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Stephane.Gaubert@inria.fr

ABSTRACT
Min-max functions are dynamic programming operators of
zero-sum deterministic games with finite state and action
spaces. The problem of computing the linear growth rate
of the orbits (cycle-time) of a min-max function, which is
equivalent to computing the value of a deterministic game
with mean payoff, arises in the performance analysis of dis-
crete event systems. We present here an improved version
of the policy iteration algorithm given by Gaubert and Gu-
nawardena in 1998 to compute the cycle-time of a min-max
functions. The improvement consists of a fast evaluation
of the spectral projector which is adapted to the case of
large sparse graphs. We present detailed numerical experi-
ments, both on randomly generated instances, and on con-
crete examples, indicating that the algorithm is experimen-
tally fast.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory; G.4 [Ma-
thematical software]: Algorithm design and analysis

General Terms
Algorithms, Performance

Keywords
Policy iteration, repeated games, graph algorithms, max-
plus algebra, nonlinear harmonic functions

1. INTRODUCTION
We present an algorithm to solve a combinatorial game

with perfect information, which arises in several fields, in-
cluding performance evaluation of discrete event dynamic
systems.
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1.1 Description of the game
Let G = (V, E) denote a directed bipartite graph, in which

every arc (i, j) ∈ E has a weight, rij ∈ R. We assume
that every node is the tail of at least one arc. Two players,
“Max”, and “Min”, move a pawn on this graph, according
to the following rules. The pawn is initially at a given node
i0 ∈ V . The player who plays first, say Max, chooses an
arc (i0, i1) in E, moves the pawn from i0 to i1, and Min
pays ri0i1 to him. Then, Min chooses an arc (i1, i2) in E,
moves the pawn from i1 to i2, and pays ri1i2 to Max. The
game continues in this way, alternating the moves of Max
and Min. The reward of Max (or the loss of Min) after k
turns, if the trajectory is (i0, i1, . . . , i2k), is given by ri0i1 +
· · ·+ri2k−1i2k . We are interested in the reward (or loss) and
optimal strategies of the two players when the horizon of the
game (i.e., the number of turns) is large.
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Figure 1: Zero-sum deterministic game

To get the intuition of this problem, consider the example
of Fig. 1. The circles (resp. squares) represent the nodes
at which Max (resp. Min) can play. The bipartite nature
of the graph reflects the fact that the two players alternate
their moves. The initial node, “1”, is indicated by a double
circle. So, Max can initially move the pawn either to node 1′,
with reward −1, or to node 2′, with reward 7. Assume first
that Max moves (greedily) the pawn to node 2′, receiving
7. Then, Min may move the pawn to node 2, paying 6 to
Max. Now, Max must move the pawn to node 3′, receiving
0, and Min can move the pawn back to node 2, receiving
5 from Max. Hence, Min has a strategy ensuring her an
average win per turn of 5 if Max’s initial move is from 1 to 2′.



Assume now that Max’s initial move is from 1 to 1′, Then,

the circular sequence of moves 1
−1→ 1′

0→ 3
−2→ 4′

−3→ 1 ensures
to Min an average win per turn of (1 + 0 + 2 + 3)/2 = 3.
Max has no better option than moving from 3 to 4′, because
moving from 3 to 3′ would lead him again to the circuit
3′ → 2 → 3′, in which he looses 5 per turn, instead of 3. It
follows that Max minimal mean loss per turn is of 3.

The algorithm described in this paper allows one to solve
such games, for very large graphs. In the remaining part
of the introduction, we give additional motivation, present
the main technical ingredients of the algorithm, and give
references.

1.2 Cycle-time of min-max functions and limit
of the finite horizon game

We partition the set of nodes as V ={1, . . . , p}∪{1′, . . . , n′},
where 1, . . . , p denote the nodes in which it is Max’s turn to
play, and 1′, . . . , n′ denote the nodes in which it is Min’s
turn to play. Since both players alternate their moves, the
arcs of G are of the form (j′, i) or (i, j′) with 1 ≤ j ≤ n and
1 ≤ i ≤ p. We define the dynamic programming operators

g : Rp → Rn, gj(y) = min
(j′,i)∈E

rj′i + yi, ∀y ∈ Rp (1)

and

g′ : Rn → Rp, g′i(x) = max
(i,j′)∈E

rij′ + xj , ∀x ∈ Rn . (2)

We set:

f = g◦g′ .

Maps of this form are called min-max functions after the
work of Olsder [23] and Gunawardena [14].

For instance, the maps corresponding to the game of Fig. 1
are given by:

g(y) =

0BB@
(2 + y1) ∧ y3

(1 + y1) ∧ (6 + y2)
(9 + y1) ∧ (−5 + y2)
(−3 + y1) ∧ (5 + y3)

1CCA ,

g′(x) =

0@ (−1 + x1) ∨ (7 + x2)
x3

(−2 + x4) ∨ (11 + x3)

1A .

Here, ∨ and ∧ denote respectively the max and min opera-
tions.

In the sequel, it will be more convenient to analyse the
case in which Min plays first. The other case reduces to it
by changing the sign of payments and exchanging the roles
of players.

Consider the version of the game in which the horizon is
N , and the initial state is j′, for some 1 ≤ j ≤ n. In this con-
text, we call (feedback) strategy a decision rule of one player,
depending only on the current state, and on the number of
turns remaining to play. For all pairs of strategies (σ′, σ)
of Max and Min, let Rj,N (σ′, σ) denote the corresponding
reward of Max after N turns. The value of the game in
horizon N , vN

j , is defined as the unique scalar γ such that
Max has a strategy σ̄′ ensuring him a win of at least γ, for
all strategies σ chosen by Min, and Min has a strategy σ̄
ensuring her a loss of at most γ, for all strategies σ′ of Max.
So

Rj,N (σ′, σ̄) ≤ vN
j ≤ Rj,N (σ̄′, σ), ∀σ′, σ .

Standard dynamic programming arguments show that the
value function of Max:

vN := (vN
j )1≤j≤n ∈ Rn

satisfies

vN = f(vN−1), v0 = 0 .

Define the cycle time of f to be the quantity

χ(f) := lim
k→∞

fk(0)/k ,

where fk denotes the k-th iterate of f . Thus, χj(f) is the
mean reward per time unit as the horizon tends to infinity,
if the initial state is j′.

The problem which motivates this paper is the following:

Problem 1. Given a min-max function f , compute χ(f).

The term cycle time originates from the discrete event
systems literature, where dynamical systems of the form
x(k) = f(x(k − 1)) occur: the entries of x(k) represent the
times of k-th occurrence of repetitive events. Hence, the
i-th coordinate χi(f) represents the average time between
consecutive occurrences of the event with label i. The prob-
lem of the existence of the cycle time of min-max functions
arose after the work of Gunawardena [14], motivated an ear-
lier work of Burns [4] concerning the performance analysis
of asynchronous digital circuits. Some problems of schedul-
ing with no wait, and some problems of feedback synthesis
for discrete event systems [20] can be reduced to max-plus
linear equations, which reduce to fixed point problems for
min-max functions, see Section 4.3.

1.3 Invariant half-lines
Before showing how Problem 1 can be solved, we need

the notion of invariant half-line. Kohlberg [21] showed that
any map f from Rn to Rn which is piecewise affine and
nonexpansive in some norm admits an invariant half-line
(on which it acts by translation), meaning that there exist
vectors v, η ∈ Rn such that

f(v + tη) = v + (t + 1)η, (3)

for all scalars t large enough.
This implies in particular that if f is a min-max function,

then, χ(f) exists and

χ(f) = η .

Indeed, it can be checked that min-max functions are non-
expansive in the sup-norm, meaning that ‖f(x)− f(y)‖∞ ≤
‖x − y‖∞. Hence, the existence and the value of the limit
limk→∞ fk(x)/k are independent of the choice of x ∈ Rn.
Taking x = v + tη, with t sufficiently large, we deduce that
χ(f) = η. In this paper, we solve the following problem,
which is more precise than Problem 1.

Problem 2. Compute an invariant half-line of a given min-
max function.

Note that in discrete event systems problems, the invari-
ant half-line is of independent interest: it can be interpreted
as a stationary schedule.



1.4 Policy iteration algorithm for determinis-
tic games

The proof of Kohlberg [21], or the proof of the more gen-
eral results of Bewley and Kohlberg [2], rely in essence on
quantifier elimination arguments. Different methods must
be developed to obtain practicable algorithms.

Gaubert and Gunawardena [13], extending an earlier work
of Cochet and the same authors [8] in a special case, pro-
posed an algorithm to compute χ(f). This algorithm uses
the idea of policy iteration, i.e., of iteration in the space of
strategies of one player.

Assume first that Min fixes a feedback stationary strategy
σ, meaning that her decision depends only on the current
state and is independent of the time. So, the strategy σ can
be identified as a map from {1′, . . . , n′} to {1, . . . , p}, that
we still denote by σ, assigning to each of the nodes 1′, . . . , n′

one node σ(i′) such that (i′, σ(i′)) ∈ E. Once Min’s strategy
is known, Max must solve a one player game, the dynamic
programming operator of which, denoted by f (σ), is given
by:

f
(σ)
i (x) = ri′σ(i′) + max

(σ(i′),j′)∈E
rσ(i′),j′ + xj . (4)

Maps of this form are called max-plus linear maps. Comput-
ing an invariant half-line of a max-plus linear map is a much
simpler problem [6], which essentially reduces to computing
the maximal circuit mean in a digraph.

In a nutshell, the policy iteration algorithm of [13] con-
structs a sequence of strategies and associated invariant half-
lines with the property that at every step, the cycle time
χ(f (σ)) and χ(f (π)) of the old and new strategies σ and π
satisfy:

χ(f (π)) ≤ χ(f (σ)) . (5)

The algorithm stops when the invariant half-line of the cur-
rent strategy is an invariant half-line of f . If the inequal-
ities (5) are always strict, the same strategy cannot be se-
lected twice, and since the total number of (feedback, sta-
tionary) strategies is finite, the algorithm must terminate.

The difficulty stems from degenerate iterations, in which
the equality holds in (5). Naive implementations of policy
iteration, in which degenerate iterations are not properly
handled, can lead the algorithm to cycle.

This difficulty is solved in [8, 13], where it is shown that
there exists a canonical choice of an invariant half-line of the
map fσ, which guarantees that the algorithm terminates.
This choice relies on max-plus spectral theory: at each de-
generate iteration, the invariant half-line of f (π) is chosen to
be the image of the invariant half-line of f (σ) by the spectral
projector of f (π). The convergence proof relies on a discrete
max-plus analogue of the classical result of potential theory,
showing that a function which is harmonic in the usual sense
on a regular bounded domain of Rn is defined uniquely by
its trace on the boundary. The max-plus analogue of the
“boundary” is defined in terms of the nodes belonging to
circuits of maximal weight-to-length ratio (critical nodes).

One iteration of the algorithm of [8] takes a time O(nm),
where m is the number of arcs of G, plus the time needed to
apply a spectral projector to a given super-harmonic vector
if the iteration is degenerate. An explicit formula for the
spectral projector, due to Cohen, Dubois, Quadrat, and Viot
(see [9, 8]), is known. It would lead to an execution time of
O(n3) for every iteration of the algorithms of [8, 13], and it

requires a space O(n2). In this paper, we present a detailed
and improved implementation of the algorithm of [13]. Here,
the image of a given super-harmonic vector by the spectral
projector is computed in O(nm) time and O(n) space. This
allows us to solve large games. The proofs, which use the
ideas of [8, 13], will appear elsewhere.

We present detailed experiments, both on random and
concrete examples, showing that the algorithm is experi-
mentally fast.

For random sparse graphs, the number of iterations (num-
ber of strategies of the minimiser) turns out to grow sublin-
early with the dimension. In certain structured examples,
however, the number of iterations can be of order n. We
give the example of a pursuit-evasion game, in a room with
an obstacle, in which the number of iterations is of the order
of the diameter of the room.

It is an open question to determine whether or not the
algorithm runs in polynomial time. It is in fact an impor-
tant open problem to show that χ(f) can be computed in
polynomial time. There is an indication that the answer
to the latter problem may be positive, because Condon [10]
showed that decision problems for games of this nature are
in the complexity class NP ∩ co-NP. Note that χ(f) can be
computed in pseudo-polynomial time, as shown by Zwick
and Paterson [25].

1.5 Related works
To conclude this introduction, let us make additional com-

ments on the history of the problem, and mention other ref-
erences.

The problem of the existence of the cycle time is inti-
mately related with the problem of the existence of the value
for the associated infinite deterministic game with mean
payoff, in which the payment associated to an infinite trajec-
tory is the limsup of (ri0i1 + · · ·+ ri2k−1i2k )/k as k tends to
infinity. The value was shown to exist by Ehrenfeucht and
Mycielski [12]. In [15], Gurvich, Karzanov, and Khachiyan
gave an algorithm to compute the value of such games. They
mention the existence of a class of graphs for which the
number of iterations of their algorithm can be exponential,
although they report that the number of iterations grows
linearly with the dimension for random examples.

Another line of research concerns policy iteration. The
technique of policy iteration was invented by Howard [17],
to solve stochastic control problems. Hoffman and Karp [16]
generalised the idea to the case of stochastic games. Their
generalisation requires transition probabilities to be posi-
tive. Hence it does not apply to the case of determinis-
tic games. To our knowledge, the first application of pol-
icy iteration techniques to the latter case appeared in [8,
13]. Another policy iteration algorithm, inspired by the
ones of [8, 13] has been proposed by Cheng and Zheng [5]:
their algorithm differs from the one of [8] in the way that it
computes inductively the different coordinates of the cycle
time, starting from the largest one. Policy iteration tech-
niques for “parity games” (which reduce to a subclass of
mean payoff games) have been developed with motivations
from Model checking, see Vöge and Jurdziński [24]. See
also Costan et al. [11] for an application of policy iteration
techniques to the static analysis of programs. Finally, we
note that the question of the complexity of policy iteration
for games has recently received a considerable attention, see
Björklund, Sandberg, and Vorobyov [3] and Jurdziński, Pa-



terson, and Zwick [18]. No polynomial time algorithm is
currently known.

2. COMPUTING MAX-PLUS SPECTRAL
PROJECTORS

In this section, we present the max-plus analogues of some
results of potential theory, which will be needed to give an
improved implementation of the algorithm of [13].

2.1 Spectral projectors of max-plus linear op-
erators with zero cycle time

Let A = (Aij) ∈ (R ∪ {−∞})n×n denote a matrix with
at least one finite entry in every row. The max-plus linear
operator associated to A, also denoted by A, is the map from
Rn to Rn defined by:

x 7→ Ax, (Ax)i := max
1≤j≤n

Aij + xj .

In this section, we assume that χ(A) is zero, and show that
the image of a super-harmonic vector by the spectral projec-
tor of A can be computed in time O(nm) and space O(n).
This result will be extended to the case of a non-zero cycle
time in Section 2.2.

We denote by concatenation the composition of max-plus
linear operators. For all I, J ⊂ {1, . . . , n}, we denote by AIJ

the I×J submatrix of A. For all vectors x ∈ Rn, we denote
by xI the vector of RI obtained by restricting the map i 7→ xi

to I. We denote by ∨ the pointwise supremum of vectors or
matrices. Recall that the Kleene star of a max-plus linear
operator A is given by A∗ := I∨A∨A2∨· · · , where I denotes
the max-plus identity matrix (with 0 on the diagonal and
−∞ elsewhere), and where for all k ≥ 0, Ak denotes the
k-th iterate of the max-plus linear operator A. If χ(A) ≤ 0,
it is known [1, Th. 3.20] that A∗ = I ∨A∨A2 ∨ · · · ∨An−1.

We shall need the characterisation of the cycle-time of a
max-plus linear map.

Recall that to the matrix A is associated the digraph G(A),
with nodes 1, . . . , n, and with an arc from i to j with weight
Aij if Aij 6= −∞. (We warn the reader that the reverse
orientation of arcs is sometimes chosen in the literature.)
The weight of a path is defined as the sum of the weights
of its arcs. We say that a node has access to a circuit in
a digraph if there is a path from this node to a node of
this circuit. The weight-to-length ratio of a circuit i1 →
· · · → ik → i1 of the digraph of A is defined by (Ai1i2 +
· · ·+ Aiki1)/k. We denote by ρmax(A) the maximum of the
weight-to-length ratios of the circuits of the digraph of A.

Proposition 1 ([8, Prop. 1.3]). Let A ∈ (R∪{−∞})n×n

denote a matrix with at least one finite entry per row. Then,
χi(A) is the maximum of the weight-to-length ratios of all
the circuits of G(A) to which i has access.

When χ(A) = 0, we define the critical graph of A to be
the union of the set of circuits with weight 0 of G(A), which
are called the critical circuits, and we define the set C(A) of
critical nodes to be the set of nodes of the critical circuits.
We say that a vector u is super-harmonic, in the max-plus
sense, with respect to A, if Au ≤ u. We say that it is
harmonic if Au = u. The following key result, which is a
slightly more precise version of results in [8, Lemma 1.4]
and [13, Lemma 1], shows that there is a unique harmonic
vector which coincides with a given super-harmonic vector

on the set of critical nodes. The final part of this lemma
appeared in [7, Lemma 7], it is related to [5, Lemma 2].

Proposition 2. Let A ∈ (R ∪ {−∞})n×n denote a matrix
with at least one finite entry per row. Assume that χ(A) =
0. Let u ∈ Rn denote a vector such that Au ≤ u. Let
C := C(A) denote the set of critical nodes of A. Then,
there is a unique vector v such that Av = v and vC = uC . It
satisfies v ≤ u, and it is determined by vN = A∗NNANCuC .

Definition 1 (Spectral projector acting on super-har-
monic vectors). We denote by PA, and we call spectral
projector of the matrix A, the map sending a super-harmonic
vector u to the harmonic vector v defined in Proposition 2.

Proposition 2 admits the following algorithmic transla-
tion.

Algorithm 1 (Spectral Projector). Input : A matrix A ∈ (R∪
{−∞})n×n, with at least one finite entry per row, such that
χ(A) = 0, and a vector u ∈ Rn such that Au ≤ u. Output :
The unique vector v ∈ Rn such Av = v and vC = uC , where
C := C(A) denotes the set of critical nodes of A.

1. Compute the set of critical nodes C of A, let N :=
{1, . . . , n}\C denote the set of non-critical nodes, and
let |N | denote the number of non-critical nodes.

2. Compute the max-plus product b := ANCuC .

3. Compute the vectors z(k) defined inductively by

z(0) := b, z(k) = ANNz(k−1) ∨ b,

until k = |N | − 1 or z(k) = z(k−1).

4. Return the vector v such that vC = uC and vN = z,
which is such that Av = v.

Algorithm 1 takes a time O(nm) and a space O(n), where
m is the number of arcs of G(A). Its correctness follows from
Proposition 2, and from the correctness of the Ford-Bellman
algorithm. Note that computing A∗NNANCb is a “all sources-
single destination” shortest path problem, which could be
solved by other shortest path algorithms (instead of the
Ford-Bellman algorithm appearing in the third step).

Example 1. We first illustrate Algorithm 1 by a very sim-
ple example. A more complex illustration will appear in
Example 2 of Section 2.2. Consider the matrix

A =

„
−ε −1
−5 0

«
,

with 2 > ε > 0. and take u = (4, 2)T . Since Au = ((−ε +
4) ∨ 1, 2)T ≤ u, u is super-harmonic. The critical graph of
A consists of the circuit (2, 2), so C = {2} and N = {1}.
We have b = ANCuC = −1+2 = 1. Step 3 of the algorithm
defines the sequence consisting only of the vector z0 = 1,
since |N | − 1 = 0. Hence, the output of the algorithm is the
vector v = (1, 2)T which is harmonic. This example shows
that Algorithm 1 can be arbitrarily faster than the more
natural fixed point iteration method, which would compute
the nonincreasing sequence u(0) = u, u(1) = Au(0), . . .,
until u(k+1) = u(k). It is easy to see that the smallest k with
this property is the smallest integer not less than 3/ε, and
so, this alternative algorithm can be arbitrarily slow.



In order to apply Algorithm 1, we need to determine the
critical graph of A. For all vectors w ∈ Rn, define the satu-
ration graph Sat(A, w) to be the set of arcs (i, j) such that
(Aw)i = Aij + wj . The critical graph can be determined
thanks to the following result.

Proposition 3 ([1, Theorem. 3.98]). Suppose that A is
an n×n matrix with entries in R∪{−∞} such that every row
of A has at least one finite entry, and χ(A) = 0. Let w ∈ Rn

be an arbitrary super-harmonic vector. Then, the circuits
belonging to Sat(A, w) are precisely the critical circuits of
A.

The set of nodes belonging to the circuits of Sat(A, w) can
be computed in a time which is linear in the number of arcs
of Sat(A, w), by applying standard Tarjan-type depth first
search algorithms. Hence,

Corollary 1. Let A be as in Proposition 3. Then, the set
of critical nodes of A can be computed in linear time from
any super-harmonic vector of A.

Remark 1. Assume that A is as in Proposition 3. Then,
for any vector b ∈ Rn, the vector A∗b is super-harmonic.
Hence, a super-harmonic vector can be computed in O(nm)
time by the Ford-Bellman algorithm.

2.2 Spectral projectors acting on germs of af-
fine functions

To handle invariant half-lines, it is convenient to use germs
of affine functions at infinity, following [13]. Define the
equivalence relation ∼ on the set of functions from R+ to R,
which is such that u ∼ v if u(t) = v(t) for all t large enough.
A germ of affine function is an equivalence class for the re-
lation of ∼ containing an affine function. We denote by G
the set of germs of affine functions. The usual relations and
operations on functions trivially pass to germs. Hence, in
the sequel, we denote by the same symbol a function and its
germ, and we use the usual notation ≤, +,×, etc., for the
quotient relations or operations on germs. Denoting by ω
the equivalence class of the identity map, we can write any
germ of affine function as a + bω, where a, b ∈ R, meaning
the equivalence class of functions such that t 7→ a + bt for t
large enough. We call

`(u) := lim
t→∞

u(t)/t = b

the linear part of u. The notation ω is justified by the fact
that the maximum of the germs a + bω and a′ + b′ω corre-
sponds to the lexicographic maximum of the vectors (b, a)
and (b′, a′), For instance, max(100 + 3ω, 1 + 7ω) = 1 + 7ω.
So ω may be interpreted as a “sufficiently large number”.

Let u denote a function from R+ to Rn which is affine for
sufficiently large values of t. Since a min-max function f
is piecewise affine, the function f◦u coincides with an affine
function of t for sufficiently large t. It follows that f sends
Gn to Gn. The fact that u is an invariant half-line of f
can be written as f◦u = θ◦u, where θ is the shift operator,
defined by θ◦u(t) = u(t + 1).

If A is an arbitrary matrix with at least one finite entry
per row, we define the critical graph of A to be the union of
circuits γ of the digraph of G(A) such that the weight-to-
length ratio of γ is equal to χi(A), for any node i of γ. These
circuits are called the critical circuits, and their nodes are
called the critical nodes. When χ(A) = 0, we recover the

definitions of Section 2.1. We denote again by C(A) the set
of critical nodes of A.

We warn the reader that several nonequivalent definitions
of the critical graph are relevant when the digraph of A is
not strongly connected. In particular, in [8], the critical
graph is defined as the union of the circuits with weight-to-
length ratio ρmax(A). This yields a smaller critical digraph,
which is adapted to the max-plus eigenvector problem. The
present critical graph is adapted to the invariant half-line
problem, f(u) = θ◦u.

We extend the definition of the linear part ` to Gn: if
u ∈ Gn, `(u) denotes the vector with entries `(ui). In order
to characterise the invariants half-lines of a max-plus linear
map, we need the following elementary lemma.

Lemma 1. Let A ∈ (R ∪ {−∞})n×n denote a matrix with
at least one finite entry per row, and let η := χ(A). Then,

ηi = max
Aij 6=−∞

ηj . (6)

We denote by S := S(A) the set of arcs (i, j) which attain
the maximum in the right hand side of (6), for some 1 ≤
i ≤ n. We denote by AS the matrix such that

AS
ij =

(
Aij if (i, j) ∈ S

−∞ otherwise,.

and we define the matrix Ā such that

Āij = −χi(A) + AS
ij .

This definition is motivated by the following result.

Lemma 2. Suppose that A is an n× n matrix with entries
in R∪{−∞} such that every row of A has at least one finite
entry, and let η := χ(A). For all vectors v ∈ Rn, we have

A(v + ηω) = Āv + η(ω + 1) .

Proposition 4. Suppose that A is an n × n matrix with
entries in R ∪ {−∞} such that every row of A has at least
one finite entry, and let v, η ∈ Rn, Then, v + ηω is an
invariant half-line of A if and only if η = χ(A) and Āv = v.

The following result generalises Proposition 2 to the case
of max-plus operators with a non-zero cycle time.

Proposition 5 (Extension of the spectral projector
to germs of affine functions). Let A ∈ (R ∪ {−∞})n×n

denote a matrix with at least one finite entry per row. Let
u ∈ Gn be such that A◦u ≤ θ◦u and `(u) = χ(A). Then,
there is a unique w ∈ Gn such that A◦w = θ◦w, and ui = wi

for all i ∈ C := C(A). It satisfies w ≤ u, and it can be
determined as follows. Let us write u in the form v + ηω,
with v, η ∈ Rn. Then, w = z + ηω, where z = PĀv, and PĀ

is the spectral projector of Ā defined in Definition 1.

Definition 2 (Extension of the spectral projector).
We define the spectral projector of A extended to germs of
affine functions, to be the map u 7→ w, where u and w are
as in the previous proposition. We still denote this map by
PA.

Remark 2. Since PĀv can be computed in time O(nm) and
space O(n), it follows from Proposition 5 that if u ∈ Gn is
such that A◦u ≤ θ◦u and `(u) = χ(A), then, PAu can be
computed in time O(nm) and space O(n).



Example 2. Let

A =

0BB@
0 2 −∞ −4
1 −∞ −1 0
−7 −∞ 4 −∞
−∞ −∞ −∞ 3

1CCA
The graph of A has two strongly connected components,
U1 = {1, 2, 3} and U2 = {4}. We have ρmax(AU1U1) = 4 and
ρmax(AU2U2) = 3. Since there is a path from every node of
U1 to the unique node of U2, node 4, and since node 4 has
access only to itself, we deduce from Proposition 1 that

χ(A) = (4, 4, 4, 3)T .

The critical graph of A consists of the circuits 3 → 3 and
4 → 4. Hence, the set of critical nodes is C = {3, 4}. Let
v = (2, 1 − 5, −8)T , and consider the germ

u = v + χ(A)ω = (2 + 4ω, 1 + 4ω, −5 + 4ω, −8 + 3ω)T .

We have

Au = (3 + 4ω, 3 + 4ω, −1 + 4ω, −5 + 3ω)T

≤ θ◦u = (6 + 4ω, 5 + 4ω, −1 + 4ω, −5 + 3ω)T .

For instance, the first entry of Au is obtained from (Au)1 =
(0 + 2 + 4ω) ∨ (2 + 1 + 4ω) ∨ (−4− 8 + 3ω) = 3 + 4ω.

The graph S consists of the arcs (i, j) in G(A), with i, j ∈
U1 or i = j = 4 ∈ U2. So,

AS =

0BB@
0 2 −∞ −∞
1 −∞ −1 −∞
−7 −∞ 4 −∞
−∞ −∞ −∞ 3

1CCA
and

Ā =

0BB@
−4 −2 −∞ −∞
−3 −∞ −5 −∞
−11 −∞ 0 −∞
−∞ −∞ −∞ 0

1CCA
We have zN = Ā∗NN ĀNCvC , where vC = (−5, −8)T and

ĀNN =

„
−4 −2
−3 −∞

«
, ĀNC =

„
−∞ −∞
−5 −∞

«
The vector zN can be computed by applying steps 2 and 3
of Algorithm 1. We have

z(0) = b = ĀNCvC = (−∞, −10)T ,

z(1) = ĀNNz(0) ∨ b = (−12, −10)T

and since |N | = 2, the algorithm stops, returning

w := PAu = (−12 + 4ω, −10 + 4ω, −5 + 4ω, −8 + 3ω)T .

We know from Proposition 5, and it can be checked directly,
that

Aw = (−8 + 4ω, −6 + 4ω, −1 + 4ω, −5 + 3ω)T = θ◦w .

3. POLICY ITERATION ALGORITHM FOR
ZERO-SUM TWO PLAYERS DETERMI-
NISTIC GAMES WITH MEAN PAYOFF

3.1 The algorithm
We now present a variant of the policy iteration algorithm

of [13], in which a new evaluation of the spectral projector
for germs, using Proposition 5 and Algorithm 1, as well as
a simplification, are incorporated.

Recall that to any (feedback, stationary) strategy σ of

Min is associated the map f (σ) defined by (4). Similarly,

the map g(σ) from Rp to Rn is defined by

g
(σ)
j (x) = rj′σ(j′) + xσ(j′) ,

for j = 1, . . . , n, so that

f (σ) = g(σ)
◦g′ .

Algorithm 2 (Min-max policy iteration algorithm, see [13]).
Input : A weighted bipartite digraph, such that every node
is the tail of at least one arc. We denote by f the associated
dynamic programming operator, which is defined by as in
Section 1.2. Output : An invariant half-line of f , that is,
u ∈ Gn such that f◦u = θ◦u.

1. Initialisation. Select an arbitrary policy of Min, σ1.
Compute an invariant half-line of f (σ1), that is, u(1) ∈
Gn such that f (σ1)◦u(1) = θ◦u(1). Set k = 1.

2. Evaluate f◦u(k) ∈ Gn. If f◦u(k) = f (σk)◦u(k), u(k) is
an invariant half-line of f , stop.

3. Otherwise, we improve the policy, by selecting a strat-
egy σk+1 of Min such that

f◦u(k) = f (σk+1)
◦u(k) .

The strategy σk+1 is chosen so that it keeps the val-
ues of σk, whenever possible, meaning that σk+1(j

′) =

σk(j′) if fj◦u
(k) = f

(σk)
j ◦u(k).

4. Value determination. We compute an arbitrary invari-
ant half-line v ∈ Gn of f (σk+1). If `(v) 6= `(u(k)), we

set u(k+1) := v. If `(v) = `(u(k)), we say that the iter-

ation is degenerate, and we choose for u(k+1) the image
of the germ u(k) by the spectral projector of the map
f (σk+1) (Definition 2).

5. We increment k by one and go to step 2.

The correctness of the algorithm can be proved by com-
bining the arguments of the proof of Theorem 2.2 in [8] with
Proposition 5 above. We shall not give the proof here.

By comparison with the algorithmm of [13], Algorithm 2
incorporates the fast evaluation of the spectral projector
(Proposition 5 and Remark 2). Additionnaly, the policy im-
provement rule in step 3 has been slightly simplified, to make
the algorithm more transparent (unlike the computation of
the spectral projector, this modification does not seem to
have any significant effect on the speed of the method).

3.2 Illustration
Let us apply Algorithm 2 to the game of Fig. 1. We start

from the strategy σ1(i
′) = 1, i = 1, . . . , 4, which determines

the moves represented in bold on the following graph.
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The max-plus linear operator associated to σ1 is given by

f (σ1)(x) =

0BB@
(1 + x1) ∨ (9 + x2)

x1 ∨ (8 + x2)
(8 + x1) ∨ (16 + x2)
(−4 + x1) ∨ (4 + x2)

1CCA .

An invariant half-line of f (σ1) can be easily computed (see [6]
for details). We can take:

u(1) = (9 + 8ω, 8 + 8ω, 16 + 8ω, 4 + 8ω)T .

Now, in step 2, we evaluate g′◦u(1), and then f◦u1 = g◦g′◦u1:

g′◦u(1) = (15 + 8ω, 16 + 8ω, 27 + 8ω)T ,

f◦u(1) =

0BB@
(2 + 15 + 8ω) ∧ (27 + 8ω)

(1 + 15 + 8ω) ∧ (6 + 16 + 8ω)

(9 + 15 + 8ω) ∧ (−5 + 16 + 8ω)

(−3 + 8 + 8ω) ∧ (5 + 27 + 8ω)

1CCA=

0BB@
17 + 8ω
16 + 8ω
11 + 8ω
12 + 8ω

1CCA .

The terms which realise the minimum are underlined. We
have f3◦u

(1) < fσ1
3 ◦u(1), and so, we improve the strategy

(Step 3). We take for σ2 the unique strategy which realises
the minimum above, σ2(1

′) = σ2(2
′) = σ2(4

′) = 1, σ2(3
′) =

2. The next iterations are carried out in the same way. In
this example, all the iterations turn out to be nondegenerate.
We only show the graphs corresponding to the successive
policies, together with the vectors u(k):
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Iteration 2

9 + 8ω
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4 + 8ω

−5− 5ω
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Iteration 3

−2 + 3ω

−5− 5ω

3 + 3ω

6− 5ω
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Iteration 4

1 + ω

−5− 5ω

6− 5ω

−4 + ω
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Iteration 5

−5− 5ω

1− 3ω

6− 5ω

−3ω

Every entry u
(k)
i is indicated near node i′ at iteration k.

The algorithm terminates at Iteration 5, with the invariant
half-line of f which can be read on the graph:

v = (1− 3ω, 6− 5ω, −5− 5ω, −3ω)T .

This shows that χ(f) = (−3, −5, −5, −3)T , confirming the
initial analysis of Section 1.1.

4. EXPERIMENTAL RESULTS
We now present experimental results. We considered ran-

dom graphs, then a simple pursuit-evasion game, and finally,
a concrete problem arising in the control of discrete event
systems, which is taken from a work of Katz [20].

Let us now describe the details of implementation of Al-
gorithm 2. Invariant half-lines of max-plus linear maps were
computed using the policy iteration algorithm of [6] (which
is experimentally more efficient than the method based on
Karp’s algorithm [19]). We used floating point arithmetics,
so the equality tests in Algorithm 2 and in Algorithm 4.4
of [6] have to be understood up to a fixed ε parameter, which
was chosen to be ε := ε′ × (max(M ′, M) + 1) where

M ′= max
(i,j′)∈E

rij′ − min
(i,j′)∈E

rij′ , M = max
(j′,k)∈E

rj′k − min
(j′k)∈E

rj′k

and ε′ is a small constant (the real numbers were coded with
a double precision, and we took ε′ = 10−12).

The algorithm has been programmed in C++ , and com-
piled using the C++ compliant gcc version 3.3.3 without
using any optimisation option. The experiments have been
conducted on an Intel Pentium 4 processor at 3 GHz, with
1 GB of RAM. The operating system used was linux kernel
2.6.5-1.358.

4.1 Experiments on random graphs

4.1.1 Complete bipartite graphs
We tested the algorithm on complete bipartite graphs, in

which n = p. Such graphs have 2n nodes and m = 2n2 arcs.
The weights of the arcs were integers drawn at random with
the uniform distribution in the range [0, 1000] (we also made
tests with real weights, taken with the uniform distribution
in an interval, and obtained similar results). In order to
guarantee the reliability of the experiments, we used the
uniform random number generator “Mersenne twister” [22].

We denote by Nmin the number of iterations of Algo-
rithm 2, that is, the number of strategies chosen by Min
before the algorithm terminates. For instance, for the game
of section 3.2, Nmin = 5. For each dimension n from 1 to



1600, we tested a sample of 100 graphs. Fig. 2 represents
the number of iterations of Min, as a function of the dimen-
sion n. To appreciate the randomness of Nmin, we displayed
the average number, maximal number, and minimal value of
Nmin over the sample. The figure indicates that the number
of iterations grows very slowly with the dimension.
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Figure 2: Number of iterations of minimizer Nmin as
a function of n for complete bipartite graphs. The
red (top), green (middle), and blue (bottom) curves
represent respectively the maximum, average, and
minimum value of Nmin, computed on a sample of
100 graphs, for each dimension.

In order to estimate the execution time in a machine in-
dependent way, we counted the global number of iterations,
Nglob, which is the cumulated number of iterations of the
algorithm of [6] which is called by Algorithm 2 to compute
invariant half-lines, plus the cumulated number of iterations
of the Ford-Bellman algorithm which is called when com-
puting the spectral projector. Every global iteration takes
a time asymptotically proportional to m, so the total ex-
ecution time is asymptotically proportional to Nglob × m.
The global number of iterations Nglob is displayed in Fig. 3,
for the same samples as in Fig. 2. The execution time is
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Figure 3: Number of global iterations Nglob, as a
function of n. Same conventions as in Fig. 2.

shown in Fig. 4. We denote by Nspec the number of degen-
erate iterations, in which the routine computing the spectral
projector is called. Table 1 gives some values of the mini-
mal, average, and maximal value of Nmin, Nglob, and Nspec,
computed from the same set of experimental data as the one
used to produce the figures (in particular, the Min, Average,

Table 1: Experiments on complete bipartite graphs
Nodes Nmin Nglob Nspec

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
500 2 4.95 13 7 57.7 331 1 3.06 8
1000 2 7.55 18 7 128.91 479 1 5.02 17
1500 2 8.69 28 4 164.66 794 0 6.69 27
2000 2 12.06 35 7 238.28 1021 1 9.85 34
2500 2 18.64 52 7 378.22 1202 1 16.42 51
3000 2 22.07 62 7 318.78 1410 1 20.36 60

From To Step Size
2 5000 1

5100 50000 100
50500 200000 500
201000 400000 1000

Table 2: Step size for the experiments of Fig. 5–7.

and Max values in Table 1 refer to a sample of 100 graphs
for each value of n). A significant proportion of iterations
are degenerate.
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Figure 4: CPU time (in seconds) taken by the al-
gorithm as a function of n. Same conventions as in
Fig. 2.

4.1.2 Sparse bipartite graphs
We considered sparse random bipartite graphs, with n

nodes of each kind, such that every node has exactly 2 suc-
cessors. So the number of nodes is 2n, and the number of
arcs is 4n. The two elements set of successors of a given
node was drawn with the uniform distribution. We made
the number n vary as shown in Table 2, testing a sample
of 10 graphs for each value of n. The numbers of iterations
Nmin, Nglob, and the CPU time, are shown on Fig. 5–7. Typ-
ical values of Nmin, Nglob, and Nspec are given in Table 3.
This indicates that the growth of the number of iterations
is sublinear in n.

4.2 Cat and mouse in a room with an obstacle
In this section, we present experiments concerning a pur-

suit evasion game. Suppose there is a cat and a mouse in a
room. The following assumptions are made: 1) The mouse
(Min) wishes to minimise the negative of its distance to the
cat, and the cat (Max) tries to maximise the negative of its
distance to the mouse. This is modelled by assuming that
the payments occur only after the cat’s actions. Then, the
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Figure 5: Number of iterations of minimizer Nmin as
a function of n, for random sparse bipartite graphs
with outdegree 2. The red (top), green (middle),
and blue (bottom) curves represent respectively the
maximum, average, and minimum value of Nmin,
computed on a sample of 10 graphs, for each dimen-
sion.
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Figure 6: Number of global iterations Nglob as a
function of n, for random sparse bipartite graphs
with outdegree 2. Same conventions as in Fig. 5.

0 50000 100000 150000 200000 250000 300000 350000 400000
0

200

400

600

800

1000

1200

1400

1600

1800

Figure 7: CPU time (in seconds) as a function of n,
for random sparse bipartite graphs with outdegree
2. Same conventions as in Fig. 5.

Table 3: Sparse random bipartite graphs with out-
degree 2

Nodes Nmin Nglob Nspec

Min.Avg.Max. Min. Avg. Max. Min.Avg.Max.
500000 38 44.6 54 2632 4207.1 5611 2 3.9 6
1000000 46 48.5 52 4036 6378.1 9560 2 5.3 9
2000000 47 49.5 55 5255 7538.5 10174 3 4.6 7
3000000 50 53.2 57 5329 8419.5 13276 2 4.6 7
4000000 47 55.3 63 5396 8993.4 13283 1 4.2 7
5000000 51 55.2 63 7699 11237.6 14094 3 5.3 8
6000000 52 57.6 65 7155 12370.3 19617 2 5.2 10

mouse receives the negative of its distance to the cat. 2) The
mouse makes the first action, and then, the cat and mouse
alternate their actions. 3) An action consists of moving to
a neighbour place, or staying at the same place.

We considered a square room, of size ` × `, with ` even.
To make the game more interesting, we put an obstacle,
i.e., a zone to which both animals cannot gain access to.
(Without obstacle, the cat ultimately reaches the mouse.)
This is illustrated by the following example, in which ` = 4:

1 2 3 4
5 ob st 6
7 ac le 8
9 10 11 12

The following table gives the final distance (FD) between
the cat and mouse, as a function of their initial position (C
and M), assuming both animals move optimally. The set
of initial positions given in the table is exhaustive, up to
symmetry. We chose the distance induced by the sup-norm.

C M FD C M FD C M FD C M FD
1 1 0 2 1 0 3 1 1 4 1 2
1 2 1 2 2 0 3 2 1 4 2 2
1 3 2 2 3 1 3 3 0 4 3 1
1 4 2 2 4 1 3 4 0 4 4 0
1 5 1 2 5 1 3 5 2 4 5 3
1 6 3 2 6 2 3 6 1 4 6 1
1 7 2 2 7 2 3 7 3 4 7 3
1 8 3 2 8 3 3 8 2 4 8 2
1 9 2 2 9 2 3 9 3 4 9 3
1 10 3 2 10 3 3 10 3 4 10 3
1 11 3 2 11 3 3 11 3 4 11 3
1 12 3 2 12 3 3 12 2 4 12 2

We generated the bipartite graph modelling this game. The
number of nodes and the number of arcs are both of order `4.
Table 4 lists some of the experiments conducted for this case.
The CPU time does not include the time taken to generate
the bipartite graph. The number of iterations Nmin is of the
same order as the diameter of the room (i.e., it is of order

n1/4, where n is the number of nodes of the bipartite graph
representing the game).

4.3 TheAx = Bx problem
One motivation for the cycle time problem for min-max

functions is to solve systems of max-plus linear equations.
Indeed, if A and B are n × p matrices with entries in R ∪
{−∞}, the max-plus linear problem Ax = Bx can be rewrit-
ten equivalently as Ax ≤ Bx and Bx ≤ Ax or

xi ≤ min( min
j: Aji>−∞

(−Aji + max
k

Bjk + xk),

min
j: Bji>−∞

(−Bji + max
k

Ajk + xk)) .



Table 4: Cat and Mouse Problem
` Nmin Nglob Nspec CPU time (sec.)
4 5 26 2 0
6 11 141 8 0.09
8 20 396 15 0.97
10 24 654 19 4.55
12 28 938 22 13.75
14 28 1086 21 29.86
16 35 1615 28 80.88
18 39 2069 31 167.57
20 39 2363 31 289.66
24 48 3363 36 1015.11
30 55 4733 39 3123.41
36 69 7951 54 11274.94

This is a sub-fixed point problem of the form x ≤ f(x).
Under mild conditions (for instance, if both A and B have
at least one finite entry in each column and in each row),
the map f sends Rn to Rn, and so, it is a min-max function.
It is easy to see that Ax = Bx has a finite solution x if and
only if χ(f) ≥ 0. Indeed, if χ(f) ≥ 0, we can take x = v+tη,
where t 7→ v + tη is an invariant half-line of f , and t is large
enough. The algorithm was tested on the feedback synthesis
problem studied by Katz in [20], which leads to a system of
the form Ax = Bx with 58 unknowns and 40 equations.
The policy iteration algorithm took 3 iterations, in which
the spectral projector was called twice.
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