Neuvième réunion du groupe de travail

ALGÈBRES TROPICALES ...

GdR/PRC ALP et GdR/PRC Automatique sur le thème Systèmes linéaires positifs

Mercredi 15 Dec 1999.

salle U-V, (niveau -2, passage rouge), Departement de Mathematiques et d'Informatique, ENS, 45 rue d'Ulm, 75005 Paris

Nonnegative Realizations

Lorenzo Farina

Dipartimento di Informatica e Sistemistica Universita' di Roma ''La Sapienza'' Via Eudossiana, 18 00184 Roma, Italy

e-mail: farina@dis.uniroma1.it

Positive System: Definition

A positive system is a system in which the state variables are always positive (or at least nonnegative) in value.

D.G. Luenberger, Positive linear systems, Chapter 6 in: *Introduction to dynamic systems*, J. Wiley & Sons, New York, 1979

- Basically, the interest for such systems is motivated by the fact that state variables may have a physical meaning provided that they are nonnegative.
- With respect to the nonnegativity constraint, two approaches are possible:
 - only trajectories in the positive orthant are meaningful
 - the model is consistent, it is a **positive system**
- For discrete-time LTI homogeneous systems:

$$x(t+1) = Ax(t) \Leftrightarrow A \ge 0$$

• For **continuous-time** LTI homogeneous systems:

$$\dot{x}(t) = Ax(t) \Leftrightarrow A \geq_{e} \mathbf{0}$$

(i.e. all off-diagonal entries of A are nonnegative)

- In view the above definition of positive systems, the analysis reduce to that of nonnegative (or essentially nonnegative) matrices.
- Nonnegative matrices is the subject of many books and a huge number of results are available in the literature.
- In most cases, however, also the **input** and the **output** take nonnegative values
- For example, in population dynamics, the input may represent immigration and the output the total population
- Consequently, we shall consider the following definition

POSITIVE SYSTEMS

A positive system is a system in which the state, input and output variables are always positive (or at least nonnegative) in value.

• Questions arising when considering inputs and/or outputs (such as reachability, observability, realizability...) are the subject of research in positive systems theory

Examples of Positive Systems:

Age-Structured Population (Leslie Model)

- \bullet The time t is discrete and denotes the reproduction season
- The state variables x_i represent the number of females, at the beginning of year t, of age 1,2,...,n
- The ageing process of the population may be described by

$$x_{i+1}(t+1) = s_i x_i(t)$$
 $i = 1, ..., n-1$

where s_i is the survival rate at age i

• The reproduction process may be described by

$$x_1(t+1) = s_0(f_1x_1(t) + ... + f_nx_n(t))$$

where f_i is the fertility rate at age i

• The dynamic matrix, known as **Leslie matrix**, is of the form

$$A = \begin{pmatrix} s_0 f_1 & s_0 f_2 & \dots & s_0 f_{n-1} & s_0 f_n \\ s_1 & 0 & \dots & 0 & 0 \\ 0 & s_2 & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & s_{n-1} & 0 \end{pmatrix}$$

- The input to the Leslie system may represent immigration and the output the total population
- Since the s_i 's and f_i 's are positive then the Leslie systems are positive systems
- The estimated survival and fertility rates for the first ten age groups of four animals are reported next

	$egin{array}{c} s_0 \ f_1 \end{array}$	$\overset{s}{f_{_{2}}^{^{1}}}$	$egin{array}{c} s_{_2} \ f_{_3} \end{array}$	$egin{array}{c} s_{_3} \ f_{_4} \end{array}$	$egin{array}{c} s_{_4} \ f_{_5} \end{array}$	$egin{array}{c} s_5 \ f_6 \end{array}$	$egin{array}{c} s_6 \ f_7 \end{array}$	$egin{array}{c} s_{_7} \ f_{_8} \end{array}$	$egin{array}{c} s_{_8} \ f_{_9} \end{array}$	$egin{array}{c} s_{_9} \ f_{_{10}} \end{array}$
fish	6 •10 ⁻⁵	0.45	0.27	0.26	0.26	0.25	0.25	0.25	0.25 45000	0.25
bird	0.50	0.80	0.36	0.37	0.38	0.39	0.39	0.38	0.38	0.37
deer	0.70	0.92	0.48	0.49	0.48	0.42	0.28	0.25	0.22	0.20
squirrel	0.40	0.24	0.30	0.33	0.34	0.33	0.30	0.28	0.24	0.27

Examples of Positive Systems: Compartmental Models

- The time t is continuous
- There is a set of interconnected regions

the arrows indicate flow of material between regions (compartments)

- Each region is taken to contain a quantity of some material which passes from one compartment to another over time
- The compartments may correspond to actual entities (such as the bloodstream or gastrointestinal tract) or may represent only convenient mathematical fictions

- The major field of use of compartmental system analysis is pharmacokinetics and in tracer experiments
- Let x_i denote the amount of material in the *i*-th compartment. The mass balance equation is

$$\dot{x}_i(t) = \text{inflow rate}$$
 - outflow rate

which may be described by a first order dynamic system

$$\dot{x}_i(t) = f_{i0} + \sum_{\substack{j=1\\j\neq i}}^{n} \left(k_{ij} x_j(t) - k_{ji} x_i(t) \right) - k_{0i} x_i(t)$$

where k_{ij} is the mass flow rate to compartment i from compartment j, with subscript 0 denoting the environment

• Since the k_{ij} 's are positive, then compartmental systems are positive systems

Examples of Positive Systems: Hidden Markov Models

- Suppose a system can be described at any time t as being in one of a set of N distinct states $X_1,...,X_N$.
- ullet At regularly spaced discrete times, the system undergoes a change of state according to a set of probabilities associated with the state which may be described by a transition probability matrix A

$$\begin{split} &\Pi_{k+1} = A\Pi_k \\ &a_{ij} = \Pr \big(X_{k+1} = i \mid X_k = j \big) \end{split}$$

$$A = \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0.4 & 0.3 & 0.3 \\ 0 & 0.8 & 0.2 \end{pmatrix}$$

- Suppose the obsvervation is a probabilistic function of the state, *i.e.* the underlying stochastic process is not directly observable (it is hidden)
- \bullet The measurement process may be described by a transition probability matrix C

$$\sigma_k = C \Pi_k$$

$$c_{mi} = \Pr(Y_k = m \mid X_k = i)$$

• Since the transition probabilities are positive, then the hidden Markov models are positive systems

Examples of Positive Systems: Charge-Routing Networks

- A charge-routing network is a MOS integrated-circuit chip for discrete-time signal processing
- The admissible charge cells operations: storage, injection, transfer, splitting, addition, extraction
- It is possible to produce a current proportional to a weighted sum of the packet size using nondestructive sensing
- ullet Charge transfer is controlled by a clock whose period is divided into p equal phases

- Every cell in the network can be uniquely classified as
 - a source cell which receives a new charge input to the network
 - \bullet a $sink\ cell$ whose charge is released from the network
 - an internal cell that is neither source nor sink
- A charge-routing network may be described by a linear discrete-time dynamic routing scheme

$$x_{i+1}(t+1) = A_i x_i(t) + B_i y_i(t) w_{i+1}(t+1) = C_i x_i(t) + D_i y_i(t)$$
 $t = i \pmod{p}$

where x_i , y_i and w_i represent the size of the charge packets contained in internal, source and sink cells

• Since the charge transfer coefficients are nonnegative, a charge-routing network is a positive system

Examples of Positive Systems:

Basic Results on Nonnegative Matrices

• A nonnegative matrix A is reducible if it can be written, by some reordering of the state variable, as

$$A = \begin{pmatrix} B & \mathbf{0} \\ C & D \end{pmatrix}$$

where B and D are square matrices. Otherwise A is irreducible.

 \bullet Any nonnegative matrix A can be reduced, by a suitable reordering or the state variables, to a triangular block form

$$A = \begin{pmatrix} A_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ A_{21} & A_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \\ A_{s1} & A_{s2} & & A_{ss} \end{pmatrix}$$

where each block A_{ii} is square and irreducible.

- If A is nonnegative irreducible then:
 - 1. $\rho(A)$ is a simple positive eigenvalue and the corresponding eigenvector is strictly positive. Moreover, no other eigenvector is nonnegative
 - 2. if A has h eigenvalues of maximum modulus, then these numbers are distinct roots of $\lambda^h \rho^h = 0$
 - 3. the whole spectrum of A goes over into itself under a rotation of the complex plane by $2\pi/h$

Existence of a Positive Realization of LTI Discrete-time Systems: *Geometric Conditions*

• The reachability cone:

$$\mathcal{R}_{A,b} = \text{cone}(b, Ab, A^2b, \dots)$$

• The observability cone:

$$\mathcal{O}_{A,c^T} = \left\{ x : c^T A^{k-1} x \ge 0, k = 1, 2, \ldots \right\}$$

• A duality property holds

$$\mathcal{R}_{A,b}^* = \mathcal{O}_{A^T,b^T}$$
$$\mathcal{O}_{A,c^T}^* = \mathcal{R}_{A^T,c}$$

where $\mathcal{K}^* \doteq \{y : x^T y \ge 0, \forall x \in \mathcal{K}\}$

Theorem. $H(z) = c^{T}(zI - A)^{-1}b$ is positive realizable if and only if there exists a polyhedral convex cone \mathcal{P} such that

H. Maeda and S. Kodama, Reachability, observability and realizability of linear systems with positive constraints, *IECE Trans.* **63-A** (1980) 688-694 (in Japanese)

$$\bullet \ AP = PA_{+} \quad b = Pb_{+} \quad c_{+}^{T} = c^{T}P$$

with $\mathcal{P} = \operatorname{cone}(P)$, yields a positive realization

Existence of a Positive Realization of LTI Discrete-time Systems: *Input-Output Conditions*

Definition. A transfer function with nonnegative impulse response is *cyclic of index* r if its maximum modulus poles are a subset of those which are allowed eigenvalues of maximum modulus of a nonnegative matrix of size r, with r minimal. If r = 1, then it will be said to be *primitive*.

$$r = l.c.m.(2,6) = 6$$

• $h^{(0)}(k) = c^{(0)^T} A^{(0)^{k-1}} b^{(0)}$ cyclic of index $r^{(0)}$:

$$h^{(0,1)}(k) = h^{(0)}(1 + (k-1)r^{(0)})$$

$$h^{(0,2)}(k) = h^{(0)}(2 + (k-1)r^{(0)})$$

$$\vdots$$

$$h^{(0,r^{(0)})}(k) = h^{(0)}(r^{(0)} + (k-1)r^{(0)}) = h^{(0)}(kr^{(0)})$$

$$\downarrow \downarrow$$

$$A^{(0,1)} = \begin{bmatrix} A^{(0)} \end{bmatrix}^{r^{(0)}} \qquad b^{(0,1)} = b^{(0)} \qquad c^{(0,1)^T} = c^{(0)^T} \\ A^{(0,2)} = \begin{bmatrix} A^{(0)} \end{bmatrix}^{r^{(0)}} \qquad b^{(0,2)} = A^{(0)}b^{(0)} \qquad c^{(0,2)^T} = c^{(0)^T} \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ A^{(0,r^{(0)})} = \begin{bmatrix} A^{(0)} \end{bmatrix}^{r^{(0)}} \qquad b^{(0,r^{(0)})} = \begin{bmatrix} A^{(0)} \end{bmatrix}^{r^{(0)}-1}b^{(0)} \qquad c^{(0,1)^T} = c^{(0)^T}$$

- $n^{(0,i_0)} < n^{(0)} \Rightarrow$ finite number of levels
- It's a tree-like structure ...

$$H^{(0)}(z)$$
 $\swarrow \qquad \downarrow \qquad \searrow$
 $H^{(0,1)}(z) \qquad H^{(0,2)}(z) \qquad H^{(0,3)}(z)$

... having primitive leaves

Example.

$$H^{(0)}(z) = \frac{2z^5 + 2z^4 - 1.75z^3 - z^2 - 0.25z - 0.0625}{z^6 - z^4 - 0.0625z^2 + 0.0625}$$

$$H^{(0,1)}(z) = \frac{2z + 0.25}{z^2 - 0.0625} \qquad H^{(0,2)}(z) = \frac{2z^2 - z - 0.0625}{z^3 - z^2 - 0.0625z + 0.0625}$$

$$H^{(0,1,1)}(z) = \frac{2}{z - 0.0625}$$
 $H^{(0,1,2)}(z) = \frac{0.25}{z - 0.0625}$

• H(z) primitive $\Leftrightarrow \rho_{H(z)}$ unique (possibly multiple)

Theorem. If

- (i) $h(k) \ge 0$
- (i) $h(k) \ge 0$ (ii) H(z) is primitive

then H(z) is positively realizable.

B.D.O. Anderson, M. Deistler, L. Farina and L. Benvenuti, Nonnegative realization of linear systems with nonnegative impulse response, IEEE Trans. CAS-I 43 (1996) 134-142

• The theorem has been also extended in [Anderson et al., 1996] to the case in which

$$\lim_{k \to \infty} \inf \rho_{H^{(0)}(z)}^{-k} h^{(0)}(k) > 0 \Longrightarrow \text{primitivity of } H^{(0,i_0)}(z)$$

$$\updownarrow$$

$$\lim_{k \to \infty} \frac{c^{(0)^T} \left[A^{(0)} \right]^{i + (k-1)r^{(0)}} b^{(0)}}{\left\| c^{(0)^T} \left[A^{(0)} \right]^{i + (k-1)r^{(0)}} b^{(0)} \right\|} > 0, \quad \forall i$$

• The proof is constructive!

Theorem. H(z) is positively realizable if and only if

(i)
$$h^{(0)}(k) \ge 0$$

(ii) $H^{(0,i_0,i_1,...,i_q)}(z)$ are cyclic

L. Farina, On the existence of a positive realization, $Systems\ \&\ Control$ Letters 28 (1996) 219-226

• Condition (ii) is equivalent to primitivity of the leaves

Corollary. If

- (i) $h(k) \ge 0$
- (ii) each pole has a polar angle which a rational multiple of π .

then H(z) is positively realizable

Example. (reprise)

$$H^{(0)}(z) = \frac{2z^5 + 2z^4 - 1.75z^3 - z^2 - 0.25z - 0.0625}{z^6 - z^4 - 0.0625z^2 + 0.0625}$$

$$H^{(0,2)}(z) = \frac{2z^2 - z - 0.0625}{z^3 - z^2 - 0.0625z + 0.0625}$$
$$H^{(0,1,1)}(z) = \frac{2}{z - 0.0625}$$
$$H^{(0,1,2)}(z) = \frac{0.25}{z - 0.0625}$$

$$F_{+}^{(0,2)} = \begin{pmatrix} 0 & 0.0625 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} g_{+}^{(0,2)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} h_{+}^{(0,2)} = \begin{pmatrix} 2 \\ 1 \\ 0.9375 \end{pmatrix}$$

$$F_{+}^{(0,1,1)} = 0.0625$$
 $g_{+}^{(0,1,1)} = 1$ $h_{+}^{(0,1,1)} = 2$

$$F_{+}^{(0,1,2)} = 0.0625$$
 $g_{+}^{(0,1,2)} = 1$ $h_{+}^{(0,1,2)} = 0.25$

$$A_{+}^{(0,2)} = \begin{pmatrix} 0 & 0 & 0 & 0.0625 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} b_{+}^{(0,2)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad c_{+}^{(0,2)} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0.9375 \end{pmatrix}$$

$$A_{+}^{(0,1,1)} = \begin{pmatrix} 0 & 0 & 0 & 0.0625 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad b_{+}^{(0,1,1)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} c_{+}^{(0,1,1)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}$$

$$A_{+}^{(0,1,2)} = \begin{pmatrix} 0 & 0 & 0 & 0.0625 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad b_{+}^{(0,1,2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} c_{+}^{(0,1,2)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0.25 \end{pmatrix}$$

$$A = \begin{pmatrix} A_{+}^{(0,2)} & 0 & 0 \\ 0 & A_{+}^{(0,1,1)} & 0 \\ 0 & 0 & A_{+}^{(0,1,2)} \end{pmatrix} b = \begin{pmatrix} b_{+}^{(0,2)} \\ b_{+}^{(0,1,1)} \\ b_{+}^{(0,1,2)} \end{pmatrix} c = \begin{pmatrix} c_{+}^{(0,2)} \\ c_{+}^{(0,1,1)} \\ b_{+}^{(0,1,2)} \end{pmatrix}$$

$$F = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0.0625 & 0 & 0 & 0 & 0.9375 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} g = \begin{pmatrix} 2 \\ 2 \\ 0.25 \\ 1 \\ 0 \\ 1 \end{pmatrix} h = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The Positive Realization Problem

(LTI SISO discrete-time systems)

 \bullet Let $\left\{ F,g,h^{T}\right\}$ be any minimal realization of a prescribed n-th order transfer function

$$W(z) = h^T (zI - F)^{-1} g$$

- (i) Is there a positive realization A_+ , b_+ , c_+^T (i.e. $A_+ \in \mathbb{R}_+^{N \times N}$, b_+ , $c_+ \in \mathbb{R}_+^N$) of some finite dimension N?
- (ii) If so, how may it be found?
- (iii) What is the minimal value for N over all realizations?
- (*iv*) Is there a set of realizations, and how are members of the set related, especially those of minimal dimension?

ullet The system $\left\{A_+,b_+,c_+^T\right\}$ is a *positive system*, in fact

$$x\left(k\right)\geq0$$
 and $y\left(k\right)\geq0$ for any $u\left(k\right)\geq0$, $k\geq0$

$$\updownarrow$$

$$A_+ \in \mathbb{R}_+^{N \times N}, b_+, c_+ \in \mathbb{R}_+^N$$

and $w(k) = h^T F^{k-1} g$, k = 1, 2, ... is nonnegative for all $k \ge 0$.

- From nonnegativity of the impulse response one can immediately derive the following:
- (1) One of the dominant poles of W(z), say λ_1 , is positive
- (2) The residue r_1 associated to λ_1 is positive
- A general sistematic finite procedure to check nonnegativity of w(k) is not known.

• Theorem. (B.D.O Anderson et al, 1996)

lf

- (1) The impulse response function $w\left(k\right)$ is nonnegative for all $k\geq0$
- (2) The dominant real pole of W(z) is unique (possibly multiple)

then W(z) has a positive realization.

- In this talk we shall give a partial answer to the question (iii), i.e. to the minimality problem.
- ullet We shall give necessary and sufficient conditions for a given third order transfer function W(z) with distinct positive real poles, to be realizable as a positive system of the same order.
- Such conditions are easily testable and the proof also provides a tool for constructing a positive realization when existing.

Preliminary Results

- A set K is said to be a *cone* provided that $\alpha K \subseteq K$ for all $\alpha \geq 0$.
- ullet If $\mathcal K$ contains an open ball of $\mathbb R^n$ then $\mathcal K$ is said to be *solid*.
- If $K \cap \{-K\} = \{0\}$ then K is said to be *pointed*.
- ullet A cone ${\cal K}$ which is closed, convex, solid and pointed is a *proper cone*
- ullet A cone $\mathcal K$ is said to be *polyhedral* if it is expressible as the intersection of a finite family of closed half-spaces.
- The notation $cone(v_1, \ldots, v_M)$ indicates the polyhedral closed convex cone consisting of all finite nonnegative linear combinations of vectors v_1, \ldots, v_M , the vectors v_i will be called the *generators* of the cone.

• Theorem. (Maeda and Kodama, 1980)

Let $\{F,g,h^T\}$ be any minimal realization of W(z). Then, W(z) has a positive realization if and only if there exists a polyhedral proper cone \mathcal{K} such that

(1) $F\mathcal{K} \subset \mathcal{K}$, i.e. \mathcal{K} is F-invariant;

$$\Leftrightarrow FK = KA_+, \quad A_+ \ge 0 \text{ with } \mathcal{K} = \text{cone}(K).$$

(2)
$$\mathcal{K} \subset \mathcal{O}$$

(3)
$$g \in \mathcal{K}$$

where

$$\mathcal{O} = \{x \mid h^T F^k x \ge 0, k = 0, 1, \dots \}$$

is called the observability cone.

• Conditions (1-3) will be called the *MK* conditions

ullet A positive realization $\{A_+,b_+,c_+^T\}$ with $A_+\in\mathbb{R}_+^{N imes N}$, b_+ , $c_+\in\mathbb{R}_+^N$ is obtained by solving

$$FK=KA_+, \qquad g=Kb_+, \qquad c_+^T=h^TK$$
 where $\mathcal{K}=\mathsf{cone}\,(K)$ has N generators, $K\in\mathbb{R}_+^{\mathbf{3}\times N}$

ullet Positive realizations of minimal order correspond to cones ${\cal K}$ with minimal number of generators satisfying the MK conditions.

ullet Consider the case of a third order transfer function with positive real poles $1=\lambda_1>\lambda_2>\lambda_3$

$$W(z) = \frac{1}{z-1} + \frac{r_2}{z-\lambda_2} + \frac{r_3}{z-\lambda_3}$$

and its Jordan canonical realization

$$F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \quad g = \begin{pmatrix} 1 \\ r_2 \\ r_3 \end{pmatrix} \quad h = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$W(z) = h^T (zI - F)^{-1} g$$

• One can prove that w.l.o.g.

(1)
$$\lambda_1 = 1$$

(2)
$$r_1 = 1$$

- It is possible to reformulate the *MK* conditions on a plane as follows
- (1) $F^*\mathcal{P} \subset \mathcal{P}$ where

$$F^* = \left(\begin{array}{cc} \lambda_2 & 0\\ 0 & \lambda_3 \end{array}\right)$$

(2)
$$\mathcal{P} \subset \{x_2, x_3 : 1 + \lambda_2^k x_2 + \lambda_3^k x_3\} := \mathcal{O}^*$$

(3)
$$g^* := \begin{pmatrix} r_2 \\ r_3 \end{pmatrix} \in \mathcal{P}$$

where $\mathcal{P} = \operatorname{conv}(P)$ is an F^* -invariant polytope in the $\{x_2, x_3\}$ plane

 \bullet Conditions (1-3) will be called the MK^* conditions

Our problem is:

ullet Given a third order transfer function with positive real poles $1=\lambda_1>\lambda_2>\lambda_3$

$$W(z) = \frac{1}{z-1} + \frac{r_2}{z-\lambda_2} + \frac{r_3}{z-\lambda_3}$$

find a positive realization with a state space of dimension 3.

ullet Given the set \mathcal{O}^* and the vector g^* , find an F^* -invariant polytope \mathcal{P} contained in \mathcal{O}^* and containing g^* in the $\{x_2,x_3\}$ plane

• We define a one parameter family of F^* -invariant politopes $P_M(\alpha)$ as follows

$$P_{M}(\alpha) = D \begin{pmatrix} -\frac{1-\alpha}{\lambda_{2}-\alpha} & -1 & -\frac{\lambda_{2}-\beta(\alpha)}{1-\beta(\alpha)} \\ \frac{1-\alpha}{\lambda_{3}-\alpha} & 1 & \frac{\lambda_{3}-\beta(\alpha)}{1-\beta(\alpha)} \end{pmatrix}$$

$$:= (v_1(\alpha), v_2, v_3(\beta(\alpha)))$$

where

$$D = \begin{pmatrix} \frac{1 - \lambda_3}{\lambda_2 - \lambda_3} & 0\\ 0 & \frac{1 - \lambda_2}{\lambda_2 - \lambda_3} \end{pmatrix}$$

with

$$\bar{\alpha} \leq \alpha < \lambda_3$$

$$\bar{\alpha} \!=\! \max\! \left\{ \! \frac{1\!+\lambda_2\!+\lambda_3\!-2\sqrt{\left(\lambda_2\!-\lambda_3\right)^2+\left(1\!-\lambda_2\right)\left(1\!-\lambda_3\right)}}{3},0 \! \right\}$$

and $\beta(\alpha)$ such that

$$\alpha^{2} + \beta(\alpha)^{2} + \alpha\beta(\alpha) +$$

$$+ (\alpha + \beta(\alpha))(1 + \lambda_{2} + \lambda_{3}) - \lambda_{2} - \lambda_{3} - \lambda_{2}\lambda_{3} = 0$$

with

$$\lambda_2 \leq \beta(\alpha) < 1$$

- $\bullet \ \mathcal{P}_{M}\left(\alpha\right):=\operatorname{conv}P_{M}\left(\alpha\right)$ is a *maximal* one parameter family of F^* -invariant politopes (triangles). fact:
- If $Q = \operatorname{conv} Q$ is a triangle such that

$$Q \supset \mathcal{P}_M\left(\alpha'\right)$$

for some α' and

(1) \mathcal{Q} is F^* -invariant (2) $\mathcal{Q} \subset \mathcal{O}^*$

(2)
$$\mathcal{Q} \subset \mathcal{O}^*$$

then

$$\mathcal{Q} \equiv \mathcal{P}_M \left(\alpha' \right)$$

- The family $\mathcal{P}_{M}\left(\alpha\right)$ describe a region \mathcal{P}_{M} as α varies in $\bar{\alpha}\leq\alpha<\lambda_{3}$
- If $g^* \in \mathcal{P}_M$ then, by construction, there exists an α' which defines a politope $\mathcal{P}_M\left(\alpha'\right)$ satisfying the MK^* conditions
- ullet If $g^* \in \mathcal{P}_M$, a third order positive realization $\{A_+,b_+,c_+^T\}$ is given by

$$A_{+} = K^{-1}FK, \qquad g = Kb_{+}, \qquad c_{+}^{T} = h^{T}K$$

with

$$K = \begin{pmatrix} 1 & 1 & 1 \\ P_M \left(\alpha'\right) \end{pmatrix}$$

ullet The zero pattern of $\{A_+,b_+,c_+^T\}$ is

$$A_{+} = \begin{pmatrix} * & 0 & * \\ * & * & 0 \\ 0 & * & * \end{pmatrix}, \quad b_{+} = \begin{pmatrix} * \\ * \\ * \end{pmatrix}$$

$$c_{+} = \left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ * \end{array}\right)$$

ullet The region \mathcal{P}_M is described by the set of inequalities

$$1+x_2+x_3\geq 0$$

$$(1-\bar{lpha})+(\lambda_2-\bar{lpha})\,x_2+(\lambda_3-\bar{lpha})\,x_3\geq 0$$

$$(1-lpha)^2+(\lambda_2-lpha)^2\,x_2+(\lambda_3-lpha)^2\,x_3\geq 0$$
 for all $lpha$ such that $\bar{lpha}\leq lpha<\lambda_3$

• Consequently,
$$g^*:=\begin{pmatrix} r_2 \\ r_3 \end{pmatrix} \in \mathcal{P}_M$$
 iff
$$1+r_2+r_3 \geq 0$$

$$(1-\bar{\alpha})+(\lambda_2-\bar{\alpha})\,r_2+(\lambda_3-\bar{\alpha})\,r_3 \geq 0$$

$$(1-\alpha)^2+(\lambda_2-\alpha)^2\,r_2+(\lambda_3-\alpha)^2\,r_3 \geq 0$$
 for all α such that $\bar{\alpha} \leq \alpha < \lambda_3$

• Theorem. Let

$$W(z) = \frac{r_1}{z - \lambda_1} + \frac{r_2}{z - \lambda_2} + \frac{r_3}{z - \lambda_3}$$

be a third order transfer function with distinct positive real poles $\lambda_1=1>\lambda_2>\lambda_3>0$. Then, W(z) has a third order positive realization if and only if

(1)
$$r_1 > 0$$

(2)
$$r_1 + r_2 + r_3 \ge 0$$

(3)
$$(1-\bar{\alpha}) r_1 + (\lambda_2 - \bar{\alpha}) r_2 + (\lambda_3 - \bar{\alpha}) r_3 \ge 0$$

(4)
$$(1-\alpha)^2 r_1 + (\lambda_2 - \alpha)^2 r_2 + (\lambda_3 - \alpha)^2 r_3 \ge 0$$

for all α such that $\bar{\alpha} \le \alpha \le \lambda_3$

where

$$\bar{\alpha}\!=\!\max\!\left\{\!\!\frac{1\!+\lambda_{2}\!+\lambda_{3}\!-2\sqrt{\left(\lambda_{2}\!-\lambda_{3}\right)^{2}+\left(1\!-\lambda_{2}\right)\left(1\!-\lambda_{3}\right)}}{3},0\!\right\}$$

• Theorem. Let

$$W(z) = \sum_{k=1}^{\infty} w_k z^{-k}$$

be a third order transfer function with distinct positive real poles $\lambda_1=1>\lambda_2>\lambda_3>0$. Then, W(z) has a third order positive realization if and only if the following conditions hold:

(1)
$$w_3 - (\lambda_2 + \lambda_3) w_2 + \lambda_2 \lambda_3 w_1 > 0$$

(2)
$$w_1 \geq 0$$

(3)
$$w_2 - \bar{\alpha}w_1 \geq 0$$

(4)
$$w_3 - 2w_2\alpha + w_1^2\alpha \ge 0$$
 for all α such that $\bar{\alpha} \le \alpha \le \lambda_3$

where

$$\bar{\alpha}\!=\!\max\!\left\{\!\!\frac{1\!+\lambda_{2}\!+\lambda_{3}\!-2\sqrt{\left(\lambda_{2}\!-\lambda_{3}\right)^{2}+\left(1\!-\lambda_{2}\right)\left(1\!-\lambda_{3}\right)}}{3},0\!\right\}$$

• Theorem. Let

$$W(z) = \frac{a_2 z^2 + a_1 z + a_0}{(z - 1)(z - \lambda_2)(z - \lambda_3)}$$

be a third order transfer function with distinct positive real poles $\lambda_1=1>\lambda_2>\lambda_3>0$. Then, W(z) has a third order positive realization if and only if the following conditions hold:

(1)
$$a_0 + a_1 + a_2 > 0$$

(2)
$$a_2 \geq 0$$

(3)
$$a_1 + (1 + \lambda_2 + \lambda_3 - \bar{\alpha}) a_2 \ge 0$$

(4) $(\alpha^2 - 2\gamma_1\alpha + \gamma_0) a_2 + (1 + \lambda_2 + \lambda_3 - 2\alpha) a_1 + a_0 \ge 0$ for all α such that $\bar{\alpha} \le \alpha \le \lambda_3$ where

$$\gamma_1 = 1 + \lambda_2 + \lambda_3$$

$$\gamma_0 = 1 + \lambda_2 + \lambda_3 + \lambda_2 \lambda_3 + \lambda_2^2 + \lambda_3^2$$

and

$$\bar{\alpha}\!=\!\max\!\left\{\!\!\frac{1\!+\lambda_{2}\!+\lambda_{3}\!-2\sqrt{\left(\lambda_{2}\!-\lambda_{3}\right)^{2}+\left(1\!-\lambda_{2}\right)\left(1\!-\lambda_{3}\right)}}{3},0\!\right\}$$

• Theorem. Let W(z) be a third order transfer function with distinct positive real poles $\lambda_1=1>\lambda_2>\lambda_3>0$ and let $\{F,g,h^T\}$ be any minimal realization of W(z). Then, W(z) has a third order positive realization if and only if the following conditions hold:

(1)
$$\lim_{k\to\infty} h^T F^k g > 0$$

(2)
$$h^T g \ge 0$$

(3)
$$h^T (F - \bar{\alpha}I) g \geq 0$$

(4)
$$h^T (F - \alpha I)^2 g \ge 0$$
 for all α such that $\bar{\alpha} \le \alpha \le \lambda_3$

where

$$\bar{\alpha} \!=\! \max\! \left\{ \! \frac{1\!+\lambda_2\!+\lambda_3\!-2\sqrt{(\lambda_2\!-\lambda_3)^2+(1\!-\lambda_2)\,(1\!-\lambda_3)}}{3},0 \! \right\}$$

Related references

- L. Farina and S. Rinaldi, *Positive Linear Systems: Theory and Applications*, Wiley-InterScience, New York, 2000
- L.Farina, A note on discrete-time positive realizations, *Systems & Control Letters* **22** (1994) 467-469.
- L. Farina, Necessary conditions for positive realizability of continuous-time linear systems, *Systems & Control Letters* **25** (1995) 121-124.
- L. Farina and L. Benvenuti, Positive realizations of linear systems, *Systems & Control Letters* **26** (1996) 1-9.
- B.D.O. Anderson, M. Deistler, L. Farina and L. Benvenuti, Nonnegative realization of a linear system with nonnegative impulse response, *IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications* 43 (1996) 134-142
- L. Benvenuti and L. Farina, Discrete-time filtering via charge routing networks, *Signal Processing* **49** (1996) 207-215.
- L. Farina, Minimal order realizations for a class of positive linear systems, *Journal of the Franklin Institute* **333B** (1996) 893-900.
- L. Farina, On the existence of a positive realization, Systems & Control Letters 28 (1996) 219-226
- L. Farina and L. Benvenuti, Polyhedral reachable set with positive controls, *Mathematics of Control, Signals and Systems* **10** (1997) 364-380
- L. Benvenuti and L. Farina, A note on minimality of positive realizations, *IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications*, **45** (1998) 676-678
- L. Benvenuti and L. Farina, An Example of how positivity may force realizations of 'large' dimension, *Systems & Control Letters*, *Systems & Control Letters* **36** (1999) 261-266.
- L. Benvenuti, L. Farina and B.D.O. Anderson, Filtering through combination of positive filters, *IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications*, **46** 1431-1440 (1999)
- L. Farina, Is a system representable as a compartmental system?, European Control Conference ECC97
 Bruxelles, 1997
- L. Benvenuti, L. Farina, B.D.O. Anderson and F. De Bruyne, Minimal discrete-time positive realizations of transfer functions with positive real poles, *International Symposium MTNS 98*, Padova, I, 1998
- L. Farina and M.E. Valcher, An algebraic approach to the construction of polyhedral invariant cones, *International Symposium MTNS* 98, Padova, I, 1998