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Positive System: Definition

A positive system is a system in which the state variables are

always positive (or at least nonnegative) in value.

D.G. Luenberger, Positive linear systems, Chapter 6 in: Introduction to dynamic

systems, J. Wiley & Sons, New York, 1979

Basically, the interest for such systems is motivated by the
fact that state variables may have a physical meaning

provided that they are nonnegative.

With respect to the nonnegativity constraint, two
approaches are possible :
* only trajectories in the positive orthant are meaningful

» the model is consistent, it is a positive system

For discrete-time LTI homogeneous systems:

2t +1) = Ax(t) = A=0

For continuous-time LTI homogeneous systems:
i(t) = Ax(t) « A=, 0

(i.e. all off-diagonal entries of A are nonnegative)




In view the above definition of positive systems, the analysis
reduce to that of nonnegative (or essentially nonnegative)

matrices.

Nonnegative matrices is the subject of many books and a

huge number of results are available in the literature.

In most cases, however, also the input and the output take

nonnegative values

For example, in population dynamics, the input may

represent immigration and the output the total population

* Consequently, we shall consider the following definition

POSITIVE SYSTEMS

A positive system is a system in which the state, input and

output variables are always positive (or at least monnegative)

i value.

e Questions arising when considering inputs and/or outputs
(such as reachability, observability, realizability...) are the

subject of research in positive systems theory




Examples of Positive Systems:
Age-Structured Population (Leslie Model)

e The time ¢ is discrete and denotes the reproduction season

 The state variables x; represent the number of females, at

the beginning of year ¢, of age 1,2,....,n

e The ageing process of the population may be described by
xi+1(t+1) :Sixi(t) 7::1,...,77/_1

where s; is the survival rate at age ¢

e The reproduction process may be described by
z,(t +1) = so(ﬁxl(t)+...+fnxn(t))

where f is the fertility rate at age ¢



e The dynamic matrix, known as Leslie matrix, is of the form

A =

Csofi Sofo
Os, 0
0o s,

o

0

SoJn-1 SoJnL

0
0

Sn—l

0 0

o U
o 1

* The input to the Leslie system may represent immigration

and the output the total population

e Since the s;’s and f’s are positive then the Leslie systems

are positive systems

e The estimated survival and fertility rates for the first ten

age groups of four animals are reported next

fish

bird

deer

squirrel

0 S L S 9 83 S 1 S5 86 87 88 Sq
1 f? f;& f4 fs f6 f7 f8 f9 flU
6:10° 0.45 0.27 0.26 0.26 0.25 0.25 0.25 0.25 0.25
5000 11000 18000 24000 31000 34000 41000 45000 46000
0.50 0.80 0.36 0.37 0.38 0.39 0.39 0.38 0.38 0.37
0.40 0.45 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.70 0.92 0.48 0.49 0.48 0.42 0.28 0.25 0.22 0.20
- 0.10 0.40 0.50 0.50 0.50 0.50 0.45 0.40
0.40 0.24 0.30 0.33 0.34 0.33 0.30 0.28 0.24 0.27
0.6 1.2 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.6



Examples of Positive Systems:

Compartmental Models
e The time ¢ is continuous

e There is a set of interconnected regions

I

the arrows indicate flow of material between regions

(compartments)

* Each region is taken to contain a quantity of some material

which passes from one compartment to another over time

* The compartments may correspond to actual entities (such
as the bloodstream or gastrointestinal tract) or may

represent only convenient mathematical fictions



The major field of use of compartmental system analysis is

pharmacokinetics and in tracer experiments

Let x; denote the amount of material in the i-th

compartment. The mass balance equation is
#,(t) = inflow rate - outflow rate

which may be described by a first order dynamic system

800 = fo+ 3 (g (0) = Ryan0) = K1)

where k;; is the mass flow rate to compartment 7 from

compartment j, with subscript 0 denoting the environment

k. k

e Since the k;;'s are positive, then compartmental systems

are positive systems



Examples of Positive Systems:
Hidden Markov Models

e Suppose a system can be described at any time ¢ as being in
one of a set of IV distinct states X,,...,X.

o At regularly spaced discrete times, the system undergoes a
change of state according to a set of probabilities associated
with the state which may be described by a transition

probability matrix A

M,,, = A,
a;; = Pr(Xk:ﬂ =i | X = j)

0.4 0.3
sunny cloudy rainy

06 04 oL
A=[04 03 03H
0 08 02



* Suppose the obsvervation is a probabilistic function of the
state, ¢.e. the underlying stochastic process is not directly
observable (it is hidden)

e The measurement process may be described by a transition

probability matrix C

o, =CIl,
e =Pr(Y, =m | X, =)

e Since the transition probabilities are positive, then the

hidden Markov models are positive systems



Examples of Positive Systems:

Charge-Routing Networks

A charge-routing network is a MOS integrated-circuit chip

for discrete-time signal processing

The admissible charge cells operations: storage, injection,

tran fer, splitting, addition, extraction

It is possible to produce a current proportional to a

weighted sum of the packet size using nondestructive sensing

Charge transfer is controlled by a clock whose period is

divided into p equal phases

\

phase 4
cells




e Every cell in the network can be uniquely classified as
* a source cell which receives a new charge input to the
network
* a stnk cell whose charge is released from the network

e an nternal cell that is neither source nor sink

A charge-routing network may be described by a linear

discrete-time dynamic routing scheme

$i+1(t +1) = Azﬂ?z(t) + Biyz-(t)

where z;, ¥, and w, represent the the size of the charge

packets contained in internal, source and sink cells

e Since the charge transfer coefficients are nonnegative, a

charge-routing network is a positive system

Examples of Positive Systems:



Fiber-optic filters

e

Hl(ZJ
3dB coupler - rciifieremial output
- detection
Hp (2)
+bias
!

input 1 [nominvertingl

—|photodiode |
output
input2 |inverting _[:]_
photodiode | T coupler

l

~-bias



Basic Results on Nonnegative Matrices

* A nonnegative matrix A is reducible if it can be written, by

some reordering of the state variable, as

B or
A‘Eg DI

where B and D are square matrices. Otherwise A is

irreducible.

* Any nonnegative matrix A can be reduced, by a suitable

reordering or the state variables, to a triangular block form

(A, O 0r
A — 5421 A22 0 E
D451 A82 ASS D

where each block A;; is square and irreducible.



e If A is nonnegative irreducible then:
1. p(A) is a simple positive eigenvalue and the
corresponding eigenvector is strictly positive. Moreover, no

other eigenvector is nonnegative

2. if A has h eigenvalues of maximum modulus, then these

numbers are distinct roots of A* —p" =0

3. the whole spectrum of A goes over into itself under a
rotation of the complex plane by 217h

120 €

180 0

240 300
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Existence of a Positive Realization of LTI

Discrete-time Systems: Geometric Conditions

e The reachability cone:

Rap = cone(b, Ab, A%, .. )




e The observability cone :

O, :{X:CTA"‘lxz 0, k :LZ,...}

A

o A duality property holds

O —
RA,b - OAT,bT
O —
OA CT - RT

A° ¢

where K~ :{y:xTyz 0, DXDIC}

Theorem. H(z)=c"(2 - A)*b is positive realizable if and only

1f there exists a polyhedral convex cone P such that

(i) ap o »
)R oroo

H. Maeda and S. Kodama, Reachability, observability and realizability of linear
systems with positive constraints, /ECE Trans. 63-A (1980) 688-694 (in Japanese)

e« AP = PA, b=Pb & =P

with P = cone(P), yields a positive realization




Existence of a Positive Realization of LTI

Discrete-time Systems: Input-Output Conditions

Definition. A transfer function with nonnegative impulse
response is cyclic of index r if its maximum modulus poles are
a subset of those which are allowed eigenvalues of maximum
modulus of a nonnegative matrix of size r, with r minimal. If

r = 1, then it will be said to be primitive .




« hO (k)= cO" A@ ) cyclic of index r:

(k)= h@ @+ (k -1)r @)
h©2(k) = h@ 2+ (k -1)r @)

'h(o,r“”)(k) = hO (@ + (k- 2)r @) = O (kr @)

L
A0 Z[p@] @ po1) — 0 0T = GO
A02) Z[p0]r?  102) = A0 02T = GO

A(O’r(O)) — [A(o)] r(0) b(O,r(O)) — [A(O)] r(o)—lb(O) C(O,l)T — C(O)T

e N <n@ O finite number of levels

e It's a tree-like structure ...

H©)(2)

/ ! N\
H©3(2) H©2)(z) H ©3)(2)

... having primitive leaves



Example.

HO)(2) = 27° +27* -1.752° - 7* - 0.252 - 0.0625

7% — 74 = 0.06252% + 0.0625




2z+ 025

27° — 7z— 00625

HO(2) = H'02)(Z) =
z? - 00625 (2 78 - 7° - 006252+ 00625
2 025
H (0L () = H012)() = 222
(2= 0625 (2)=> 0625
0 T ?le e S e
2r @ / 2r “\
1.5¢ 1.5¢
1t 1
T ® e e oo o 0
0 2 4 6 8 10 0 2 4 6 8 10
2 ° / 2r \
1.5¢ 1.5¢
1t 1t
0.5+ 0.5+
0 hd 90900009 Oi&—o—o—o—o—o—o—o—
0 2 4 6 8 10 0 2 4 6 8 10



 H(z) primitive - Py, unique (possibly multiple)

Theorem. [f

(i) hlk)

>0
(i) H(z) is primitive

then H(z) is positively realizable.

B.D.O. Anderson, M. Deistler, L. Farina and L. Benvenuti, Nonnegative realization
of linear systems with nonnegative impulse response, IFEFE Trans. CAS-I 43 (1996)
134-142

e The theorem has been also extended in [Anderson et al.,
1996] to the case in which

lelnf Py

0

kR )(k)>om primitivity of H(®)(z)

C(O)T [A(o)]i+(k—1)r(°) b(o)
C(O)T [A(O)]i+(k—1)r(°) b(o)

lim >0, Ui

— 00

e The proof is constructive!







Theorem. H(z) is positively realizable if and only if

(i) A'2(k) =0
(ii) H(O’io’il""’iq)(z) are cyclic

L. Farina, On the existence of a positive realization, Systems & Control Letters 28
(1996) 219-226

e Condition (ii) is equivalent to primitivity of the leaves

Corollary. If

(i) A(k)=0
(i) each pole has a polar angle which a

rational multiple of TL

then H(z) is positively realizable




Example. (reprise)

HO)(2) = 27° +27* -1.752° - 7* - 0.252 - 0.0625
7% — 74 = 0.06252% + 0.0625

2
(02)(.) 22— 2= 0.0625
H02)(2) 23— 22— 006252+ 0.0625

_ 2
~ z- 0.0625

H(O,l,l) ( Z)

025
HIO1(z) = Z— 0.0625




(03) L0 0.0625 OC (02 (10 ) [2 L
F+O’ :% 0 O% g+0’ = %h+07 :%

1 10 0 9375(
FO% = 00625 GO = plonn) - g
7% = 00625 G012 =1 o2 — o5

Y

“ 1
[]







The Positive Realization Problem

(LTI SISO discrete-time systems)

o Let {F,g, hT} be any minimal realization of a pre-
scribed n-th order transfer function

W(z)=hT (2I — F)71g

(i) Is there a positive realization Ay, by, cz (i.e.
AL € R]XXN, by, c+ € RJJ\Z) of some finite dimension
N7?

(if) If so, how may it be found?

(iiif) What is the minimal value for N over all realiza-
tions?

(iv) Is there a set of realizations, and how are mem-
bers of the set related, especially those of minimal
dimension?



e The system {A+,b+,c£} Is a positive system, in
fact

xz (k) > 0and y(k) >0 forany u(k) >0, k>0

)

NXN
Ap e RN by ep e RY

and w (k) = hTFF=1g k =1,2,... is nonnegative
for all £ > 0.

e From nonnegativity of the impulse response one can
immediately derive the following:

(1) One of the dominant poles of W (z), say Aq, is
positive

(2) The residue r1 associated to A; is positive

e A general sistematic finite procedure to check non-
negativity of w (k) is not known.



e Theorem. (B.D.O Anderson et al, 1996)

If

(1) The impulse response function w (k) is nonnega-
tive for all K > 0

(2) The dominant real pole of W(z) is unique (possi-
bly multiple)

then W(z) has a positive realization.



e In this talk we shall give a partial answer to the
question (iii), i.e. to the minimality problem.

e We shall give necessary and sufficient conditions for
a given third order transfer function W (z) with dis-
tinct positive real poles, to be realizable as a positive
system of the same order.

e Such conditions are easily testable and the proof also
provides a tool for constructing a positive realization

when existing.



Preliminary Results

e A set IC is said to be a cone provided that a/C C K
for all « > 0.

e If /IC contains an open ball of R™ then K is said to
be solid.

o If CN{—K} = {0} then K is said to be pointed.

e A cone IC which is closed, convex, solid and pointed
Is a proper cone

e A cone K is said to be polyhedral if it is expressible
as the intersection of a finite family of closed half-
spaces.

e The notation cone(vq,... ,v)s) indicates the poly-
hedral closed convex cone consisting of all finite non-
negative linear combinations of vectors vq,... vy,
the vectors v; will be called the generators of the cone.



e Theorem. (Maeda and Kodama, 1980)

Let {F,g,h!} be any minimal realization of W (z).
Then, W(z) has a positive realization if and only if
there exists a polyhedral proper cone K such that

(1) FK C K, i.e. K is F-invariant;

& FK=KAy, At >0 with K = cone (K).

2 K CO

3)gek

where

O={z|h'FFz>0k=0,1,...}

is called the observability cone.

e Conditions (1-3) will be called the MK conditions



e A positive realization { A4, b, cz} with A, € R]_XXN,
by, ct € Rﬂy is obtained by solving
FK=KA,, g=Kby, cL=n'K

where IC = cone (K) has N generators, K € RiXN

e Positive realizations of minimal order correspond to
cones C with minimal number of generators satisfying
the MK conditions.



e Consider the case of a third order transfer function
with positive real poles 1 = A1 > Ao > A3

1 79 73
W —
(2) z—1+z—)\2+z—)\3

and its Jordan canonical realization

1 0 O 1 1
F=|0 X O g=1| 12 h=11
0 0 A3 73 1

Wi(z)=hl (zI — F) g
e One can prove that w.l.o.g.
(1) A\ =1

(2)r1 =1



e It is possible to reformulate the MK conditions on
a plane as follows

(1) F*P C P where
* >‘2 0
F“(o A3>
(2) P C {z2,23: 1L + Mzp + Njz3} := O*

r3

(agw:<r2>ep

where P = conv (P) is an F™*-invariant polytope in
the {x5, 3} plane

e Conditions (1-3) will be called the MK* conditions



./

1+Mzy+ Aoz, = 0

/

I+ 204+ Az =0




Our problem is:

e Given a third order transfer function with positive
real poles 1 = A1 > Ao > A3

1 79 73
W —
(2) z—1+z—)\2+z—)\3

find a positive realization with a state space of dimen-
sion 3.

e Given the set O* and the vector ¢*, find an F™*-

invariant polytope P contained in O* and containing
*

g* in the {x5, 3} plane



e We define a one parameter family of F*-invariant
politopes Py () as follows

l—a | A2 —B()

Py(a)=D| 2.° 1 A 5((3“))
A3 —«Q 1—((a)

= (’Ul (Oé) , U2, U3 (ﬁ (Oé)))

where
1— A
sven vl
2 — \3
D = 1— x>
0
Ao — A3
with
a<a< A3

a=maxXx

L dot A3— 2/ (= 23)° + (1= X2) (1= 23)
3 Y




and (3 («) such that
o + B (a)? + af (a) +

+(a+8(a)(1+ A2+ A3) — A2 — A3 — AA3 =0

\ A°)

with
A2 <B(a) <1
A’ A"
1 1
a =0
Ay
Ay
Ag
o Ay
a s A, e Ay A 1







e Pys(a) := conv Py () is a maximal one param-
eter family of F™*-invariant politopes (triangles). In
fact:

o If @ = conv( is a triangle such that

QD Py (OA/)
for some o/ and

(1) Q is F*-invariant
(2) Q C OF

then

Q =Py ()



e The family P, («) describe a region Pj s as « varies
ina < a< A3

e If g* € Pjs then, by construction, there exists an o
which defines a politope Pj; (o) satisfying the MK*
conditions

e If g* € Py, a third order positive realization
{A+,b+,c£} is given by

Ay =K 'FK, g=Kb,, < =n"K

with



e The zero pattern of {A4, b, cz} is

* 0 x
A_|_— * 3k 0 , b_|_—
0 * x
0
C+ — 0




e The region P, is described by the set of inequalities
l14+zo4+232>0
(1—a)+ (M —a)zx+(A3—a)z3 >0
(1—a)’+ (M- a)z+ (A3 —a)z3>0

for all o such that @ < a < A3

e Consequently, g* := ( :2 ) e Py iff
3

14+7ro+7r3>0

(l-a)+(—a)ro+(A3—a)r3 >0

1—a)’+(Mo—a)’r+ (A3 —a)r3 >0

for all a such that @ < a < A3



(1-a) +(A — @)zt (As— @)’z = 0

l1-a+ (M —a)zt (A —a)z;=0 I+zytx; =0



e Theorem. Let

1 r2 r3
z—)\1+z—)\2+z—)\3

W(z) =

be a third order transfer function with distinct positive
real poles Ay =1 > Ap > A3 > 0. Then, W(z) has a
third order positive realization if and only if

(1) r1 >0
(2) ri+71r0+713>0
B)A-a)ri+(A2—a)ra+(A3—-a)r3 >0

(4) (1—a)’ri+ Ao —a)’ro+ (A3 —a)°r3 >0
for all a such that @ < a < A3

where

L4 dot A3 =2/ (= 23)° + (1= 22) (1= 23)
3 Y

Q. =max



e Theorem. Let

oo
W(z) = Zwkz_k

k=1
be a third order transfer function with distinct positive
real poles A\{ =1 > XA > A3 > 0. Then, W(z2)
has a third order positive realization if and only if the
following conditions hold:
(1) w3 — (A2 + A3z) wa + AxAzwy > 0
(2) w1 >0

(3) w2 —aw; >0

(4) w3z — 2w + w%oz >0
for all o such that @ < a < A3

where

L4 dot A3 =2/ (= 23)° + (1= 22) (1= 23)
3 Y

Q. =max



e Theorem. Let

a,2z2 + a1z + aq
(z—1) (2 — A2) (2 — A3)
be a third order transfer function with distinct positive
real poles Ay = 1 > A > A3 > 0. Then, W(z)
has a third order positive realization if and only if the
following conditions hold:

W(z) =

(1) ag+a; +ax>0
(2) a2 >0
(3)ar+(1+A+A3—a&)ax >0

(4) goﬂ— 2y ’YO) ax+ L+ A2+ Az3— 20) a1 +ag>0
for all a such that @ < a < A3 where

Y1=1+ 2+ A3
Y0 =1+ X2+ A3+ XAz + A5+ A3

and

L4 dot A3 =2/ (= 23)° + (1= 22) (1= 23)
3 Y

Q. =max



e Theorem. Let W(z) be a third order transfer func-
tion with distinct positive real poles \1 =1 > A\ >
A3 > 0 and let {F,g,h!} be any minimal realiza-
tion of W(z). Then, W(z) has a third order positive
realization if and only if the following conditions hold:

(1) limg_ o KT FFg > 0
(2) htg >0
(3) W' (F—al)g>0

(4) hT(F—aI)zg >0
for all a such that @ < a < A3

where

L ot A3 = 2/ (2= Ag)* + (1= X)) (1= Ag)
3 Y

. =max
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