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I In classical electromagnetism, Maxwell’s equations in R4

take the form

∂ ~B

∂s
+ curl ~E = 0, div ~B = 0,

∂ ~E

∂s
− curl ~B = − ~J, div ~E = ρ,

where

I we denote by ~E the electric field, by ~B the magnetic
induction,

I by ρ and ~J the charge and current densities, respectively,
and by s ∈ R the time

I for a while, for sake of simplicity, we have set all “physical”
constants to be 1.
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Maxwell’s equations can be rephrased in terms of differential
forms.

I Denote by (Ω∗, d) the de Rham’s complex of differential
forms in R3 associated with the exterior differential d.

I Let E ∈ Ω1 and B ∈ Ω2 be such that

~E = E\ , ~B = (∗B)\.

I Then
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in special relativity, Maxwell’s equations of electromagnetism in
the 4-dimensional free space-time R3

x × Rs take the form

dF = 0 and d(∗MF ) = J , (1)

where

I F = ds ∧ E +B is a 2-form (Faraday’s form) in R3
x × Rs;

I ∗M denotes the Hodge duality with respect to usual
Minkowskian scalar product;

I J = ∗J ∧ ds− ρ is a closed 3-form (source form) in
R3
x × Rs, where ρ(·, s) = ρ0(·, s) dV is a volume form on R3

for any fixed s ∈ R and J is a 1-form (the current density).
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Introducing a vector potential A related F , that is

F = dA with A = AΣ + φds

where AΣ = AΣ,1(x, s) dx1 +AΣ,2(x, s) dx2 +AΣ,3(x, s) dx3 is a
1-form in R3 and φ = φ(x, s) is a scalar function, then
Maxwell’s equations are equivalent to the following system for
the vector potential (� = ∂2

s −∆x):

�AΣ = J

�φ = ρ

provided A satisfies the Lorenz gauge condition

∗Md ∗M A = 0.
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We want to develop a similar geometric theory in Carnot
groups leading (hopefully) to a “natural” (intrinsic) wave
equation in Carnot groups.
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To fix our notations:

A Carnot group G of step κ is a simply connected Lie group
whose Lie algebra g of the left invariant vector fields admits a
step κ stratification, i.e. there exist linear subspaces V1, ..., Vκ
such that

g = V1⊕...⊕Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the
commutators [X,W ] with X ∈ V1 and W ∈ Vi.
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From now on, we fix a basis {X1, . . . , Xn} of g adapted to the
stratification, as well as a scalar product 〈·, ·〉 making the basis
orthonormal.
Adapted means that {X1, . . . , Xm1} is a basis of V1,
{Xm1+1, . . . , Xm2} is a basis of V2, and so on.

The scalar product defines naturally a scalar product on the
spaces Λkg of k-vectors, and on the spaces Λkg of k-covectors.
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M. Rumin (CRAS 1999) defines a suitable sub–complex (E∗0 , dc)
of de Rham complex (Ω∗, d), in which essentially the forms are
sections of a suitable fiber bundle generated by left translations:

{0} → C∞(G) ≡ E0
0(G)

dc−→ E1
0(G)

dc−→ · · · dc−→ En0 (G)→ {0},

where

I (E∗0 , dc) is exact;

I E1
0 = {horizontal 1–forms};

I dcf is the horizontal differential of f for f ∈ E0
0(G);

I (E0, dc) is Hodge-self-dual, in the sense that ∗Ek0 = En−k0 .
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In general, the differential dc is defined through a suitable
subcomplex (E∗, d) of the De Rham complex (Ω∗, d) (we refer
to (E∗, d) as to the complex of “lifted forms”). Il ΠE denotes a
suitable projection on E∗ and ΠE0 is the orthogonal projection
on E∗0 , then

dc = ΠE0dΠE .
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I The following diagram gives a synopsis of the construction

· · · dc−−−−→ Eh0
dc−−−−→ Eh+1

0
dc−−−−→ · · ·

ΠE

y xΠE0

· · · d−−−−→ Eh
d−−−−→ Eh+1 d−−−−→ · · ·

i

y yi
· · · d−−−−→ Ωh d−−−−→ Ωh+1 d−−−−→ · · ·
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Roughly speaking, the projection ΠE is meant to remove the
obstructions to the exactness of the complex, whereas the
projection ΠE0 to minimize the number of the closeness
conditions
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A crucial property of the complex (E∗0 , dc) is that in general, dc
is an operator of higher order in the horizontal derivatives. In
addition, it may fail to be homogeneous.
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Theorem (F., Tesi, 2010)

Let G be a free group of step κ. Then all forms in E1
0 have

weight 1 and all forms in E2
0 have weight κ+ 1.
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I Obviously, the naif Laplacian associated with dc, i.e.

δcdc + dcδc,

where δc = d∗c , in general is not homogeneous.

I Even if dc is homogeneous, as in Hn case, the associated
natural Laplacian could be not homogeneous. For instance,
on 1–forms in H1, δcdc is a 4th order operator, while dcδc is
a 2nd order one. This is due to the fact that the order of dc
depends on the order of the forms on which it acts on.

I Indeed, dc on 1–forms in H1 is a 2nd order operator, as well
as its adjoint δc (which acts on 2–form), while δc on
1–forms is a first order operator, since it is the adjoint of dc
on 0–forms, which is a first order operator.

I Things become more complicated in general Carnot groups.

B. Franchi Maxwell’s equations in Carnot groups



I Obviously, the naif Laplacian associated with dc, i.e.

δcdc + dcδc,

where δc = d∗c , in general is not homogeneous.

I Even if dc is homogeneous, as in Hn case, the associated
natural Laplacian could be not homogeneous. For instance,
on 1–forms in H1, δcdc is a 4th order operator, while dcδc is
a 2nd order one. This is due to the fact that the order of dc
depends on the order of the forms on which it acts on.

I Indeed, dc on 1–forms in H1 is a 2nd order operator, as well
as its adjoint δc (which acts on 2–form), while δc on
1–forms is a first order operator, since it is the adjoint of dc
on 0–forms, which is a first order operator.

I Things become more complicated in general Carnot groups.

B. Franchi Maxwell’s equations in Carnot groups



I Obviously, the naif Laplacian associated with dc, i.e.

δcdc + dcδc,

where δc = d∗c , in general is not homogeneous.

I Even if dc is homogeneous, as in Hn case, the associated
natural Laplacian could be not homogeneous. For instance,
on 1–forms in H1, δcdc is a 4th order operator, while dcδc is
a 2nd order one. This is due to the fact that the order of dc
depends on the order of the forms on which it acts on.

I Indeed, dc on 1–forms in H1 is a 2nd order operator, as well
as its adjoint δc (which acts on 2–form), while δc on
1–forms is a first order operator, since it is the adjoint of dc
on 0–forms, which is a first order operator.

I Things become more complicated in general Carnot groups.

B. Franchi Maxwell’s equations in Carnot groups



I Obviously, the naif Laplacian associated with dc, i.e.

δcdc + dcδc,

where δc = d∗c , in general is not homogeneous.

I Even if dc is homogeneous, as in Hn case, the associated
natural Laplacian could be not homogeneous. For instance,
on 1–forms in H1, δcdc is a 4th order operator, while dcδc is
a 2nd order one. This is due to the fact that the order of dc
depends on the order of the forms on which it acts on.

I Indeed, dc on 1–forms in H1 is a 2nd order operator, as well
as its adjoint δc (which acts on 2–form), while δc on
1–forms is a first order operator, since it is the adjoint of dc
on 0–forms, which is a first order operator.

I Things become more complicated in general Carnot groups.

B. Franchi Maxwell’s equations in Carnot groups



In H1, Rumin proved that the naif Laplacian δcdc + dcδc on
intrinsic 1-forms can be profitably replaced by the 4th-order
differential operator in the horizontal derivatives

∆H,1 := δcdc + (dcδc)
2,

while on 0-forms δcdc + dcδc := ∆H,0 = −∆H := −(X2 + Y 2).
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Theorem (Rumin, 1994)

The operator ∆H,1 is maximal hypoelliptic, i.e, if Ω ⊂ H1 is a
bounded open set, then the L2(Ω)-norm of all 4th order
horizontal derivatives of an intrinsic 1-form α supported in Ω
are controlled by

‖∆H,1α‖L2(Ω) + ‖α‖L2(Ω).
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Notice that, unlike the Euclidean Laplacian on forms, the
operator ∆H,1 fails to be diagonal.
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Analogously, if G is a free group of step κ we set

∆G,1 := δcdc + (dcδc)
κ,

and we have

Theorem (F., Tesi, 2009)

Let G be a free group of step κ. The operator ∆G,1 is maximal
hypoelliptic, i.e, if Ω ⊂ G is a bounded open set, then the
L2(Ω)-norm of all horizontal derivatives of order 2κ of an
intrinsic 1-form α supported in Ω are controlled by

‖∆G,1α‖L2(Ω) + ‖α‖L2(Ω).
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Back to Maxwell’s equations:

Notice if G is a Carnot group, then R×G is a Carnot group.

The Lie algebra g̃ of of R×G admits the stratification

g̃ = Ṽ1 ⊕ V2 ⊕ · · · ⊕ Vκ,

where Ṽ1 = span {S, V1}, where S = ∂
∂s .

Since the adapted basis {X1, . . . , Xn} has been already fixed
once and for all, the associated fixed basis for R×G will be
{S,X1, . . . , Xn}.

B. Franchi Maxwell’s equations in Carnot groups



If G is a Carnot group, we can formulate Maxwell’s equations in
R×G as follows

dcF = 0 and dc(∗MF ) = J , (2)

where
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I F = E ∧ ds+B ∈ E2
0,R×G is an intrinsic 2-form in R×G;

I ∗M denotes the Hodge duality with respect to the
Minkowskian scalar product

〈β ∧ ds+ γ, β′ ∧ ds+ γ′〉M := 〈γ, γ′〉 − 〈β, β′〉;

I J = ∗J ∧ ds− ρ is a closed 3-form in R×G, , where
ρ(·, s) = ρ0(·, s) dV is a volume form on G for any fixed
s ∈ R and J ∈ E1

0,R×G is an (intrinsic) 1-form.
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Maxwell’s equations in G× R are invariant under contact
Lorentz transformations.

Invariance is due to the fact that the pull-back induced by a
contact Lorentz matrix L commutes with both dc and the
Hodge operator ∗M .
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A homogeneous homomorphism L : G→ G induces a contact
linear map L : g→ g, i.e. a map L such that

L(Vi) ⊂ Vi, i = 1, . . . , κ.

We say that L is a contact Lorentz transformation if

tLGL = G,

where
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G =



−1 0 0 0
0 1 0 0

. . . 0 0
0 0 1 0
0 0 0 1

1 0

0
. . . 0

0 1

0 0
. . .


Given a group G, we refer to HOG as to the contact Lorentzian
group of G.
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Example

Take G = H1. A matrix L belongs to HO(G) if and only if it
has the form

L =


±1 0 0 0
0 a11 a12 0
0 a21 a22 0
0 0 0 detA

 ,

where

A :=

(
a11 a12

a21 a22

)
is a unitary matrix.
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Looking for solutions of Maxwell’s equations

dcF = 0 and dc(∗MF ) = J ,

since the complex (E∗0,R×G, dc) is exact, we are lead to look for a
vector potential (i.e. an intrinsic 1-form on G× R such that
F = dcA) of the form

A = AΣ + φds,

satisfying a suitable gauge condition.

We are therefore interested in formulating and studying a
“natural” (intrinsic) wave equation for the vector potential, in
analogy with the Euclidean setting.
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In the simplest case of the first Heisenberg group we have

Theorem (intrinsic wave equation)

Suppose F ∈ E2
0,H1×R satisfies Maxwell’s equations. Then

F = dcA with A = A1dx+A2dy + φds := AΣ + φds ∈ E1
0,H1×R.

In addition, A satisfies

∂2AΣ

∂s2
= −∆H,1AΣ + J (3)

∂2φ

∂s2
= −∆2

Hφ+
1

16
∆Hρ0, (4)

where ∆H := X2 + Y 2(= −∆H,0) is the usual subelliptic
Laplacian in H1, provided the following gauge condition holds:

d∗cdcd
∗
cAΣ +

∂φ

∂s
= 0. (5)
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Notice the gauge condition (5) can be always satisfied replacing
the potential A by the potential A+ dcψ, with ψ satisfying

∂2ψ

∂s2
= −∆2

Hψ −
(
d∗cdcd

∗
cAΣ +

∂φ

∂s

)
. (6)
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An analogous result holds in free groups G of step κ. The new
“wave equation” becomes

∂2AΣ

∂s2
= −∆G,1AΣ + J

∂2φ

∂s2
= −(−∆G)κφ− (−∆G)κ−1ρ0,

where ∆G :=
∑m

j=1X
2
j is the usual subelliptic Laplacian in G.
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We stress that, in our wave equation, in the homogeneous
Laplacian ∆G,1, the “natural part” δcdc is generated by
Maxwell equation, whereas the “artificial part” (dcδc)

κ is
generated by the gauge condition, that is arbitrary chosen
according our convenience.
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If the source form satisfies suitable conditions at the infinity,
then the solutions of our wave equation generate solutions of
Maxwell equations
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The existence of solutions of equations (3), (4) and (5) can be
obtained by means of abstract arguments of “infinitesimal
generators of cosine functions”.
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Theorem
Let I ⊂ R be a bounded interval such that 0 ∈ I. Let
α0 ∈W r,2

G (G, E1
0), α1 ∈ L2(G, E1

0) and J ∈ L2(I, L2(G, E1
0)).

Then there exists a unique strong solution

α ∈ C0(I,W r,2
G (G, E1

0)) ∩ C1(I, L2(G, E1
0))

of the linear equation{
∂2
sα+ ∆G,1α = J, for s > 0
α|s=0

= α0, αs|s=0
= α1

(7)

If in addition J ∈ C0(I,W−r,2G (G, E1
0)), then

α ∈ C2(I,W−r,2G (G, E1
0)).
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The propagators are explicitly given by

C(s) =

∫ 0

−∞
cos(s|λ|1/2) dE(λ)

and

S(s) =

∫ 0

−∞
|λ|−1/2 sin(s|λ|1/2) dE(λ),

where dE(λ) is the spectral measure associated with −∆G,1.
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Again in H1, it is interesting to notice that, if we look for
solutions u = u(t;x, y) that do not depend on the variables of
higher layer, we fall in the equation of the classical elasticity

∂2u

∂s2
= −∆2u, (8)

the so-called Germain-Lagrange equation for the vibration of
plates.
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We want to show that our group equations can be seen as “limit
equations” for strongly anisotropic media.
For sake of simplicity, let us restrict ourselves to H1.
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Let us go back to classical Maxwell’s equations in R× R3 in the
matter”.
The physical properties of the matter are described by two
3× 3 matrices [ε], [µ] that are called dielectric permittivity and
magnetic permeability, respectively.
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In the language of differential forms they can be written as

I

∗ dcE = µ
∂H

∂s
∗ dcH = −ε ∂E

∂s
, (9)

I

δcB = 0 δcD = 0. (10)

I together with the constitutive relations

∗B = µH ∗D = εE, (11)

where ε and µ are the operators induced by [ε], [µ] on
1-forms, respectively.
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I For sake of simplicity, suppose both [µ], [ε] are real
symmetric invertible matrices.

I Assume also that the forms E,D,B,H are time-harmonic,
i.e., with an obvious meaning of the notations,

E = eiωsE, D = eiωsD, and so on.

I Then the 1-form α = ∗D ∈ Ω1(U) satisfies the differential
equation

δMdNα− ω2α = 0, δα = 0 (12)

I where (det[µ]) ·M is the operator induced by [µ] on
2-forms, and N is the operator induced by [ε]−1 on 1-forms.
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A standard approach to the Dirichlet problem with relative
boundary conditions in a bounded open set U for system (12)
relies on a variational argument for the functional

J̃µ,ε(α) :=

∫
U
〈MdNα, dNα〉Euc dV + σ

∫
U
|δα|2 dV

+ C

∫
U
〈Nα,α〉Euc dV.

(13)

Here, σ > 0 is a positive parameter, and C > 0 is a large
constant.
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Mimicking the Euclidean approach, in H1 we have to consider
the functional

J(α) :=

∫
U
|dcα|2 dV + σ

∫
U
|δcα|2 dV + C

∫
U
|α|2 dV,

which still hides all the peculiarities of the structure of our
intrinsic Maxwell’s equations.
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To prove that Maxwell’s equations in the groups are limits of
Maxwell’s equations in very anisotropic media, we show that
the functional J is the Γ-limit of functionals J̃µ,ε for suitable
choices of [µ], [ε].
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Definition
Let X be a metric space, and let

Jr, J : X −→ [−∞,+∞]

with r > 0 be functionals on X. Then {Jr}r>0 Γ-converges to J
on X as r goes to zero if and only if the following two
conditions hold:

I for every u ∈ X and for every sequence {urk}k∈N with
rk → 0 as k →∞, which converges to u in X, there holds

lim inf
k→∞

Jrk(urk) ≥ J(u); (14)

I for every u ∈ X and for every sequence {rk}k∈N with
rk → 0 as k →∞ there exists a subsequence (still denoted
by {rk}k∈N) such that {urk}k∈N converges to u in X and

lim sup
k→∞

Jrk(urk) ≤ J(u) (15)
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If r > 0, consider now the functional

Jr := J̃µ,ε,

where the magnetic permeability [µr] and dielettric permittivity
[εr] have the forms

[µr] = [εr] =

 1 + r
4y

2 − r
4xy

r
2y

− r
4xy 1 + r

4x
2 − r

2x
r
2y − r

2x r

 .
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Definition
If α ∈ Ω1(U), we write

α = α1 + α2,

with αi ∈ Ω1,i(U), i = 1, 2. If m ≥ 2, we say that

α ∈ Ŵm,2
G (U ,

∧1
g) iff αi ∈Wm+1−i,2

G (U ,
∧1

g), i = 1, 2.

The space Ŵm,2
G (U ,

∧1 g) is endowed with its natural norm.
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Theorem (Baldi, Franchi 2011)

Let Ω be a bounded open set in H1 with smooth boundary. The
restriction to W 3,2

H1 (Ω,
∧1 g) of the functional Jr Γ-converges,

rwith respect to the topology induced by W 2,2
H1 (Ω,

∧1 g), to the

restriction to W 3,2
H1 (Ω,

∧1 g) of the functional

J(α) =



∫
R3

|dcα|2 dV +

∫
R3

|δcα|2 dV + C

∫
R3

|α|2 dV

se α ∈W 2,2
H1 (H1,

∧1
g)

+ suitable boundary conditions,

+∞ otherwise.
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