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The Dubins—Dodgem car problem 1/2

T — min

x1(t) = cos(x3) x1(0)=h
xo(t) = sin(x3) x2(0) =0
s5(t) = u x3(0) = 3

Xl(T) = O
X2(T) -0 uc [—].,].]
X3(T) ceR






The Dubins—Dodgem car problem 2/2

T — min
x1(t) = cos(x3) x1(0) =
xo(t) = sin(x3) x(0) =

5(3(1') =u X3(O) =

TSI
S
=4

I



X2

X1



The problem 1/2

minimise T subject to

§(t) = fo(&(t)) + u(t)A(é(t)) tel0,T]

£(0) = x0, &(T) €N, u(t) € [-1,1]
Reference normal Pontryagin extremal (7’,5,17) with adjoint
covector R R
A: [0, T] = T*R"
Aim

Look for second order conditions that ensure
strong local optimality of the triplet



The problem 2/2

minimise T subject to

E(t) = 5 (£() + u(t)f (£(1)) t€[0,T]
§(0) =x, &(T) € N7, u(t) € [-1,1]

Aim

Say the nominal problem corresponds to r = 0.

If |r| < R, does this perturbed problem have a strong local solution
that is near (T 3 u)?

Does it look like (T 3 u)?

Is it — at least in some local sense — the unique solution?



Different kinds of strong local optimality

(time, state)—local optimality

there exist ¢ > 0 and a neighbourhood V' of the graph of £ in
R x R" such that the triplet is optimal among all the triplets
(T,&, u) such that

T-T|<e
» =:= Graph(§) € V

>

state—local optimality
there exists a neighbourhood U of the range ([0, T]) of € such
that the triplet is optimal among all the triplets (T, &, u) such that

> ([0, T e



Addressed cases: 1/2

N7 is an integral line of f{ & U is bang-singular

> ﬁ(t) =u € {—1, 1} te [077/:)

» U(t) € (—1,1) te (7 T]
u
4 t
T T

» NI = {expsf{(y"): s € R} W.l.o.g choose y° = Xr := A(A)



Addressed cases: 2/2

Nf ={y"} & U is bang—singular-bang

> ﬁ(t) =u € {—1, 1} t e [O,?l)

> (t) € (—1,1) t € (71, 72)
s U(t)=wme{-1,1} te(®T)
u
- e
7 ) T

A~ A~

> Ne={x} = {&(T)}
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Some quantities

v

Reference vector field 7 (x) := fo(x) + G(t)A(x)
Reference Hamiltonian F, (/) := (¢, ?t(ﬂﬁ))
F(0) = (e, f(r0)  i=0,1

» Maximised Hamiltonian F™2*(/) := ETai(I](Fo(E) + uFi(2))

v

v

» Y :={le T"M: F(¢) =0}

Remark. |u(t)| < 1, Vt in the singular interval

— A(t) €X Vt in the singular interval
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Hamiltonian approach to (time, state)-local optimality

» a suitable Hamiltonian (possibly time—dependent)

H: (t,0) € [0, T] x T*R" > He(f) € R
He(Z)C T Vte[r T]
d~ -~

He> F™, HeoX(t)=Frod(r), S A(t)= Heo(t)

> Let Xy := £(7):
find a smooth function ov: R™ — R such that
. da(%) = A(F)
o ANi={(da(x),x)}C X
* A has some nice properties with respect to the flow H
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Hamiltonian approach to (time, state)-local optimality 2

>~ idxH
I x A I x T*R”
(id XWM Jid o
T x Rn
Property

#*(p dg — H; dt) is exact on [0, T] x A
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Lifting trajectories

036 — (T, (7))
A P — /
\/ t
T(id xmH) !
(07320).< g (Aa/\f)
R \f
Nt
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H*(p dg — H; dt) is exact —

0<— [ #H'(pdg— H, dt)
(id x7H)~1(T)
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H*(p dg — H, dt) is exact =

ex
1

0< [~ Ao (o) D))

0

+Hy(a) (Ht(a) ((WHt(a))_l (7(3))» (T - T)) da

= [[(tro(r-7))(T-7) 4

which implies T > T.




Hamiltonian approach to state—local optimality

» a suitable Hamiltonian

H: e T"R"— H({) e R
H(Z)C T telrT]
d~ —

H> F™  HoA(t) = Fo\t), M) =H o A(t)

~

» Let x; := £(7): find a smooth function a: R” — R such that

+ da(&(7)) = A7)
* A={(da(x),x)} C = -
» A transverse to {H = 1} in \(7)

» No:=AN{H =1} C X is a (n— 1)-dim manifold of T*R"
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Hamiltonian approach to state—local optimality 2

I x Ao T*R"
(W%)\ ™ I :=[-6,T + 4]
Rn
Property

H does not depend on time R
— H*(p dq) is exact on [—§, T + d] x Ag
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Lifting trajectories

X0 SN fA ~
Xf

exp sfi (%7)

~v(a) = exps(l — a)A(xr), a€[0,1]
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H*(p dq) is exact —

H)~H () (mH)~1(€)

ex

0= fﬂ*(p dq) =/ H*(p dq) —/ H*(pdq)— [ H'(pdq)
(7H)~1(€) (m

T s
—/ ldt—/ FioHo(nH) tory(a) da
0

0

.
_/0 (Ho (rH)71(E(D), £(1)) dt

>T - /TH(Ho (7H) () de=T — T.
0

which implies T > T
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Necessary conditions

By differentiation

For(A(t)) := (X(t), [fo, f](E(1))) = 0
(Foor + T(t)Fro1)(\(t)) = 0

where Fi(p.q) :== (p, [fi,[f, f]1(q))

t€[0,7)
te[r T]
tel[r T

tel[r T]
te(7T)
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The bang arc

Assumption: regularity along the bang arc

mF(\(t)>0  te[0,7)
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The singular arc

Strong generalised Legendre condition

Fin(\(t))>0  te[F T]

o = Foon e s
i(t) = —2L(\(t)  te®T)
Fio1
- F
F® = Fy — %Fl Hamiltonian of singular extremals
101

Fi(psq) = (p, [fi, [f;, f]l(q))
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PMP consequences at the junction point

o~

t— uFi(A(2))

A

N

~

uF1(A(t)) >0 t€[0,7)

d ~
S F(A(D))

= uFa(\7)) =0

t=T7

d? ~
@UlFl()\(t))

t=7—

= (u1Foor + Fio1)(A\(7)) > 0
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The junction point

Regularity at the junction point
(u1Foo1 + Fio1)(A(7)) >0

Equivalently
U is discontinuous at 7.

25



Geometric picture near the adjoint covector

Fma = Fo+ wu Fy

— —
Fo+uwufFr

= .
F1 is tangent to

= .
F1 is transverse to S

_> i
Fo1 is transverse to X

S = {Fl = F01 :0}
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Naive attempt

Hi = Fp+wmF te [0,’/7'\)
Fo+a(t,0)F,  te[rT]

for example: a(t,/) = u(t), a(t, () = *ngft%) 3

and start at tlme_t> = 0 from points £ in a neighbourhood of X(O)
with the flow of H;: at some time t(¢) the flow crosses ¥ BUT

u1 For(exp t(6)(Fo + u1 F)(£)) < 0 —

- = — —
urFi(exp(t — t(£))(Fo + aF1) o exp t(¢)(Fo + u1F1)(¢)) <0
for t > t(¢)
Does not work: Hy is not the maximised Hamiltonian along the

flow of Ht
Changing from Fy + u1F7 to Fo + |F1| causes loss of invertibility

Choose H; = {
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Change approach

te[f,T] = At)eS:={le T*R": F(£) = Fo:(£) = 0}
A new Hamiltonian (Stefani, 2004)

Regularity Assumptions —>
3 x: T*R" — [0, +00) smooth such that

» x()) =018

» X(0)=0forany le S

» for any v: (t,€) € [0, T] x T*R™ — 1(¢) € R, the vector field
Fo +v:F1 + x is tangent to

28



The over—maximised Hamiltonian

Fo(g) + ulFl(E) U1F01(£) < 0, t e [0,’/7'\)
He(¢) = { Fo(€) + urFu(€) + x(0) uFoi(f) >0, t € [0,7)
) - 2O ) rer T
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The Hamiltonian

o= G (T.3))
t
)
&
m// FS +x
1\
—_——
Fo+uiF1+x
FS :=Fy—

Foo1
Fio1

F1
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The second variation

The dynamics is affine with respect to the control, so the classical
second variation is completely degenerate —-
Proceed by perturbing:

» the switching time 7;

> the final time T;

» the singular control ﬁ\(?ﬁ)
With the constraints £(0) = Xxp, &(T) € N7

u
4+ 1
/P’I* 4
Y YN 14 ¢
BN v X
—T—
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The second variation

Transform the problem into a Mayer one on the fixed time interval
[0, T] by reparametrising time
minimise t(T) subject to
t(s) = uo(s), t(0)=0, #(T)eR
&(s) = uo(s) (fo+ u(s)A) (§(s)) &(0) =0, &(T)eNF
up(s) >0, u(s) e[-1,1]

reference extended controls: ug =1, u
reference extended trajectory: s — <s,£(s )
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After a Goh's transformation the quadratic form is given by

ngt[(ﬁ‘//oa V1,€0,€1, W)]2

2(50(&2 +ugh) + (g + Uley g2) +1082) - Bo(X0) +

.
5 [ AN 2051 6(5) - ) - o)

which is required to be coercive on the 5-tuplets
(70,71, €0, 21, w) € R* x L2([7, T]) such that

D (%) + 21 (82 + Ul g2)(%0) + 1082 (%)

admits a solution (.
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The extended second variation cannot possibly be coercive: just
choose the non null variation
=1, e =-1, 'yo:ﬁ\?+—u1,*ylzo, w=0
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The second variation

In order to obtain a possibly coercive extended second variation,
» renounce to perturbing the switching time 7;
» impose a stronger constraint on the final point:

~

§T)=&(T) =%

u
4+
T 0
Yy INT Ly ¢
v £3
P
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The second variation

Transform the sub-problem into a Mayer one on the fixed time
interval [T, T| by reparametrising time

minimise t(T) subject to

t(s) = uo(s), t(7)=7, t(T)eR
&(s) = uols) (o + u(s)R) (&) <) =% &(T
up(s) >0, u(s) € [-1,1]

x1 = &(7), E(T) =X
reference extended controls: ug =1, u
reference extended trajectory: s — (s,f(s )
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Pull-back system

gl zgt;lf,-ogs, i=0,1
gt =St 0 5 = gl +(s)a:

minimise 7(7) subject to

7(s) = wo(s) — 1,

i(s) = ((o(s) — 1)gs + uo(s)(u(s) —u(s)) &) (1(s))
(7)) =7 7(T)e 07 =%, n(T)=%x
up(s) >0, Ju(s)| < 1

constant reference trajectory s — (7,x1)
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2nd variation associated to A (Agrachev-Stefani-Zezza 1998)

~

[7,7]

~

Let 8: R" — R such that d3(x1) = —A(7) € T R”

1 (7 o -
J[bug, du]? = 2/A on(s) - (duo(s)gs + du(s) gl) - B(x1) ds
where dug, du, dn satisfy

Sno(s) = duo(s) Smo(F) =0 no(T)eR
on(s) = ouo(s)gs(%) + du(s)gt(x) m(F) =0  on(T)=0
(5uo,0u) € L2((F, T),R?).
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After a Goh's transformation the quadratic form is given by
" > 1 2 e
cht[(507517W)] = E(Eofb"‘flfl) '5(Xl)+

)
3 [ (ANt 8l ) + 2005) ()-8 - Al5) s

which is required to be coercive on the triplets
(c0,21,w) € R? x L2([7, T]) such that

{(s) = w(s)gi (%)
() =cofo(R) +e1AR)  ((T)=0

admits a solution (.
With a more appropriate choice of § the discrete part of J.,
can be assumed to be null
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Invertibility

The extended second variation

1

:
Sial(Gor P =5 [ (Rl gl + 2000 (5) - £2)-6(Ga) s

on the triplets (=0, 21, w) € R? x [2([7, T]) such that
((s) = w(s)gt (R1) ((7) = o) +=1hR) ((T)=0
admits a solution (.

Assumption

» for (time, state)—local optimality
* The extended second variation restricted to £g = 0 is coercive.
» for state—local optimality

* The extended second variation is coercive.
e The reference trajectory is not self—intersecting.
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Consequences ((time, state)—local optimality)

> f1(§1) 75 0
» Ja: R” — R such that

A= {6 € T'R: £ = da(x), x¢€ (9(?1)}

is a n—dimensional sub—manifold of >

—> apply Hamiltonian methods
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Consequences (state—local optimality)

» fo and f; are linearly independent at X3
» Jag: R™ — R such that

AS — {e € T'R": { = day(x), x € O(x),

F
(Fo - 2R+ x
F1o1

is a (n — 1)—dimensional sub-manifold of

>(4):1}
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Adjusting for exactness: t < T

N C {F0+U1F1—}LX:1, F1:0}
U1F01>0

uy F01 <0
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Replace part of A®
fi || mA%, fo(x1) transverse to TA® —>

{(Fo T+ uF)(dy(x)) = (dy, h+wmhA)(x)=1 xeR"

fy‘7r/\5 = a1|7r/\5
admits one and only one smooth solution
v:x €0(x1) = v(x) eR
Ab = {e € T"R™: uFou(0) >0, (e /\S}u

U {e € T*R™: uFoy(0) <0, €= dy(x), x € 7T/\S} cx
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Lifting trajectories

Ab N° \
A7) A7)

T(W’H)_l T

X0 — NP = A
§ Xf
§

—
3
&
|
AR
\]
)

N

v(a) = exps(1 — a)f(x1), a€0,1] exp sf1(x1)
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The result

(time, state)-local optimality

Theorem Assume (:I\-,E,/L]) is an admissible triplet for the given
minimum time problem satisfying PMP in normal form and that u
has a bang—singular structure. If

» the regularity assumptions are satisfied

» the restricted extended second variation for the minimum time
problem between the extrema of the singular arc is positive
definite

then the triplet is a (time, state)—local optimiser.

46



The result

state—local optimality

Theorem Assume (T,&,7) is an admissible triplet for the given
minimum time problem satisfying PMP in normal form and that u
has a bang—singular-bang structure. If

» the regularity assumptions are satisfied

» the extended second variation for the minimum time problem
between the extrema of the singular arc is positive definite

» & has no self-intersection

then the triplet is a state—local optimiser.
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Perturbed problem

minimise T subject to

£(t) = f5 (£(2)) + u(t) (£(1))
§(0) =g, &(T) € N7 :=expRA (x7),

te[0, T]
u(t) € [-1,1]
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The geometric picture

Under the smoothness assumption with respect to r and the
regularity assumptions, the geometric picture in a neighbourhood
of A remains the same:

> the level set ¥, := {F{ = 0} is an hypersurface in T*R"

» any singular extremal of the perturbed system evolves on
S = {F{ = F =0}

» F{o; > 0 in a neighbourhood of P\ . so we may define the
7-7
Hamiltonian of singular extremals

r
FS,r — F001
: r
F101
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Find the times and the adjoint covector

®: (r,w,7, T,s) € (=R, R) x (R")* x R® —
o
exp(—sf )mexp(T—7)F>" exp T(ﬁo+u1?1)(w, xp)—xf € R"

W(ror, T,5) = (cb(r,m, T,5).

Fi o exp7(Fb + uFL)(w, x6),
Fopoexpr (ﬁo + u1?1> (w, xp),

Fooexpr (ﬁo + ullﬁl) (w, xg) — 1)
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\U(O, 607 7/:7 :I\_a 0) - (0, 0, 0, O)

ov

_ =777
O(w, 7, T,s)

(0,80,7,T,0)

ker

Assumption: controllability along X’[ .
7T

- Al

7

» equivalently:

__is the unique extremal associated to 5‘ N
T] (7 7]

span {fo(%% fi(x), & (), te 7, :’\_]} -



Under the regularity assumptions, the coercivity assumption and
the controllability assumption

ker 67\“ =0
A(w, 7, T,s) (0,50.7,7.0)
= there exists an extremal A\"(t) := (u'(t),&"(t)) such that
» )\ is bang—singular
> the switching time 7" and the final time T" are near the
switching time 7 and the final time T of A

» the graph of \" is near the graph of Xin R x T*R"
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Theorem

There exist R > 0, € > 0 and a neighbourhood V of the graph of h\
in R x T*R" such that for any r, ||r|| < R, the extremal A" defined
via the implicit function theorem is the only extremal of the
perturbed problem whose graph is in V and whose final time is in

[T —e, T+¢l.

Is it a strong local minimiser?

The extended second variation along )\r|[Tr 7] is coercive
» " :=m\" is a (time, state)-local optimiser

> if gis simple, then also £ ;= wA" is simple and it is a
state—local optimiser
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The (badly perturbed) Dodgem car problem

T — min

x1(t) = cos(x3)+ur x1(0) = h x1(T) =

Sa(t) = sin(xs) 2(0)=0 x(T)=0 “clLI
x3(t) = u x3(0) = g x3(T) e R

cos(x3) r r
fo (x) = fo(x) | sin(x3) A(x)=10]="A(x)+|0
0 1 0
h
x = fo(x) + vfi(x) x(0) = (O) x(T) € expRA(0)
2

= the extremal is b-s-b with the length of the second bang
interval of order \/r (Felgenhauer 2011)
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