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Real random polynomials

f (t) = a0 + a1t + . . .+ ad t
d

or equivalently

f (x0, x1) = a0x
d
0 + a1x

d−1
0 x1 + . . .+ adx

d
1

The coefficients of f are gaussian random variables, i.e.:

P{ai ≤ c} =
1

σ
√

2π

∫ c

−∞
e
− x2

2σ2
i dx , (ai ∼ N(0, σi ))

Question

What is the expected value Ed of the number of real roots of f ?



The average number of real roots of a random polynomial

ai ∼ N(0, 1), i = 0, . . . d , independent:

lim
d→∞

Ed

log d
=

2

π

(Kac, ’43)

ai ∼ N(0,
(d

i

)
), i = 0, . . . d , independent:

Theorem (Edelman and Kostlan, ’95)

Ed =
√
d

What is the meaning of this distribution?



Gaussian distributions

Gaussian distribution on a vector space V ⇐⇒ scalar product on V

P{v ∈ A} =
1

c

∫
A
e−

〈v,v〉
2 dv

V = Hd ,1 = {f homogeneous of degree d in two variables}

〈f , g〉 =

∫
C2

f (z)g(z)e−‖z‖
2
dz

this gives the previous distribution, i.e. ai ∼ N(0,
(d

i

)
).



Weyl distribution

Hd ,n = {f real, homogeneous of degree d in n + 1 variables}

〈f , g〉 =

∫
Cn+1

f (z)g(z)e−‖z‖
2
dz

Definition (Weyl distribution)

f (x) =
∑
α

fαx
α, α = (α0, . . . , αn)

fα ∼ N(0,
d!

α0! · · ·αd !
)



Real zeroes vs Complex zeroes

f ∈ Hd ,n : ZR(f ) ⊂ RPn, ZC(f ) ⊂ CPn

Idea

We wish to compare ZR(f ) and ZC(f ).

f ∈ Hd ,1 : ]ZR(f ) ≤ ]ZC(f )

f Weyl distributed : Ed =
√
d ≤ d .



The expected volume

More generally let

XR = ZR(f1, . . . , fk ) ⊂ RPn

and RPn with Fubiny-Study density induced from CPn:

Vol(XR) ≤ Vol(XC) = d1 · · · dk

Theorem

If f1, . . . , fk independent and Weyl distributed:

EVol(XR) =
√

d1, . . . , dkVol(RPn−k )

(Shub and Smale ’00, Burgisser ’07)



The curvature polynomial

M ⊂ RPn of dimension m

T (M, ε) = {y ∈ RPn | d(y ,M) ≤ ε}

For ε > 0 small enough (Weyl):

Vol(T (M, ε)) =
∑

0≤e≤m, e even

Ks+e(M)Jn,s+e(ε)/2

where Jn,k (ε) =
∫ ε

0 (sin t)k−1(cos t)n−kdt and Ks+e depend only on
the intrinsic geometry of M (curvature coefficients).

µ(M, x) =
∑

0≤e≤m, e even

Ks+e(M)

Vol(Sm−e)Vol(S s+e−1)
xe

µ(M, 0) is the normalized volume and µ(M, 1) = χ(M) (m even).
Burgisser has computed the expected curvature polynomial!



Number of points = zero dimensional volume

EVol(XR) =
√

d1, . . . , dkVol(RPn−k )

For k = n = 1 this is
Ed =

√
d

Idea

Number of points = zero dimensional volume

]{real roots of f } ≤ ]{complex roots of f }

generalizes as
Vol(ZR(f )) ≤ Vol(ZC(f )).



Number of points = total Betti number

b(X ) =
∑

bi (X ), bi (X ) = rkHi (X )

b̃i (X ) is the number of i + 1 dimensional holes in X .

Idea

Number of points in ZR(f ) = b(ZR(f )).

]{real roots of f } ≤ ]{complex roots of f }

generalizes as

b(XR) ≤ b(XC) (Smith′sinequality)



Smith’s inequality b(XR) ≤ b(XC) for curves

Example: XR real curve in RP2 of degree d .

Harnack: XR has at most
(d − 1)(d − 2)

2
+ 1 ovals.

Genus formula: XC is a Riemann surface with g =
(d − 1)(d − 2)

2

b(XR) = 2b0(XR) ≤ 2g + 2 = b(XC)

Curves with g + 1 ovals are called maximal and are extremely hard
to built starting from their coefficients.



Average number of ovals of a real curve

The answer is not known.

Curves with approximatively d2 components exponentially rarefact
(Gayet and Welschinger, ’11).

lim
d→∞

E[b(XR)]

d
≤ π (Sarnak, ’11)



Intersection of real quadrics

From now on

XR = ZR(q1, . . . , qk ), qi ∈ H2,n

Idea

To compare b(XR) and b(XC).

b(XC) is known (for regular intersections):

k = 1 : b(XC) = n + 1
2 (1 + (−1)n+1)

k = 2 : b(XC) = 2n − 1
2 (1 + (−1)n+1)

k = 3 : b(XC) = n2 + 1
2 (5 + 3(−1)n) = n2 + O(n)

What about XR?



Topology of intersection of real quadrics

W = span{q1, . . . , qk}

Σ = {q | ker(q) 6= 0} ∩ {‖q‖2 = 1}

ΣW = Σ ∩W

Theorem (Agrachev ’90, Agrachev and L. ’11)

b(XR) ≈ b(ΣW )

k = 1 : b(XR) = 2 min i+|W
k = 2 : b(XR) ≈ 2 min i+|W + n + 1

2b(ΣW )

k = 3 : b(XR) ≈ 2 min i+|W + n + 1
2b(ΣW )



Complexity of intersection of real quadrics

XR = ZR(q1, . . . , qk )

ΣW ⊂ Sk−1 hypersurface of degree n + 1 (number of variables)

k = 1 : ΣW = ∅
k = 2 : ΣW = points on S1

k = 3 : ΣW = curve of degree n + 1 on S2

k = 1 : b(ΣW ) = 0

k = 2 : b(ΣW ) ≤ 2n + 2

k = 3 : b(ΣW ) ≤ n2 + O(n)

Theorem (Barvinok 99’, Agrachev and L. ’11)

b(XR) ≤ nO(k−1)



The topology of a random quadratic hypersurface in RPn

q real quadratic form in n + 1 variables.

q(x) = 〈x ,Qx〉, Q ∈ Symn+1(R)

Idea

q Weyl distributed is equivalent to Q ∈ GOE.

b(ZR(q)) = 2 min i+|W
W = span(q) hence min i+|W = min{i+(q), i+(−q)}

Question

Emin{i+(q), i+(−q)} =?



Wigner’s semicircular law

ESD : µn =
1

n

n∑
i=0

δλi (Q)/
√

n Q ∈ GOE

SC : µsc =
1

2π
(4− x2)

1/2
+ dx

Theorem (Wigner)

For every ψ ∈ C 0
c (R):

lim
n→∞

E
∫
R
ψdµn =

∫
R
ψdµsc

For every A ⊂ R the expected number of eigenvalues of Q/
√
n in

A divided by n is asymptotically as
∫

A dµsc



The topology of a random quadratic hypersurface in RPn

i+(q) = number of eigenvalues in [0,∞)

lim
n→∞

Emin{i+(q), i+(−q)}
n

=
1

2

Theorem (L. ’12)

lim
n→∞

E[b(XR)]

n
= 1

Since b(XC) = n + 1
2 (1 + (−1)n+1), then:

lim
n→∞

E
[
b(XR)

b(XC)

]
= 1

Thus Smith’s inequality b(XR) ≤ b(XC) is expected to be sharp as
we let n growth.



The random intersection of two quadrics in RPn

XR = ZR(q1, q2)

b(XR) = 2 min i+|W + n +
1

2
b(ΣW ) + ε, ε ∈ {0, 1, 2}

Wigner’s semicircular law:

lim
n→∞

Emin i+|W
n

=
1

2

What about

lim
n→∞

Eb(ΣW )

n
=?



Gap probability in GOE

Integral geometry formula gives:

Eb(ΣW ) =
Vol(Σ)

Vol(SN−2)

Eckart-Young: dF (q,Σ) = σ(Q)−1

Vol(Σ) = lim
ε→0

1− P{no eigenvalues in (−ε, ε)}
2ε

Vol(Σ) =
Γ( n

2 )

Γ( n−1
2 )Γ( 1

2 )Γ( 3
2 )
Vol(S

n(n+1)
2
−1)

lim
n→∞

Eb(ΣW ) = lim
n→∞

Γ( n
2 )

Γ( n−1
2 )Γ( 1

2 )Γ( 3
2 )

Vol(SN−1)

Vol(SN−2)
= 0



The random intersection of two quadrics in RPn

XR = ZR(q1, q2)

b(XR) = 2 min i+|W + n +
1

2
b(ΣW ) + ε, ε ∈ {0, 1, 2}

limn→∞
Emin i+|W

n = 1
2

limn→∞
Eb(ΣW )

n = 0

Theorem (L. ’12)

Let XR be the intersection of two real random quadrics in RPn,
then:

lim
n→∞

Eb(XR)

2n
= 1



Smith’s inequality

Since b(XC) = 2n − (1 + (−1)n+1), then:

lim
n→∞

E
[
b(XR)

b(XC)

]
= 1

Thus also in this case Smith’s inequality b(XR) ≤ b(XC) is
expected to be sharp as we let n growth.

Open Question

What happens with more quadrics?



Random Hilbert’s 16th problem

XR = ZR(q1, q2, q3)

b(XR) ≈ b(ΣW )

ΣW is the curve on S2 given by det(x1Q1 + x2Q2 + x3Q3) = 0 this
curve has degree n + 1, hence:

b(ΣW ) ≤ n2 + O(n)

b(XC) = n2 + O(n)

lim
n→∞

E
b(ΣW )

n2
= lim

n→∞
E
b(XR)

n2
= lim

n→∞
E
b(XR)

b(XC)
= 1

Thus if Smith’s inequality is expected to be sharp for XR, we can
produce almost maximal curves with high probability!



Random Hilbert’s 16th problem

Consider the space Wd of f : S2 → R spherical harmonic of degree
d with the gaussian density given by:

〈f , g〉 =

∫
S2

fgωS2

Theorem (Nazarov and Sodin, 07’)

There exists c1 > 0 such that for a random spherical harmonic of
degree d:

lim
d→∞

Eb(Z (f ))

d2
= c1
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