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Développement en Série des Exposants de Lyapounov et Mone&d
Oublieux

Résumé :Nous étudions les exposants de Lyapounov des itérées defsmonotones homogénes.
Nous supposons que les images de certaines itérées sontoites dvec probabilité positive. En
utilisant cette propriété de perte de mémoire qui est vérfidur les produits aléatoires de matrices
dans le semi-anneau max-plus, et en particulier, pour ledéhas de tas de piéces du type Tetris,
nous donnons une formule de développement en série popoBant de Lyapounov en fonction de
la loi de probabilité. Dans le cas d’'une loi de probabilitéaranelle, nous montrons que I'exposant
de Lyapounov est une fonction analytique des paramétres ldg¢ dans un domaine qui contient le
domaine de convergence absolue d’'une fonction de typdipartissociée a un monoide particulier
dit "oublieux", défini par générateurs et relations.

Mots-clés : exposants de Lyapounov, produits aléatoires, fonctiongractantes, automate, codes
préfixes, théorie des perturbatio@assification AMS 2000Primaire 37M25; Secondaire 37H15,
68Q70, 74H10.
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1 Introduction

We say that a mag : R — R¥ ismonotonéf forall x,y e R, x <y = f(x) < f(y), where
< denotes the usual product orderingR3f, for all n. We say thatf is (additively) homogeneou#
forall» e Randx € RY, f(A +X) = A + f(x), where for ally € R" andx € R, A + y denotes the
vector with entries. + y;. We will use the notatiotty = max<j<n i andby = min;<j<n y; (t andb
stand for “top” and “bottom”, respectively).

Given a stationary random sequenfie f,, ... of monotone homogeneous mags — RY, and
avectorx € RY, we calltop Lyapunov exponette limit:

r = lim %E[t foo---0 f1(X)] . (1)

n—o00

Thus, the top Lyapunov exponent measures the linear gra@atghof the orbits of the random dynam-
ical system:

Xn = fn(xn—l) XO =X . (2)

As observed by Vincent [47] (see 82 below for details), thatlin (1), if it exists, is independent of
X, and, whert f,(0) is integrable, the existence of the limit follows from thetfséhat the sequence
S =FE[tf, o---0 f1(0)] is subadditive, i.eS,k < S, + S. Moreover, if the sequencg, f,, ... is
ergodic, Kingman's subadditive ergodic theorem showstti@t yapunov exponent is also the almost
sure limit:

1
' =as. lim-tf,o---0 f1(x) . 3

n—oo N
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4 Stéphane Gaubert , Dohy Hong

A dual bottom Lyapunov exponemt’ can be defined by replacirtgby b in (1). Of course, all the
results stated in this paper for have dual versions far’. More generally, we may repladeor b
by an arbitrary monotone and homogeneous mafR® — R, and speak op-Lyapunov exponent.
An interesting choice is thieth coordinate magp(x) = x;, for some 1< i < d. Then,Ep(X,) =
E(X,)i need not be subadditive or superadditive, and even in thee afaa deterministic sequence
(f, = f, = ...), a counter-example, due to Gunawardena and Keane [29Rse®rk 1 below),
shows that the-Lyapunov exponent, lig(Xn)i /n, need not exist (however, Theorem 2 below shows
that under additional assumptions, thvyapunov exponent does exist).

The first example of monotone homogeneous map that we havmahim

f:RY > RY, f(x) = log(M exp(X)) , 4)

where expx) = (exp(Xy),...,expXq))", log(x) = (log(xy),... ,log(x¢))", andM is ad x d
nonnegative matrix with at least one strictly positive grmier row (the later condition ensures that
f(RY) c RY). If each mapfy is of the form f(x) = log(My exp(x)), for someMy, then the
Lyapunov exponent (1) coincides with the classical top lyegy exponent [11] of the random product
of nonnegative matricell, ... M1, which is defined by:

1
I'=as lim=log|Mp-- M| ,
n—-oo N

for any norm|| - ||.
The second and main example of monotone homogeneous maprefsinto us is

f:RY > RI, fix) = 1rl1jél>é(|\/|ij +Xj) (5)

whereM is ad x d matrix with entries inR U {—oo}, such that each row contains at least one finite
entry. If each magy is of the form (5) for some matriiy, the Lyapunov exponent (1) coincides with
the Lyapunov exponent of the random product of matridgs. . M1 in the max-plus semiring [1, 15,
12].

An appealing example of max-plus random products is pravige Tetris-like heaps of pieces.
For instance, consider the three monotone homogeneous®iapsR?:

ax) = (xg+1,%)7, b(X) = (X1, X2 + )T,
c(X) = (Max(Xg, X2) + 1, max(Xy, Xz) + 1),

which are clearly of the form (5), the corresponding matribeing

1 - 0 - 11

(L) e (X T) ()
Toasequencé,, ..., f,, of elements ofa, b, c}, we associate the heap of pieces obtained by letting
a sequence af pieces with the corresponding shapes fall down on an haakgnound. We denote
by X, the upper contour of the heap. For instance, Fig. 1 showseaap bf pieces corresponding to
the sequencea, b, a,c, b, b,b,a. Here,n = 8 andX,, = (4, 6). It is quite easy to see that, is
given by the random dynamical system (2) (see [24, 12, 26]Jétails). In this context, the Lyapunov
exponent is equal to the almost sure limit of the height of @phaf pieces, divided by the number of
pieces, when the number of pieces grows to infinity. When ¢la@ence is i.i.d., and when the pieces
a, b, c appear with the frequencigga), p(b), p(c) = 1 — p(a) — p(b), respectively, the Lyapunov
Exponent, which has been computed in [12], is the algebtaiction represented in Fig. 2.

INRIA
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Figure 2: Lyapunov exponent of the heap model of Fig. 1.

Computing exactly, or approximating, Lyapunov exponetiteeaps of pieces, and more gener-
ally, of products of max-plus matrices, is a long standingpbpem [15, 44, 41, 1, 28, 23, 12, 3, 4, 25,
19, 10]. No exact formulae are known, except in very specis¢gasuch as the one of Fig. 2. In this
paper, our purpose is rather to investigate the qualitaieperties ofl". For instance, a simple look
at the formula in Fig. 2 shows th&tis analytic in a domain which contains the set of real prdbabi
ities {0 < p(a), p(b) < 1, p(a) + p(b) < 1}, with a singularity atp(a) = p(b) = % Hence, the
power series expansion bf seen as a function qf(a), p(b), is convergent in any complex polydisc
included in the domaimp(a)| + |p(b)| < 1. This is exactly what we prove here, in general: the main
result of this paper (Theorem 2) shows that the Lyapunov mepbis analytic, and gives an explicit
power series expansions, together with a tight estimatts @oinvergence domain. By summing this
power series, we obtain a way to approximate Lyapunov exgsne

In general, the Lyapunov exponent need not be differemi@lobk at the pointp(a) = p(b) =
1/2 in Fig. 2), and it may even be discontinuous [43]. The altmssumption in our Theorem 2 is
the memory loss properfywhose importance, in the context of heaps of pieces, or menerally,
of products of max-plus random matrices, has been recagjtigeseveral authors [37, 24, 12, 19].
For the heap model of Fig. 1, this assumption just means ligattrival of a rigid piece (piece)
occupying all the slots, resets the heap to a state identipailo a vertical translation, to the initial
state.

We give an analytic, elementary proof: we shall write thefw@ov exponent as a Cesaro or Abel
mean of a function on the free monoid, and, under the mema/ pooperty, we shall see that this

RR n° 3971



6 Stéphane Gaubert , Dohy Hong

mean can be expressed as a sum over the elements of a monoetdafigenerators and relations,
that we call forgetful monoid. The relations are of the foma = u, for all generators, and for

all u in a distinguished set of word¥ (the appearance of a factarmakes the product forget its
right factor, which accounts for the name of the monoid). Wtree set# is rational, the associated
forgetful monoid is nothing but a very special rational miohpt5, 42]. We obtain in passing an
Abelian representation of the Lyapunov exponent (TheorgmwHich plays for Lyapunov exponents,
mutatis mutandis, the role that resolvents plays for eiglei@s of linear maps. This representation is
not used in the proof of Theorem 2, but we think that it illuaties the form of the series expansion,
and that it is of interest per se.

The results of the present paper on the analyticity domajrore the ones proved previously
by Baccelli and Hong: in [3], the analyticity domain was ab&a from the explicit coefficients of
Taylor series expansions, and in [4], it was obtained by draotion argument for Hilbert's projec-
tive metric, inspired by Peres [43]. The proof techniqué tha use here is completely different: the
explicit expansion formula that we obtain is much simplesua, its coefficients all are positive, and
for this reason, we obtain a more accurate estimation ofrthlyticity domain. However, the memory
loss property remains in essence, similar to the contragtioperties in the projective space, used by
Peres, and many others [11, 36, 32] (memory loss is indeetyatreng “ultimate” contraction prop-
erty, of Lipschitz constant 0). It would be very interestiogorove similar results without contraction
arguments. For instance, we do not know what our resultsrbedbone replaces the assumption
“there exists an iterate that is strictly contracting fotkdit's projective metric” by “the image of
one iterate is a compact set in the projective space” (thiehBff-Hopf theorem [20] shows that both
statements are equivalent in the special case of linear awpg) in the positive cone, hence, this
question is only interesting for monotone homogeneous méjsh are not linear in the usual sense,
and in particular, for max-plus linear maps).

Let us conclude this introduction by mentioning some addd#l motivations, and related works.
In the context of Discrete Event Systems, Lyapunov expanaeiasure the cycle time, i.e. the average
time between two events (see [1] for an introduction). In &wic programming, the Lyapunov
exponent measures the growth of the optimal cost or rewatdtefministic optimal control problems,
as a function of the horizon, when the transition costs oardware random [15]. Max-plus Lyapunov
exponents also arise in Statistical Physics, in the studijsoirdered systems at low temperature [22,
17]. There is a number of contributions on Lyapunov expanehtproducts of random matrices. A
classical one is the monograph [11]. A recent one, dedicttatle case of nonnegative matrices,
is [32].

Some of the results of this paper have been announced in [2].

2 Probability Measures on Words and Lyapunov Exponents

2.1 Notation and Definitions

Given a finite alphabeE, we denote byzk the set of words of lengtk, i.e. the set of sequences
of the form (ay, ..., ay), with a;,... ,a € X. The free semigroup ox is =+ = U15K,
equipped with the concatenation produ¢dy, ... ,a)(by, ..., b)) = (@1,...,a, by, ..., ), for
allag,...,a b, ..., € . The free monoid=* is obtained by adjoining t&* the empty se-
quence, which is called the empty word in this context.

Following Hansel and Perrin [30], we say that a nmpx~* — [0, 1] is aprobability measuren
words if ) ",y p(aw) = p(w), for allw € £*, and if p(1) = 1. This implies thad_, v« p(w) =1,
for all k. We say thafp is stationaryif p(w) = ) . p(wa), for all w € £*. The term probability

INRIA
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measure can be justified by associating with a werthe cylinder of basav, which is the set of
left infinite words with suffixw: there is a unique probability measure on shalgebra generated by
cylinders, such that the cylinder of basehas probabilityp(w).

Let us now use this formalism when is a finite set of monotone homogeneous naps— RY.
We shall adopt, throughout the paper, the following notatibg : R — R andf : R — R™ are
monotone homogeneous maps, anxl & RY, we writegx for g(x), fg for f o g, and we set

wX =aco--oaq(X) if w:(ak,...,al)eEk. (6)
Interpretingp(w) as the probability that the firktelements of an infinite random sequence of elements
of T areay, ... , a, we rewrite the Lyapunov exponent (1) as:
1
r = nII_r:nOO - w;n p(w)pwX , @)

with the special choice = t. The sefRY, equipped with the actioR* x RY — RY, (w, X) — wX,
might be thought of as a “non-linear automaton”. Indeed,raventional (deterministic) automaton is
nothing but a finite state space equipped with an action dderfionoid, together with an initial state
and a set of final states. Here, the state spaRe,ithe action involves monotone homogeneous maps,
the initial state isx € RY, and the set of final states is replaced by the output gnayhen passing
from (1) to (7), we made the restriction that the set of maps finite. This is only to simplify the
presentation, and to make clearer combinatorial aspebisrdsults of this paper have quite obvious
extensions to the case of random iterates with continuaistalitions.

To see when the limit (7) exists, it is useful to introduce:

SE Y pwpwx =Ep(Xn) . (8)

wex

We shall first consider the case wh¥g = x = 0. Since for alw € ©*, the mapy — wy, R — RY
is monotone and homogeneous, we have fonall € £*;

tuv0 < tu0 + tv0 , (9)

for uv0 < u(0 + tv0) = u0 + tv0. Hence, ifp is stationary, the sequené&s satisfies

S = . pun)tuwo
uexn, vexk
< Z p(uv)(tud + tw0)  (by (9)),
uexn, vexk
= > (Z p(uv)) wo+ Yy (Z p(uv)> w0
uex" \pesk vexk \uexh

= S+ (by stationarity ofp).

By an elementary classical result, if a sequeSzds subadditive (i.e. ifS,x < S + ), then
the limit lim, §,/n exists. This shows thdl exists whenx = 0. To show thaf" exists for any
X, it suffices to use the following classical easy observafit8]: a monotone homogeneous map
f is non-expansive for the sup norjin- ||, i.e. ||f(y) — f(y)|l < lly — Y|, forally,y e RY.
Hence, ifS,(y) and S,(y’) denote the sums (8) evaluated with= y andx = Y/, respectively, we get
1S =S = X ez P lpwy—gwy'l| < (¥ ,czn P@)y—Y'l = lly—y'll, which implies
that lim, S,(y)/n = lim, $,(Y")/n. We have reproved the following result, due to Vincent [47].

RR n° 3971



8 Stéphane Gaubert , Dohy Hong

Proposition 1. If p is a stationary probability measure andgf= t, then the Lyapunov exponent
' =Ilim§/n
n

exists, and is independent ofexRY . O

Remark 1.1f ¢ # t, the Lyapunov exponent need not exist, as shown by the fipwariant, due to
Sparrow [46], of the counter-example of Gunawardena anch&§29]. Lets = { f}, with f : R® —
R3, (X1, X2, Xa)| = (X1, X2 + 1, h(X2 — X1) + X1) ", whereh is any differentiable map such that<
h’ < 1. By construction,f is monotone and homogeneous. We gé@o, 0,00" = (0,k, h(k—1)T,
for k > 1, and, settingp = xs, it is clear that we can choosesuch that" = lim, h(k)/k does not
exist.

Remark 2.0f course, if the probability measure is not stationary, lihapunov exponent need not
exist. E.g., consider a left infinite word in two lettersa, b, and letwy denote the suffix ofw
composed of thdk rightmost letters ofw. Settingp(z) = 1 if z is a suffix ofw, andp(z) = 0
otherwise, defines a probability measure{anb}*. Now, takea, b to be the map® — R: a(x) = X,
andb(x) = x + 1. We have§, = tw,0 = |wn|p, the number of occurrences of the letkein wy,.

It suffices to take an infinite word such thit = lim, jwn|p/N does not exist to have the desired
counter-example.

2.2 Cesaro Sum and Abelian Representations

The definition of the Lyapunov exponeht= lim, S,/n suggests to rewritE as a Cesaro mean:

1
r =n'L”30 ﬁ(D1+---+ Dn) . (10)
where
(11) Di £ S—Sci= Y. pwpwx— Y. plw)gwx
wexk wexnk-1

(12) = ) pawgpawx— Y pw)pwx

aey, wexk-1 wexk-1
(13) = ) Dw).

wexk-1
with

D(w) = Z p(aw)(pawX — pwX) .

acex

Given a formal parametay, we set

Tq= Y q"'Dw) , (14)
wex*
where |w| denotes the length of). As is well known, in the case of a linear operat#yy much
information on the asymptotics @ whenk — oo can be derived by looking at the singularities of
the resolventi — A)~1. As shown by the following theorem, a similar (but weakeQgarty holds
for Lyapunov exponents, the role of the resolvent beingeqaddyy I’y (therefore, we might call', the
“Lyapunov resolvent”).

INRIA



Series Expansions of Lyapunov Exponents and Forgetful Msno 9

Theorem 1 (Abelian Representation).Let p denote a probability measure. If the Lyapunov expo-
nentI’, defined by the limif7), exists, then,

I'=lim@-qTy . (15)
q—>1-

Conversely, ifp = torif p is stationary, and ifimq_,1- (1 — q)I'q exists, therT" exists, and has the
same value.

Proof. A well known result [31, Th. 55] states that if the Cesaro tifi= %(Dl + ...+ Dy) exists,
then, the Abelian limit lig_,1- (1 — q)(qD; + g’°Dy+ ---) = limg—.1- (1 — )Ty also exists and
has the same value. This shows the first implication of thertra. To show that the converse
implication holds wherpy = t or whenp is stationary, we shall use the Tauberian theorem of Hardy
and Littlewood [31, Th. 94], which states that if the limitl_, ;- (1 —g)(q D1 + g°Dy + - - - ) exists,
then the Cesaro Iimiﬁ(Dl + ...+ Dp) exists and has the same value provided that the sequ@nce
is bounded from above. It remains to check the later propehigng = t, or whenp is stationary.

We first assume that = t, and we set

K = maxtaO .
aex

Using successively the monotonicity and homogeneity e¥ ay, RY — RY, we gettawx < ta(0 +
twx) = ta0+twx < K+twx. ThisimpliesthaDy <) k1) .5 PEQWK =" o pw)K =

K.
Next, whenp is stationary, we can write a sum dual to (12):

D = ) pwagwax— ) pwpwx
wexk-1 aem wexk-1
(16) = Z Z p(wa)(pwaxX — pwX) .

wexk-laeX

Using the fact that for allb € ©*, the mapy — owy, R® — R, which is monotone and homo-
geneous, is non-expansive for the sup-norm, we getwax — pwx| < |lax — x| < K’, where
K’ = maxe.s |[bx — x||. Together with (16), this implies th&, < K’. O

The following counter example shows that the converse mapbn in Theorem 1 need not hold
wheng # t and whenp is not stationary.

Example 1.Let = = {a, b, ¢}, wherea, b, c are the map&® — R® such that
ax=(x1+ L% —1X3)", bX=(Xg, X2, X1)T, CX = (X1, Xz, X2)" .

We take ox = x3. Let w denote the periodic left infinite word..cabacaba As in Re-
mark 2, we associate taw a probability measure. Here, the sequen&)k-1 is equal to
0,1,1,-2,-2,3,3,-4,-4,5,5,...), ' = lim,, S/k does not exist. However, lign, - (1 —
q)T'q does exist. To see this, let us recall that a sequéesage o is m-Cesaro summable toif, defining
inductively S = s, and§, = S, ' +--- + S 'forallr > 1, we have: lim_,,, mk ™S = ¢. Ap-
plying this definition to the sequeneg = Dy, given by (11), we ge§ = S, and it is easy to see that
(Dk)k=0 is 2-Cesaro summable to 0. Since for anym-Cesaro summability implies Abel summabil-
ity [31, Th. 43], we get tha¢Dy)k-o is Abel summable to 0, which means thatdim-(1—q)I'q = 0.

RR n° 3971



10 Stéphane Gaubert , Dohy Hong

2.3 Rational Probability Measures

An interesting special case arises when the probabilitysomeg is parametrized by finitely many
coefficients. LefR, denote the set of nhonnegative reals. We say that a prolyamiéasurep on X*

is rational [30] if there exists an integar, a row vectorx € RY", a column vectog € R'**, and a
morphismP : =* — R*", such thatp(w) = a P(w)B. We say thate, P, B) is a (nonnegativeljn-
ear representatiof dimensiorr of P. We will extend these notations to complex valygdy, P, 8,
even if it has no probabilistic interpretation.

As observed in [30], a Bernoulli probability measure, whishof the form p(ax...a;) =
p(a)---p(@) for all ap,...,a € X, is trivially rational, since it has the linear represen-
tation of dimension 1: (1, p,1). Markov measures, which are defined Ipfax...a;) =
P(ag, a 1) ... P(a, ag)m(a1), for somex x X column stochastic matri®? and for some stochastic
vectors, are rational. Indeed, settigy = 7 (a), P(a)cp = £(c, b) if a = b, andP(a), = 0 other-
wise, andw, = 1 foralla € T, it is easy to check thagp(w) = «P(w)B andp(w) = ) .5 P(wa).

If 7 is an invariant measure &, then, p is stationary. Our definition of Markov measures coincides
with that [43], except that we do not require the statiogarit

In the case of rational probability measures, the repratients of the Lyapunov exponent can be
made more explicit. To eache RY, we associate the following x r matrix:

8(y) = _ P(a)(pay —¢y) . (17)

aex

In the Bernoulli casej(y) is a scalar, which can be interpreted as the mean one steriant:

5(y) = E(p(X1) = 9(Xo)[Xo =) .

An application of (10) and (13) yields

(18) r — lim 2 > as(wx)P(w)B .

n—oo N
lwj<n-1

Formula (18) shows that, in essence, the Lyapunov exposenniean of the increment functiéty),
taken on the set of states reachable froby the action ofz*.

2.4 Furstenberg’s Cocycle Formula

We next specialize to our discrete context Furstenbergiyate representation of the Lyapunov ex-
ponent [21]. Given an action &£* on a denumerable s& ¥* x S — S, (w,y) — w - Y, we say
thatamape : ©* x S— Ris acocycleif «(uv, y) = «(u, v -Yy) + «(v, y) holds for ally € Sand

u, v € ¥*. We say thak representgshe mapz* — R, w — gwX, if

pwX = w (w - Zg) + k(w, Zy) , Yw € X* (19)
for somezy € S(calledinitial state), and for some bounded map : S — R (calledoutput functioi.
Associating taay, ... ,a € X, the sequencg = a;...a; - Z,i =1,...,k, we rewrite (19) as:

k
Qa...ax=w(Z)+ Y k@ Z-1) . (20)

i=1

(WhenSis finite, a cocycle representation is exactly a subsecpidréinsducer [7] with output in the
monoid (R, +).) If &, ap, ... is a random sequence of independent identically distribatements
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Series Expansions of Lyapunov Exponents and Forgetful Msno 11

of X, taken with a Bernoulli lawp, z;, z,, ... is a denumerable Markov chain with values3Spand,
if, for instance, this Markov chain is irreducible positikecurrent with invariant measure, we get
by applying to (20) the ergodic theorem:

1
“rknEakZ Pa...a)pa...ax = Y p@r(2k(@2) ,

Ve, A1EX zeS,aex

as soon as the last sum is absolutely convergent. Then,

= Y p@r@x@z) . (21)

zeS,aex

Furstenberg’s choice of cocycle is essentially the follayviWe say thak, y € RY areparallel, and
we writex || y, if x = A + y, for somer € R. We callline generated byx € RY the equivalence
class ofx for the relation||, namelyR + x = {A + x | A € R}. The (additive)projective space
PRY, is the set of lines. We take fd the set of lines of the fornR + wx, with w € £*. The

homogeneity ofp and of the mapg — wz allows us to equiB with the quotient actiol* x S — S,

w,R+y) > w-R+Y) ©'R 4 wy, and to take the cocycle(w, R + y) = pwy — ¢y. Finally,

taking the initial statey = R+ X, and the constant output map(R+y) = ¢x, forallR+y € S, we
obtain a cocycle representationwfi— gwx. The Lyapunov exponent of Fig. 2 has been computed
using this technique. In general, the associated Markoinchamay not have recurrent states and
we cannot apply formulee like (21), but there are some impbgabcases where the analysiszpf

is simple. In particular, for max-plus linear maps with fininteger valued entries, the underlying
Markov chain is finite [23], as in the following example.

Example 2.Consider the max-plus linear mapsb associated respectively to the matrices
0
0

1 0 1 00
A=]| 2 l1]J]andB=1]| 2 0 3
2 -1 1 211

We leave it to the reader to check that the imageadis a line. Sincel is independent ok,

we can take as initial vectax = a?0 = (2,3,3)". The action of{a, b}* on x is depicted in
Fig. 3. For instance, the arc marked+5 from (6,6,5)T to (2,3,3)" means thab(6,6,5)" =

a, +5

b, +5

Figure 3: Cocycle Representation
5+(2,3,3)" = (7,8,8)". Thus, for anyp, we obtain a cocycle representationwf— pwx by

settingS = {(2,3,3)7,(3,6,4)", (6,6,5)"}, by taking the initial statey = (2, 3,3)", the output
mapw (y) = ¢y, and, foru € ©* andy € S, by taking foru - y the node reached fromby following
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12 Stéphane Gaubert , Dohy Hong

the path with labeu, and fork (u, y) the sum of the additive valuations on this path. The undaglyi
Markov chain has transition matrix

1-p® pb) 0
p(b) 0 1-pb |,
1 0 0
and it has the unique invariant measure
= (1+2p(b) - p(b)z)fl( 1. pb), (1-pb)pb) ) .
Applying (21), we get

1+ 4p(b) - p(b)®

M= ) 7yPEY.0) =7 +2p(b) — p(b)2

yeS,cex

(22)

3 Forgetful Monoids

3.1 Presenting Forgetful Monoids

The main ingredient in the explicit series expansion thaskadl give in 8§ 4, is an elementary monoid,
that we next present.

Given a subset# c x*, we callforgetful monoidon X, with forgetful factors.%#, the monoid
with generatora € ¥ and relationswa = w, for all w € .# anda € . We denote byf(Z, .%)
this monoid. FormallyF(Z, .%) is the quotient of the monoi&* by the least congruence # such
thatwa =4 w, for allw € .% anda € ¥ (congruences are identified to subset&6fx ~*, ordered
by inclusion). For instance, iE = {a, b, ¢}, and if % = {c}, it is quite immediate to see that any
wordw € X* is congruent foe= 4 either to a word of the formac, or toz, for somez € {a, b}*. This
observation can be generalized, as follows.

We set:

S =35 F —2*F2t, and.¥ = TF — TEF T, L =%5US% , (23)

where we use the standard notations for languagds, (if are languages, the concatenatioh’ is
the language whose elements are obtained by concatenatinig L with words inL’; the starL*
is defined byL* = L°U L U L2U---, whereL* denotes thé-th power ofL for the concatenation
product;L* = LL*, andL — L’ = L nCL’). Itis quite easy to interpre#; and.#;: .% is the set of
words of the formuw, whereu € ~* andw € .% is the only factor ouw belonging to.#, and.#
is the set of words that have no factorsdn (recall that a word has factor zif it can be written as
uzv). The ‘" and “t” in . and.#; stand for recurrent and transient, respectively (the teotogy is
justified by Prop. 3 below). Sets like; are known asemaphore codds, Chap. 2,8 5].

Proposition 2. We have the partition a£* in equivalence classes modutoz:

T* = U{z}u U zz* . (24)

ze. S ze. S

Thus, ifz € .#4, the equivalence class afis reduced tdz}, and ifz € ., it is of the formzX*.
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Series Expansions of Lyapunov Exponents and Forgetful Msno 13

Proof. Let # denote the relation such thabuZzwv andz#z, for all z, u, v € ¥* andw € .%. The
relationZ is reflexive and symmetric, by definition. Let us check that itansitive. Let,t’,t” € X*,
such thatZt' Zt”. If t = t' ort’ = t”, thent#t”, trivially. Otherwise, we can writ¢ = zwu,
t' = zwv = Zw'v andt” = Zw'v” with w, w’ € .% andz, Z, u, U, v, v € ¥*. Sincezwv = Zw'U,
eitherzw is a prefix ofZw’, or Zw' is a prefix ofzw. By symmetry, it is enough to consider the
first case. Thent,t’,t” all havezw as prefix, which implies that#t”. Thus,Z is transitive. By
definition, z#7 — zu#Z'u anduzzuZ for all u, z, Z € ¥*, which completes the proof tha?
is a congruence. Sinc# satisfies the presentation relationsa?w, for all w € .# anda € %),
X=g2Y = XxZY. Converselyx#y =— x =gz Y, because for alt, u,v € ¥* andw € %, the
relationszwu =2 zwv follow from wa =4 w and from the fact tha& # is a congruence. We have
shown that the relations 2 and% coincide. The patrtition (24) readily follows from the defiahs
of Z, .4, and.%. O

The interest irfF(X, .%) stems from the following observation, which is the key idé¢he proof of
Theorem 2 below. For alb, we denote by Inw the image of the mag® — RY, y > wy.

Lemma 1. If forall w € .Z, Imw is a line, we have, for all’zz” € =*, and for all x e RY:
=27 = Zx|| Z'x . (25)

Proof. Let us assume that =4 z” andz' # Z’ (otherwise, there is nothing to prove). By (24)and
Z" are of the formzw’ andzw”, for somez € %, w’, w” € X*. Then,zZx andz’x, which belong to
the same line, namely Im are parallel. O

Thus,zx only depends of the equivalence clasz @i F(X, .%), up to an additive constant.

3.2 Random Walks in Forgetful Monoids

Given a sequencey, Uy, ... of independent, identically distributed random variabath values in
3, drawn with a Bernoulli distributiorp, we define the left and right random wallkg and Y, on
F(X, .%#), respectively, byXy = Uk ---U; andYx = Uy - - - Uk, wheret denotes the equivalence class
of a wordu modulo=_.

The left random walk defines a denumerable Markov chaiff@, .%), to which we specialize
the classical notions of accessibility, classes, recaggetc. In particular, whep is positive, we say
that X € F(XZ, %) has acces$o X' € F(Z, %) if there is aZ € F(X, .%) such thatX’ = ZX. A
maximal set of mutually accessible elements @ass A class whose elements only have access to
elements of the same clasdiizal. For the right random walk, these notions are defined in adagl

The following result is not needed in the subsequent prdmfsit shall give an intuitive interpre-
tation to our main theorem (see Remark 4 below).

Proposition 3. If p is a positive Bernoulli measure, then
1. {w| w e #}is the unique final class for the left random walk; X
2. The final classes for the right random walkafe the one element sg@}, wherew € .%;

3. The unique invariant measure of the left random walksgw) = p(w) if w € %4, and
a(w) =0if w e A.
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14 Stéphane Gaubert , Dohy Hong

Assertions 1 and 3 can be restated in a more appealing wayl@sdo If we write a word from
right to left, drawing randomly each new letter of the wordhwthe Bernoulli lawp, and if, as soon
as a prefixf € .# appears at the left of the word, we erase the part of the wattkaight of f, we
obtain a Markov chain with set of recurrent stat&s and the invariant measure, evaluated at a word
w € ., is obtained by taking the product of probabilities of thiddes ofw.

Proof. Assertions 1 and 2 are clear. The restriction of the left oamavalk to its final class is clearly
positive recurrent, hence, the invariant measure exigtssamnique. To prove Assertion 3, it remains
to show thatr is normalized:

> pw)y=1, (26)
we.S
and that it is invariant:
p(w) = > p@PQ@ Ywe.Z . (27)

acy, ze S, az=gw

We shall first derive (26) and (27) from results on codes, aed,twe shall give a second, probably
more intuitive, probabilistic proof.

Let us recall some definitions from [8] (the reader shouldsadtrthis book for more details, and,
in this proof, all references are relative to this source)subbsetX ¢ X* is acodeif it generates
a free monoid, and it iprefix if for any two words inX, none is a prefix of the other. Prefix sets,
which are automatically codes, are callgefix codes By construction,#; is a prefix code. We say
that a wordw € X* is completablein X if uwv € X, for someu,v € X*. A code X is thin if
there is one word not completable ¥a For all f € .%#, ff is not completable in#, thus,.#; is
thin. Theorem 5.10 of Chap. 1 states thaf _, p(w) = 1 for all thin maximal code, and.”; is
maximal by Cororollary 5.7 of Chap. 2. This shows (26)wlt= auf, witha e £,u e T*, f € .7,
(27) reduces tp(w) = p(auf) = p(a)p(uf), which is true sincep is Bernoulli. It remains to
check (27) whemw = ag € .%, witha € . Then, (27) becomes

p@P@ = Y p@P@)pL)

gue.s

i.e., after cancelingp(a)p(g), 1 = Zueg,lyr p(u), whereg 1. = {w € * | gw € .%}. But
Prop. 4.6 of Chap. 2 shows thgt'.# is a maximal prefix codeg—.% is thin since.# is thin,
and Prop. 3.8 of Chap. 2, which states thaj _, p(w) = 1 for all thin maximal prefix code¥,
yields (27).

Let us now give a probabilistic proof. Eqn (26) just says #rainfinite word has a factor igF with
probability one (this is an elementary fact that we shallprove). To prove (27), we recall thatw)
is equal to the mean frequency of visit of statdy the left random walkXy. This frequency is the
same if one considers the right random wélkbecauseX, andYy have the same distribution. Clearly,
the frequency of visit of state for the right random walk will be 1 if the sequenag u,, ... begins
by w, and 0 otherwise. Thus, the mean frequency(®) = p(w) x 1+ (1— p(w)) x 0 = p(w). O

3.3 Patrtition-like functions

To a probability measurg, and a set# C £*, we associate the partition function:

Z= Z p(w) . (28)

we.
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We will sometimes writeZ(p), or Z(.%#) to emphasize the dependencepinor .%#. We shall see in
84 that the convergence domain of the series expansion afgminov exponent is controlled by the
convergence domain &(p). In this preliminary section, we show had( p) can be computed using
standard methods from automata theory, when the probatrikasurep is rational, and when the set
of forgetful factors# is a rational language.

First, we observe that whe# is rational,.#;, ., and.#, all are rational (because rational
languages are closed by product, star, and by the Booleaatimpes).

Next, to any languagk, we associate the characteristic function dhar>* — {0, 1}, which is
defined by: chat. (w) = 1if w € L, and chat (w) = 0, otherwise. Classically [9, Chap. 3, Prop. 1],
alanguagd. is rational iff its characteristic function is recognizegdn automaton with multiplicities
in the semiring of nonnegative intege¥si.e. iff there exists an intege€, a row vectorl € N*K a
column vectolT e N¥*! and a morphisne : ©* — NK*K sych that chak (w) = I v(w)T. In the
sequel, we shall apply this construction whee= ..

Last, we take a linear representationmf(c, P, 8). We denote by® the tensor or Kronecker
product of matrices [38, Chap. 1,8 1.9], andib® P the map such that ® P)(w) = v(w) ® P(w)
forallw e =*.

We call entries of a linear representatiotw, P, 8) of dimensionr all the terms of the form
ai, P(@)ij, Bj, where 1< i, ] < r. If M is a matrix, we denote byM| the matrix with entries
IMi; |, andp (M) denotes the spectral radius Idf.

Proposition 4. If .# is a rational language, and if p £* — C has the linear representation
(o, P, B), Z is a rational function of the entries &%, P, 8), and the serie$28)is absolutely conver-
gent provided that

P v@®IP@) <1.

aex

The proof of this proposition relies on a very classical titgnthat we state as a lemma since it
will be used several times in the sequelPlfis any morphism fronk* to a multiplicative monoid of
square matrices with entries @ we define:

PEY P@ . (29)

acx

Lemma 2. If the spectral radiusp (P) is strictly less tharl, then, we have:

Y Pw)y=@1-P)". (30)

wex*

Proof. We haveY", .5 P(w) = Y0 Y uesn P(w) = Yo P". This series is absolutely conver-
gentif p(P) < 1. In this case, its value i€ — P)~L. O

We next prove Prop. 4. We have

Z = ) pw) =Y chars(w)pw)

we.? wex*
= Y lvTaPw)g= > (I @)(vw)® Pw)(T ® p)
wex* wex*
(31) = 1®x)1-v®P) T®A)
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whenp(v ® P) < 1, thanks to Lemma 2. This shows that the partition funciois finite when the
spectral radiup (v ® P) is strictly less than one, and thatis a rational function of the entries of
a, P, B, since the coefficients of the inverse of a matrix are rationthe entries of the matrix. O

Example 3.Let © = {a, b} and.# = {ab?}. Using for instance the algorithm of derivatives [16,
Chap. 5, Th. 2], we obtain the deterministic automaton degim Fig. 4, recognizingZ; = ~*ab? —
T*ak’T*. The states of this automaton are the nonempty languagés”, wherew € ¥*, and
w™lL = {u e * | wu € L}. Thereis an arc from 1.7 to atw~1.% with labela if a"tw=1.% #

@. The initial node is 11.%, = .%, the final nodes are such thaelw 1.%. Here,(ab?) 1. is the
unique final node. Since; is composed of the words with are prefixes of wordsAnbut do not
belong to.#;, to obtain an automaton recognizirg, we just have to mark all the states as final in
Fig. 4. Thus, the characteristic function cbidradmits the linear representatioh v, F) such that:

{mm p@ - - ]
| p@ pl) -
mmwm+pmwm%—t . p@ - mmJ

-
1
1

_1_

(the O entries are represented by dots). These matriceseceral directly on Fig. 4. For instance,
we havev(a);» = 1 since there is one arc from node 1 to node 2 with labiel the automaton, and
I, = 1 since 1 is the initial state. Assuming, for simplicity, thmis a Bernoulli measure, we get the
following rational expression far:

1+ p(@) (p(b))?
(1 - p@@) — p(@ p))(1— p(b))

Z=1(1-p@pwv@) — pbrb)) T =

(7 m/\ r
— ) ) ———()— ©)

S = o*ab? - orap?nt (=*ab? + b?) — (z*ab?s+ + b2xt) (=*ab? + b) — (*abPst +bx+) 1

Figure 4: An automaton that recognizB$at? — T*ab?’T+.

Remark 3.There is a backward/forward duality between the automatdixample 3 and the defini-
tion of the Lyapunov exponents: in (6), words are read fraghtrto left, but to recognize/; and.#,
we use automata that read words from left to right, as usual.
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4 Series Expansions of Lyapunov Exponents

4.1 Case of Stationary Probability Measures

All the results of this section need the following key asstiom

Memory Loss Property. There is a subse# c X%, such that for all ze .#, the image of the map
yi> zy, R —» R4 s aline.

For the heap model of Fig. 1, the memory loss property isfeadiswith % = {c}. For more
general heaps models, the memory loss property holds, witbra complex se#, provided that the
set of pieces cannot be split in independent subsets [249]2,

Our main theorem is the following.

Theorem 2 (Series Expansion Formula).For all stationary probability measures p @i, such that

> pw)lw| < +o0 (32)

we

the Lyapunov exponent is given by

I =lm Dy = > D) . (33)
we. S

Proof. Sincer is by definition the Cesaro limit db,,, and since a convergent sequence Cesaro con-
verges to the same limit, it suffices to prove the second @ygual(33). Partitioning the sum in (13)
in sums over equivalence classes modslp (see Prop. 2), we have:

D, = Z D(w):Z Z D(w)

wexn-1 zes \ﬁ‘?ﬁ
(34) = ) D@+ ) ( > D(zu)) :
et e lul=n—1—|z|
z=n-1 lz<n-1
An Bn

To compute the limit oD,,, we need an a priori estimate @w). It will be useful to writeD (w) =
Y acx P@w)¥ (@, w), with

Y@, w) = pawX — pwX .

Using the non-expansiveness and homogeneity of the mapsbx, with b € %, it is immediate to
show (by induction on the length of) that

lowx|| < (Jw]K + K") + [IX]|
whereK = max,x [|bO||, andK’ = |l¢0|. Hence,

ID(w)| < Z paw)|y (@ w)l < p(w)((2lw|+ HK + 2K’ + 2|x])) . (35)

aex
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18 Stéphane Gaubert , Dohy Hong

If the series (32) is convergent, then, evidently, the faattin the sum (34)A,, tends to zero when
n — oo. Let us now computd,. We have

Bn = Z( > Zp(azu)w(a,zu)>

e St lul=n—1-|z| acX
|zl<n-1

= Z( > Zp(aZU)W(a,Z)> (by (25))

ey lul=n—1-—|z| aeXx
|z<n-1

= > Y p@y(a 2 (by stationarity ofp)

e aexn
|z<n-1

= ) Dw).

e
|z<n-1

which shows (33). O
We next give a more explicit series expansioioffhenp is rational.

Corollary 1. If p is a stationary rational probability measure with lineeepresentation(e, P, 8),
we have, as soon g82) is satisfied:

M= > asx)Pw)p . (36)
weSr
In particular, in the Bernoulli case:
F'= Y swx)pw) . (37)
weSt

As a second corollary of Theorem 2, we obtain an estimate eofatralyticity domain of the Lya-
punov exponent, for Bernoulli probability measures. Irs ttese, we will identifyp with the vector
(p(a))acs € CE, and we denote byp| the vector with entries|p(a)|)acs-

Corollary 2. If p is a Bernoulli probability measure, the Lyapunov expariécan be extended to an
analytic function on the domain:

2 ={peC”| Z(Ipl) < +o0} .

Proof. Formula (33) yields a representation bf as a power series in the variablgga), for
a € ¥, and we have seen in the proof of Theorem 2 that this poweessésiconverging when
Y wes IP)]w] < 4o00. An elementary result of complex analysis ([13, Chap. \oRr3.2])
shows that for ala € %, the partial derivativeéd,a) Z(p) exists whenp € 7, and that it is given by
the absolutely convergent serie®a Z(p) = Y_,. o P(@) 1 p(2)|zla, Where|z|, denotes the num-
ber of occurrences of the letterin z. Hence, the sun}_,_., p(2)|z| = Y5 P(@)p@ Z(P) iS
absolutely convergent iz, which shows thar is analytic inZ. O

When.Z is rational, Prop. 4 shows thdtis rational, and Corollary 2 yields an effective estimake t
power series in (33) converges on any polydisc centeredrat@bes not contain a pole @f

To extend Corollary 2 to the case of rational probability mgas, we introduce an additional
notation: if (&', P’, ') is ar-dimensional complex valued linear representation, weotieiy
(la'l, |P’[, 1B']) the nonnegative linear representation definedddy = |«/|, |P’|(a)ij = |P’'(@)jl,
I8'li = |B{] (we warn the reader thiiP’(w)| # |P’|(w) in general).
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Corollary 3. If p is a stationary rational probability measure with lineeepresentation(e, P, 8),
the Lyapunov exponeiit can be extended to an analytic function of the entrieéxo®, 8) on the
domain:

7 = {(a,P,B) | ZIaIIPI(w)IﬂI<+OO}

we. S
(38) S5 {(@P.B)| p®[P]) <1} .

Proof. The proof is identical to that of Corollary 2, the only newiiedient being the inclusion in (38),
which is provided by Prop. 4. O

Remark 4.Formula (37) is a special case of Furstenberg’s cocycle dtar(21). Indeed, we get a
cocycle representation ab — @wx by taking: S = F(Z, %), equipped with the actiorL* x

S — S(u,v) — Uv and the cocycle (u, v) = puvX — pvX (these quantities are independent of
the representative of v); the equivalence class of the unit word as initial statej e constant
function @ (v) = ¢x as output map. Prop. 3 shows that the underlying Markov cbaif, which
coincides with the left random walk df(X, .%), has the unigue invariant measuréw) = p(w) for

all w € .. Then, (37) coincides with (21).

We conclude this section by mentioning two consistency @rigs. The first one shows that the larger
the set of forgetful factor is, the better the estimationhef &nalyticity domain of is (for simplicity,
we only consider the Bernoulli case).

Proposition 5. If .# c .%’, and if p is Bernoulli, ther? (%) c 2(%").

Proof. Since #; C AZ, ). IPW)| < +00 = Zwey_;r [p(w)| < Zzeyi,aez |p(za)|
(X zes IP@DQ qex IP@]) < +oo. Hence,Z(|pl) < +oo if, and only if, > . o [p(w)]
00, SinceA(F) = T* - X*F32*, F C F = A(F) D HA(F'), which givesP (%)
D(F).

ON AIA

The following corollary shows that our analyticity domaiosntain the set of “real” probabilities,
perhaps up to boundaries.

Corollary 4. If . # @, then,2 (%) contains the set of positive Bernoulli probability measure
Proof. By Prop. 5, itis enough to check this whéghis reduced to a single word: this is an elementary
exercise of calculus that we leave to the reader. O

4.2 Case of Nonstationary Rational Probability Measures

To extend Theorem 2 to the case of non stationary rationdlgiiity measures, we recall some
properties of eigenprojectors. Thaenprojectorfor an eigenvalué. of a matrix A is defined by

1
Mm=— /(z— A ldz (39)
2w J,
where the integral is taken over a cirglecontaining only the eigenvalue(see [33, Chap. 11,8 1.4]).

We say thats is semisimpldf there is no nilpotent term in the Jordan decompositionAdior the
eigenvalue, or equivalently, ifs is a simple pole ofz — A)~! (see [33, Chap. 1,§ 5.4]). Then,

I = lim(z - 1)z~ AL (40)
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Given a (nonnegative) linear representatianP, 8) of dimensiorr of a rational probability measure
p, we say that the indek € {1, ... ,r} is accessiblgresp. co-accessibleif there existsw € X*
such that(w P(w)); # 0 (resp. (P(w)B)i # 0). We say that a linear representatiortrim if all
thei € {1,...,r} are both accessible and co-accessible. Clearlyjsfnot accessible, or not co-
accessible, the linear representation obtained by dgletwumni of « and P, and rowi of P and
B, is still a linear representation @f. Thus, there is no loss of generality in considering onlgtri
representations. We remark that a (nonnegative) lineaeseptation is trim iff the following holds:

Vi, j, 3k, (@P*¥);#0, and(P'g); #0 . (41)

We shall use the following elementary observation. Reball thePerron rootof a nonnegative matrix
is by definition its spectral radius, which is an eigenvalsgoaiated to a nonnegative eigenvector, by
the Perron-Frobenius theorem [6].

Lemma 3. If («, P, B) is a (nonnegative) trim linear representation of a ratiopabbability measure
p, then, the Perron root of the matri® is equal tol and is semisimple. Besides, the eigenprojector
of P for the eigenvalud is equal to:

N Bk
P
M= lim L"T\ll (42)
—00

Proof. Sincep is a probability measure, we have:

1= pw)=a ) pw)p=aPp . (43)

wexn wexn

Using (41), we easily derive from (43) the existencekof> 0 such thaﬂfﬁ}1 < K, foralli, j andn.
Then,

o(P) = lim [P = lim supPMHY" <1 .
n—o00 n—o00 ij

Butp(P) < 1 would imply that 1= aP”,B —- 0,a contradlctlon which shows tha‘(P) = 1.
Moreover, smcePn < K, the entries of the matrix1 — q)(1 — qP) ! remain bounded byl —

N Do 0K =K whenq — 1. Thus,(P — z)~! has only a pole of order 1 at= 1, which means

N
that 1 is semisimple. Then, the convergenc%%F>k is a consequence of (40), together with the
Tauberian theorem of Hardy and Littlewood, already usetiénprroof of Theorem 1. O

We are now in position to state the analogue of Theorem 2 fiowna nonstationary probability
measures.

Theorem 3. If («a, P/,Qis a (nonnegative) trim linear representation of a ratiomabbability mea-
sure p such thap(v ® P) < 1, then, the Lyapunov exponent exists, and it is equal to:

F'= > aswx)Pw)Ip (44)

we.S

whereIl denotes the eigenprojector Bf for the eigenvalud.
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Proof. In the non-stationary case, linD, does not exist, in general, but we shall prove that
lim,n~1S, = lim,n~*(D; + - - - + Dy) does exist, whe}_, _, p(w) < +oo. Using the decomposi-
tion in (34), we can write:

S = A, + By, whereAy =A +---+ Ay, Bi=Bi+---+By .

The bound (35) shows thak, tends to zero, hencel,/n tends to zero. FoB/, we can write,

from (34),
B, = > Y ) «P@zupy(a zu

e |ul<n—1-|z] aex
|zl<n-1

= > > > aP@Pwpy(@ 2

e |ul<n—1-|z] aex
|zl<n-1

= Y Y eP@y@zn( Y Pup

\zzwiﬁirl acx lul<n—1—|z|
- Z Z“P(az)lff(a, 2)(1+ P+...4+ |3n717|z\)13 .
27 aex

|z<n-1

If p(m) < 1, then, using Lemma 2 and arguing as in the proof of Corolkarye get that the
(nonnegative) power seri€s, ., P(w)|w| is convergent. Sinca (1 + P + ... + P~1-12)
I, and since) ,.x P(a2y/(a,2) = §(z), by a dominated convergence argumemt!B/, —
Y e @8(ZX)P()TIB. O

Remark 5. Theorem 3 implies in particular that the Lyapunov expon&hekists under the memory
loss assumption, even if the probability measpiie not stationary, provided that it is rational.

Remark 6. Theorem 3 yields the following local analyticity result.tke= (k, ... , km) € C™ and let
(o, Pe, Bc) denote a linear representation whose entries are analytatibns of theq;, nearx = 0,
with ag, Py, and By nonnegative, an;d(@(,) < 1. Let us assume that 1 is a simple eigenvalue of
Po. Then, by classical results of perturbation theory [33,[Chig§ 1.4], there is a neighborhood of

0 such that there is a unique eigenvalyeof P,, depending analytically of, such that, = 1. The
spectral projector fok,, I, is analytic onV. Moreover, by continuity of the Perron root, possibly
after restrictingV, we may also assume th,a'(v§|\PK|) < lforall« € V, so that the sum (44)
extendsl” analytically toV. (This result holds more generally when 1 is a semisimplereiglue of

P, provided that the multiplicity of., remains constant iN’.)

5 Applications

5.1 The CaseZ# = {a‘} under a Bernoulli Measure

The case wher# = {a°}, for some lettea € X, has been considered in detail in [3]. The importance
of this case stems from the max-plus spectral theorem whioWwsthat ifa is a max-plus linear map,
rather generically — if the matrix o is irreducible and if its critical graph has a single strgngl
connected component with cyclicity 1 — there is a poweaefhose image is a line (the max-plus
spectral theorem has been proved by various authors, s88,[27, 5] for recent references). When
F = {a}, itis easy to see that

S =({a,...,a"YBH*a°U(BT{a,...,a" H)*B*a’ , (45)
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whereB = T \ {a}, and where, as usual, we writ€ instead of{a®}. Since the rational expression
in (45) is unambiguous [35], we obtaif def Y wes P(w) by replacingu by +, concatenation by
product, and-)* by (1 — -)~tin (45). After simplification:
Cc
Z, = P(@) — (46)
1— Qpesya PONA+ p@) +--- + p@°1)
The argument of the proof of Prop. 5 shows tiZatand Z, have the same absolute convergence
domain. Thus, by specialization of Theorem 2, we obtain tilwing simple series expansion
(compare with [3]), which allows us to get the optimal estienaf the convergence radius.

Corollary 5. Assume that# = {a°} for some ac T, and c¢> 0. (i) The Lyapunov exponent is given
by

r = Z 3(wx)p(w) = lim Dy | (47)
we. Sy o

for all Bernoulli measures p such that(d) < +o0, andI" can be extended analytically to the domain

(Y IpONA+[p@]+ -+ [p@F Y <1 . (48)

bex\{a}

(i) In palrticular, whenX = {a, b}, the Taylor series df', seen as a function of(p), has convergence
radius 2¢ — 1, and this bound is tight.

Proof. Part(i) of the theorem readily follows from Theorem 2, together wi4e). To prove part
(ii), we write as 1— F(p) the denominator of (46). The Taylor seriesIofconverges absolutely
at any p(b) such that(p(a) = 1 — p(b), p(b)) lies in the domainF(|p|) < 1. SinceF(|p|) =
IP®)IA+ 11— pMd)| + -+ 11— p®I”™) < [pb)IL+ 1+ pb)| + -+ L+ [ph))*™), a
sufficient condition fo=(|p|) < 1is

(1+|pb)hH°—1
Ip()|
which is the case ifp(b)| < 2t — 1= V2 — 1. Whenc = 2, the optimality of the bound®2— 1

is clear from Example 2, since in this cagehas a pole ap(b) = 1 — +/2 (see Formula (22)). The
optimality of the bound, for a generaj is shown by Example 4 below. O

IIO(b)I< >=(l+|p(b)l)°—1<l,

Example 2 shows that substitutingla) = 1 — p(b) in the power series (33), or more generally,
looking for Taylor series expansion, is not always a goodgho do: here the series (33), seen as a
series inp(a), p(b), converges whefp(b)|(1 + |p@)| +--- + |p(@)|°?!) < 1, itis easy to sum, and
its convergence domain contains the physically intergstiomainp(b) < [0, 1[, p(a) = 1 — p(b),
whereas the Taylor series ®f, seen as a function gb(b), which is obtained by substitution of
p(@) = 1— p(b), is divergent ap(b) = 2¢ — 1.

Example 4.For a givenc > 2, we consider the max-plus linear map$ associated to thée + 1) x
(c + 1) matrices

1 1 -0 -+ -0 0

: —oo . e : —00
A= 1 —00 ,

1 ) 0

2 —o0 —00 —00

2 —oo —00 1
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1 10 0
B=| : Do :
1 ... ... 10 O
2 ... ... 2 0c+1
2 ... ... 21 0

The underlying Markov chain, built as in Example 2, has the- 1 states: (0,...,0,1,1)T,
©,...,0,c + 1,H", (0,...,0,c,1, )", (0,...,0,¢c, 0,1, )7, ...,0,0,¢c0,...,0,1 17,
0,c,0,...,0,1,1)7, (c,0,...,0,1,1)7; its transition matrix is

1-pb) pb) 0 e 0
p(b) 0 1-pb)
(49) M = : : 0 0 »
p(b) : : . 1—p(b)
1 0 0 0

it has the invariant measure

1
m=-——"———(1 pb ph)d-pb) ... ph)l-pb)?),
s A— ooy (L PO PO pb) p(b)(1— pb)“™ )
and the associated cocyatds determined by the following vectors of dimensios- 1:

1 1

1 c+1
k(@) = : ) kb, ) = :

1 c+1

c+1 c+1

Using Formula (21), we get

1+cpb) — (1 - ph)°

[ =m{L= pb)e(@.-) + pbe(b. )] = ——F—7— pby)e

which has a pole at + 2¢.

5.2 Random Heaps of Pieces

To illustrate the representation formula (37), we geneealhe heap model of Fig. 1, by takidgt 1
pieces with associated operators

aX = (14 maxX,...,14+ maxxy)',
1<k=<d 1<k=<d
ax = (Xt,.- X1, L4+ X, Xj11, ..., X)), V1<j<d

(for j > 0, the piece corresponding & occupies columrj, the piece corresponding &g occupies
all the columns, and all the pieces have height 1). We ¢aket. Here,.% = {ag}, and,

s(y)= Y p@tay—tyy= Y p@) .

1<i<d iearg max yj
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Foralll c{1,...,d},wesetl' ={wefay,...,a}* | Vi,jel,Vk¢l, |w = |wlj > |wk|} =
{we{a...,aq}" | argmax(w0); = I}, andz' =Y _.i p(w). We have, by direct application
of Theorem 2, the following representation, which was ot@diby independent means by Krob [34].

Proposition 6. The Lyapunov exponent of the above heap model is

r= > Z'() p@). (50)

Ic{1,....d} ielu{o}

5.3 Multiple Memory Loss Relations

Finally, we show the absolute convergence domaiip|) < +oo associated to various finite sets
% (by Corollary 2, the Lyapunov exponent is analytic on thesmains). We set = p(b), and

we represenfi[z] and J[z] on thex andy axes, respectively, so that the segmgnt 0 andx €

[0, 1] represents the “real” probability region. The domaires @ltained from Prop. 4, in the case of
Bernoulli measures over the alphali®t= {a, b}. When.# = {a?}, the domain was already given in
Corollary 5. The case whe# = {al?} was considered in Example 3. For each of the other cases, itis
easy to write an unambiguous rational expressionspor .#;, from which the absolute convergence
domain ofZ can be obtained. We checked these computations using AM&RERd MAPLE.

p p
y
/‘ m/\
T 03&‘ 0.5 T 15 T 0’5 Tp 0.5 T 15
5 0s
. "

F = (a2} F = {a?, b?)
zZIA+11—-2) <1 1—2z||z| <1

~_1 —

e |
N

F = {a®, bY F = {ab?}
1—z|(z|+ 2P+ 12¥ <1 |1—2z/(1+]z]) <land|z] <1
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v
ﬁ

T 15 T K pa T
05

F = {(ab)?} F = {(ab)?, a%}
—[z211 - z]* + |z||11 — z|*+ 1ZI(1+1—2||z) < 1
+zPl—z|-|zlll—2z|+|1—2Z + |zl < 1
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