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A universal regularity theorem for (open-loop) optimal controls is a
theorem of the form:

THEOREM 1. For every optimal control problem of the form

b
minimize / L(z,w)dt subject to & = f(z,u),

a
with f, L € C°°. every optimal open-loop control is smooth,

or

THEOREM 2. For every optimal control problem of the form

b
minimize / L(x,u)dt subject to z = f(x,u),

a
with f, L € C*¥. every optimal open-loop control is smooth.



THEOREM 1. For every optimal control problem of the form

b
minimize / L(z,uw)dt subject to & = f(z,u),

a
with f, L € C°°. every optimal open-loop control is smooth,

THEOREM 2. For every optimal control problem of the form

b
minimize / L(z,w)dt subject to & = f(x,u),

a
with f,L € C*¥. every optimal open-loop control is smooth.

These theorems aren’t true of course. We want theorems like these
that are true.



From now on, I will deal with minimum time

problems.

This is just for simplicity. Everything carries
over after a few changes to general optimal

control problems of the form described above.



A TRUE THEOREM

Preliminary definitions

DEFINITION: Let h be a function defined on an interval [a, b] with
values in R or R"™ or some real-analytic manifold H. Then the good
set for real-analyticity for h is the set

Gow(h) = {t € [a,b] : h is C¥ on a neighborhood of t}.
The bad set for real-analyticity for h is the set

Bow(h) = [a,b]\Gcw(h) .

REMARK:

¢ Gow(h) is relatively open on [a,b].

¢ Bow(h) is closed.

DEFINITION: A function h : [a,b] — H is Nice (for the purposes

of this talk) if the set Gow(h) is dense in [a,b], i.e., if the set Bow(h)
is nowhere dense in [a,b].



A TRUE THEOREM

An almost correct statement

MAIN THEOREM. Let > be a control system of the form

r= f(z,u), r€X, ueU,

where

(1) X is a real analytic manifold,

(2) U is a compact subanalytic subset of a real analytic manifold Y,
(3) f is a real analytic map from X x U to the tangent bundle TX

of X. (Precisely: f is the restriction to X x U of a real analytic map F
defined on an open neighborhhod of X x U in X xY.)

Then: every time-optimal control is nice.



It depends on what the meaning of the word *“is" is. President Bill Clinton

The main theorem is true as stated except for a minor detail:
There exist optimal control problems where
(*) every control is optimal.

For example, for the system

£.U:’U,, y:]-) ZCER, yERa UE[_]-)]-])

the state variable y keep track of time, so (*) holds.

To take care of this, we need to make a slight change in the meaning
of "is”.



A TRUE THEOREM

The correct statement

MAIN THEOREM. Let > be a control system of the form

dj:f(xau)a CL'EX, ’U,EU,
where

(1) X is a real analytic manifold,
(2) U is a compact subanalytic subset of a real analytic manifold Y,

(3) f is a real analytic map from X x U to the tangent bundle TX
of X. (Precisely: f is the restriction to X x U of a real analytic map F
defined on an open neighborhhod of X x U in X xY.)

Then: for every time-optimal trajectory-control pair
(&,n), either n is nice or there is some other time-
optimal trajectory-control pair (g i), such that ¢ has
the same endpoints as £ and 7 is nice.



WHAT DOES “SUBANALYTIC” MEAN?

ANSWER 1. For the purposes of this talk, it doesn't matter, as
long as all you want is to understand the statement of the main
result. For simplicity, you could regard the theorem as talking about
a control set U which is a cube or a ball.

However, the more general assumption that U is “compact suban-
alytic” is needed if you want to understand the proof: in the proof
we use an inductive argument in which, even if you start with a
cube or a ball, you are lead immediately to more general compact
subanalytic sets.

For example, in the inductive argument we ‘“reduce” our problem to
one with a “smaller’ control set U, given as the set of zeros of a
real analytic function on U. Such a set can be quite awful, even if
U is a cube or a ball, but it is still subanalytic.
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So here is ANSWER 2: A semianalytic subset of a real analytic
manifold Y is a subset S of Y such that every point y« of Y has an
open neighborhood V such that VNS belongs to the Boolean algebra
of subsets of V' generated by the sets Z(f), Z;(f), for f € C¥(U,R),

where Z(f) ={y eV : f(y) =0} and Z,(f) ={y €V : f(y) > O}.

A subanalytic subset of a real analytic manifold Y is a subset S
of Y which is locally the image of a semianalytic subset under a
proper real-analytic map. (Precisely: for every y. € Y there exist an open
neighborhood V of Y, a real analytic manifold W, a semianalytic subset T' of W,
and a real-analytic map f: W — V such that (1) f is proper on Closy (T) and (2)
fW)=8nV.)

11



WHY DOES REAL-ANALYTICITY MATTER?
Because for C°° systems there is no such “universal regularity’” result.

REASON: Given any positive T' and any measurable function n :
[0,T] — [—1,1] one can easily construct a pair of C*° vector fields
f, g on R3 and endpoint conditions z;,, Zterm € R3 such that

T he problem of driving x;,, tO xterm DY means of trajectory

of the system

has a unique solution, and that solution is n.

In particular, n is time-optimal, and no other control can drive x;,

tO Tterm.-
12



THE PROOF IN A SIMPLE CASE

The proof of the Main Theorem in the general case is very com-
plicated, and makes extensive use of stratification theorems about
subanalytic sets, including some new results on parametric stratifi-
cations.

However, a much simpler proof can be given for systems of the form

= f(z) +ug(z), vel-1,1],

So we will do that proof first and, if there is time (which, of course,
will not happen) we will sketch the proof of the general case.

Naturally, we assume that
(*) the state variable x takes values in a real-analytic manifold X,

(**) f and g are real-analytic vector fields on X.
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Step 1 of the proof
(Simple but essential)

Let L(f,g) be the Lie algebra of vector fields generated by f and g.
(This means that L(f,g) is the linear span over R of f, g and all the

iterated brackets [f,g]. [f,[f,gll. L9, [f,9ll. UfLf51f gl L, [F, LS glll,
Lf51g, [f; gll], etc.)

Then L(f,g) is a Lie algebra of real-analytic vector fields, so it is
well know that L(f,g) has a maximal integral manifold (MIM) S,
through every point = of X.

Furthermore, the MIMs of L(f,g) form a partition of X, and every
trajectory of our system is entirely contained in a MIM.
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So, to study a time-optimal trajectory-control pair (£,n), it suffices
to restrict oneself to a MIM. That is, we may assume without loss
of generality that

(#) X itself is a MIM of L(f,g),
that is,

(##) for every z € X, the equality

L(f,9)(z) = TaX

holds, where T, X is the tangent space of X at x and

L(f,9)(z) ={V(z) :V € L(f,9)}.

(In other words, “the vector field pair (f,g) has the accessibility
property”, so the reachable set R(x) from any initial point x has
nonempty interior.)
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Step 2 of the proof.

From now one we assume that the time-optimal control n that we
are trying to study and its corresponding trajectory & are defined on

an interval [0,T].

Since our trajectory-control pair (§¢,n) is time-optimal, we apply the
Pontryagin Maximum Principle and get a “nontrivial minimizing ad-

joint vector” \.

Then X is a function defined on [0,7] such that the value \(¢)
belongs to Tg‘é)X (the cotangent space to X at &(¢)) for every

t € [0,T].

Furthermore, X\ is nhontrivial, i.e.,

A(t) £=0 for all t € [0,T].
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In addition, )\ satisfies the Hamiltonian maximization con-
dition:
(AC) for almost all ¢t € [0,T], the function

U>S>u— H(Z(),u) €R

iIs maximized by u = n(t), where

(a) H is the Hamiltonian, i.e. the function H : T#X x U — R
given by

H(p,z,u) = (p, f(x,u)) for t€ X, peTH¥X,ueU,

and = : [0,T] — T#X is the “adjoint lift” of ¢, L.e., the curve
given by

=(t) = (A(£),&(2)) -
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Finally, \ satisfies the adjoint equation. This means that

(AE) If V is any smooth vector field on X, then

%O\(t), V(&) = (A@), [f, VIE(®))) + u(t){(A(D), [g, VI(£(1))) a.e..

That is, if we write

py (p,z) = (p, V(2))
(so py : T#X — R is the momentum function or Hamiltonian
function or switching function corresponding to the vector field
V), then

Hy = Bf V] T Mg, V]

along the curve =.
18



Step 3

From now on we write uy (t) rather than uy(=(t)) for any switching
function py, .

We observe that the Hamiltonian Maximization condition implies
that
n(t) = 1 on any interval where pug >0,

n(t) = —1 on any interval where pg<0.

We conclude that

n is smooth on the open set {t € [0,T] : uy(t) # 0}.
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Step 4

TRIVIAL LEMMA: Let h:[0,T] — R be continuous. Let

W(h) ={t € [0,T] : h(t) 0 or h(s) =0 for all s near t}.

(Naturally, “for all s near t" means ‘“for all s €]t —e,t + ¢[N[0,T] for
some positive €".)

Then W (h) is relatively open and dense in [0, T].

PROOF: Trivial.
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Step 5

We study the set W(ug). This set is open and dense, and is the
union

W(Mg) — U Ii.(g)
k=1

of a sequence of pairwise disjoint relatively open intervals I.(g), such
that on each such interval either pugs never vanishes or ug vanishes
identically. Relabel the intervals of the first kind as Iz-l(g) and those
of the second kind as I]?(g), SO

W(ug) = (U L'(g)) U(
1 =1 7

I7(9)) -
=1
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Step 6

Now, on the intervals If(g), where pg4 vanishes identically, differen-
tiate pug and get

0= pg = py,g) s

SO (s, Vanishes identically on If(g).

Differentiate uj; 1 on each 1]2(9), and get

O = Lir.g] = BLL I, T Mg, Lf,01] -

Then get a set WJQ(u[gj[f’g]]) which is open and dense in If(g) and
can be written as a union

W2 (g 11.a1) = ( .91 2t g I, ) U U g, 1, 61D),

J1=1
where
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(1) I[g.[f.g]] NEVEr vanishes on IjQ’;;l([g, [f, qgl]),
(2) g [1.4) Vanishes identically on Iﬁ,’f([g, [f,q9]]),

: 2,1
Then on the intervals I3 ([g, [f, g]]) we have

j5s
'r](t) — [f:[fag]] ’
Hlg,[f.9l]

because wury sg1) T Mg, £,91] = O-

_ . 2,1
So the curve = = (), €) and the control n on the intervals I ([g, [f, gl]),
satisfy

£ = f(£)+ng(£),

A= —A—(E)—nA (5),
_#[f,[f,g]](/\ f) |
Hig,[£.g]1 (A &)
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so that

. _ gLl (s €)
£ = f(&)— g(8),
Hig,1£,g11 (A &)

Oz Blg,lf,gl (M &) Oz

(€) -

. . 2,1
Therefore £ and X\ are real-analytic functions of ¢t on Ij’i (lg, [f, glD),
and n is real-analytic as well, since

AN
Hig,[f,g1] (X5 &)

’r]:
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Hence:
(1) n is smooth on each of the intervals 17" ([g, [£, g]]).

(2) The switching function [g.[f,g] Vanishes identi-

cally on each of the intervals 132321([9, [f,gll]).

(3) The switching function 1[7[1.q]] QlSO vanishes iden-

tically on the Ij273-21([g, [f,q]]), because

HIf,Lf,9]] T MHg,[f,9]] = O
there.
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So, on the intervals I:2([g,[f,¢]]]), the switching functions
Hgr Kifglr FIf(fgll Mlalfgl]lr VaNISh identically.

That is all the switching functions of order < 3 vanish
identically.

Step 7

We now repeat the procedure. We differentiate the switching func-
] 2.2 ;
tions ppsrr.411 AN Kig (.41 ON Ijﬁl([g’ [f,g]]) and get the equations

AT e CA AT | R PARA )
Malfgll = PULle.lr.all T Mg Lo, [f01
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Applying the *“trivial lemma” to the function

4) _ 2 2
R = by 11,150 T Mo, Lo, 1,00

we find open dense subsets Wfﬁ(h(“)) of 1.72321([9’ [f,g]]) that can be
written as a union

w2 (W) = (U 1571 (g, 1, [£, 9111, Lo, g, [£, 1111)
=1

u( U 2535,g. 11, 19111, [9: Lg, [, 911D))

Jo=1
where

(1) ™ never vanishes on I::2:([g, [f, [f.9]l], g, [g, [f, 911D),

(2) h(* vanishes identically on 2722 ([g, [f, [f-9]1], lg, [g, Lf, g]1D).
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Then the control n iIs smooth on the intervals

1225 (g, U1, Lf, 9111, [, Lg, [, 9110)

and

all the switching functions of order < 4 vanish iden-
tically on the intervals 1757 ([, [, [f, 911}, [9, [, [f, g11D)-
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Step 8
The procedure continues indefinitely:

At Step k, we get an open dense set which is a countable union of
two Kkinds of intervals:

(1) intervals where the control is real-analytic,
and

(2) intervals I; where all the switching functions of order < n vanish
identically.

Then we find for each I; an open dense subset D; that splits into
a union of intervals where the control is real-analyic and intervals
where all the switching functions of order < n 4+ 1 vanish identically.
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Eventually, the procedure will stop and we will get a real-analytic
control n on an open dense subset of [0,T], provided that

(*) for every t € [0,T] there exists an n and an n-
order switching function that does not vanish at ¢.

Indeed, an elementary compactness argument shows that if (*) holds
then there exists an n such that for every t some switching function
of order < n is nonzero at ¢, which means that the "bad” intervals
I; become empty.

So we have to ask:

When does condition (*) hold?
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Condition (*) does not hold if

(#) for some t € [0,7] all the switching functions

Hgs B f,g PLELEG1D Fl,Lf,gll LE LA L 911D Pla, LfS L gll) PLE g [f 91110

Hlg,lg,[ 19111 - -
vanish at =(t).

This means that the covector A(t) annihilates all the vectors

(%)9(£(8)), If, 91(€(2)), [, [, 9l1(€(2)), lg, [f, gl1(€(¥)), Lf, Lf5 f> 9111 (&(2)),
lg, Lf5 Lf> 9111 (€Q2)), [, L9, LS, gl11(€(2)), Lg, g, Lf, 9111 (&(2)), - ..
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These vectors span the space Lg(f,g)(&(t)), where Lg(f,g) is the
strong accessibility Lie algebra, i.e., the ideal of L(f, g) generated
by g. (In simpler words, Lgo(f,g) is the span of all the iterated
brackets of f and g except f).

It is well known that, on an integral manifold of L(f,g), the di-
mension of the space Lg(f,g)(xz) is constant (i.e., independent of
x) and equal to dimL(f,g)(x) or to dimL(f,g)(x) — 1. The former
case is impossible if (#) holds, because X\ is nontrivial, so if A(t)
annihilates all the vectors of (%), i.e., the space Lg(f,g)(&(t)), then
Lo(f,9)(&(t)) must have codimension 1 in L(f,g)(&(t)).
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So we have proved:

If n is not real-analytic on an open dense subset of
[0,T], then

dim Lo(f,g9)(x) =dimL(f,g)(z) — 1 for allz € X.

In this case, we can prove that locally, our system is degenerate,
in the sense that every trajectory is time-optimal.
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Proof: Define a 1-form w on X by letting

(w, f) =1, (w,V) =0 for V € Lo(f,9).

Then for every trajectory v : [a,b] — X of our system

a

[yw=/a<w<v<t>>,w<t>>dt:/< w, f) 4 1w / ldt=b—a.

On the other hand, w is closed. Hence, locally, the integral of w is
independent from the path. So all trajectories from a given point
x;n, TO a given point xterm take exactly the same time.
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Now we need to prove that in this degenerate
case we can choose a different control n that
steers the initial point of £ to the terminal point
of &.

This will be done in the second hour of this
talk.

Finally, we have to prove the general case of
the main theorem. This will be done in Hours
3 and 4 of the talk.
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