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§1. Introduction

Consider the Cauchy problem for a quasilinear wave equation:

(1) �u+ f(t, x, u,∇u, u̇) = 0, dimx = d; t ≥ 0;

(2) ut=0 = u0, u̇t=0 = u1.

We can study it globally, when

x belongs to a compact Riemann manifold M and �u = ü−∆u, where

∆ – Laplace - Beltrami oparator.

Or locally, when

x belongs to a characteristic cone for �u = ü−∆u , where ∆ – Laplace - Beltrami

oparator. w.r.t. some Riemann metric on Rd

To begin I will assume that

x ∈ Td = Rd/2πZd.
Let f and u0, u1 be analytic in all its arguments. What do we know about the solutions?
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I) The Cauchy-Kowalewski theorem: There exists ε1 > 0 such that for 0 ≤ t ≤ ε1 and

x ∈ Td problem (1), (2) has a unique analytic solution.

S. V. Kowalewski, Zur Theorie der partiellen Differentialgleichungen, J. Reine Angew.

Math. 80 (1875).

In the proof ε1 is the radius of analyticity, so this is a small number. What happens for

t > ε1?

II) The Ovsiannikov-Nirenberg theorem: Let f be continuous in t and analytic in all other

variables, as well as u0 and u1. Then there exists ε2 > 0 such that for 0 ≤ t ≤ ε2 and

x ∈ Td problem (1), (2) has a unique solution, analytic in x and C1 in t.

T. Nishida, A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977).

It is also known that

III) Theorem: If f is sufficiently smooth in x, then there exists T > 0 such that for

0 ≤ t ≤ T and x ∈ Td the problem has a classical solution.

Sometimes T is fairly large, e.g. T =∞.

If both theorems I) and III) apply, then, clearly, T ≥ ε1. But is T > ε1, or T = ε1?
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§2. Main Result.

Choose m > d/2, assume that the nonlinearity f(t, x, u,∇u, u̇) is continuous in t,

Hm-smooth in x and analytic in u,∇u, u̇. Let u0 ∈ Hm, u1 ∈ Hm+1.

Main Theorem (propagation of analyticity): Let u(t, x), 0 ≤ t ≤ T , x ∈ Td, be a

solution of the Cauchy problem (1), (2) which is Hm+1-smooth in x. Then:

i) If u0, u1 and f are real-analytic in (x1, . . . , xk), 1 ≤ k ≤ d, then u also is analytic in

these variables.

ii) If u0, u1 and f are real-analytic in all their arguments, then u also is.

Assertion ii) was known, see:

S. Alihnac and G. Metivier, Propagation de l’analyticité . . . , Invent. Math. 75 (1984).

The proof of this work uses heavy tools of paradifferential calculus (and their result applies

to strongly nonlinear hyperbolic equations). Also see

C. Bardos and S. Benachour, Domaine d ’analyticite des solutions de l’equation d’Euler

dans un ouvert de Rn. Ann. Scu. Norm. di Pisa, 4(1977) where similar result is

obtained for solutions of the Euler equation (using its hyperbolic features).
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Assertion i) and Theorem III) (on local in time existence of a classical solution) imply a

generalisation of the Ovsiannikov-Nirenberg theorem.
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§3. Discussion of the proof.

I am speaking about the Cauchy problem (1)-(2):

�u+ f(t, x, u,∇u, u̇) = 0, u(0, x) = u0(x), u̇(0, x) = u1(x).

DenoteHm = Hm+1 ×Hm, m > d/2. This will be the space of Cauchy data:

(u0, u1) ∈ Hm. Consider the Cauchy operator for the linear wave equation:

�̃ : u 7→ (ut=0, u̇t=0,�u).

This is an embedding. For any T > 0 consider the spaces

XT
m = C(0, T ;Hm+1) ∩ C1(0, T ;Hm), Y Tm = Hm × C(0, T ;Hm).

XT
m - space of solutions, Y Tm - space of Cauchy data and the r.h.s.’s.

I will call solutions u(t, x) ∈ XT
m classical solutions. We have

�̃−1 : Y Tm → XT
m, but �̃ : XT

m → Hm × C(0, T ;Hm−1).
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In this scales of function spaces we lose 1 unit of smoothness, when apply �̃ after �̃−1.

Not good! Let us use a simple trick:

Denote �̃−1Y Tm = ZTm and provide the space ZTm with a norm, induces from Y Tm . This

is a Banach space such that

1) �̃ : ZTm → Y Tm is an isomorphism,

2) ZTm ⊂ XT
m continuously, and XT

m+1 ⊂ ZTm,

since �̃−1 : Y Tm → XT
m. Denote by Φ the operator of nonlinear Cauchy problem:

Φ(u) = (ut=0, u̇t=0,�u+ f(t, x, u,∇u, u̇)).

Since m > d/2, then the space C(0, T ;Hm) is a Banach algebra. As

u,∇u, u̇ ∈ C(0, T ;Hm), then the mapping

Φ : ZTm → Y Tm is analytic.
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Problem (1), (2) with 0 in the r.h.s. replaced by a function g(t, x) has a unique solution. So

Φ : ZTm → Y Tm is an analytic embedding.

Consider differential of Φ at any point u ∈ ZTm:

dΦ(u)(v) =
(
vt=0, v̇t=0,�v + d3f [u]v + d4f [u]∇v + d5f [u]v̇

)
.

Here f [u] = f(x, u,∇u, u̇). Easy to see that this also is an isomorphism ZTm
−→∼ Y Tm .

Since Φ is an embedding, then the inverse function theorem implies

Lemma: Φ is an analytic diffeomorphism of the space ZTm and a domainO ⊂ Y Tm ,

Φ : ZTm
−→∼ O.

Denote

O0 = {(u0, u1) ∈ Hm | (u0, u1, 0) ∈ O}

Then for 0 ≤ t ≤ T the flow-maps

St0 : O0 → Hm, (u0, u1)→ (u(t), u̇(t)),

are well defined and analytic.
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So: There is a domainO0 = O0([0, T ]) ⊂ Hm such that the problem

�u+ f(t, x, u,∇u, u̇) = 0, 0 ≤ t ≤ T, u(0, x) = u0(x), u̇(0, x) = u1(x).

has a classical solution u ∈ XT
m iff (u0, u1) ∈ O0. This solution analytically depends on

(u0, u1). If f analytically depends on some extra parameter ξ, thenO0 = O0
ξ and the

solution u also analytically depends on ξ.
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Introducing the parameters.

For simplicity let k = d. Then u0, u1 and f are analytic in x. The space

Rd = {θ = (θ1, . . . , θd)} acts on Td by the shifts θR,

θR(x) = (x+ θ)

Accordingly it acts on the nonlinear operators f(t, x, u,∇u, u̇) by shifting their

coefficients:
(
θRf

)
(t, x, u,∇u, u̇) = f(t, θRx, u,∇u, u̇).

Clearly we have

(� + θRf(t, x, u,∇u, u̇))(θRu) = θR
(
(�u+ f(t, x, u,∇u, u̇))

)
.

Consider operator of the shifted Cauchy problem θΦ(u) = (ut=0, u̇t=0,�u+ θRf(u).

It defines an analytic mapping

Φ̄ : Tk × ZTm → Y Tm , (θ, u)→ θΦ(u).

For any θ denote by θu(t) solutions of the shifted equation � + θRf , and by θS
t
0,

0 ≤ t ≤ T , flow-maps of that equation.
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Consider Φ̄ for θ in a small ball Bε = {|θ| ≤ ε}. If (u0, u1) ∈ O0, then

(u0, u1, 0) ∈ Y Tm is a regular value for Φ̄(0, ·). By the Implicit Function Theorem, for

θ ∈ Bε and (u′0, u
′
1) close to (u0, u1) the flow-maps for the shifted equation

θS
t
0 : (u′0, u

′
1) 7→ (θu(t), θu̇(t)), 0 ≤ t ≤ T, are well defined, analytic in θ and in

(u′0, u
′
1) . We have:

θS
t
0 ◦ θR(u0, u1) = θR ◦ St0(u0, u1), if θ ∈ Bε.

Consider a solution of the Cauchy problem (1), (2), u(t, x) = St0(u0, u1). The term on

the right is

θR ◦ St0(u0, u1) = u(t, x+ θ),

and the term on the left is

θS
t
0 ◦ θR(u0, u1) = θS

t
0

(
(u0, u1)(x+ θ)

)
, θ ∈ Bε.

We assumed that u0 and u1 are analytic. Then (u0, u1)(x+ θ) is analytic in θ. As the

operator θS
t
0(u′0, u

′
1) is analytic in θ ∈ Bε, then θS

t
0

(
(u0, u1)(x+ θ)

)
also is. So

u(t, x+ θ) is analytic in θ ∈ Bε !
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We have proved the first assertion of the Main Theorem:

i) If u0, u1 and f are real-analytic in (x1, . . . , xk), 1 ≤ k ≤ d, then u also is analytic in

these variables.

To prove the second assertion we have to show that u is analytic in t. By analogy, we have

to shift the Cauchy data u0, u1 not in x-variable, but in t-variable. How to do this? – Apply

the Cauchy-Kowalevski theorem to find the solution u(θ, x), |θ| < ε ! It is analytic, so it

gives the needed time-θ shifts of the Cauchy data, analytic in θ. Now we argue as before

to prove that u(t, x) is analytic in t, till it exist as a classical solution. We assumed that the

Cauchy-Kowalevski theorem is applicable, i.e. that all the data are analytic.
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§4. Related results.

i) Equations in homogeneous spaces.

The proof applies to quasilinear wave equations in a compact Riemann homogeneous

space. In this case � = ∂2/∂t2 −∆, where ∆ is the corresponding Laplace-Beltrami

operator. Now the translations θR should be replaced by the local isometies. For example,

the theorem remans true for quasilinear wave equations on the standard sphere Sd.

ii) A local version of the result. Consider the problem

�u+ f(t, x, u,∇u, u̇) = 0, 0 ≤ t ≤ T, u(0, x) = u0(x), u̇(0, x) = u1(x).

in the characteristic cone

{(t, x) ∈ [0, T ]× Rd : |x| < T − t},

when the Cauchy data are given at the ball {|x| < T}. Then a natural version of the

results hold true with the same proof.
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iii) Quasilinear parabolic equations.

The approach to study analyticity and partial analyticity of solutions in x (but not in t)

applies to other equations. For example, to quasilinear parabolic equations

(3) u̇−∆u+ f(t, x, u,∇u) = 0, x ∈ Td, t ≥ 0, ut=0 = u0,

where f is sufficiently smooth in t, x and is analytic in u and∇u. One can find suitable

space ZTm and Y Tm such that the operator Φ of the Cauchy problem (3) defines an analytic

diffeomorphism between ZTm and a subdomain of the space Y Tm , see

[SK82], Diffeomorphisms of functional spaces that correspond to quasilinear parabolic

equations, Math. USSR Sbornik 117 (1982).

In the same way as before we prove that if f is analytical in all its variables, then classical

solutions of (3) with analytical initial data are analytical in x. This is a well known result.

But we also can prove that if f is analytic in u,∇u and in a part of the space-variables, as

well as the function u0, then the solution u(t, x) as well is analytic in these space

variables. This result seems new.
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This approach applies to the Navier-Stokes system on the d-torus with d = 2 or d = 3,

perturbed by a sufficiently smooth force h(t, x), see [SK82]. It implies that if the initial data

and the force h are analytical in space-variables x1, . . . , xk, where 1 ≤ k ≤ d, then a

corresponding strong solution u(t, x) remains analytic in this space-variables till it exists.

Example. Consider the 3d NSE in the spherical layer S2 × (0, ε) = {(ϕ, r}). Let the

force and initial data are

i) analytic in ϕ,

ii) bounded uniformly in t ≥ 0, uniformly in ε ∈ (0, 1).

Due to Raugel-Sell, if positive ε is sufficiently small, then there exists a unique strong

solution u(t, ϕ, r), t ≥ 0. By our results this solution is analytic in ϕ.

iv) NLS equation

The result remains true for the nonlinear Schrödinger equation

(4) u̇− i∆u+ f(t, x,Reu, Imu) = 0, ut=0 = u0, x ∈ Td.

Function f ∈ C is continuous in t, Hm-smooth in x (m > d/2), analytic in Reu, Imu.

We can replace Td by any homogeneous Riemann space, analytic and compact.
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§5. Energy Transfer to High Frequencies.

Consider again eq. (4), where u0 is analytic, f is continuous in t, analytic in x,Reu, Imu:

u̇− i∆u+ f(t, x,Reu, Imu) = 0, ut=0 = u0, x ∈ Td.

Solution u(t, x) is analytic in x, continuous in t. Denote

ρ(t) = radius of analyticity of u(t, x) in x = min
{

Imz | z− singular point of u(t, z)
}
.

Set

C(t) = sup
{
|u(t, z)| | |Imz| ≤ 1

2ρ(t)
}

and write

u(t, x) =
∑
s

us(t)e
is·x.
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Then

|us(t)| ≤ C(t)e−
1
2ρ(t)|s| ∀ s,

ρ(t) = − lim sup
s→∞

(
ln |us(t)|

)
|s|−1.

So,

eq. (4) exhibits the energy transfer to high modes iff lim inft→∞ ρ(t) = 0.

Example. Let (4) be the 1d defocusing Zakharov-Shabat equation. Its solutions u(t, x) are

given by the Its-Matveev-McKean-Trubowitz formula. Therefore each u(t, x) is a

meromorphic function of x and

ρ(t) = min{|Imz| | z − pole of u(t, x) in x}.

Now the function ρ(t) is almost-periodic and ρ ≥ ρ0 > 0.

No energy transfer!
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Example. Consider

(5) u̇− δi∆u+ i|u|2pu = 0, ut=0 = u0, x ∈ Td,

where δ > 0, u0(x) is analytic and |u0| ∼ L. Low estimates on Sobolev norms of u(t)

from

SK, GAFA 9 (1999), 141-184

imply that

lim inf
t→∞

ρ(t) ≤ C
( δ

L2p

)1/3
.

Conjecture. If in (5) d ≥ 2, then for a typical solution u we have lim inft→∞ ρ(t) = 0.
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iv) Strongly nonlinear equations.

Consider a “strongly quasilinear” wave equation:

ü+
∂

∂xj
Ajk(t, x, u,∇u, u̇)

∂u

∂xk
+ f(t, x, u,∇u, u̇) = 0,

The Cauchy-Kowalewski theorem still applies to the corresponding Cauchy problem. Does

the principe of propagation of analyticity holds? Yes it does, but some extra ideas have to

be used for a proof.
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