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Drifted sub-Riemannian control system in X3:

@ Admissible velocities form a distribution of ellipses:

Ell, = {a(x) cos ¢ + b(x)sing + c(x)} C ToX3, a,b,c € Vect(X3);

x
o admissible trajectories: ¥(t) € Elly()

@ locally extremal admissible trajectories (extremal trajectories):
v(0)=A, (T)=B, 6T =0;

@ drifting sub-Riemannian front:

Sh={y(r) € X3 |~(0) = A, ~ is extremal}.
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Examples:
@ Plane case (drifting circle): a =(1,0,0), b= (0,1,0), c = (0, ,0)

56

Three possibilities 0 < A< 1, A=1, A > 1.
@ Drifting disk: a = (1,0,0), b= (0,1,0), ¢ = (0,0,1)

?

All admissible trajectories are extremal!!!
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Sub-Riemannian front

@ Degenerate case: a=(1,0,—y), b=(0,1,x), c=0
Sub-Riemannian structure: xdy — y dx — dz = 0, ds® = dx? + dy?
Degenerate =
(1) quasihomogeneous with degx = degy =1, degz = 2
+
(2) (x, y)-rotation invariant.

The equations are integrable explicitly.

@ Non-degenerate (non-quasihomogeneous, non-integrable) case is more
complicated and | do not have a figure.

ot
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Degenerate contact hyperbolic drifting sub-Riemannian front

a=(1,0,0), b=(0,1,0), c =(0,0,x)

Degenerate =

(1) quasihomogeneous with degx = degy =1, degz =2

_l’_

(2) hyperbolic-rotation invariant what will be explained later.
The equations are integrable explicitly.
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If a, b, ¢ are generic then for almost every point A € X3 there are only two
possibilities:

@ A is contact hyperbolic and 57 is the non-degenerate contact
hyperbolic drifting sub-Riemannian front for sufficiently small e:

© A is contact elliptic.
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If a, b, c are generic and for almost every contact elliptic point S is the
non-degenerate sub-Riemannian front for sufficiently small ¢.
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Contact hyperbolic and contact elliptic points
o M* = X3 xR;
° H31 = <(a(x), 1)7 (b(X), 1)7 (C(X), 1)> - TmM4' = (X, t);
o H3 =kerf(m), 0 is 1-form on M,
let KL c H3, do(m)(KL, H3) = 0;
o Ell, defines Cone?, ¢ H3 ¢ T,,M*;
o Cone?, and K in H3:

NN

Contact hyperbolic and contact elliptic points
>

0 May 22, 2012 8/ 14



For a sub-Riemannian structure K! is generated by the vector x = 0,
t =1, Cone? is dt?2 = ds2, and all points are contact elliptic.
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Theorem 2

In a neighborhood of a contact hyperbolic point in M* there exist local
coordinates (u, v, w, z) such that the our control system is described by
the equations:

dv> —dvdw+audv® +Budw?+...=0, «o,f€eR,

dz=vdw — wadv,

where a =0 or 1 and ... are terms of higher quasihomogeneous degree if
degu =degv =degw =1, degz = 2.
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Cases:

@ Degenerate (twice-quasihomogeneous) du? — dv dw = 0,

dz = vdw — wdv, deg(u,v,w,z) =(1,1,1,2), = (0,1, —1,0); this
case is integrable and analogous to the degenerate sub-Riemannian

case in the contact elliptic situation.

o Half-degenerate (quasihomogeneous) du? — dv dw + udv? = 0,

dz = vdw — wdv, deg(u,v,w,z) = (2,1,3,4); this case is integrable

too and does not have analogy in the contact elliptic situation.

@ Non-degenerate (non-quasihomogeneous) o =1, 8 # 0, this case is

non-integrable and described by Theorem 1.
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Connection with two Arnold’s normal forms

e Ell,, = PCone2, C PT,,M* is a plane quadric (conic) lying in the
projective plane PH3;

e Ell}, C PT;;M* is (again!) a two-dimensional cone with a vertex
PH3, € PT;M*;

e X0 C PT*M*, £ NPT} M* =EIL%;

o M*=X3xR, PT*M* > J}(X,R) = T*X x R,
a,b,c: T*X - R, L ={a?+b>—(c—1)?=0}
a=(1,0,0), b=(0,1,0), ¢ = (0,0,x), p>+q>— (x —1)> =1
4= (1?Oa_y)v b= (O,].,X), c=0, (p_ ry)2 + (q—|—rx)2 =1

@ two Arnold’s local normal forms for ¥ in a neighborhood of PH,,
w.r.t. contact diffeomorphisms of PT} M*:

pi+qi —p3 =0,

p1dqi — qidp1 + -+ + p3dqz — g3 dps — 2du = 0;

@ + = contact ellipticity, — = contact hyperbolicity.

o
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Connection with systems of linear PDE

at 0 o aa 0 0 8b ac O
<o at>_<o —aa>+<a,, o>+<o a)

X, R)=T*X xR, ab,c:T*X >R,

o= (5 %) (2 )=(5 )-(2 %)

Y = {deto} = {a®* + b* — (c — 1)* = 0}

(s}

Examples:
@ a=(1,0,0), b=(0,1,0), c = (0,0, x),
0, = 0Ox, Op = 0y, Oc = x0;
@ a=(1,0,-y), b=(0,1,x), c =0,
0; =0x — y0z, Op = 0y + x0;, 0. =0
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CONGRATULATIONS TO ANDREY !!!
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