\mu) .$

It follows immediately from (6b) that for any function $f : \mathbb{R}^n \to \mathbb{R}^n$, $\Lambda(f)$ must be an interval of the form $(-\infty, \infty)$, (a, ∞) or $[a, \infty)$ and it is easy to see that all three forms can appear. For a topical function the first form can be ruled out. To see this, it is helpful to recall first some well-understood facts about the asymptotic dynamics of a topical function, $f : \mathbb{R}^n \to \mathbb{R}^n$.

First, (4) implies that all trajectories of f are asymptotically the same:

(7)
$$f^k(x) = f^k(y) + O(1) \text{ as } k \to \infty$$

Second, an elementary argument using (1) and (2) shows that the sequence $t(f^k(0))$ is sub-additive,

$$t(f^{k+l}(0)) \le t(f^k(0)) + t(f^l(0))$$

It follows from (7) that the sequence $t(f^k(x)/k)$ converges as $k \to \infty$ and that the limit is independent of x, [12, 22]. The upper cycle-time of $f, \overline{\chi}(f) \in \mathbb{R}$, is defined as

$$\overline{\chi}(f) = \lim_{k \to \infty} t(f^k(x)/k)$$
.

Dually, the *lower cycle-time* is $\underline{\chi}(f) = \lim_{k \to \infty} b(f^k(x)/k)$. The existence of the *cycle-time vector* of f, $\chi(f) = \lim_{k \to \infty} f^k(x)/k$, is another matter altogether. It does not always exist, [12, Theorem 3.1], and one of the central problems in the field is to characterise those topical functions for which it does.

Now suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a topical function and that $f(x) \leq \lambda + x$ for some $x \in \mathbb{R}^n$ and some $\lambda \in \mathbb{R}$. Using (1) and (2), $f^k(x) \leq k\lambda + x$. Hence,

$$\mathsf{t}(f^k(x)/k) \le \lambda + \mathsf{t}(x/k) \;\;,$$

from which the following lemma immediately follows.

Lemma 1. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a topical function then either $\Lambda(f) = (a, \infty)$ or $\Lambda(f) = [a, \infty)$, where $\overline{\chi}(f) \leq a$.

Both possibilities can occur. It follows from Proposition 1 and (10a) below that if f has an eigenvector, $f(x) = \lambda + x$, then $\Lambda(f) = [\lambda, \infty]$. If $f = \mathcal{E}(A)$ where A is the non-negative matrix below

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right)$$

then it is easy to see that $\Lambda(f) = (0, \infty)$.

We shall now show that $\overline{\chi}(f) = a$. This requires the following simple but crucial observation.

Lemma 2. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function and let k be any positive integer. If $S_{\lambda}(f^k) \neq \emptyset$, then $S_{\lambda/k}(f) \neq \emptyset$.

Proof. If $S_{\lambda}(f^k) \neq \emptyset$, then $f^k(x) \leq \lambda + x$ for some $x \in \mathbb{R}^n$. Let

$$y = x \wedge (f(x) - \lambda/k) \wedge \cdots \wedge (f^{k-1}(x) - (k-1)\lambda/k)$$
.

Using (1) and (2) we see that

$$\begin{array}{rcl} f(y) & \leq & f(x) \wedge (f^2(x) - \lambda/k) \wedge \dots \wedge (f^k(x) - (k-1)\lambda/k) \\ & \leq & f(x) \wedge (f^2(x) - \lambda/k) \wedge \dots \wedge (x+\lambda/k) \\ & = & y + \lambda/k \end{array}$$

Thus, $y \in S_{\lambda/k}(f) \neq \emptyset$.

Lemma 2 allows us to give the following characterisation of $\overline{\chi}(f)$ which may be thought of as a generalised Collatz-Wielandt formula, [16, §1.3].

Proposition 1. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function. Then,

(8)
$$\inf \Lambda(f) = \inf_{x \in \mathbb{R}^n} t(f(x) - x) = \overline{\chi}(f)$$

Proof. Let $a = \inf \Lambda(f)$. Since $f(x) \leq x + \lambda$ if, and only if, $t(f(x) - x) \leq \lambda$ the first equality in (8) follows easily. Lemma 1 has already shown that $\overline{\chi}(f) \leq a$. Now choose $\epsilon > 0$. For sufficiently large k, $f^k(0) \leq (\overline{\chi}(f) + \epsilon)k$. Hence, $S_{(\overline{\chi}(f) + \epsilon)k}(f^k) \neq \emptyset$. By Lemma 2, $S_{\overline{\chi}(f) + \epsilon}(f) \neq \emptyset$. Hence, $a \leq \overline{\chi}(f) + \epsilon$. Since ϵ was chosen arbitrarily, $a \leq \overline{\chi}(f)$ and so $a = \overline{\chi}(f)$.

A result on topical functions can be dualised by applying it to the topical function -f(-x). Using this method on the Collatz-Wielandt formula, we deduce that

(9)
$$\underline{\chi}(f) = \sup_{x \in \mathbb{R}^n} \mathsf{b}(f(x) - x)$$

If f has an eigenvector, so that $f(x) = \lambda + x$ then it follows from (1) that

(10a)
$$\underline{\chi}(f) = \lambda = \overline{\chi}(f)$$
 and

(10b)
$$\chi(f) = (\lambda, \cdots, \lambda) \ .$$

3. EXISTENCE OF EIGENVECTORS

3.1. The main result. It is convenient for the proofs that follow to make use of the normalised sub-eigenspace, $S'_{\lambda}(f) \subseteq \mathbb{R}^n$, defined by

$$S'_{\lambda}(f) = \{ x \in \mathbb{R}^n \mid f(x) \le \lambda + x \text{ and } \mathsf{b}(x) = 0 \}$$

If b(x) = 0 then $||x||_{\mathsf{H}} = ||x||_{\infty}$. It follows that if f is homogeneous then $S_{\lambda}(f)$ is non-empty and bounded in the Hilbert semi-norm if, and only if, $S'_{\lambda}(f)$ is non-empty and bounded in the supremum norm.

Theorem 1. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function for which some sub-eigenspace is non-empty and bounded in the Hilbert semi-norm. Then f has an eigenvector.

Proof. Assume that $S_{\mu}(f)$ is non-empty and bounded in the Hilbert semi-norm. Let $a = \inf \Lambda(f)$. Evidently $a \leq \mu$. We may assume, without loss of generality, that $a = \mu$. To see why, suppose that $a < \mu$. Since $S_{\mu}(f)$ is bounded in the Hilbert semi-norm, the sets $S'_b(f)$, for $a < b \leq \mu$ are compact in the supremum norm. It follows easily from (6b) that $S'_a(f) = \bigcap_{a < b \leq \mu} S'_b(f)$. The right hand side is a decreasing intersection of non-empty compact sets and so $S'_a(f)$ is also non-empty and compact. Hence $S_a(f)$ is non-empty and bounded in the Hilbert semi-norm, as claimed.

Let g = -a + f. By (6c), $\Lambda(g) = [0, \infty)$, so that we can find $x \in \mathbb{R}^n$ such that $g(x) \leq x$. Hence $g^{k+1}(x) \leq g^k(x)$ and $g^k(x) \in S_0(g) = S_a(f)$ for all $k \in \mathbb{N}$. If $\lim_{k\to\infty} t(g^k(x)) = -\infty$, then $g^k(x) \leq -1 + x$, for some sufficiently large k and Lemma 2 shows that $S_{-1/k}(g) \neq \emptyset$, contradicting $\Lambda(g) = [0, \infty)$. Hence $t(g^k(x))$ is bounded from below as $k \to \infty$. By hypothesis, $||g^k(x)||_{\mathsf{H}}$ remains bounded and this can only happen if $g^k(x)$ itself remains bounded. Let $y = \lim_{k\to\infty} g^k(x)$. Then by continuity of g, g(y) = y, so that f(y) = a + y.

The following examples are instructive in the light of this result. Consider the topical functions $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$\begin{array}{rcl} f_1(x) &=& ((x_1-1) \lor x_2) \land (x_1+1) \\ f_2(x) &=& x_1 \lor x_2 \end{array} \quad \text{and} \quad \begin{array}{rcl} g_1(x) &=& x_1 \land x_2 \\ g_2(x) &=& x_1 \lor x_2 \end{array} .$$

We leave it to the reader to show that $\Lambda(f) = [0, \infty)$ and

$$S_{\lambda}(f) = \begin{cases} \{x \in \mathbb{R}^2 \mid -\lambda + x_1 \leq x_2 \leq \lambda + x_1\} & \text{for } 0 \leq \lambda < 1 \\ \{x \in \mathbb{R}^2 \mid -\lambda + x_1 \leq x_2\} & \text{for } \lambda \geq 1 \end{cases}$$

It follows that $S_{\lambda}(f)$ is bounded for $0 \leq \lambda < 1$ and unbounded for $1 \leq \lambda$. As for g, it has the eigenvector (0,0) and $\Lambda(g) = [0,\infty)$ but $S_{\lambda}(g) = \{(x_1,x_2) \in \mathbb{R}^2 \mid x_1 \leq \lambda + x_2\}$ is unbounded for all $\lambda \geq 0$. (The dual super-eigenspaces are also unbounded.)

3.2. Graphs associated to topical functions. If A is a $n \times n$ non-negative matrix, its associated graph, G(A), is the directed graph with vertices $\{1, \dots, n\}$ and an edge from i to j if, and only if, $A_{ij} \neq 0$, [5, Chapter 2]. The matrix A is irreducible if, and only if, G(A) is strongly connected: if there is a directed path between any two vertices. The Perron-Frobenius theorem (see Corollary 1 below) asserts that an irreducible non-negative matrix has an eigenvector all of whose components are positive. We now generalise this to topical functions.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$. Define the associated graph of f, G(f), to be the directed graph with vertices $\{1, \dots, n\}$ and an edge from i to j if, and only if, $\lim_{\nu \to \infty} f_i(\nu e_j) = \infty$, where e_j is the j-th vector of the canonical basis of \mathbb{R}^n .

Theorem 2. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a topical function whose associated graph is strongly connected. Then all non-empty sub-eigenspaces of f are bounded. In particular, f has an eigenvector.

Proof. For each edge from i to j of G(f) define $h_{ji} : \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ by

$$h_{ji}(x) = \sup\{\nu \in \mathbb{R} \mid f_i(\nu e_j) \le x\}$$

where we use the convention that $\sup \emptyset = -\infty$. For any $\lambda \in \mathbb{R}$, let $h_{ji}^{\lambda}(x) = h_{ji}(\lambda + x)$. Let $S_{\lambda}(f)$ be any non-empty sub-eigenspace of f and choose $x \in S_{\lambda}(f)$, which we may assume to satisfy b(x) = 0. Let $i \in \{1, \dots, n\}$ be the component for which $x_i = 0$. Choose any other component $j \in \{1, \dots, n\}$. By hypothesis there exists a directed path from i to j in G(f). Suppose that the nodes on this are $i = i_1, \dots, i_k = j$, where there is an edge from i_{p-1} to i_p for 1 . Since <math>b(x) = 0, we must have $x_{i_p} e_{i_p} \leq x$. Hence

$$f_{i_{p-1}}(x_{i_p}e_{i_p}) \le f_{i_{p-1}}(x) \le \lambda + x_{i_{p-1}}$$

and so $x_{i_p} \leq h_{i_p i_{p-1}}^{\lambda}(x_{i_{p-1}})$. Putting these together we find that

$$x_j \le h_{i_k i_{k-1}}^{\lambda} \circ \dots \circ h_{i_2 i_1}^{\lambda}(0)$$

It follows that $S_{\lambda}(f)$ is bounded in the Hilbert semi-norm. By Theorem 1, f has an eigenvector.

Amphibech and Dellacherie state a similar but weaker result in [1]. They use a different graph which is, in general, not strongly connected for the examples studied in the next section, with the exception of that in Corollary 3. However, the proof technique of [1], based on an approximation procedure, could be used to obtain an independent proof of Theorem 2.

Consider the topical function $f : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$\begin{array}{rcl} f_1(x) &=& x_1 \lor (x_2 \land x_3) \\ f_2(x) &=& x_1 \lor x_2 \lor x_3 \\ f_3(x) &=& x_1 \lor x_2 \lor x_3 \end{array}$$

G(f) is not strongly connected since there are no edges from 1 to 2 and from 1 to 3. Nevertheless it is easy to check that f has bounded sub-eigenspaces. Is there a combinatorial object associated to a topical function which determines when the function has bounded sub-eigenspaces? This is an interesting problem which we hope to address elsewhere.

For convex topical functions, Theorem 2 has a converse. Recall that a function $h : \mathbb{R}^n \to \mathbb{R}$ is convex if, for all $x, y \in \mathbb{R}^n$,

(11)
$$h(\lambda x + \mu y) \le \lambda h(x) + \mu h(y) ,$$

where $0 \leq \lambda, \mu \leq 1$ and $\lambda + \mu = 1$. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is convex if each component function $f_i : \mathbb{R}^n \to \mathbb{R}$ is convex. A simple deduction from (11), which is left to the reader, captures the intuition that the derivative of h is increasing. With the same notation as above, let $x' = \lambda x + \mu y = x + \mu (y - x) = y - \lambda (y - x)$. Then,

(12)
$$\frac{h(x') - h(x)}{\mu} \le \frac{h(y) - h(x')}{\lambda}$$

For any function $f : \mathbb{R}^n \to \mathbb{R}^n$ define its syntactic graph, $G^s(f)$, to be the directed graph with vertices $1, \dots, n$ and an edge from i to j if, and only if, f_i depends on x_j in the following sense: there is no map $h : \mathbb{R}^{n-1} \to \mathbb{R}$ such that $f_i(x) = h(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$.

Proposition 2. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a convex topical function. Then $G(f) = G^s(f)$. Moreover, $G^s(f)$ is strongly connected if, and only if, all sub-eigenspaces of f are bounded in the Hilbert semi-norm.

Proof. Clearly, an edge of G(f) is an edge of $G^s(f)$. Conversely, if there is an edge from i to j in $G^s(f)$, then we can find $x, x' \in \mathbb{R}^n$ such that $x_k = x'_k$ for all $k \neq j, x_j \neq x'_j$, and $f_i(x) \neq f_i(x')$. Without loss of generality, assume that $x'_j > x_j$. Choose $\nu > 0$ and let $y = x' + \nu e_j$. Let $\alpha = x'_j - x_j + \nu, \lambda = \nu/\alpha$ and $\mu = (x'_j - x_j)/\alpha$. Evidently, $0 \leq \lambda, \mu \leq 1$ and $\lambda + \mu = 1$ and it is easy to check that $x' = \lambda x + \mu y$, in accordance with the notation used in (12). Using this inequality we see that

$$\frac{f_i(y) - f_i(x')}{\lambda} \ge \frac{f_i(x') - f_i(x)}{\mu}$$

which can be rewritten as

$$f_i(x' + \nu e_j) \ge \frac{\nu}{x'_j - x_j} (f_i(x') - f_i(x)) + f_i(x')$$

Since this holds for any $\nu > 0$, it follows that $\lim_{\nu \to \infty} f_i(x' + \nu e_j) = \infty$. But, $x' + \nu e_j \leq t(x') + \nu e_j$. Using (2), we see that $f_i(\nu e_j) \geq f_i(x' + \nu e_j) - t(x')$ and so $\lim_{\nu \to \infty} f_i(\nu e_j) = \infty$. It follows that there is an edge from *i* to *j* in G(f) and so $G^s(f)$ is identical to G(f).

If $G^s(f) = G(f)$ is strongly connected then Theorem 2 shows that all the subeigenspaces of f are bounded. Conversely, suppose that $G^s(f)$ is not strongly connected. Then, by standard arguments, [5, Chapter 2], we can, after possibly reordering, partition the variables so that x = (y, z), where $y \in \mathbb{R}^p$, $z \in \mathbb{R}^q$, n = p + q and f(x) = (g(y, z), h(z)), for some topical functions $g : \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^p$, and $h : \mathbb{R}^q \to \mathbb{R}^q$. Suppose that $S_\lambda(f)$ is non-empty and choose $x \in S_\lambda(f)$. Since $f(x) \leq \lambda + x$, we must have $g(y, z) \leq \lambda + y$ and $h(z) \leq \lambda + z$. Now choose $\mu \geq 0$. Using (1) and (2) it follows that $g(\mu + y, z) \leq g(\mu + y, \mu + z) \leq \lambda + \mu + y$. Hence $(\mu + y, z) \in S_\lambda(f)$ for all $\mu > 0$ and so all non-empty sub-eigenspaces of f are unbounded in the Hilbert semi-norm.

4. Applications

We now show that several well-known theorems are immediate corollaries of the elementary results above.

Corollary 1. (Perron-Frobenius theorem, [5]) Let A be a $n \times n$ non-negative matrix. If A is irreducible then its spectral radius is an eigenvalue, for which A has an eigenvector all of whose components are positive.

Proof. Since A is irreducible the nondegeneracy condition (3) holds. Let $f = \mathcal{E}(A)$. It is easy to see that G(f), the graph associated to f, is identical to G(A), the graph associated to A. Since A is irreducible, G(A) is strongly connected and so, by Theorem 2, f has an eigenvector: f(x) = r + x. Evidently, $A \exp(x) = \exp(r) \exp(x)$, where $\exp(x)$ has all its components positive. It remains to show that $\exp(r)$ is the spectral radius of A. For completeness, we reproduce the standard argument using the Collatz-Wielandt property. Suppose that $z \in \mathbb{C}^n$ is a (multiplicative) eigenvector of A with eigenvalue $\lambda \in \mathbb{C}$: $Az = \lambda z$. Let $|z| \in \mathbb{R}^n$ be the vector of absolute values: $|z| = (|z_1|, \cdots, |z_n|)$ and let $x = \log(|z|)$. A simple application of the triangle inequality shows that $A|z| \ge |\lambda||z|$. Hence $f(x) \ge \log(|\lambda|) + x$. It follows, using (9) and (10a), that

$$\log(|\lambda|) \le \mathsf{b}(f(x) - x) \le \underline{\chi}(f) = r$$

and so $\exp(r)$ is the spectral radius of A.

The function $\mathbb{R}^2 \to \mathbb{R}$ which takes $x \mapsto \log(\exp(x_1) + \exp(x_2))$ is convex, from which it follows that $\mathcal{E}(A)$ is a convex topical function. Hence we could have used Proposition 2, together with Theorem 1 in the proof of Corollary 1. This applies also to the topical functions in the corollaries below, which are all convex.

Property (1) applied to the function $t : \mathbb{R}^2 \to \mathbb{R}$ illustrates that addition distributes over maximum. It follows that the set $\mathbb{R} \cup \{-\infty\}$ equipped with the operations of maximum (as addition) and addition (as multiplication) forms an idempotent semiring (a semiring whose addition satisfies a + a = a), called the *max-plus semiring* and denoted \mathbb{R}_{\max} , [11]. Suppose that A is a $n \times n$ matrix over \mathbb{R}_{\max} which satisfies a similar nondegeneracy condition to (3):

 $\forall i, \exists j \text{ such that } A_{ij} \neq -\infty$.

If $x \in \mathbb{R}^n$ then it is easy to see that $x \mapsto Ax$ defines a topical function. For instance, the matrix on the left below gives rise to the function on the right.

$$\begin{pmatrix} 2 & -1 \\ -\infty & 4 \end{pmatrix} \qquad \begin{array}{c} f_1(x) &= (x_1+2) \lor (x_2-1) \\ f_2(x) &= x_2+4 \end{array}$$

If A is a $n \times n$ matrix over \mathbb{R}_{\max} , its associated graph, G(A), is the directed graph with vertices $\{1, \dots, n\}$ and an edge from i to j if, and only if, $A_{ij} \neq -\infty$. It is customary, in max-plus theory, to adjoin labels ("weights") to the edges in G(A), [2]. This unlabelled version will be sufficient for our purposes. A is said to be irreducible if G(A) is strongly connected. It is easy to see that if f is the topical function corresponding to A then the graphs G(A) and G(f) coincide. The following result follows immediately. The cited reference is to a standard source but the result has been proved independently many times.

Corollary 2. (Perron-Frobenius for max-plus, [2, Theorem 3.28]) An irreducible max-plus matrix has an eigenvector.

In max-plus theory, the eigenvectors of a matrix lie in $(\mathbb{R} \cup \{-\infty\})^n$. The point of Corollary 2 is that such an eigenvector can be found in \mathbb{R}^n . The formula for the eigenvalue, based on the structure of the circuits of G(A), lies outside the scope of the present paper, [2].

For the next result, assume that P is the transition matrix of a Markov chain (so that P is row-stochastic) and let f(x) = c + Px, for some $c \in \mathbb{R}^n$. Evidently, fis a topical function. By (10b), if f has an eigenvector with eigenvalue λ , then

$$\frac{(1+P+\dots+P^{k-1})c}{k} = \frac{f^k(0)}{k}$$

converges to $(\lambda, \dots, \lambda)$. The next result can hence be thought of as a version of the mean ergodic theorem for Markov chains, [23, Chapter XIII, §1, Theorem 2].

Corollary 3. Let $c \in \mathbb{R}^n$ and let P denote a $n \times n$ irreducible row-stochastic matrix. The function f(x) = c + Px has an eigenvector.

Proof. f is a topical function and G(f) is strongly connected so the result follows from Theorem 2.

A family of non-negative matrices $\{P^u\}_{u \in U}$ is said to be *communicating* if the matrix $\sup_{u \in U} P^u$, obtained by taking entrywise suprema, has finite entries and is irreducible. The following result is due to Bather.

Corollary 4. (Bather's theorem, [4, Theorem 2.4]) Let $\{P^u\}_{u \in U}$ be a communicating family of row-stochastic matrices, and let $\{c^u\}_{u \in U}$ be a family of vectors $c^u \in \mathbb{R}^n$ that is bounded above. Then the function $f(x) = \sup_{u \in U} (c^u + P^u x)$ has an eigenvector.

Proof. It is easy to check that $G(f) = G(\sup_{u \in U} P^u)$. Since the latter is strongly connected by hypothesis, the result follows immediately from Theorem 2.

The next result was proved by Zijm in the special case of a finite communicating family. It follows by combining the argument of Corollary 4 with that of Corollary 1.

Corollary 5. (Zijm's theorem, [24, Theorem 3.4]) Let $\{A^u\}_{u \in U}$ be a communicating family of non-negative matrices. Then the function $f(x) = \sup_{u \in U} A^u x$ has a (multiplicative) eigenvector.

As a last illustration of the ideas developed here, consider the topical function $\mathcal{E}(f)$ where $f: (\mathbb{R}^+)^3 \to (\mathbb{R}^+)^3$ is defined by:

$$\begin{array}{rcl} f_1(x) &=& 2x_1 \lor 3x_2 \\ f_2(x) &=& \sqrt{x_1(4x_2+15x_3)} \\ f_3(x) &=& x_2 \end{array}$$

None of the above corollaries can be applied to f. However, $G(\mathcal{E}(f))$ is strongly connected. By Theorem 2, f has a (multiplicative) eigenvector. In fact, f(3, 3, 1) = 3(3, 3, 1).

5. Conclusions

An alternative approach to the eigenvector problem stems from the observation in (7) that all trajectories of a topical function f are asymptotically equivalent. This suggests that the asymptotics of $f^k(x)$ contain information on the existence of fixed points, an idea confirmed in recent work, [8, 10].

Topical functions can be defined and studied on cones in Banach spaces, as Krein and Rutman have done for Perron-Frobenius theory. Some attractive examples have emerged here, [21], but with the exception of Nussbaum's work, [17, 18], little general progress has been made.

References

- S. Amghibech and C. Dellacherie. Une version non-linéaire, d'après G.J. Olsder, du théorème d'existence et d'unicité d'une mesure invariante pour une transition sur un espace fini. In Séminaire de Probabilités de Rouen, 1994.
- [2] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat. Synchronization and Linearity. Wiley, 1992.
- [3] F. Baccelli and J. Mairesse. Ergodic theorems for stochastic operators and discrete event systems. Appears in [11].
- [4] J. Bather. Optimal decision procedures for finite Markov chains. Part II. Communicating systems. Adv. Appl. Prob., 5:521-540, 1973.
- [5] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, 1994.
- [6] T. Bewley and E. Kohlberg. On stochastic games with stationary optimal strategies. Mathematics of Operations Research, 3(2):104-125, 1978.

- [7] M.G. Crandall and L. Tartar. Some relations between non expansive and order preserving maps. Proceedings of the AMS, 78(3):385-390, 1980.
- [8] S. Gaubert and J. Gunawardena. The duality theorem for min-max functions. C.R. Acad. Sci., 326:43-48, 1998.
- [9] S. Gaubert and J. Gunawardena. A non-linear hierarchy for discrete event dynamical systems. In Proc. of the Fourth Workshop on Discrete Event Systems (WODES98), Cagliari, Italy, 1998. IEE.
- [10] J. Gunawardena. From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Submitted for publication, 1999.
- [11] J. Gunawardena, editor. *Idempotency*. Publications of the Isaac Newton Institute. Cambridge University Press, 1998.
- [12] J. Gunawardena and M. Keane. On the existence of cycle times for some nonexpansive maps. Technical Report HPL-BRIMS-95-003, Hewlett-Packard Labs, 1995.
- [13] V. N. Kolokoltsov. On linear, additive and homogeneous operators in idempotent analysis. Appears in [14].
- [14] V. P. Maslov and S. N. Samborskii, editors. Idempotent Analysis, volume 13 of Advances in Soviet Mathematics. American Mathematical Society, 1992.
- [15] M. Menon and H. Schneider. The spectrum of an operator associated with a matrix. Linear Algebra and its Applications, 2:321-334, 1969.
- [16] H. Minc. Nonnegative matrices. Wiley, 1988.
- [17] R. D. Nussbaum. Hilbert's projective metric and iterated nonlinear maps. Memoirs of the AMS, 75(391), 1988.
- [18] R. D. Nussbaum. Iterated nonlinear maps and Hilbert's projective metric, II. Memoirs of the AMS, 79(401), 1989.
- [19] R. D. Nussbaum. Convergence of iterates of a nonlinear operator arising in statistical mechanics. Nonlinearity, 4:1223-1240, 1991.
- [20] R. D. Nussbaum. Entropy minimization, Hilbert's projective metric, and scaling integral kernels. Journal of Functional Analysis, 115:45-99, 1993.
- [21] C. Sabot. Existence and uniqueness of diffusions on finitely ramified self-similar fractals. Ann. Sci. École Norm. Sup. (4), 30(5):605-673, 1997.
- [22] J. M. Vincent. Some ergodic results on stochastic iterative discrete event systems. Discrete Event Dynamic Systems, 7:209-233, 1997.
- [23] K. Yoshida. Functional Analysis. Classics in Mathematics. Springer-Verlag, 1995.
- [24] W. H. M. Zijm. Generalized eigenvectors and sets of nonnegative matrices. Linear Algebra and its Applications, 59:91-113, 1984.

INRIA, DOMAINE DE VOLUCEAU, B.P. 105, 78153 LE CHESNAY CÉDEX, FRANCE. *E-mail address*: Stephane.Gaubert@inria.fr

BRIMS, HEWLETT-PACKARD LABS, FILTON ROAD, STOKE GIFFORD, BRISTOL BS34 8QZ, UK *E-mail address*: jhcg@hplb.hpl.hp.com