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Développement en Série des Exposants de Lyapounov et Monoïdes
Oublieux

Résumé :Nous étudions les exposants de Lyapounov des itérées de fonctions monotones homogènes.
Nous supposons que les images de certaines itérées sont des droites avec probabilité positive. En
utilisant cette propriété de perte de mémoire qui est vérifiée pour les produits aléatoires de matrices
dans le semi-anneau max-plus, et en particulier, pour les modèles de tas de pièces du type Tetris,
nous donnons une formule de développement en série pour l’exposant de Lyapounov en fonction de
la loi de probabilité. Dans le cas d’une loi de probabilité rationnelle, nous montrons que l’exposant
de Lyapounov est une fonction analytique des paramètres de la loi, dans un domaine qui contient le
domaine de convergence absolue d’une fonction de type partition associée à un monoïde particulier
dit "oublieux", défini par générateurs et relations.

Mots-clés : exposants de Lyapounov, produits aléatoires, fonctions contractantes, automate, codes
préfixes, théorie des perturbationsClassification AMS 2000: Primaire 37M25; Secondaire 37H15,
68Q70, 74H10.
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1 Introduction

We say that a mapf : Rd
! R

k is monotoneif for all x; y 2 Rd , x � y H) f .x/ � f .y/, where
� denotes the usual product ordering ofRn , for all n. We say thatf is (additively)homogeneousif
for all � 2 R andx 2 Rd , f .�C x/ D �C f .x/, where for ally 2 Rn and� 2 R, �C y denotes the
vector with entries�C yi . We will use the notationty D max1�i�n yi andby D min1�i�n yi (t andb
stand for “top” and “bottom”, respectively).

Given a stationary random sequencef1; f2; : : : of monotone homogeneous mapsRd
! R

d , and
a vectorx 2 Rd , we calltop Lyapunov exponentthe limit:

0 D lim
n!1

1

n
E [t fn Æ � � � Æ f1.x/] : (1)

Thus, the top Lyapunov exponent measures the linear growth rate of the orbits of the random dynam-
ical system:

Xn D fn.Xn�1/ X0 D x : (2)

As observed by Vincent [47] (see §2 below for details), the limit in (1), if it exists, is independent of
x, and, whent f1.0/ is integrable, the existence of the limit follows from the fact that the sequence
Sn D E [t fn B � � � B f1.0/] is subadditive, i.e.SnCk � Sn C Sk. Moreover, if the sequencef1; f2; : : : is
ergodic, Kingman’s subadditive ergodic theorem shows thatthe Lyapunov exponent is also the almost
sure limit:

0 D a: s: lim
n!1

1

n
t fn Æ � � � Æ f1.x/ : (3)
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4 Stéphane Gaubert , Dohy Hong

A dual bottom Lyapunov exponent00 can be defined by replacingt by b in (1). Of course, all the
results stated in this paper for0 have dual versions for00. More generally, we may replacet or b
by an arbitrary monotone and homogeneous map' : Rd

! R, and speak of'-Lyapunov exponent.
An interesting choice is thei -th coordinate map'.x/ D xi , for some 1� i � d. Then,E'.Xn/ D

E .Xn/i need not be subadditive or superadditive, and even in the case of a deterministic sequence
( f1 D f2 D : : : ), a counter-example, due to Gunawardena and Keane [29] (seeRemark 1 below),
shows that the'-Lyapunov exponent, limn.Xn/i =n, need not exist (however, Theorem 2 below shows
that under additional assumptions, the'-Lyapunov exponent does exist).

The first example of monotone homogeneous map that we have in mind is

f : Rd
! R

d
; f .x/ D log.M exp.x// ; (4)

where exp.x/ D .exp.x1/; : : : ;exp.xd//
T , log.x/ D .log.x1/; : : : ; log.xd//

T , and M is a d � d
nonnegative matrix with at least one strictly positive entry per row (the later condition ensures that
f .Rd

/ � R

d ). If each map fk is of the form fk.x/ D log.Mk exp.x//, for someMk, then the
Lyapunov exponent (1) coincides with the classical top Lyapunov exponent [11] of the random product
of nonnegative matricesMn : : :M1, which is defined by:

0 D a: s: lim
n!1

1

n
logkMn � � � M1k ;

for any normk � k.
The second and main example of monotone homogeneous map of interest to us is

f : Rd
! R

d
; fi .x/ D max

1� j�d
.Mi j C x j / ; (5)

whereM is ad � d matrix with entries inR [ f�1g, such that each row contains at least one finite
entry. If each mapfk is of the form (5) for some matrixMk, the Lyapunov exponent (1) coincides with
the Lyapunov exponent of the random product of matricesMn : : :M1 in the max-plus semiring [1, 15,
12].

An appealing example of max-plus random products is provided by Tetris-like heaps of pieces.
For instance, consider the three monotone homogeneous mapsR

2
! R

2:

a.x/ D .x1 C 1; x2/
T
; b.x/ D .x1; x2 C 1/T;

c.x/ D .max.x1; x2/C 1;max.x1; x2/C 1/T;

which are clearly of the form (5), the corresponding matrices being

A D

�

1 �1

�1 0

�

; B D

�

0 �1

�1 1

�

; C D

�

1 1
1 1

�

:

To a sequencef1; : : : ; fn, of elements offa;b; cg, we associate the heap of pieces obtained by letting
a sequence ofn pieces with the corresponding shapes fall down on an horizontal ground. We denote
by Xn the upper contour of the heap. For instance, Fig. 1 shows the heap of pieces corresponding to
the sequence:a;b;a; c;b;b;b;a. Here,n D 8 andXn D .4;6/. It is quite easy to see thatXn is
given by the random dynamical system (2) (see [24, 12, 26] fordetails). In this context, the Lyapunov
exponent is equal to the almost sure limit of the height of a heap of pieces, divided by the number of
pieces, when the number of pieces grows to infinity. When the sequence is i.i.d., and when the pieces
a;b; c appear with the frequenciesp.a/; p.b/; p.c/ D 1� p.a/ � p.b/, respectively, the Lyapunov
Exponent, which has been computed in [12], is the algebraic function represented in Fig. 2.

INRIA
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Figure 1: A two columns heap of pieces
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Figure 2: Lyapunov exponent of the heap model of Fig. 1.

Computing exactly, or approximating, Lyapunov exponents of heaps of pieces, and more gener-
ally, of products of max-plus matrices, is a long standing problem [15, 44, 41, 1, 28, 23, 12, 3, 4, 25,
19, 10]. No exact formulæ are known, except in very special cases, such as the one of Fig. 2. In this
paper, our purpose is rather to investigate the qualitativeproperties of0. For instance, a simple look
at the formula in Fig. 2 shows that0 is analytic in a domain which contains the set of real probabil-
ities f0 � p.a/; p.b/ � 1; p.a/ C p.b/ < 1g , with a singularity atp.a/ D p.b/ D 1

2. Hence, the
power series expansion of0, seen as a function ofp.a/; p.b/, is convergent in any complex polydisc
included in the domainjp.a/j C jp.b/j < 1. This is exactly what we prove here, in general: the main
result of this paper (Theorem 2) shows that the Lyapunov exponent is analytic, and gives an explicit
power series expansions, together with a tight estimate of its convergence domain. By summing this
power series, we obtain a way to approximate Lyapunov exponents.

In general, the Lyapunov exponent need not be differentiable (look at the pointp.a/ D p.b/ D
1=2 in Fig. 2), and it may even be discontinuous [43]. The critical assumption in our Theorem 2 is
the memory loss property, whose importance, in the context of heaps of pieces, or moregenerally,
of products of max-plus random matrices, has been recognized by several authors [37, 24, 12, 19].
For the heap model of Fig. 1, this assumption just means that the arrival of a rigid piece (piecec)
occupying all the slots, resets the heap to a state identical, up to a vertical translation, to the initial
state.

We give an analytic, elementary proof: we shall write the Lyapunov exponent as a Cesaro or Abel
mean of a function on the free monoid, and, under the memory loss property, we shall see that this

RR n° 3971



6 Stéphane Gaubert , Dohy Hong

mean can be expressed as a sum over the elements of a monoid defined by generators and relations,
that we call forgetful monoid. The relations are of the formua D u, for all generatorsa, and for
all u in a distinguished set of wordsF (the appearance of a factoru makes the product forget its
right factor, which accounts for the name of the monoid). When the setF is rational, the associated
forgetful monoid is nothing but a very special rational monoid [45, 42]. We obtain in passing an
Abelian representation of the Lyapunov exponent (Theorem 1), which plays for Lyapunov exponents,
mutatis mutandis, the role that resolvents plays for eigenvalues of linear maps. This representation is
not used in the proof of Theorem 2, but we think that it illuminates the form of the series expansion,
and that it is of interest per se.

The results of the present paper on the analyticity domain improve the ones proved previously
by Baccelli and Hong: in [3], the analyticity domain was obtained from the explicit coefficients of
Taylor series expansions, and in [4], it was obtained by a contraction argument for Hilbert’s projec-
tive metric, inspired by Peres [43]. The proof technique that we use here is completely different: the
explicit expansion formula that we obtain is much simpler tosum, its coefficients all are positive, and
for this reason, we obtain a more accurate estimation of the analyticity domain. However, the memory
loss property remains in essence, similar to the contraction properties in the projective space, used by
Peres, and many others [11, 36, 32] (memory loss is indeed a very strong “ultimate” contraction prop-
erty, of Lipschitz constant 0). It would be very interestingto prove similar results without contraction
arguments. For instance, we do not know what our results become if one replaces the assumption
“there exists an iterate that is strictly contracting for Hilbert’s projective metric” by “the image of
one iterate is a compact set in the projective space” (the Birkhoff-Hopf theorem [20] shows that both
statements are equivalent in the special case of linear mapsacting in the positive cone, hence, this
question is only interesting for monotone homogeneous mapswhich are not linear in the usual sense,
and in particular, for max-plus linear maps).

Let us conclude this introduction by mentioning some additional motivations, and related works.
In the context of Discrete Event Systems, Lyapunov exponents measure the cycle time, i.e. the average
time between two events (see [1] for an introduction). In Dynamic programming, the Lyapunov
exponent measures the growth of the optimal cost or reward ofdeterministic optimal control problems,
as a function of the horizon, when the transition costs or rewards are random [15]. Max-plus Lyapunov
exponents also arise in Statistical Physics, in the study ofdisordered systems at low temperature [22,
17]. There is a number of contributions on Lyapunov exponents of products of random matrices. A
classical one is the monograph [11]. A recent one, dedicatedto the case of nonnegative matrices,
is [32].

Some of the results of this paper have been announced in [2].

2 Probability Measures on Words and Lyapunov Exponents

2.1 Notation and Definitions

Given a finite alphabet6, we denote by6k the set of words of lengthk, i.e. the set of sequences
of the form .a1; : : : ;ak/, with a1; : : : ;ak 2 6. The free semigroup on6 is 6C

D [k�16
k,

equipped with the concatenation product:.a1; : : : ;ak/.b1; : : : ;bl / D .a1; : : : ;ak;b1; : : : ;bl /, for
all a1; : : : ;ak;b1; : : : ;bl 2 6. The free monoid6� is obtained by adjoining to6C the empty se-
quence, which is called the empty word in this context.

Following Hansel and Perrin [30], we say that a mapp : 6�

! [0;1] is aprobability measureon
words if

P

a26 p.aw/ D p.w/, for all w 2 6

�, and if p.1/ D 1. This implies that
P

w26

k p.w/ D 1,
for all k. We say thatp is stationaryif p.w/ D

P

a26 p.wa/, for all w 2 6

�. The term probability

INRIA



Series Expansions of Lyapunov Exponents and Forgetful Monoids 7

measure can be justified by associating with a wordw the cylinder of basew, which is the set of
left infinite words with suffixw: there is a unique probability measure on the� -algebra generated by
cylinders, such that the cylinder of basew has probabilityp.w/.

Let us now use this formalism when6 is a finite set of monotone homogeneous mapsR

d
! R

d .
We shall adopt, throughout the paper, the following notation: if g : Rd

! R

l and f : Rl
! R

m are
monotone homogeneous maps, and ifx 2 Rd , we writegx for g.x/, f g for f B g, and we set

wx D ak B � � � B a1.x/ if w D .ak; : : : ;a1/ 2 6
k
: (6)

Interpretingp.w/ as the probability that the firstk elements of an infinite random sequence of elements
of 6 area1; : : : ;ak, we rewrite the Lyapunov exponent (1) as:

0 D lim
n!1

1

n

X

w26

n

p.w/'wx ; (7)

with the special choice' D t. The setRd , equipped with the action6�

� R

d
! R

d , .w; x/ 7! wx,
might be thought of as a “non-linear automaton”. Indeed, a conventional (deterministic) automaton is
nothing but a finite state space equipped with an action of a free monoid, together with an initial state
and a set of final states. Here, the state space isR

d , the action involves monotone homogeneous maps,
the initial state isx 2 Rd , and the set of final states is replaced by the output map'. When passing
from (1) to (7), we made the restriction that the set of maps6 is finite. This is only to simplify the
presentation, and to make clearer combinatorial aspects. The results of this paper have quite obvious
extensions to the case of random iterates with continuous distributions.

To see when the limit (7) exists, it is useful to introduce:

Sn
def
D

X

w26

n

p.w/'wx D E'.Xn/ : (8)

We shall first consider the case whenX0 D x D 0. Since for allw 2 6

�, the mapy 7! wy;Rd
! R

d

is monotone and homogeneous, we have for allu; v 2 6�:

tuv0� tu0C tv0 ; (9)

for uv0� u.0C tv0/ D u0C tv0. Hence, ifp is stationary, the sequenceSn satisfies

SnCk D

X

u26n
; v26

k

p.uv/tuv0

�

X

u26n
; v26

k

p.uv/.tu0C tv0/ (by (9)),

D

X

u26n

 

X

v26

k

p.uv/

!

tu0C
X

v26

k

 

X

u26n

p.uv/

!

tv0

D Sn C Sk (by stationarity ofp).

By an elementary classical result, if a sequenceSn is subadditive (i.e. ifSnCk � Sn C Sk), then
the limit limn Sn=n exists. This shows that0 exists whenx D 0. To show that0 exists for any
x, it suffices to use the following classical easy observation[18]: a monotone homogeneous map
f is non-expansive for the sup normk � k, i.e. k f .y/ � f .y0/k � ky � y0k, for all y; y0 2 Rd .
Hence, ifSn.y/ andSn.y0/ denote the sums (8) evaluated withx D y andx D y0, respectively, we get
kSn.y/�Sn.y0/k �

P

w26

n p.w/k'wy�'wy0k � .
P

w26

n p.w//ky�y0k D ky�y0k, which implies
that limn Sn.y/=n D limn Sn.y0/=n. We have reproved the following result, due to Vincent [47].

RR n° 3971



8 Stéphane Gaubert , Dohy Hong

Proposition 1. If p is a stationary probability measure and if' D t, then the Lyapunov exponent

0 D lim
n

Sn=n

exists, and is independent of x2 Rd .

Remark 1.If ' 6D t, the Lyapunov exponent need not exist, as shown by the following variant, due to
Sparrow [46], of the counter-example of Gunawardena and Keane [29]. Let6 D f f g, with f : R3

!

R

3, .x1; x2; x3/
T
7! .x1; x2 C 1;h.x2 � x1/ C x1/

T , whereh is any differentiable map such that 0�
h0 � 1. By construction,f is monotone and homogeneous. We getf k

.0;0;0/T D .0; k;h.k� 1//T ,
for k � 1, and, setting' D x3, it is clear that we can chooseh such that0 D limk h.k/=k does not
exist.

Remark 2.Of course, if the probability measure is not stationary, theLyapunov exponent need not
exist. E.g., consider a left infinite wordw in two lettersa;b, and letwk denote the suffix ofw
composed of thek rightmost letters ofw. Setting p.z/ D 1 if z is a suffix ofw, and p.z/ D 0
otherwise, defines a probability measure onfa;bg�. Now, takea;b to be the mapsR ! R: a.x/ D x,
andb.x/ D x C 1. We haveSn D twn0 D jwnjb, the number of occurrences of the letterb in wn.
It suffices to take an infinite word such that0 D limn jwnjb=n does not exist to have the desired
counter-example.

2.2 Cesaro Sum and Abelian Representations

The definition of the Lyapunov exponent0 D limn Sn=n suggests to rewrite0 as a Cesaro mean:

0 D lim
n!1

1

n
.D1 C � � � C Dn/ ; (10)

where

Dk
def
D Sk � Sk�1 D

X

w26

k

p.w/'wx �
X

w26

k�1

p.w/'wx(11)

D

X

a26;w26

k�1

p.aw/'awx �
X

w26

k�1

p.w/'wx(12)

D

X

w26

k�1

D.w/ ;(13)

with

D.w/ D
X

a26

p.aw/.'awx � 'wx/ :

Given a formal parameterq, we set

0q D
X

w26

�

qjwjD.w/ ; (14)

where jwj denotes the length ofw. As is well known, in the case of a linear operatorA, much
information on the asymptotics ofAk whenk !1 can be derived by looking at the singularities of
the resolvent.� � A/�1. As shown by the following theorem, a similar (but weaker) property holds
for Lyapunov exponents, the role of the resolvent being played by0q (therefore, we might call0q the
“Lyapunov resolvent”).

INRIA



Series Expansions of Lyapunov Exponents and Forgetful Monoids 9

Theorem 1 (Abelian Representation).Let p denote a probability measure. If the Lyapunov expo-
nent0, defined by the limit(7), exists, then,

0 D lim
q!1�

.1� q/0q : (15)

Conversely, if' D t or if p is stationary, and iflimq!1�.1� q/0q exists, then0 exists, and has the
same value.

Proof. A well known result [31, Th. 55] states that if the Cesaro limit 0 D 1
n.D1 C � � � C Dn/ exists,

then, the Abelian limit limq!1�.1 � q/.qD1 C q2D2 C � � � / D limq!1�.1� q/0q also exists and
has the same value. This shows the first implication of the theorem. To show that the converse
implication holds when' D t or whenp is stationary, we shall use the Tauberian theorem of Hardy
and Littlewood [31, Th. 94], which states that if the limit limq!1�.1� q/.qD1 C q2D2C � � � / exists,
then the Cesaro limit1n.D1 C � � � C Dn/ exists and has the same value provided that the sequenceDk

is bounded from above. It remains to check the later propertywhen' D t, or whenp is stationary.
We first assume that' D t, and we set

K D max
a26

ta0 :

Using successively the monotonicity and homogeneity ofy 7! ay;Rd
! R

d , we gettawx � ta.0C
twx/ D ta0C twx � KC twx. This implies thatDk �

P

w26

k�1

P

a26 p.aw/K D

P

w26

k p.w/K D

K .
Next, whenp is stationary, we can write a sum dual to (12):

Dk D

X

w26

k�1
;a26

p.wa/'wax�
X

w26

k�1

p.w/'wx

D

X

w26

k�1

X

a26

p.wa/.'wax� 'wx/ :(16)

Using the fact that for allw 2 6

�, the mapy 7! 'wy; Rd
! R, which is monotone and homo-

geneous, is non-expansive for the sup-norm, we get:k'wax � 'wxk � kax � xk � K 0, where
K 0

D maxb26 kbx� xk. Together with (16), this implies thatDk � K 0.

The following counter example shows that the converse implication in Theorem 1 need not hold
when' 6D t and whenp is not stationary.

Example 1.Let6 D fa;b; cg, wherea;b; c are the mapsR3
! R

3 such that

ax D .x1 C 1; x2 � 1; x3/
T
; bx D .x1; x2; x1/

T
; cx D .x1; x2; x2/

T
:

We take 'x D x3. Let w denote the periodic left infinite word: : : cabacaba. As in Re-
mark 2, we associate tow a probability measure. Here, the sequence.Sk/k�1 is equal to
.0;1;1;�2;�2;3;3;�4;�4;5; 5; : : : /, 0 D limk!1

Sk=k does not exist. However, limq!1�.1�
q/0q does exist. To see this, let us recall that a sequence.sk/k�0 ism-Cesaro summable tòif, defining
inductively S0

k D sk, andSr
k D Sr�1

1 C � � � C Sr�1
k for all r � 1, we have: limk!1

m!k�mSm
k D `. Ap-

plying this definition to the sequencesk D Dk, given by (11), we getS1
k D Sk, and it is easy to see that

.Dk/k�0 is 2-Cesaro summable to 0. Since for anym, m-Cesaro summability implies Abel summabil-
ity [31, Th. 43], we get that.Dk/k�0 is Abel summable to 0, which means that limq!1�.1�q/0q D 0.

RR n° 3971



10 Stéphane Gaubert , Dohy Hong

2.3 Rational Probability Measures

An interesting special case arises when the probability measure p is parametrized by finitely many
coefficients. LetR

C

denote the set of nonnegative reals. We say that a probability measurep on6�

is rational [30] if there exists an integerr , a row vector� 2 R1�r
C

, a column vector� 2 Rr�1
C

, and a
morphismP : 6�

! R

r�r
C

, such thatp.w/ D �P.w/�. We say that.�; P; �/ is a (nonnegative)lin-
ear representationof dimensionr of P. We will extend these notations to complex valuedp; �; P; �,
even if it has no probabilistic interpretation.

As observed in [30], a Bernoulli probability measure, whichis of the form p.ak : : : a1/ D

p.ak/ � � � p.a1/ for all a1; : : : ;ak 2 6, is trivially rational, since it has the linear represen-
tation of dimension 1: .1; p;1/. Markov measures, which are defined byp.ak : : :a1/ D

P.ak;ak�1/ : : :P.a2;a1/�.a1/, for some6�6 column stochastic matrixP and for some stochastic
vector� , are rational. Indeed, setting�a D �.a/, P.a/cb DP.c;b/ if a D b, andP.a/cb D 0 other-
wise, and�a D 1 for all a 2 6, it is easy to check thatp.w/ D �P.w/� and p.w/ D

P

a26 p.wa/.
If � is an invariant measure ofP, then,p is stationary. Our definition of Markov measures coincides
with that [43], except that we do not require the stationarity.

In the case of rational probability measures, the representations of the Lyapunov exponent can be
made more explicit. To eachy 2 Rd , we associate the followingr � r matrix:

Æ.y/ D
X

a26

P.a/.'ay� 'y/ : (17)

In the Bernoulli case,Æ.y/ is a scalar, which can be interpreted as the mean one step increment:

Æ.y/ D E.'.X1/� '.X0/jX0 D y/ :

An application of (10) and (13) yields

0 D lim
n!1

1

n

X

jwj�n�1

�Æ.wx/P.w/� :(18)

Formula (18) shows that, in essence, the Lyapunov exponent is a mean of the increment functionÆ.y/,
taken on the set of states reachable fromx by the action of6�.

2.4 Furstenberg’s Cocycle Formula

We next specialize to our discrete context Furstenberg’s cocycle representation of the Lyapunov ex-
ponent [21]. Given an action of6� on a denumerable setS, 6�

� S! S; .w; y/ ! w � y, we say
that a map� : 6�

� S! R is acocycleif �.uv; y/ D �.u; v � y/C �.v; y/ holds for ally 2 S and
u; v 2 6�. We say that� representsthe map6�

! R, w 7! 'wx, if

'wx D $.w � z0/C �.w; z0/ ; 8w 2 6

� (19)

for somez0 2 S(calledinitial state), and for some bounded map$ : S! R (calledoutput function).
Associating toa1; : : : ;ak 2 6, the sequencezi D ai : : : a1 � z0, i D 1; : : : ; k, we rewrite (19) as:

'ak : : :a1x D $.zk/C

k
X

iD1

�.ai ; zi�1/ : (20)

(WhenS is finite, a cocycle representation is exactly a subsequential transducer [7] with output in the
monoid.R;C/.) If a1;a2; : : : is a random sequence of independent identically distributed elements

INRIA



Series Expansions of Lyapunov Exponents and Forgetful Monoids 11

of 6, taken with a Bernoulli lawp, z1; z2; : : : is a denumerable Markov chain with values inS, and,
if, for instance, this Markov chain is irreducible positiverecurrent with invariant measure� , we get
by applying to (20) the ergodic theorem:

lim
k

1

k

X

ak;::: ;a126

p.ak : : : a1/'ak : : :a1x D
X

z2S;a26

p.a/�.z/�.a; z/ ;

as soon as the last sum is absolutely convergent. Then,

0 D

X

z2S;a26

p.a/�.z/�.a; z/ : (21)

Furstenberg’s choice of cocycle is essentially the following. We say thatx; y 2 Rd areparallel, and
we write x k y, if x D � C y, for some� 2 R. We call line generated byx 2 R

d the equivalence
class ofx for the relationk, namelyR C x D f� C x j � 2 Rg. The (additive)projective space,
PR

d , is the set of lines. We take forS the set of lines of the formR C wx, with w 2 6

�. The
homogeneity of' and of the mapsz 7! wz allows us to equipSwith the quotient action6�

�S! S,

.w;R C y/ 7! w � .R C y/
def
D R C wy, and to take the cocycle�.w;R C y/ D 'wy� 'y. Finally,

taking the initial statez0 D RCx, and the constant output map$.RC y/ D 'x, for all RC y 2 S, we
obtain a cocycle representation ofw 7! 'wx. The Lyapunov exponent of Fig. 2 has been computed
using this technique. In general, the associated Markov chain zk may not have recurrent states and
we cannot apply formulæ like (21), but there are some important subcases where the analysis ofzk

is simple. In particular, for max-plus linear maps with finite integer valued entries, the underlying
Markov chain is finite [23], as in the following example.

Example 2.Consider the max-plus linear mapsa;b associated respectively to the matrices

A D

0

�

1 0 0
2 0 1
2 �1 1

1

A and B D

0

�

1 0 0
2 0 3
2 1 1

1

A

:

We leave it to the reader to check that the image ofa2 is a line. Since0 is independent ofx,
we can take as initial vectorx D a20 D .2;3;3/T . The action offa;bg� on x is depicted in
Fig. 3. For instance, the arc markedb;C5 from .6;6;5/T to .2;3;3/T means thatb.6;6;5/T D

.2;3;3/T .6; 6;5/T.3; 6; 4/T

b;C0

b;C4

a;C1

a;C0

a;C5

b;C5

Figure 3: Cocycle Representation

5C .2;3;3/T D .7;8;8/T . Thus, for any', we obtain a cocycle representation ofw 7! 'wx by
settingS D f.2;3;3/T ; .3;6;4/T ; .6;6;5/T g, by taking the initial statez0 D .2;3;3/T , the output
map$.y/ D 'y, and, foru 2 6� andy 2 S, by taking foru � y the node reached fromy by following
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12 Stéphane Gaubert , Dohy Hong

the path with labelu, and for�.u; y/ the sum of the additive valuations on this path. The underlying
Markov chain has transition matrix

0

�

1� p.b/ p.b/ 0
p.b/ 0 1� p.b/

1 0 0

1

A

;

and it has the unique invariant measure

� D .1C 2p.b/� p.b/2/�1 � 1; p.b/; .1� p.b//p.b/
�

:

Applying (21), we get

0 D

X

y2S;c26

�.y/p.c/�.y; c/ D
1C 4p.b/� p.b/2

1C 2p.b/� p.b/2
: (22)

3 Forgetful Monoids

3.1 Presenting Forgetful Monoids

The main ingredient in the explicit series expansion that weshall give in § 4, is an elementary monoid,
that we next present.

Given a subsetF � 6

�, we call forgetful monoidon6, with forgetful factorsF , the monoid
with generatorsa 2 6 and relationswa D w, for all w 2 F anda 2 6. We denote byF.6;F /
this monoid. Formally,F.6;F / is the quotient of the monoid6� by the least congruence�

F

such
thatwa �

F

w, for allw 2 F anda 2 6 (congruences are identified to subsets of6

�

� 6

�, ordered
by inclusion). For instance, if6 D fa;b; cg, and ifF D fcg, it is quite immediate to see that any
wordw 2 6

� is congruent for�
F

either to a word of the formzc, or toz, for somez 2 fa;bg�. This
observation can be generalized, as follows.

We set:

Sr D 6

�

F �6

�

F6

C

; andSt D 6

�

� 6

�

F6

�

; S D Sr [St ; (23)

where we use the standard notations for languages (ifL ; L 0 are languages, the concatenationLL 0 is
the language whose elements are obtained by concatenating words inL with words inL 0; the starL�

is defined byL�

D L0
[ L [ L2

[ � � � , whereLk denotes thek-th power ofL for the concatenation
product;LC

D LL�, andL � L 0

D L \ {L 0). It is quite easy to interpretSr andSt : Sr is the set of
words of the formuw, whereu 2 6

� andw 2 F is the only factor ofuw belonging toF , andSt

is the set of words that have no factors inF (recall that a word has afactor z if it can be written as
uzv). The “r ” and “t” in Sr andSt stand for recurrent and transient, respectively (the terminology is
justified by Prop. 3 below). Sets likeSr are known assemaphore codes[8, Chap. 2,§ 5].

Proposition 2. We have the partition of6� in equivalence classes modulo�
F

:

6

�

D

[

z2St

fzg [
[

z2Sr

z6�

: (24)

Thus, if z 2 St , the equivalence class ofz is reduced tofzg, and ifz 2 Sr , it is of the formz6�.
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Series Expansions of Lyapunov Exponents and Forgetful Monoids 13

Proof. LetR denote the relation such thatzwuRzwv andzRz, for all z;u; v 2 6� andw 2 F . The
relationR is reflexive and symmetric, by definition. Let us check that itis transitive. Lett; t 0; t 00 2 6�,
such thattRt 0Rt 00. If t D t 0 or t 0 D t 00, then tRt 00, trivially. Otherwise, we can writet D zwu,
t 0 D zwv D z0w0u0 andt 00 D z0w0

v

00 with w;w0

2 F andz; z0;u;u0; v; v00 2 6�. Sincezwv D z0w0u0,
either zw is a prefix ofz0w0, or z0w0 is a prefix ofzw. By symmetry, it is enough to consider the
first case. Then,t; t 0; t 00 all havezw as prefix, which implies thattRt 00. Thus,R is transitive. By
definition, zRz0 H) zuRz0u anduzRuz0 for all u; z; z0 2 6�, which completes the proof thatR
is a congruence. SinceR satisfies the presentation relations (waRw, for all w 2 F anda 2 6),
x �

F

y H) xRy. Conversely,xRy H) x �
F

y, because for allz;u; v 2 6� andw 2 F , the
relationszwu �

F

zwv follow from wa �
F

w and from the fact that�
F

is a congruence. We have
shown that the relations�

F

andR coincide. The partition (24) readily follows from the definitions
ofR,St , andSr .

The interest inF.6;F / stems from the following observation, which is the key idea of the proof of
Theorem 2 below. For allw, we denote by Imw the image of the mapRd

! R

d
; y 7! wy.

Lemma 1. If for all w 2 F , Imw is a line, we have, for all z0; z00 2 6�, and for all x2 Rd :

z0 �
F

z00 H) z0x k z00x : (25)

Proof. Let us assume thatz0 �
F

z00 andz0 6D z00 (otherwise, there is nothing to prove). By (24),z0 and
z00 are of the formzw0 andzw00, for somez 2 Sr , w0

; w

00

2 6

�. Then,z0x andz00x, which belong to
the same line, namely Imz, are parallel.

Thus,zx only depends of the equivalence class ofz in F.6;F /, up to an additive constant.

3.2 Random Walks in Forgetful Monoids

Given a sequenceu1;u2; : : : of independent, identically distributed random variableswith values in
6, drawn with a Bernoulli distributionp, we define the left and right random walksXk andYk on
F.6;F /, respectively, byXk D uk � � � u1 andYk D u1 � � � uk, whereu denotes the equivalence class
of a wordu modulo�

F

.
The left random walk defines a denumerable Markov chain onF.6;F /, to which we specialize

the classical notions of accessibility, classes, recurrence, etc. In particular, whenp is positive, we say
that X 2 F.6;F / has accessto X0

2 F.6;F / if there is aZ 2 F.6;F / such thatX0

D Z X. A
maximal set of mutually accessible elements is aclass. A class whose elements only have access to
elements of the same class isfinal. For the right random walk, these notions are defined in a dualway.

The following result is not needed in the subsequent proofs,but it shall give an intuitive interpre-
tation to our main theorem (see Remark 4 below).

Proposition 3. If p is a positive Bernoulli measure, then

1. fw j w 2 Sr g is the unique final class for the left random walk Xk;

2. The final classes for the right random walk Yk are the one element setsfwg, wherew 2 Sr ;

3. The unique invariant measure of the left random walk is:�.w/ D p.w/ if w 2 Sr , and
�.w/ D 0 if w 2 St .
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14 Stéphane Gaubert , Dohy Hong

Assertions 1 and 3 can be restated in a more appealing way as follows. If we write a word from
right to left, drawing randomly each new letter of the word with the Bernoulli lawp, and if, as soon
as a prefixf 2 F appears at the left of the word, we erase the part of the word atthe right of f , we
obtain a Markov chain with set of recurrent statesSr , and the invariant measure, evaluated at a word
w 2 Sr , is obtained by taking the product of probabilities of the letters ofw.

Proof. Assertions 1 and 2 are clear. The restriction of the left random walk to its final class is clearly
positive recurrent, hence, the invariant measure exists and is unique. To prove Assertion 3, it remains
to show that� is normalized:

X

w2Sr

p.w/ D 1 ; (26)

and that it is invariant:

p.w/ D
X

a26; z2Sr ; az�
F

w

p.a/p.z/ 8w 2 Sr : (27)

We shall first derive (26) and (27) from results on codes, and then, we shall give a second, probably
more intuitive, probabilistic proof.

Let us recall some definitions from [8] (the reader should consult this book for more details, and,
in this proof, all references are relative to this source). AsubsetX � 6

� is a code if it generates
a free monoid, and it isprefix if for any two words inX, none is a prefix of the other. Prefix sets,
which are automatically codes, are calledprefix codes. By construction,Sr is a prefix code. We say
that a wordw 2 6

� is completablein X if uwv 2 X, for someu; v 2 6

�. A code X is thin if
there is one word not completable inX. For all f 2 F , f f is not completable inSr , thus,Sr is
thin. Theorem 5.10 of Chap. 1 states that

P

w2X p.w/ D 1 for all thin maximal codesX, andSr is
maximal by Cororollary 5.7 of Chap. 2. This shows (26). Ifw D au f , with a 2 6;u 2 6�

; f 2 F ,
(27) reduces top.w/ D p.au f/ D p.a/p.u f /, which is true sincep is Bernoulli. It remains to
check (27) whenw D ag 2 F , with a 2 6. Then, (27) becomes

p.a/p.g/ D
X

gu2Sr

p.a/p.g/p.u/ ;

i.e., after cancelingp.a/p.g/, 1 D

P

u2g�1
Sr

p.u/, whereg�1
Sr D fw 2 6

�

j gw 2 Sr g. But
Prop. 4.6 of Chap. 2 shows thatg�1

Sr is a maximal prefix code,g�1
Sr is thin sinceSr is thin,

and Prop. 3.8 of Chap. 2, which states that
P

w2X p.w/ D 1 for all thin maximal prefix codesX,
yields (27).

Let us now give a probabilistic proof. Eqn (26) just says thatan infinite word has a factor inF with
probability one (this is an elementary fact that we shall notprove). To prove (27), we recall that�.w/
is equal to the mean frequency of visit of statew by the left random walkXk. This frequency is the
same if one considers the right random walkYk, becauseXk andYk have the same distribution. Clearly,
the frequency of visit of statew for the right random walk will be 1 if the sequenceu1;u2; : : : begins
byw, and 0 otherwise. Thus, the mean frequency is�.w/ D p.w/�1C .1� p.w//�0 D p.w/.

3.3 Partition-like functions

To a probability measurep, and a setF � 6

�, we associate the partition function:

Z D

X

w2S

p.w/ : (28)
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Series Expansions of Lyapunov Exponents and Forgetful Monoids 15

We will sometimes writeZ.p/, or Z.F / to emphasize the dependence inp, orF . We shall see in
§4 that the convergence domain of the series expansion of theLyapunov exponent is controlled by the
convergence domain ofZ.p/. In this preliminary section, we show howZ.p/ can be computed using
standard methods from automata theory, when the probability measurep is rational, and when the set
of forgetful factorsF is a rational language.

First, we observe that whenF is rational,Sr ;St , andS , all are rational (because rational
languages are closed by product, star, and by the Boolean operations).

Next, to any languageL, we associate the characteristic function charL : 6�

! f0;1g, which is
defined by: charL.w/ D 1 if w 2 L, and charL.w/ D 0, otherwise. Classically [9, Chap. 3, Prop. 1],
a languageL is rational iff its characteristic function is recognized by an automaton with multiplicities
in the semiring of nonnegative integersN, i.e. iff there exists an integerK , a row vectorI 2 N1�K , a
column vectorT 2 N

K�1, and a morphism� : 6�

! N

K�K such that charL.w/ D I �.w/T. In the
sequel, we shall apply this construction whenL D S .

Last, we take a linear representation ofp, .�; P; �/. We denote by
 the tensor or Kronecker
product of matrices [38, Chap. 1,§ 1.9], and by� 
 P the map such that.� 
 P/.w/ D �.w/
 P.w/
for all w 2 6

�.
We call entries of a linear representation.�; P; �/ of dimensionr all the terms of the form

�i ; P.a/i j ; � j , where 1� i; j � r . If M is a matrix, we denote byjMj the matrix with entries
jMi j j, and�.M/ denotes the spectral radius ofM.

Proposition 4. If F is a rational language, and if p: 6�

! C has the linear representation
.�; P; �/, Z is a rational function of the entries of.�; P; �/, and the series(28) is absolutely conver-
gent provided that

�.

X

a26

�.a/
 jP.a/j/ < 1 :

The proof of this proposition relies on a very classical identity, that we state as a lemma since it
will be used several times in the sequel. IfP is any morphism from6� to a multiplicative monoid of
square matrices with entries inC , we define:

OP
def
D

X

a26

P.a/ : (29)

Lemma 2. If the spectral radius�. OP/ is strictly less than1, then, we have:
X

w26

�

P.w/ D .1� OP/�1
: (30)

Proof. We have
P

w26

�

P.w/ D
P

n�0

P

w26

n P.w/ D
P

n�0
OPn. This series is absolutely conver-

gent if�. OP/ < 1. In this case, its value is.1� OP/�1.

We next prove Prop. 4. We have

Z D

X

w2S

p.w/ D
X

w26

�

charS .w/p.w/

D

X

w26

�

I �.w/T�P.w/� D
X

w26

�

.I 
 �/.�.w/
 P.w//.T 
 �/

D .I 
 �/.1�\� 
 P/�1
.T 
 �/(31)
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16 Stéphane Gaubert , Dohy Hong

when�.\� 
 P/ < 1, thanks to Lemma 2. This shows that the partition functionZ is finite when the
spectral radius�.\� 
 P/ is strictly less than one, and thatZ is a rational function of the entries of
�; P; �, since the coefficients of the inverse of a matrix are rational in the entries of the matrix.

Example 3.Let 6 D fa;bg andF D fab2
g. Using for instance the algorithm of derivatives [16,

Chap. 5, Th. 2], we obtain the deterministic automaton depicted in Fig. 4, recognizingSr D 6

�ab2
�

6

�ab2
6

C. The states of this automaton are the nonempty languagesw

�1
Sr , wherew 2 6

�, and
w

�1L D fu 2 6�

j wu 2 Lg. There is an arc fromw�1
Sr to a�1

w

�1
Sr with labela if a�1

w

�1
Sr 6D

;. The initial node is 1�1
Sr D Sr , the final nodes are such that 12 w�1

Sr . Here,.ab2
/

�1
Sr is the

unique final node. SinceSt is composed of the words with are prefixes of words inSr but do not
belong toSr , to obtain an automaton recognizingS , we just have to mark all the states as final in
Fig. 4. Thus, the characteristic function charS admits the linear representation.I ; �; F/ such that:

p.a/�.a/ C p.b/�.b/ D

2

6

6

4

p.b/ p.a/ � �

� p.a/ p.b/ �

� p.a/ � p.b/
� � � �

3

7

7

5

I D
�

1 � � �

�

; T D

2

6

6

6

6

6

4

1

1

1

1

3

7

7

7

7

7

5

(the 0 entries are represented by dots). These matrices can be read directly on Fig. 4. For instance,
we have�.a/12 D 1 since there is one arc from node 1 to node 2 with labela in the automaton, and
I1 D 1 since 1 is the initial state. Assuming, for simplicity, that p is a Bernoulli measure, we get the
following rational expression forZ:

Z D I .1� p.a/�.a/ � p.b/�.b//�1T D

1C p.a/
.
p.b/

/

2

.1� p.a/ � p.a/p.b//.1� p.b//
:

1

a

b b
2 3

a
4

a
b

Sr D 6

�ab2
�6

�ab2
6

C

.6

�ab2
C b/� .6

�ab2
6

C

C b6C/ 1.6

�ab2
C b2

/� .6

�ab2
6

C

C b2
6

C

/

Figure 4: An automaton that recognizes6�ab2
�6

�ab2
6

C.

Remark 3.There is a backward/forward duality between the automaton in Example 3 and the defini-
tion of the Lyapunov exponents: in (6), words are read from right to left, but to recognizeSr andSt ,
we use automata that read words from left to right, as usual.
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4 Series Expansions of Lyapunov Exponents

4.1 Case of Stationary Probability Measures

All the results of this section need the following key assumption.

Memory Loss Property. There is a subsetF � 6

C, such that for all z2 F , the image of the map
y 7! zy;Rd

! R

d , is a line.

For the heap model of Fig. 1, the memory loss property is satisfied, withF D fcg. For more
general heaps models, the memory loss property holds, with amore complex setF , provided that the
set of pieces cannot be split in independent subsets [24, 12,19].

Our main theorem is the following.

Theorem 2 (Series Expansion Formula).For all stationary probability measures p on6�, such that
X

w2S

p.w/jwj < C1 ; (32)

the Lyapunov exponent is given by

0 D lim
n

Dn D

X

w2Sr

D.w/ : (33)

Proof. Since0 is by definition the Cesaro limit ofDn, and since a convergent sequence Cesaro con-
verges to the same limit, it suffices to prove the second equality in (33). Partitioning the sum in (13)
in sums over equivalence classes modulo�

F

(see Prop. 2), we have:

Dn D

X

w26

n�1

D.w/ D
X

z2S

X

w�

F

z
jwjDn�1

D.w/

D

X

z2St
jzjDn�1

D.z/

| {z }

An

C

X

z2Sr
jzj�n�1

 

X

jujDn�1�jzj

D.zu/

!

| {z }

Bn

:(34)

To compute the limit ofDn, we need an a priori estimate onD.w/. It will be useful to writeD.w/ D
P

a26 p.aw/ .a; w/, with

 .a; w/ D 'awx � 'wx :

Using the non-expansiveness and homogeneity of the mapsx 7! bx, with b 2 6, it is immediate to
show (by induction on the length ofw) that

jj'wxjj � .jwjK C K 0

/C kxk

whereK D maxb26 kb0k, andK 0

D k'0k. Hence,

jD.w/j �
X

a26

p.aw/j .a; w/j � p.w/..2jwj C 1/K C 2K 0

C 2kxk/ : (35)
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If the series (32) is convergent, then, evidently, the first term in the sum (34),An, tends to zero when
n !1. Let us now computeBn. We have

Bn D

X

z2Sr
jzj�n�1

 

X

jujDn�1�jzj

X

a26

p.azu/ .a; zu/

!

D

X

z2Sr
jzj�n�1

 

X

jujDn�1�jzj

X

a26

p.azu/ .a; z/

!

(by (25))

D

X

z2Sr
jzj�n�1

X

a26

p.az/ .a; z/ (by stationarity ofp)

D

X

z2Sr
jzj�n�1

D.w/ ;

which shows (33).

We next give a more explicit series expansion of0 whenp is rational.

Corollary 1. If p is a stationary rational probability measure with linear representation.�; P; �/,
we have, as soon as(32) is satisfied:

0 D

X

w2Sr

�Æ.wx/P.w/� : (36)

In particular, in the Bernoulli case:

0 D

X

w2Sr

Æ.wx/p.w/ : (37)

As a second corollary of Theorem 2, we obtain an estimate of the analyticity domain of the Lya-
punov exponent, for Bernoulli probability measures. In this case, we will identifyp with the vector
.p.a//a26 2 C 6 , and we denote byjpj the vector with entries.jp.a/j/a26 .

Corollary 2. If p is a Bernoulli probability measure, the Lyapunov exponent 0 can be extended to an
analytic function on the domain:

D D fp 2 C 6

j Z.jpj/ < C1g :

Proof. Formula (33) yields a representation of0 as a power series in the variablesp.a/, for
a 2 6, and we have seen in the proof of Theorem 2 that this power series is converging when
P

w2S

jp.w/jjwj < C1. An elementary result of complex analysis ([13, Chap. IV, Prop. 3.2])
shows that for alla 2 6, the partial derivative�p.a/Z.p/ exists whenp 2 D , and that it is given by
the absolutely convergent series:�p.a/Z.p/ D

P

z2S p.a/�1 p.z/jzja, wherejzja denotes the num-
ber of occurrences of the lettera in z. Hence, the sum

P

z2S p.z/jzj D
P

a26 p.a/�p.a/Z.p/ is
absolutely convergent inD , which shows that0 is analytic inD .

WhenF is rational, Prop. 4 shows thatZ is rational, and Corollary 2 yields an effective estimate: the
power series in (33) converges on any polydisc centered at 0 that does not contain a pole ofZ.

To extend Corollary 2 to the case of rational probability measures, we introduce an additional
notation: if .�0; P0

; �

0

/ is a r -dimensional complex valued linear representation, we denote by
.j�

0

j; jP0

j; j�

0

j/ the nonnegative linear representation defined byj�

0

ji D j�

0

i j, jP
0

j.a/i j D jP0

.a/i j j,
j�

0

ji D j�

0

i j (we warn the reader thatjP0

.w/j 6D jP0

j.w/ in general).
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Corollary 3. If p is a stationary rational probability measure with linear representation.�; P; �/,
the Lyapunov exponent0 can be extended to an analytic function of the entries of.�; P; �/ on the
domain:

D D f.�; P; �/ j
X

w2Sr

j�jjPj.w/j�j < C1g

� f.�; P; �/ j �. \� 
 jPj/ < 1g :(38)

Proof. The proof is identical to that of Corollary 2, the only new ingredient being the inclusion in (38),
which is provided by Prop. 4.

Remark 4.Formula (37) is a special case of Furstenberg’s cocycle formula (21). Indeed, we get a
cocycle representation ofw 7! 'wx by taking: S D F.6;F /, equipped with the action6�

�

S ! S .u; v/ 7! uv and the cocycle�.u; v/ D 'uvx � 'vx (these quantities are independent of
the representativev of v); the equivalence class of the unit word as initial state; and the constant
function$.v/ D 'x as output map. Prop. 3 shows that the underlying Markov chainon S, which
coincides with the left random walk onF.6;F /, has the unique invariant measure�.w/ D p.w/ for
all w 2 Sr . Then, (37) coincides with (21).

We conclude this section by mentioning two consistency properties. The first one shows that the larger
the set of forgetful factor is, the better the estimation of the analyticity domain of0 is (for simplicity,
we only consider the Bernoulli case).

Proposition 5. If F � F

0, and if p is Bernoulli, thenD.F / � D.F 0

/.

Proof. SinceSr � St6,
P

w2St
jp.w/j < C1 H)

P

w2Sr
jp.w/j �

P

z2St ;a26
jp.za/j �

.

P

z2St
jp.z/j/.

P

a26 jp.a/j/ < C1. Hence,Z.jpj/ < C1 if, and only if,
P

w2St
jp.w/j <

1, SinceSt.F / D 6

�

� 6

�

F6

�, F � F

0

H) St .F / � St.F
0

/, which givesD.F / �
D.F

0

/.

The following corollary shows that our analyticity domainscontain the set of “real” probabilities,
perhaps up to boundaries.

Corollary 4. If F 6D ;, then,D.F / contains the set of positive Bernoulli probability measures.

Proof. By Prop. 5, it is enough to check this whenF is reduced to a single word: this is an elementary
exercise of calculus that we leave to the reader.

4.2 Case of Nonstationary Rational Probability Measures

To extend Theorem 2 to the case of non stationary rational probability measures, we recall some
properties of eigenprojectors. Theeigenprojectorfor an eigenvalue� of a matrixA is defined by

5 D

1

2i�

Z




.z� A/�1dz ; (39)

where the integral is taken over a circle
 containing only the eigenvalue� (see [33, Chap. II,§ 1.4]).
We say that� is semisimpleif there is no nilpotent term in the Jordan decomposition ofA for the
eigenvalue�, or equivalently, if� is a simple pole of.z� A/�1 (see [33, Chap. I,§ 5.4]). Then,

5 D lim
z!�

.z� �/.z� A/�1
: (40)
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Given a (nonnegative) linear representation.�; P; �/ of dimensionr of a rational probability measure
p, we say that the indexi 2 f1; : : : ; r g is accessible(resp. co-accessible) if there existsw 2 6

�

such that.�P.w//i 6D 0 (resp. .P.w/�/i 6D 0). We say that a linear representation istrim if all
the i 2 f1; : : : ; r g are both accessible and co-accessible. Clearly, ifi is not accessible, or not co-
accessible, the linear representation obtained by deleting columni of � and P, and rowi of P and
�, is still a linear representation ofp. Thus, there is no loss of generality in considering only trim
representations. We remark that a (nonnegative) linear representation is trim iff the following holds:

8i; j ; 9k; l ; .� OPk
/i 6D 0; and. OPl

�/ j 6D 0 : (41)

We shall use the following elementary observation. Recall that thePerron rootof a nonnegative matrix
is by definition its spectral radius, which is an eigenvalue associated to a nonnegative eigenvector, by
the Perron-Frobenius theorem [6].

Lemma 3. If .�; P; �/ is a (nonnegative) trim linear representation of a rationalprobability measure
p, then, the Perron root of the matrixOP is equal to1 and is semisimple. Besides, the eigenprojector
of OP for the eigenvalue1 is equal to:

5 D lim
N!1

PN
kD1

OPk

N
(42)

Proof. Sincep is a probability measure, we have:

1D
X

w26

n

p.w/ D �

X

w26

n

p.w/� D �

OPn
� : (43)

Using (41), we easily derive from (43) the existence ofK > 0 such that OPn
i j � K , for all i; j andn.

Then,

�.

OP/ D lim
n!1

k

OPn
k

1
n
D lim

n!1

sup
i j
.

OPn
i j /

1=n
� 1 :

But �. OP/ < 1 would imply that 1D �

OPn
� ! 0, a contradiction, which shows that�. OP/ D 1.

Moreover, since OPn
i j � K , the entries of the matrix.1 � q/.1 � q OP/�1 remain bounded by.1 �

q/
P

k�0 qk K D K whenq ! 1�. Thus,. OP� z/�1 has only a pole of order 1 atzD 1, which means

that 1 is semisimple. Then, the convergence of
PN

kD0
OPk

N is a consequence of (40), together with the
Tauberian theorem of Hardy and Littlewood, already used in the proof of Theorem 1.

We are now in position to state the analogue of Theorem 2 for rational nonstationary probability
measures.

Theorem 3. If .�; P; �/ is a (nonnegative) trim linear representation of a rationalprobability mea-
sure p such that�.\� 
 P/ < 1, then, the Lyapunov exponent exists, and it is equal to:

0 D

X

w2Sr

�Æ.wx/P.w/5� ; (44)

where5 denotes the eigenprojector ofOP for the eigenvalue1.
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Proof. In the non-stationary case, limn Dn does not exist, in general, but we shall prove that
limn n�1Sn D limn n�1

.D1C � � � C Dn/ does exist, when
P

w2S

p.w/ < C1. Using the decomposi-
tion in (34), we can write:

Sn D A0n C B0

n; whereA0n D A1 C � � � C An; B0

n D B1 C � � � C Bn :

The bound (35) shows thatAn tends to zero, hence,A0n=n tends to zero. ForB0

n, we can write,
from (34),

B0

n D

X

z2Sr
jzj�n�1

X

juj�n�1�jzj

X

a26

�P.azu/� .a; zu/

D

X

z2Sr
jzj�n�1

X

juj�n�1�jzj

X

a26

�P.az/P.u/� .a; z/

D

X

z2Sr
jzj�n�1

X

a26

�P.az/ .a; z/.
X

juj�n�1�jzj

P.u//�

D

X

z2Sr
jzj�n�1

X

a26

�P.az/ .a; z/.1C OP C � � � C

OPn�1�jzj
/� :

If �.\� 
 P/ < 1, then, using Lemma 2 and arguing as in the proof of Corollary2, we get that the
(nonnegative) power series

P

w2S

P.w/jwj is convergent. Sincen�1
.1C OP C � � � C

OPn�1�jzj
/ !

5, and since
P

a26 P.az/ .a; z/ D Æ.z/, by a dominated convergence argument,n�1B0

n !

P

z2Sr
�Æ.zx/P.z/5�.

Remark 5.Theorem 3 implies in particular that the Lyapunov exponent (7) exists under the memory
loss assumption, even if the probability measurep is not stationary, provided that it is rational.

Remark 6.Theorem 3 yields the following local analyticity result. Let � D .�1; : : : ; �m/ 2 C
m and let

.�

�

; P
�

; �

�

/ denote a linear representation whose entries are analytic functions of the�i , near� D 0,
with �0, P0, and�0 nonnegative, and�.\� 
 P0/ < 1. Let us assume that 1 is a simple eigenvalue of
P0. Then, by classical results of perturbation theory [33, Chap. II,§ 1.4], there is a neighborhoodV of
0 such that there is a unique eigenvalue�

�

of OP
�

, depending analytically of�, such that�0 D 1. The
spectral projector for�

�

, 5
�

, is analytic onV . Moreover, by continuity of the Perron root, possibly
after restrictingV , we may also assume that�. \� 
 jP

�

j/ < 1 for all � 2 V , so that the sum (44)
extends0 analytically toV . (This result holds more generally when 1 is a semisimple eigenvalue of
OP, provided that the multiplicity of�

�

remains constant inV .)

5 Applications

5.1 The CaseF D fac
g under a Bernoulli Measure

The case whenF D fac
g, for some lettera 2 6, has been considered in detail in [3]. The importance

of this case stems from the max-plus spectral theorem which shows that ifa is a max-plus linear map,
rather generically — if the matrix ofa is irreducible and if its critical graph has a single strongly
connected component with cyclicity 1 — there is a power ofa whose image is a line (the max-plus
spectral theorem has been proved by various authors, see [1,39, 27, 5] for recent references). When
F D fac

g, it is easy to see that

Sr D .fa; : : : ;ac�1
gBC

/

�ac
[ .BC

fa; : : : ;ac�1
g/

�BCac
; (45)
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whereB D 6 n fag, and where, as usual, we writeac instead offac
g. Since the rational expression

in (45) is unambiguous [35], we obtainZr
def
D

P

w2Sr
p.w/ by replacing[ by C, concatenation by

product, and.�/� by .1� �/

�1 in (45). After simplification:

Zr D
p.a/c

1� .
P

b26nfag p.b//.1C p.a/ C � � � C p.a/c�1
/

: (46)

The argument of the proof of Prop. 5 shows thatZ and Zr have the same absolute convergence
domain. Thus, by specialization of Theorem 2, we obtain the following simple series expansion
(compare with [3]), which allows us to get the optimal estimate of the convergence radius.

Corollary 5. Assume thatF D fac
g for some a2 6, and c> 0. (i) The Lyapunov exponent is given

by

0 D

X

w2Sr

Æ.wx/p.w/ D lim
n!1

Dn ; (47)

for all Bernoulli measures p such that Z.p/ < C1, and0 can be extended analytically to the domain

.

X

b26nfag

jp.b/j/.1C jp.a/j C � � � C jp.a/jc�1
/ < 1 : (48)

(ii) In particular, when6 D fa;bg, the Taylor series of0, seen as a function of p.b/, has convergence
radius2

1
c
� 1, and this bound is tight.

Proof. Part (i) of the theorem readily follows from Theorem 2, together with(46). To prove part
(ii) , we write as 1� F.p/ the denominator of (46). The Taylor series of0 converges absolutely
at any p.b/ such that.p.a/ D 1 � p.b/; p.b// lies in the domainF.jpj/ < 1. SinceF.jpj/ D
jp.b/j.1C j1� p.b/j C � � � C j1� p.b/jc�1

/ � jp.b/j.1C 1C jp.b/j C � � � C .1C jp.b/j/c�1
/, a

sufficient condition forF.jpj/ < 1 is

jp.b/j

�

.1C jp.b/j/c � 1

jp.b/j

�

D .1C jp.b/j/c � 1< 1 ;

which is the case ifjp.b/j < 2
1
c
� 1 D

p

2� 1. Whenc D 2, the optimality of the bound 2
1
c
� 1

is clear from Example 2, since in this case,0 has a pole atp.b/ D 1�
p

2 (see Formula (22)). The
optimality of the bound, for a generalc, is shown by Example 4 below.

Example 2 shows that substitutingp.a/ D 1 � p.b/ in the power series (33), or more generally,
looking for Taylor series expansion, is not always a good thing to do: here the series (33), seen as a
series inp.a/; p.b/, converges whenjp.b/j.1C jp.a/j C � � � C jp.a/jc�1

/ < 1, it is easy to sum, and
its convergence domain contains the physically interesting domainp.b/ 2 [0;1[, p.a/ D 1� p.b/,
whereas the Taylor series of0, seen as a function ofp.b/, which is obtained by substitution of
p.a/ D 1� p.b/, is divergent atp.b/ D 2

1
c
� 1.

Example 4.For a givenc � 2, we consider the max-plus linear mapsa;b associated to the.cC 1/�
.cC 1/ matrices

A D

0

B

B

B

B

B

B

B

B

B

�

1 1 �1 � � � �1 0
:

:

: �1

:

:

:

:

:

:

:

:

: �1

:

:

:

:

:

:

:

:

: 1 �1

:

:

:

1
:

:

:

:

:

: 0
:

:

:

2 �1 � � � � � � �1 �1

2 �1 � � � � � � �1 1

1

C

C

C

C

C

C

C

C

C

A

;
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B D

0

B

B

B

B

B

B

B

B

�

1 � � � � � � 1 0 0
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

1 � � � � � � 1 0 0
2 � � � � � � 2 0 cC 1
2 � � � � � � 2 1 0

1

C

C

C

C

C

C

C

C

A

:

The underlying Markov chain, built as in Example 2, has thec C 1 states: .0; : : : ;0;1;1/T ,
.0; : : : ;0; c C 1;1/T , .0; : : : ;0; c;1;1/T , .0; : : : ;0; c;0;1;1/T , : : : ,.0;0; c;0; : : : ;0;1;1/T ,
.0; c;0; : : : ;0;1;1/T , .c;0; : : : ;0;1;1/T ; its transition matrix is

M D

0

B

B

B

B

B

B

B

�

1� p.b/ p.b/ 0 � � � 0

p.b/ 0 1� p.b/
:

:

:

:

:

:

:

:

:

:

:

: 0
:

:

: 0

p.b/
:

:

:

:

:

:

:

:

: 1� p.b/
1 0 0 � � � 0

1

C

C

C

C

C

C

C

A

;(49)

it has the invariant measure

mD

1

2� .1� p.b//c
�

1 p.b/ p.b/.1� p.b// : : : p.b/.1� p.b//c�1
�

;

and the associated cocycle� is determined by the following vectors of dimensioncC 1:

�.a; �/ D

0

B

B

B

B

B

�

1
1
:

:

:

1
cC 1

1

C

C

C

C

C

A

; �.b; �/ D

0

B

B

B

B

B

�

1
cC 1
:

:

:

cC 1
cC 1

1

C

C

C

C

C

A

:

Using Formula (21), we get

0 D m[.1� p.b//�.a; �/ C p.b/�.b; �/] D
1C cp.b/� .1� p.b//c

2� .1� p.b//c
;

which has a pole at 1� 2
1
c .

5.2 Random Heaps of Pieces

To illustrate the representation formula (37), we generalize the heap model of Fig. 1, by takingd C 1
pieces with associated operators

a0x D .1C max
1�k�d

xk; : : : ;1C max
1�k�d

xk/
T
;

a j x D .x1; : : : ; x j�1;1C x j ; x jC1; : : : ; xd/
T
; 81� j � d

(for j > 0, the piece corresponding toa j occupies columnj , the piece corresponding toa0 occupies
all the columns, and all the pieces have height 1). We take' D t. Here,F D fa0g, and,

Æ.y/ D
X

1�i�d

p.ai /.tai y� ty/ D
X

i2arg maxj y j

p.ai / :
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For all I � f1; : : : ;dg, we setL I
D fw 2 fa1; : : : ;adg

�

j 8i; j 2 I ;8k 62 I ; jwji D jwj j > jwkjg D

fw 2 fa1; : : : ;adg
�

j arg maxj .w0/ j D I g, andZ I
D

P

w2L I p.w/. We have, by direct application
of Theorem 2, the following representation, which was obtained by independent means by Krob [34].

Proposition 6. The Lyapunov exponent of the above heap model is

0 D

X

I�f1;::: ;dg

Z I
.

X

i2I[f0g

p.ai // : (50)

5.3 Multiple Memory Loss Relations

Finally, we show the absolute convergence domainsZ.jpj/ < C1 associated to various finite sets
F (by Corollary 2, the Lyapunov exponent is analytic on these domains). We setz D p.b/, and
we represent<[z] and=[z] on thex and y axes, respectively, so that the segmenty D 0 andx 2

[0;1] represents the “real” probability region. The domains are obtained from Prop. 4, in the case of
Bernoulli measures over the alphabet6 D fa;bg. WhenF D fa2

g, the domain was already given in
Corollary 5. The case whenF D fab2

gwas considered in Example 3. For each of the other cases, it is
easy to write an unambiguous rational expression forSt orSr , from which the absolute convergence
domain ofZ can be obtained. We checked these computations using AMoRE [40] and MAPLE.

-1.5

-1

-0.5

0

0.5

1

1.5

y

-1 -0.5 0 0.5 1 1.5 2
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0
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F D fa2
g F D fa2

;b2
g

jzj.1C j1� zj/ < 1 j1� zjjzj < 1
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j1� zj.jzj C jzj2 C jzj3/ < 1 j1� zj.1C jzj/ < 1 andjzj < 1
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g
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