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We investigate the derivation and the mathematical properties of a Saint-Venant model with an
energy equation and with temperature-dependent transport coefficients. These equations model
shallow water flows as well as thin viscous sheets over fluid substrates like oil slicks, atlantic
waters in the Strait of Gilbraltar or float glasses. We exhibit an entropy function for the system
of partial differential equations and by using the corresponding entropic variable, we derive a
symmetric conservative formulation of the system. The symmetrized Saint-Venant quasilinear
system of partial differential equations is then shown to satisfy the nullspace invariance property
and is recast into a normal form. Upon establishing the local dissipative structure of the line-
arized normal form, global existence results and asymptotic stability of equilibrium states are
obtained. We finally derive the Saint-Venant equations with an energy equation taking into
account the temperature-dependence of transport coefficients from an asymptotic limit of a
three-dimensional model.
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1. Introduction

We investigate the derivation and mathematical properties of a viscous Saint-Venant
system of partial differential equations with an energy equation and with temperature-
dependent transport coefficients. These equations model shallow water flows as well as
thin viscous sheets over fluid substrates like oil slicks on water, surface atlantic waters
above the denser Mediterranean sea in the Strait of Gilbraltar or float glasses used for
the production of plate glass. Modeling temperature variations is important in various
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environmental and engineering applications like float glasses and this motivates the
present study.

We first present the Saint-Venant system of partial differential equations with an
energy equation and temperature-dependent transport coefficients. We exhibit an
entropy function for the system of partial differential equations and by using the
corresponding entropic variable, we derive a symmetric conservative formulation of
the system. The symmetrizing variable is obtained from the entropy and not from the
kinetic energy as investigated by Tadmor,”® Hauke,? and Carey'” in the isothermal
case. These symmetrized systems may also be useful for finite element discretizations
and numerical simulations as investigated by Hughes, Franca and Mallet,** Chalot,
Hughes and Shakib,'® Hauke® and Carey.'?

The symmetrized Saint-Venant system of partial differential equations is then
shown to satisfy the nullspace invariance property and is recast into a normal form,
that is, in the form of a symmetric hyperbolic—parabolic composite system. We next
establish stability conditions of the source term as well as the local dissipative
structure of the linearized normal system around constant equilibrium states. In
particular, the entropy production is non-negative and the source term lies in the
range of its derivative at equilibrium. Global existence results and asymptotic
stability of equilibrium states are then obtained from Kawashima’s theory of
hyperbolic—parabolic systems®” and its extension to systems with source terms.?’

Numerous existence results can be found in the literature concerning the Saint-
Venant system without an energy equation in various functional settings. We refer
the reader notably to Serre,’? Dafermos,'* Sanchez-Hubert and Sanchez-Palencia®
for inviscid models, and Kanayama and Ushijima,*® Bernardi and Pironneau,’
Ton,’® Kloeden,** Sundbye,” Orenga,® Lions,*> and Wang and Xu®’ for viscous
Saint-Venant models with constant viscosity coefficients. Global weak solutions
have also been investigated by Bresch,® Bresch and Desjardins,” Bresch, Desjardins
and Métivier,'” and Li et al.*! with density dependent viscosities, using a gradient
entropy,® and Li et al.*' also considered the vanishing of vacuum states. Initial
value problems have also been studied with various natural boundary conditions and
we refer to Sanchez-Hubert and Sanchez-Palencia,”’ Sundbye,”* Orenga,*’ Bresch,®
Levermore and Sammarino,* and Li et al.*! Note that, when there are vacuum states
at the boundary, the boundary conditions disappear.®*!°! To the authors’ knowledge,
it is the first time that the quasilinear Saint-Venant model with an energy equation
and temperature-dependent transport coefficients is investigated.

In the remaining part of the paper we derive the Saint-Venant equations with an
energy equation taking into account the temperature-dependence of transport coef-
ficients. These equations are derived from an asymptotic study of a three-dimensional
incompressible model of a thin viscous sheet over a fluid substrate. The fluid sub-
strate is incompressible and is modeled by using the hydrostatic approximation. We
also derive typical free boundary conditions for the Saint-Venant model from the
three-dimensional governing equations and free boundary conditions associated with
the viscous sheet.
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Numerous derivations of the viscous Saint-Venant system of partial differential
equations without an energy equation and with a constant viscosity can also be found
in the literature. The inviscid equations were first written by Saint-Venant in 1871.1°
The viscous equations have been investigated by Kanayama and Ushijima®! and
Gerbeau and Perthame'” who further validated the Saint-Venant model by a direct
numerical comparison with the underlying incompressible model.'? Bresch and Noble
also investigated the mathematical derivation of shallow water type equations with
non-flat bottoms. For viscous layers on a fluid substrate, Howell has derived a Saint-
Venant model by performing an asymptotic analysis.*'*?> Multilayer Saint-Venant
models have recently been investigated by Audusse,’ Audusse and Bristeau,? and
Kanayama and Dan.?® A Saint-Venant model with a temperature equation has been
introduced by Benqué, Haugel, and Viollet® and used by Podsetchine, Schernewski,
and Tejakusuma®® to investigate the Oder Lagoon. The derivation of a Saint-Venant
model of a thin viscous sheet over a fluid substrate with a temperature equation and
taking into account the temperature-dependence of transport coefficients as well as
that of boundary conditions from an asymptotic analysis is new to the authors’

knowledge.

2. Governing Equations

We summarize in this section the Saint-Venant equations governing thin viscous
sheets over fluid substrates as well as shallow water flows. We include an energy
equation in the model since temperature variations are important in various engin-
eering and environmental applications.

2.1. Conservation equations

The equations governing shallow water flows and thin viscous sheets over fluid
substrates express the conservation of mass, horizontal momentum and energy. The
mass conservation equation can be written in the form

;b + 0, (hu) + 0, (hv) = 0, (2.1)

where ¢ denotes time, (z,y) the horizontal Cartesian coordinates, h the height of the
shallow water flow or of the viscous sheet in the vertical direction, u the velocity in
the z-direction, and v the velocity in the y-direction. The momentum equations in the
z- and y-directions can be written as

9y (hu) + 0, (hu® + p) + 0, (huv) + 8,11, + 9,11, = 0, (2.2)
0y (hv) + 0, (huv) + 8, (hv* + p) + 8,11, + 8,11, = 0, (2.3)

where p is the kinematic pressure and I1,,,, II,,,, II,,, and II,, are the coeflicients of
the kinematic viscous tensor I1. Finally the total energy conservation equation can be

written in the form
0y (he*) 4+ 0, ((he'" + p)u) + 0,((he™" + p)v)
+0,(Q, + Mypu+ I v) + 0,(Q, + I u + IT,w) = H, (2.4)
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where ™" is the total energy per unit mass, Q,, Q, are the components of the
kinematic heat flux @ and H denotes the heat loss term.

Since the Saint-Venant system of partial differential equations is naturally written
in two dimensions, we will use in the following sections the indexing set C' = {x,y}
which is more explicit than the set C' = {1, 2}.

2.2. Thermodynamic properties

In the Saint-Venant system, the kinematic pressure is given by

1
p=y ah?, (2.5)
where « is a constant associated with gravity. On the other hand, the total energy per

unit mass e't of the fluid sheet is given by
1
e (h,T) = e—|—§(u2 +v?), (2.6)

where e denotes the fluid sheet internal energy per unit mass. The internal energy e
can be written as

T
e(h,T) = e* + / ¢, (1) dT—!—%ah, (2.7)
where ¢, is the heat capacity at constant volume per unit mass of the fluid, 7" the
absolute temperature and e the formation energy of the fluid at the standard
temperature TSt We also deﬁne for convenience the formation energy at zero tem-
perature e? = e fo ¢,(7) dr in such a way that the internal energy e can also be
written as e = e + fo 3 )dT +Lah.

In comparison with the perfect gas model, we note that, with the Saint-Venant
system modeling fluid sheets, the height h plays the role of a density, the fluid is
barotropic with a quadratic dependence of the pressure p on height h and the internal
energy per unit mass of the fluid sheet e depends on both temperature T" and height h.

The natural compatibility relation*’ between p and e is also satisfied since
h20ye = p — TOrp = 5 ah? so that there exists an entropy per unit mass s such that
Gibbs relation T'ds = de + pd(1/h) holds. From Gibbs relation, it is easily shown
that Tdps = Ope = ¢, and TOys = dpe — p/h? = 0 in such a way that

T
s = s —|—/ u(7) dr, (2.8)
T

st T

where s is the formation entropy of the fluid at temperature 7'. The Gibbs function
is further defined as g = e + p/h — Ts and will be required to express the entropic
symmetrizing variable. Note finally that the Gibbs function g can be decomposed
into g(h, T) = g(T) + ah where g only depends on temperature and reads
g_e%"_fTbt U d’T— St—’_‘fj{LCUT

T
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Remark 2.1. Strictly speaking, denoting by p the — constant — density of the
fluid, only the quantity pp/h is homogeneous to a pressure and p/h to a kinematic
pressure. However, these h factors are natural since the equations are in two
dimensions so that the internal constraints are transmitted through contact lines and
not contact surfaces. Similarly, the quantity peh is the internal energy per unit
horizontal surface and psh the entropy per unit horizontal surface of the fluid sheet.

2.3. Transport fluxzes

The transport fluxes of the fluid sheet, that is, the kinematic viscous tensor IT and the
kinematic heat flux @Q, can be obtained from an asymptotic analysis as presented in
Sec. 7. The kinematic viscous tensor is of the form

IT = —vh(8,v + 8, v" + 28, - vI), (2.9)

where @, denotes the derivation vector 8, = (9,,9,)", v the velocity vector
v = (u,v)", © the component x = (z,y)’, v the kinematic shear viscosity of the fluid, I
the two-dimensional unit tensor, and superscript ¢ indicates the transposition operator.
The viscous tensor IT thus corresponds to the usual two-dimensional formulation with
a “shear viscosity” hr and a “volume viscosity” 3hv. There is thus a volume viscosity
term as for polyatomic gases.” Upon decomposing the viscous tensor, we obtain

1, I, 220,u+9y)  Oyu+0dyv
= ) =- v Yy Y T
= < 1y, 1, > a Vh( Oyu+ 9yv 2(0,u + 20,v) > : (2.10)

We also define, for future use, the kinematic pressure tensor P = pI + IT, which can be
interpreted as a kinematic momentum flux tensor. In addition, the kinematic heat flux
is given by

Q=(9,,9)" = —xho,T, (2.11)
where » is the kinematic thermal conductivity of the fluid.

Remark 2.2. Strictly speaking, denoting by p the — constant — density of the
fluid, only the quantity pII/h is homogeneous to a viscous tensor and IT/h to a
kinematic viscous tensor. Similarly, only the quantity pQ/h is homogeneous to a heat
flux and Q/h to a kinematic heat flux. However, these h factors are natural since the
internal constraints are transmitted through contact lines in two-dimensional
models. We still denote IT the “viscous tensor” and Q the “heat flux” for the sake of
simplicity. The quantities n = vp and A = »p are the dynamic viscosity and the
thermal conductivity, respectively, of the fluid.

Remark 2.3. Erroneous forms of the viscous terms are often found in the liter-
ature as for instance the forms —8,, - (v(9,(hv) + 8, (hv)! + 28, - (hv)I)) or —h8, -
(v(Oyv + B0t + 28, -vI)) instead of the correct form obtained from asymp-
totics —8, - (Vh(8,v + O,v! + 28, -vI)). Only the correct later form is energeti-

cally consistent as shown by Gent.'®
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2.4. Source terms

Heat exchanges are important in the modeling of shallow water flows*® and various
viscous sheets such that oil slicks and float glasses.*! We consider a heat loss term in
the form

H=-\N(T-T°),
where T°° is a given constant ambiant temperature and A* a heat exchange coefficent.

Remark 2.4. Various other effects may be taken into account in the Saint-Venant
system of partial differential equations depending on the particular application under
consideration. For shallow water flows, it is possible for instance to take into account
friction forces, wind effects, coriolis forces due to earth rotation and the sea
depth.!?'” In the modeling of oil spills it is also important to take into account
friction forces, water currents, shoreline deposition, wind effects and evaporation.*’
These extra source terms would not essentially modify the mathematical analysis
that will be presented in the following sections.

Remark 2.5. Depending on the particular application under investigation, various
terms may also be neglected in the Saint-Venant system of partial differential
equations as for instance the kinetic energy terms in the energy conservation
equation. However, these terms have been kept since they are important for
structural purposes. They guarantee that the structure of the system is that of a
symmetrizable system of partial differential equations of hyperbolic—parabolic
nature as will be shown in the following sections.

Remark 2.6. We only investigate in this paper the well-posedness of the Cauchy
problem with no vacuum states. On the other hand, various boundary conditions
associated with shallow water type equations are discussed by Bresch,® Sundbye,’
Orenga,* Li et al.,*! and Sanchez-Hubert and Sanchez-Palencia.’! Note in particular
that, when there are vacuum states at the boundary, no boundary conditions are to
be imposed as shown by Sanchez-Hubert and Sanchez-Palencia for vibrating shallow
waters’! using the theory of elliptic degenerate operators of Bouendi and Goulaouic,’
and by Bresch® and Li et al.*' who established in particular that the adherence
condition should be written in the form hv = 0 so that it disappears when h = 0.

3. Quasilinear Form
The governing equations presented in Sec. 2 are recast into a quasilinear vector form
in this section.
3.1. Conservative and natural variables
The conservative variable U associated with Egs. (2.1)—(2.4) is given by
U = (h, hu, hv, he'*")?, (3.1)
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and the natural variable Z by
Z = (h7 u7/U7 T)t7 (3'2)

where h is the vertical height of the viscous sheet or of the shallow water flow playing
the role of a density, u,v are the horizontal components of the mass averaged flow
velocity in such a way that the velocity vector is v = (u,v)!
per unit mass of the fluid, ¢ is the transposition symbol, and T is the absolute
temperature.

The components of U naturally appear as conserved quantities in the Saint-
Venant system with an energy equation. On the other hand, the components of the
natural variable Z are more practical to use in actual calculations of differential

, e® is the total energy

identities.

3.2. Vector equations

The Saint-Venant equations modeling thin viscous sheet over fluid substrates or
shallow water flows (2.1)—(2.4) can be rewritten in the compact form

O,U + 0,F, + 0,F, + 0,F5° + 0,F;" = Q, (3.3)

where 0, is the time derivative operator, d,,d, are the space derivative operator in
the z and y directions respectively, F, and F, are the convective fluxes in the x- and
y-directions respectively, F & and F;is are the dissipative fluxes in the z- and
y-directions respectively, and €2 is the source term. We will use the indexing set
C = {z,y} in the following for the sake of simplicity.

From Sec. 2 the convective fluxes F), and F}, in the z- and y-directions are given by

F, = (hu, hu® + p, huv, he'*'u + pu)?, (3.4)
F, = (hv, hvu, hv® + p, he'*'v + pv)*, (3.5)

where p is the pressure and e'* the total energy per unit mass. The dissipative fluxes
F3 and Fydis in the z- and y-directions are

F;:ﬁs = (Oa H:cmv H:):ya Qz + H:)::cu + H:cg/v>t7 (36)
F® = (0, I, 11, Q, + I u+ IT,,0)", (3.7)

where IT is the kinematic viscous stress—tensor (2.9)—(2.10) and Q the kinematic
heat flux vector (2.11). Finally, the source term is given by

Q=(0,0,0,H)", (3.8)

where # is the heat loss term.

These equations have to be completed by the relations expressing the transport
fluxes IT and Q, the thermodynamic properties p and e*', and the source term 2,
already presented in Sec. 2. These relations have been given in terms of the natural
variable and are used in the following sections to rewrite the system as a quasilinear
system in terms of the conservative variable U.
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3.3. Mathematical assumptions

We describe in this section the mathematical assumptions concerning the thermo-
dynamic properties and the transport coefficients associated with the Saint-Venant
equations. These assumptions are assumed to hold in Secs. 3—5.

(Thy) The fluid density p and the pressure factor a are positive constants. The
formation energy e®* and the formation entropy s* are constants. The specific
heat per unit mass c,, is a C* function of T"> 0 and there exist positive
constants ¢, and ¢, with 0 < ¢, < ¢,(T) < ¢,, for T > 0.

(Try) The kinematic shear viscosity v, the kinematic thermal conductivity s, and
the thermal exchange coefficient A* are C'*° functions of T for T > 0.

(Try) The kinematic thermal conductivity s, the kinematic shear viscosity v, and
the heat exchange coefficient A* are positive functions.

Remark 3.1. The adiabatic situation where A* = 0 is also easily investigated and we
only assume that A* > 0 in order to simplify the formal presentation. Similarly, the
situations where v and s are functions of both 7" and h are easily taken into account.

3.4. Dissipation matrices and quasilinear system

In this section, we rewrite the system of partial differential equations (3.3) as a
quasilinear system of second-order partial differential equations in terms of the
conservative variable U. In order to express the natural variable Z in terms of the
conservative variable U, we first investigate the map Z — U and its range.

Proposition 3.2. The map Z — U is a C™ diffeomorphism from the open set O, =
(0,00) x R? x (0,00) onto an open set Oy. The open set Oy is convex and given by
Oy = {(u, u, uz, ug) € R ug > 0, uy — d(uy, up, uz) > 0}, (3.9)
where ¢ : (0,00) x R? — R is defined by
P(ur, uy, ug) = % u%:lu% + euy + %au%,
and where €° is the formation energy of the fluid at zero temperature.

Proof. From Assumption (Th;) and the expression of thermodynamic properties, we
first deduce that the map Z — U is C'* over the domain O,. On the other hand, it is
straightforward to show that the map Z — U is one-to-one and that

1 0 0 0
u h 0 0
azU: v 0 h 0 ’

1
et°t+5ah hu hv he,
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so that the matrix 04U is nonsingular over Q. From the inverse function theorem,
we deduce that Z — U is a C'® diffeomorphism onto an open set Op. From
he'*t = he + $hv - v, the expressions of e, and (Thy), it is then established that Oy is
given by (3.9). The convexity of Oy is finally a consequence of the convexity of ¢,
which is established by evaluating its second derivative. More specifically, for u; > 0
and uy,u3 € R, we have

u2—|—u3
QS— +O[, u1u2¢__72a ltll,Lgd)__i
ui Uy uf

83245 = ai;;(rb = uia aiQUggb =0,

1

in such a way that for any (z;, s, z3) € R? we have

2 1 2
Z xa:aum aa:l—i——(acQ—%ml) —|——<x3—@x1> ,
u u

1<i,5<3 Uy 1 1

and the matrix (812Liu_]-¢)1§i,jg3 is positive definite over (0,00) x R2. O

In Sec. 2.3, the transport fluxes IT and Q and, therefore, the dissipative fluxes F.
and F;”, have been expressed in terms of the gradient of the natural variable Z. By
using Proposition 3.2, these dissipation fluxes can thus be expressed as functions of

the conservative variable gradients

F* = =" B(U)o,U

jec

where C = {z,y} and B;;(U), i,j € C, are the dissipation matrices. The matrix
B;;(U) is a square matrix of dimension 4, which relates the dissipative flux in direc-
tion ¢ to the gradient of U in direction j.

We may further introduce the Jacobian matrices A;, i € C, of the convective
fluxes Fj, i € C, defined by

Ai = aU-Fia (S Ca
and finally rewrite the system (3.3) in the quasilinear form

U+ A(UNOU = 0i(By(U)dU) + QU), (3.10)

ieC i,jeC

where the matrix coefficients are defined on the open convex set O. As a direct
consequence of (Thy) and (Try), the system coefficients satisfy the following property

(Edpy)

(Edp;) The convective fluxes F}, i € C, the dissipation matrices B, i, j € C, and the

source term €2 are smooth functions of the variable U € Oy;.
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Expanding the sums over C' = {x, y}, these equations can also be written in the
more explicit form

O,U + A, (U)0,U + A, (U)0,U
+0,(B,(0)0,U) + 0,(B,,(0)0,0) + U).  (3.1)

The detailed form of the coefficient matrices A;(U), i € C, and B;;(U), i,j € C, will
not be needed in the following, and, therefore, will not be given.

4. Symmetrization of Saint-Venant Equations

For hyperbolic systems of conservation laws, the existence of a conservative sym-
metric formulation has been shown to be equivalent to the existence of an entropy
function.!”2%4* These results have been generalized to the case of second-order
quasilinear systems of equations by Kawashima and Shizuta.???>%® Kawashima and
Shizuta®® have also shown that, when the nullspace naturally associated with dis-
sipation matrices is a fixed subspace, a symmetric system of conservation equations
can be put into a normal form, that is, in the form of a symmetric hyperbolic—
parabolic composite system. Giovangigli and Massot>”"?® have further characterized
all possible normal forms for such systems.

In this section, we investigate the symmetrization of the Saint-Venant system
with an energy equation (3.10). We exhibit a mathematical entropy function and
derive the corresponding conservative symmetric form. This symmetric form is then
used to derive a normal form. The symmetrizing variable is obtained from the
entropy and not from the kinetic energy as investigated by Tadmor,”® Hauke,?’ and
Carey'? in the isothermal case. These symmetrized systems may also be useful for
finite element discretizations and numerical simulations as discussed by Chalot,
Hughes and Shakib,'® Hughes, Franca and Mallet,*® Hauke®” and Carey.'> The
assumptions concerning thermodynamic properties (Th;) and transport properties
(Try), (Try) are assumed to hold in this section.

4.1. Entropy and symmetric conservative form

The following definition of a symmetric (conservative) form for the system (3.10) is
adapted from Kawashima and Shizuta,.?"%:38

Definition 4.1. Consider a C'* dipheomorphism U — V from the open domain O,
onto an open domain Oy and consider the system in the V' variable

AV +Y A (V)0 V =D 0i(By;(V)9;V) + V), (4.1)

icC ijeC

where
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The system is said of the symmetric form if the matrices fio, AZ—, ieC,and B,
i,j € C, satisfy the following properties (S;)—(Ss).

YRl

(S1) The matrix A, is symmetric positive definite for V € Oy .

(S,) The matrices A, i € C, are symmetric for V € Oy.

(S3) We have ng = sz‘ fori,j€ C,and V € Oy.

(S4) The matrix B = Yijec Bij(V)wiwj is symmetric and positive semidefinite, for
V € Oy and w € ©1, where X! is the unit sphere in two dimensions.

The following generalized definition of a mathematical entropy function is
adapted?”?® from Kawashima®” and Kawashima and Shizuta.*®

Definition 4.2. Consider a C* function o(U) defined over the open convex domain
Op. The function o is said to be an entropy function for the system (3.10) if the
following properties hold:

(E;) The function o is a strictly convex function of U € Op in the sense that the
Hessian matrix 0% ¢ is positive definite over Oy;.
(Ey) There exists real-valued C'* functions ¢; = ¢;(U) such that

(aUU)AZ‘ = 8qu-, RS C, Ue OU'
(E3) We have the property that, for any U € Oy
(6%}0')7132‘ :Bij(aéo')il, Z,je C.

(E;) The matrix B = > ijec Bi;(U) (G%J(U))_lwiwj is symmetric positive semi-
definite for any U € O and any w € X1

Kawashima and Shizuta have established?’?3® the equivalence between con-
servative symmetrizability and the existence of an entropy function.

Theorem 4.3. The system (3.10) admits an entropy function o defined over the open
convex set Oy if and only if it can be symmetrized over the open convex set Oy. In this
situation the symmetrizing variable V and the entropy function can be chosen such
that

V = (9yo)'. (4.3)

8 20,25

As is usual for compressible gases,*® mixtures of reacting gases, ambipolar
plasmas,?® we define the mathematical entropy function o of the Saint-Venant sys-

tem with an energy equation as the opposite of the physical entropy hs
o= —hs,

where s is the entropy per unit mass of the fluid under consideration (2.8). The
mathematical entropy o is associated with the physical entropy per unit surface hs
and not the entropy per unit volume as usual. The corresponding entropic variable

V= (aUU)tv
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is then easily evaluated as

1 1 !
V:T<g— 2v-v,u,v7—1) ,

where g is the Gibbs function.

Proposition 4.4. The change of variable U — V is a C* diffeomorphism from the
open convex set Oy onto an open set Oy. The open set Oy is given by

Oy = {(u, us, ug, ug) € R uy <0, uy — 9(ug, ug, ug) > 0}, (4.4)
where 1) : R? x (—00,0) — R is given by

_ 1 u?+u?
Y(ug, ug, uy) = —ugg(—1/uy) +5 %7
4

and where the Gibbs function has been decomposed into g(h,T) = §(T) + ah.

Proof. From Proposition 3.2, the map Z — U is a C'* diffeomorphism from O onto
Oy, so that we only have to show that the map Z — V is a C'* diffeomorphism from
Oy onto the open set Oy. From Assumption (Th;) and the expression of
thermodynamic properties, we first deduce that the map Z — V is C'* over the
domain Oy. It is then straightforward to show that the map Z — V is one-to-one and
that its range is Oy since the Gibbs function can be decomposed in the form
g(h,T) = g(T) + ah. In addition, the matrix 9,V is easily shown to be nonsingular
over Oy from its triangular structure and the proof is complete, thanks to the inverse
function theorem. O

The conservative symmetric form is now investigated in the following theorem.

Theorem 4.5. The function o is a mathematical entropy for the system (3.10), that
is, o satisfies Properties (E;)—(E4) of Definition 4.2. The symmetrized system
associated with the entropic variable V- € Oy can be written

A0V 4+ A0V =Y 9;(ByoV) + 9, (4.5)

eC i,jeC
and satisfies Properties (S1)—(S4) of Definition 4.1. The matriz AO is given by

1 Sym
- T v v v+ ahl
AOZ—
«a

)

1 3
etot Eah (emt + §ah) vt Y,

where

1 2
T, = (emt +§ah) + ah(u® +v? + Tc,).
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Since this matriz is symmetric, we only give its block lower triangular part and write
“Sym” in the upper triangular part. Denoting by & = (§,,§,)" an arbitrary vector of
R2, the matrices A;, i € C, are given by

v-£ Sym
~ T ’U(’U : 5) + ah£ Zv.v
Z A& =— 3 )
icC @ (etOt + 3 ah) v-§ ¥, Tv-§

where

Yoo =v-v@v+ah(v€+ERv+2v-&I),
1
Yep= (ewt +;ah)v-£fvt + (etOt +2ah> ahét,

1
T, = (et"t + gah) (e“’t + §ah> + ah(u? +v? + Tc,).

The dissipation matrices, are given by

0 0 0 0 0 0 0 0
- 0 4 0 4u - 0 0 2 2v
Buw =hIvi 4 o v |0 B =MV L]
0 4du v 0+ 3u? 0 v 2u 3w
0 0 0 0 0 O 0 0
~ 0 0 1 v - 0 1 0 U
Bue=0Tvi g 9 o o | Bu=mvlg o 4w |
0 2v u 3w 0 w 4dv 0+ 302

where 0 = T /v + (u? +v?). Denoting by & = (&,,&,)" and ¢ = ((,,¢,)" arbitrary
vectors of R2, we have

0 0 Sym
Y Byt =hTv| 0 260(+(0&+6-(T
Hee 0 2v-¢f'+v-&C"+¢-&v" 0C-§+3v-Ev-¢

Finally, the source term Q is given by
Q=0q

Proof. The calculation of the matrices fio, ./Nll-7 1€ C,and Biﬁ i,j € C,is lengthy but
straightforward and, therefore, is omitted. This calculation is easily conducted by
using the natural variable Z as an intermediate variable. The symmetry properties of

Ay, A;, 1€ C, and Bij, i,j € C, required in (S;)—(S;) are then obtained.
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Consider then a vector x € R*, with components (x,x,,x,,xr)?. After a little
algebra, we obtain

~ T
xtAgx = — <ah(xu +uxp)? + ah(x, + vxp)?
a

1 2
+ <xh + ux,, + vx, + (etot + 2ah> XT> + ahchx2T> , (4.6)

so that from (Th;) and the positivity of «, ¢, and T, we deduce that fio is posi-
tive definite. Furthermore, a straightforward calculation leads to the following
expression

x!B(V,w)x = Tvh <3(wl(xu + uxy) + wy(x, + vx7))?

»

+ (X + uxp)® + (%, + vxp)® + ﬁx?p>, (4.7)
where x = (x;,%,,X,,x7)" and w3+ w; = 1. The matrix B — easily shown to
be symmetric — is thus positive semidefinite from the positivity properties of

transport coefficients. Finally, o also satisfies (E;)—(E,) with ¢, = ou and g, = ov, as

is easily checked and o is strictly convex since A is positive definite over the open
convex set Oy . O

We have thus established in this section that the Saint-Venant system satisfies the
property:

(Edp,) The quasilinear Saint-Venant system of partial differential equations (3.10)
admits an entropy function ¢ on the open convex set Oy .

4.2. Normal forms of Saint-Venant equations

The quasilinear Saint-Venant system of partial differential equations (3.10) has
smooth coefficients and admits an entropy function, that is, satisfies the properties
(Edp;) and (Edp,). Introducing the symmetrizing variable V = (9y0)!, the corre-
sponding symmetric system (4.5) then satisfies Properties (S;)—(S;). However,
depending on the range of the dissipation matrices B , this system lies between the
two limit cases of a hyperbolic system and a strongly parabolic system. In order to
split the variables between hyperbolic and parabolic variables, we have to put the
system into a normal form, in the form of a symmetric hyperbolic—parabolic com-
posite system.??738

To this aim, introducing a new variable W, associated with a diffeomorphism
V — W from Oy onto Oy, changing of variable V = V(W) in (4.5) and multiplying
on the left side by the transpose of the matrix dyV, we get a new system in the
variable W and have the following definition of a normal form.*
Definition 4.6. Consider a system in symmetric form, as in Definition 4.1, and a
diffeomorphism V' — W from the open set Oy onto an open set Oy. The system in
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the new variable W

A(W)OW + > A,(W)OW = Y 9;(BW)O,W) + T(W,0,W) + Q(W), (4.8)
ieC i,jeC
where
ZO = (6WV)tAO(8WV)a Eij = (aWV) Bzy(aWV)a
Az - (QWV)tAz(awv)a ﬁ = (8Wv)t97 (49)
T =-) 0,(0wV)'By(0wV)0,W,
i,jeC

satisfies properties (S;)—(S,) rewritten in terms of overbar quantities. This system is
then said to be of the normal form if there exists a partition of {1,...,4} into
I=A{1,...,ny} and II = {ny+1,...,4}, such that the following properties hold.

(Nor;) The matrices A, and B;; have the block structure

_ Ay 0 _ 0 0
A(): B;; = =IIII |-
<o w50 ay

(Nor,) The matrix Eg’H(W, w) = e Bg H(W)wiwj is positive definite for W €
Oy and w € B

(Nor3) Denoting 9, = (9,,0,)!, we have

T(Wv amW) = (TI(Wv 8zWH)7 ?H(Wv amW))t7
where we have used the vector and matrix block structure induced by the parti-
tioning of {1,...,4} into I ={1,...,ny} and IT = {ny+1,...,4}, so that we have
W = (W, Wyp)t, for instance.
A sufficient condition for system (4.1) to be recast into a normal form is that the
nullspace naturally associated with dissipation matrices is a fixed subspace of R%.
This is Condition N introduced by Kawashima and Shizuta. In the following lemma,

we establish that the nullspace invariance property holds for the Saint-Venant sys-
tem of partial differential equations.

Proposition 4.7. Let V € Oy, w = (w,,w,)" € X!, and denote
w) = Z Bij(V)w w;
i,jeC
The nullspace of the matriz B is one-dimensional and given by
N(B) = span(1,0,0,0)",
and we have B, N(B B) =0, fori,j e C.

Proof. According to (4.7) the matrix B is positive semidefinite, so that its nullspace
is constituted by the vectors x of R* such that x‘Bz = 0. Denoting z =
(T, Ty, Ty, xp)t and using (4.7), the null condition z!Bxz = 0 implies that xp =0
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and z, =z, =0 and conversely. We have thus obtained that the nullspace of

B(V,w) is one-dimensional and spanned by (1,0,0,0)¢, and it is thus independent

of V€ Oy and we X! Finally, one easily checks that B;;(1,0,0,0)! =0, for

i,jeC. 0
We have thus established the following property

(Edp;) The nullspace of the matrix B(V,w) = > ijec B,-j(V)wiwj does not depend
on V and w € B!, dim(N(B)) = 1, and we have B;;(V)N(B) =0, 4,j € C.

We now investigate normal forms for the system (3.10), or, equivalently, for the
system (4.5). Since the nullspace of the matrix B is spanned by the first canonical
basis vector, the invertible matrix P of Lemma 3.7 of Giovangigli and Massot®® can
be taken to be the unit tensor in R** so that the auxiliary variables are simply
U'=U and V' =V. Since U; =U; = h and V}; = Vi; = (u,v,—1)/T, we obtain
from the general characterization of normal form the following result.

Theorem 4.8. Any normal form of the system (4.1) is given by a change of variable

in the form
1 t
W_(¢I(h)?¢ff<%a%v?>> )

where ¢; and ¢;; are two diffeomorphisms of R and R? respectively, and we have
?(W7 axW) = (Oa TH(Wv amWH))t'

We can next use the possibility of mixing the parabolic components — the V/, =
Vi1 components — established in Theorem 4.8, in order to simplify the analytic
expression of the normal variable and, consequently, of the matrix coefficients
appearing in the normal form. More specifically, we select the variable W = Z

W = (h,u,v,T)?,
easily obtained by combining the V/; = V;; components and derive the corresponding
normal form of the governing equations.

Theorem 4.9. The system in the variable W = (W, Wy;)t, on the open convex set
Oy = (0,00) x R2 x (0, 00), with hyperbolic variable

and parabolic variable
WII = (’LL, v, T)ta

can be written in the form
—II —II — I
Ay oWr+> A7 oW+ > A,
ieC icC

ﬁiWH = 0, (410)



Saint-Venant Model with Variable Temperature 1267

A oWy + 3" A ow + S A oWy = Y 0B oW + T + Qi
ieC ieC i,jeC
(4.11)
and is of the normal form. The matriz A, is given by
a 0 0
- 1{0 hI 0
Ay ==
T 0 he,
T

Denoting by & = (&,,&,)" an arbitrary vector of R2, the matrices A, and Zy are
given by

av-& Sym
— 1 .
ZAifi — | ohe el . (4.12)
ieC o 0 Mye
T

Denoting by & = (&,,€,)" and ¢ = ((,,C,)" arbitrary vectors of R?, the dissipation
matrices, Eij are such that

0 Sym
S OB =t | 0o 2R CHCRETECD) ,
P
i,jeC OIXZ Tg . CI
or equivalently
X 000 0O 0 0 O
_ h 0 4v O 0 B o 0 o o
Bzz = = 0 0 14 0 5 Bzy = — ’
! T{0 v 0 0
P
™ 0O 0 0 O
0 0 0 T
0 0O 0 O 8 0 8 8
_ h 0 0 v 0 . h v
B = — B _n
x
0 0 0 0 0O 0 O -
T

The term T;; is easily evaluated as
— 1
’TH = _ﬁ(07ﬂ° awT7H:6wv + Q * amT)tv

whereas the source term Q = (Q;, Q )t = (O V)2 is given by

_ A t
Q= (0,0,0,—E(T—TG)) .
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Proof. The calculations are lengthy but straightforward and make use of
Theorem 4.5 and Assumptions (Thy), (Try) and (Tr,). O

It is remarkable that the Saint-Venant system of partial differential equations
with a temperature equation can be recast into a symmetric hyperbolic—parabolic
form already obtained for multicomponent reactive compressible flows,?® partial
equilibrium chemistry models,?” and ambipolar plasmas.?® In the next section we
investigate global existence around equilibrium states and asymptotic stability of the
resulting system of partial differential equations. Different existence results could also
be obtained for such symmetrized systems, as for instance local existence results, by
using the general theory of Volpert and Hudjaev®® as investigated for instance for
total vibrational nonequilibrium flows?® and anisotropic magnetized plasmas.**

5. Global Existence for the Saint-Venant Equations

In the previous sections, we have established that the quasilinear Saint-Venant
system of partial differential equations is symmetrizable and can be written in a
normal form and we have already established properties (Edp;)—(Edpsz). In this
section we will first investigate the existence of constant equilibrium states or
property (Edp,). We will next investigate the corresponding linearized normal form
and linearized source term. We will indeed establish the local dissipativity properties
labeled by (Dis;)—(Dis4) that will insure the asymptotic stability of equilibrium
states.???® In particular, global existence of solution around equilibrium states as well
as decrease estimates will be obtained for the quasilinear Saint-Venant system with
a temperature equation. We will use the normal variable W = Z introduced in
Theorem 4.9 but other normal variables could be used as well.

5.1. Local dissipative structure

We remind that the source term Q is given by Q = (0,0, 0, —X\* (T — T¢))?, where \* is
a positive coeflicient and 7¢ > 0 a positive temperature.

Proposition 5.1. Let a height h® > 0 and a velocity v° = (u®,v°®)* € R? be given.
Then the state U defined by

Ue — (he7 heue’ heve7 heetot(he7 Te))t
is an equilibrium state
QU =0,
and for this constant stationary state we also have Z¢ = (h¢,u®,v¢,T°)".

Selecting arbitrarily Z¢ = (h®,u¢,v¢,T¢)! we have established the following
property

(Edps) There exists a constant equilibrium state U® such that Q(U*®) = 0.



Saint-Venant Model with Variable Temperature 1269

We will denote by V¢ and W€ the equilibrium states in the variables V' and W,
respectively. In order to establish a global existence theorem, we further need to
investigate the local dissipative structure of the source term.

Proposition 5.2. The linearized source term L(V¢) = —(dyQ)(Ve) at the
stationary state V¢ constructed in Proposition 5.1 is given by

0

0

0 )
XreTeZ

L(Ve) = (5.1)

o O O O
o O O O
o O O O

where X = X(T°). This matriz L(V°) is symmetric positive semidefinite and
satisfies

R(L(V*)) = span(0,0,0,1)",
in such a way that we have QU(V)) = Q(V) € R(L(V®)) for all V € Oy .

Proof. Evaluating the matrix L(V*®) is straightforward, L(V¢) is positive
semidefinite, and obviously R(L(V*®)) = span(0,0,0,1)". O

Proposition 5.3. Let U¢=U(Z°) with Z°¢= (h®,u®,v¢,T¢)! be a constant
equilibrium state in Oy constructed as in Proposition 5.1. Then there exists a
neighborhood U of V¢ and a positive constant 6 such that

SQUV)2 < —(V =V, Q(V)), Ve (5.2)

Proof. From the expression of V, we obtain

3 2
V= Ve 8(V)) = — 2 (T = T
and (5.2) since [Q(V)|2 = X2(T — T°)? and \* is a positive function. O

We have thus established Properties (Dis3) and (Disy)

(Dis3) The smallest linear subspace containing the source term vector Q(V), for all
V € Oy, is included in the range of L(V*), with L = (8, W)'L(V*)d, W.

(Dis4) There exists a neighborhood of V*¢, in Oy, and a positive constant § > 0 such
that, for any V in this neighborhood, we have

BIQV)? < —~(V =V, (V).

5.2. Linearized normal form

If we linearize the symmetric hyperbolic—parabolic system (4.10)—(4.11) around a
constant stationary state W€ = (h¢ u® v¢,T°)! we obtain the linear symmetric
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system

A(W)dyz+ Y A(W)d;z =Y By(W*)0;0;z — L(W*)z, (5.3)

eC i,jeC
where the zeroth-order term is defined as L(W*¢) = — (9 Q)(W*) and is given by

0

0

0
)\*C

L(W®) = (5.4)

o O O O
o O O O
S O O O

Taking into account that (4.10)—(4.11) is a normal form, and since the matrix L(W®)
is symmetric positive semidefinite, we obtain that Property (Dis;) is satisfied

(Dis;) The matrix Ay(W¢) is symmetric positive definite, the matrices A;(W°¢),

i€, are symmetric, we have the reciprocity relations (B;(W¢))! =

B ;i(We), 4,7 € C, and the matrix L(We¢) is symmetric positive semidefinite.

We next have to investigate the existence of compensating matrices K7, j € C
as introduced by Kawashima.?”?""% In the following proposition, we denote by

B(W¢,£) the matrix B(W®,£) = > jec Bij&i&;-

Proposition 5.4. For a sufficiently small and positive a, the matrices KJ, j € C,
defined by

0 & 0
Z@'Kﬁ =a|l =& Oy 0Oy |Ag(WO)L,
jec 0 Oixo 0

where & = (§,,&,)", are compensating matrices. In particular, the products
KIAy(W*®) are skew-symmetric and the matriz

> KA (W) + BWS,€),
i,jeC
is positive definite for € € X1

Proof. It is obvious by construction that the products K7A,(W¢), j € C, are skew-
symmetric. On the other hand, a direct calculation yields

B alg[? (ve-€)E& 0
STGRIA,WO)E =a| —(v°- €& —hEDE Ony | (5.5)

ije0 0 01x2 0

where the superscript e indicates that the corresponding quantity is evaluated at We.
As a consequence, for £ € X1, and z = (zy, 7, T, o7)", we have [¢] = 1, and there
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exists 4 > 0 such that

<xta Z fj,Kin(7We)fi$> > ;(mh - 5(xu +$7; + mT))

i,j€C
Using now Property (Nor;), the matrix

> KIAWOSE; + BOV®,€)

i,jeC
is positive definite for £ € X! and a sufficiently small. O
We have thus established (Dis,)

(Disp) The linearized system is strictly dissipative in the sense that there exists
compensating matrices K7, j € C.

Remark 5.5. Different formulations can be used in order to establish the strict
dissipativity of the linearized normal form as investigated by Shizuta and
Kawashima.”® However, we have chosen to directly establish the stronger
Proposition 5.4 which implies the existence of a combined compensating matrix
K =3 jec K¢ as discussed by Shizuta and Kawashima.”

5.3. Global existence and asymptotic stability

In the previous sections, we have established that Properties (Edp;)—(Edp,;) and
(Dis;)—(Dis,) are satisfied. Therefore the existence theorems established in Refs. 20
and 25 can be applied to the system (4.10)—(4.11) governing shallow water flows or
thin viscous sheets over fluid substrates written in the W = (W, Wy;)! variable, with
the hyperbolic variable

WI = ha
and the parabolic variable

WII = (’LL, v, T)t

Theorem 5.6. Consider the system (4.10)—(4.11) with d = 2,1 > [d/2] + 2, and let
WO(z) be such that

WO —We e WHRY).

Then, if [W° — W¢|| , is small enough, there exists a unique global solution to the the
Cauchy problem (4.10)—(4.11)

AW + > A0W =" 0i(BoW) + T + 9,

ieC i,jeC
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with initial condition
W(0,z) = W'(z),

such that

W, — W7 € C°([0,00); W3 (R?) N C([0, 00); W5 (RY)), (5.6)

Wi — Wi € CO([0,00); Wi(R?)) N C([0, 00); W3 2(RY)),
and

{«%WI € L2(0, 00, W™ (R%)),
8, Wy € L2(0, 00; W(R4)).
Furthermore, W satisfies the estimate
W (t) = we||? +/Ot(||3mh(7)ll,21_2 +[18gu(T)I?,
+ 180117, + 19T(T)[I2,) dr < BIWO — We||2, (5.7)

where (3 is a positive constant and sup,crq |W(t) — W¢| goes to zero ast — oo.

Theorem 5.7. Keeping the assumptions of the preceding theorem, assume that
d=2, 1>[d/2]+3 and W° —Wec Wi(RY) N LP(RY) with p <€ [1,2). Then, if
[W(t) = Well_,, +[[W(t) —Wel|, is small enough, the unique global solution to the
Cauchy problem satisfies for t € [0,00) the decay estimate

W) =W, <BA+0)7(W(E) - W, +[W(E) = Wel,,),

1-2.2 1-22

where (8 is a positive constant and v = d x (1/2p — 1/4).

Remark 5.8. Theorems 5.6 and 5.7 are easily adapted to the situation d =1,
further assuming that p = 1, or to the situation A* = 0 where 7'¢ can then be chosen
arbitrarily. Various extra effects like friction forces or wind effects can also easily be
taken into account in Theorem 5.6.

Remark 5.9. We have investigated in this paper the Cauchy problem for the
equations governing thin viscous sheets over fluid substrates. Similar methods could
be applied to investigate strong solutions to Initial-Boundary value problems in the
absence of vacuum by imposing classical Navier—Stokes type boundary conditions as
discussed for instance by Sundbye,’* Orenga,*® Lions,*?> and Bresch.® On the other
hand, global weak solutions have been investigated by Bresch,® Bresch and
Desjardins,” and Li et al.** by using gradient entropies, and higher order entropies

have also been discussed by Giovangigli.?"***

6. A Thin Viscous Sheet Model

We investigate in Secs. 6 and 7 a three-dimensional model of a thin viscous sheet over
a fluid substrate and its two-dimensional asymptotic limit.
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We first present in this section the three-dimensional partial differential equations
governing a thin viscous layer of an incompressible fluid with two free boundaries, an
upper fluid/gas boundary and a lower fluid /substrate boundary. The upper gas may
depend on a particular application under concern and will be denoted by “gas” for
the sake of notational simplicity. On the other hand, the fluid substrate will be
modeled by using the hydrostatic approximation. In Sec. 7, we will perform an
asymptotic analysis and derive the Saint-Venant equations with an energy equation
and temperature-dependent transport coefficients from the three-dimensional gov-
erning equations presented in this section.

There are various examples of such viscous layers over fluid substrates as for
instance oil slicks over water,’ float glasses,*” and Atlantic waters over the deeper
denser Mediterranean sea in the Strait of Gilbraltar.*?

During the spreading of an oil spill, there indeed exist several regimes where it can
be modeled as a thin viscous sheet over a water substrate.?® This is notably the case
during the gravity/viscous or viscous/surface-tension spreading regimes.*’ The
incompressible oil flow then presents two free boundaries, the upper oil/air interface
and the lower oil/sea interface. More refined models may also include other effects
like wind dispersion, water currents, shore deposition, evaporation, or dissolution, in
order to describe more realistically oil slick trajectories.*’

In a float glass, molten glass is flowing and floating above molten tin, and is
progressively cooled in order to produce plate glass.?""*?*7 This procedure gives the
glass sheet a smooth interface and modern windows are made from float glasses. The
incompressible molten glass flow then presents two free boundaries, the upper glass/
gas interface and the lower glass/tin interface. The reducing atmosphere above the
molten glass and the tin bath is typically a mixture of nitrogen and hydrogen to
prevent the oxidation of tin.

On the other hand, in the Strait of Gilbraltar, the denser Mediterranean sea flows
below Atlantic waters penetrating in the Alboran sea. These phenomena may be
modeled by using bi-layer Saint-Venant shallow water equations.”® More recently,
multi-layer Saint-Venant equations have also been investigated.'?-36:43

Nevertheless, we will not discuss a particular application in the following sections
since the models investigated may be applied to quite different situations. We will
thus generically denote by “fluid” the liquid constitutive of the viscous sheet, by
“gas” the gas above the sheet, and by “substrate” or “fluid substrate” the liquid
substrate below the sheet.

6.1. Setting of the problem

We consider a three-dimensional flow governed by the incompressible Navier—Stokes
equations with temperature-dependent transport coefficients. The flow configur-
ation is depicted in Fig. 1 with an upper fluid/gas free boundary and a lower fluid/
substrate free boundary. The incompressible fluid constitutive of the viscous sheet
is termed the “fluid”, the gas above the viscous sheet is termed the “gas”, and the
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Fig. 1. Schematic of the thin viscous sheet.

lower fluid constitutive of the substrate is termed the “substrate” or the “fluid
substrate”.

The equations governing the viscous incompressible fluid can be written in the
nonconservative form

Oy -v=0,
POV + pv - 8.V + 8,p — B, - (nd) = pg,

1
pc, 0T + pc,v -0, T — 0y« (\T') = 577d:d7

where 8y = (0,,0,,0.)" is the three-dimensional gradient vector, p the constant
density of the incompressible fluid, v = (u,v,w)’ the three-dimensional velocity
vector, p the pressure of the three-dimensional glass flow, g = (0,0,g)! the gravity
assumed to be constant and vertical, d = 8,v + 8, v’ the strain tensor, c, the heat
capacity per unit mass of the incompressible fluid, 1 the fluid viscosity and A the fluid
thermal conductivity of the fluid. We denote by (e,,e,, e,) the canonical basis vec-
tors associated with the three-dimensional Cartesian coordinates x = (z,y,z)¢. We
will denote by II = —nd the viscous tensor, P the pressure tensor P = pI + II,
o = —P the Cauchy stress tensor, and Q the heat flux Q = —\0,T. Note that we use
italic fonts in order to denote the asymptotic two-dimensional Saint-Venant model
and roman fonts in order to denote the original three-dimensional incompressible
Navier—Stokes model. We will assume in the following that the pressure in the fluid is
measured relative to the atmospheric pressure p,,, for the sake of simplicity.

The boundary conditions are that of free boundaries at the upper fluid/gas
interface z = hy,s and at the lower fluid/substrate interface z = hgy,. On the top
boundary, the fluid particles stay on the surface z — hg,s = 0 and the usual kinematic
condition yields that

w = athgas + uazhgas + vayhgasa

where we have denoted by v = (u, v, w)? the three components of the velocity vector
v. On the other hand, the dynamic condition at the top free boundary can be written

O *Ngys = Ogys * Ngas — Wf/gcgasngasa
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where 7/, is the surface tension between the fluid and gas and Cy,, the total curvature
of the surface 2z = hy,, seen from the fluid and given by
(14 (Orhgas)® + (Oyhges) ?)*/?

Cgas =

In this dynamic boundary condition, the outward normal vector at the fluid/gas
interface is given by

Ny = ((Ohgas)? + (Oyhgas)® + 1) 72 (=0,hgas, —0yhgas, 1)1,

y'gass

and the stress—tensor in gas by
Ogas * Ngas = ~PatmMgas»
where p,,, denotes the atmospheric pressure.

Remark 6.1. A more general dynamic boundary condition taking into account the
spatial variations of the surface tension 7;/, can be written in the form

O *Ngyg = Ogys * Ngag — 7f/gcgasngas - (I — Ngyg ® ngas)ax’}/f/ga
where 9,7¢/, denotes the gradient of the surface tension ~;/,. However, for the sake of
simplicity, we will assume in the following that 7;/, is a constant.
Similarly, at the lower boundary, z = hy,,, the vertical velocity component w is
given by
w = az‘,hsub + uaxhsub + Uayhsulw

and the dynamic condition reads

O Ny = Ogub * Ny — ’Yf/scsubnsubv
where 7/ is the surface tension between the fluid and the substrate, Cy, the total
curvature of the surface z = hyy, seen from the fluid, and
Ngyp = ((8$hsub)2 + (8yhsub)2 + 1)71/2(8whsub7 ayhsu’b) _1)ta

the outward unit normal vector at the fluid/substrate interface. Thanks to the
hydrostatic approximation, the normal component of the stress—tensor in the fluid
substrate is given by

Osub * Ngub = ~PsubMsubs
where pg,, denotes the pressure in the substrate flow given by

Psub = Patm + psubghsub'

From a thermal point of view, at the top and bottom interfaces, we have the
boundary conditions

7)‘6xT *Ngag = Agas(T - Tgas)a

_/\axT *Ngyp = )‘:ub (T - ,Tsub)v
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where T,,; and Ty, are given temperatures in the gas and in the substrate flows,
respectively, and where A, and A3, are the heat exchange coefficients.

6.2. Rescaled equations

In order to perform an asymptotic analysis of the three-dimensional incompressible
fluid flow, we need to specify the order of magnitude of the various terms appearing in
the governing equations. For this purpose, for each quantity ¢, we introduce a typical
order of magnitude denoted by (¢). We introduce in particular a characteristic
horizontal length (x) = (y) and vertical length (z) = e(x) where the aspect ratio € is
the small parameter associated with the thickness of the fluid viscous sheet. We
correspondingly introduce a characteristic horizontal velocity (u) = (v) and vertical
velocity (w) = e(u) as well as a characteristic density (p) = p where p is the constant
density of the fluid constitutive of the viscous sheet. Denoting by (n) a characteristic
viscosity, the Reynolds number Re is then given by

_ (P (w){z)
Re = o (6.1)

We define the characteristic time from the characteristic length (z) and the
characteristic velocity (u) by letting (t) = (x)/(u). Denoting by (c,) a typical heat
capacity and ()\) a characteristic heat conductivity of the fluid, the characteristic
internal energy is defined by (e) = {¢,)(T) and the Prandtl number Pr by

pp — {m{e) 6.2)

Note that ¢, = ¢, for an incompressible fluid and that we may set for instance
(¢y) = R/m, where R is the perfect gas constant and m the molar mass of the
incompressible fluid. We will also denote by Ec the energy ratio or Eckert number

(u)?
Ec=——7. (6.3)
{c,)(T)
For a fluid, this number plays a similar role as that of the square of the Mach number
for a gas. From these definitions we obtain that (n) = (p)(u){(x)/Re, (e) = (c,)(T) =
(u)?/Ec and (\) = (p){u)(x){c,)/(RePr). We define the characteristic pressure as
{p) = (p){u)? and the Froude number by

(6.4)

so that (g) = (u)?/(Fr{x)). Denoting by (v) a typical surface tension, the capillary
number is defined by

Ca = 00 (6.5)
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so that (v) = (z)(p)(u)?/ReCa. We also introduce a typical heat exchange coefficient
(A*) and the reduced quantity

Fx = X0} (6.6)

In the asymptotic analysis, performed in the next section, it will be assumed that

_ Ca —
Fr=¢Fr, Ca=—, Ex=c¢€Ex, (6.7)
€
and that the numbers Re, Pr, Ec, Fr, Ca and Ex are of zeroth-order with respect to ¢,
that is, are finite as ¢ — 0. Assuming that Ex and 1/Ca are small means that surface
tension effects as well as thermal exchanges are corrective effects. In order to simplify
the formal presentation, it will be convenient to define the modified reduced

quantities

ﬁ=%, X:%Re’ (6.8)
R e X e ©9)
These quantities are such that
n=(p){u)(z)7, A= (p){u)(z)(c,) A, (6.10)
v =elp)(w*@)7, 9= (u)’8/(z), (6.11)
X = e(p)(u){c,) A", (6.12)

and will simplify the formal presentation of the asymptotic analysis. From the aspect
ratio of the thin viscous sheet, we also deduce that the curvature is typically of the
order (C) = €/(x). We will also denote by a the density ratio

P
Psub ’

a= (6.13)
where p is the density of the incompressible fluid constitutive of the viscous sheet and
Peun, the density of the incompressible substrate fluid.

Remark 6.2. Typical values for density ratios are a ~ 0.70—0.97 between crude oil
and water for oil slicks, a >~ 0.35 between glass and tin for float glasses, a ~ 0.997
between Atlantic and Mediterranean waters. Typical aspect ratios are e ~ 1079—10-6
for oil slicks, and € ~ 103 for float glasses.

Upon defining the reduced quantity ¢ = ¢/ (¢) associated with each quantity ¢ of
the fluid model, we can now estimate the order of magnitude of each term in the
governing partial differential equations. Using the general notation for rescaled
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variables, the reduced equations can be written in the form

5 -v=0, (6.14)
:V+v-8;v+85p— 05 -(7d) =&, (6.15)
¢,0;T+¢,9-0;T -85 -(AT) = @, (6.16)

where & = %ﬁa :d /Ec is the reduced viscous dissipation term. In order to perform an
asymptotic expansion of all the flow variables, it is further necessary to explicit the
governing equations in the horizontal and vertical directions. Upon expanding the
flow vector equations and dividing the vertical momentum equation by the aspect
ratio € we obtain that

05+ 055+ -0 = 0, (6.17)
07 T+ W05 T + D051 + 00-1 — 95 (2705 0)
~ 0, (D3 -+ 059)) — 5 0:(10:0) — 0=(70;8) + ;5 =0, (6.18)
e+ W0 + 005D + B0 — 05 (7(057 + 057))
~ 0,(2707) — 5 0:(10:9) — 0:(0;) + 9,5 =0, (6.19)

8, @+ 05 + 00y B+ 005D — 5 (7105 B) — = 5 (705 7)
t x Y z 6

1 1 1
— 05(2m05w) — — 05 (M05v) — 6 ~(2m05 w)—l— 8 :Zg (6.20)
and
¢,0; T + 2,05 T + ¢,00;T + ¢,005T — 95 (N5 T)
— A~ 1 — o~ —
—0;(A0;T) — 6—28;()\63T) =, (6.21)
where the reduced viscous dissipation ® is given by
_ 1 . . N R =N
1 ? 1,.)\?
€ €

Remark 6 3. The internal energy per unit mass can also be written e =
et + f:ﬁt ,(7) dr and the total energy per unit mass is given by et =e+iv-v.

The reguced total energy per unit mass &' can also be written as etot =
est 4 f%ﬂ ¢, (T)dr + 1 Ec(u? + 9% + 2w?).
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6.3. Rescaled boundary conditions

Upon using the general notation associated with rescaled variables, the reduced
kinematic boundary condition at the top rescaled free boundary z — h,,s = 0 can be
written as
W = O; hygg + W5 Mgy + 05 higae,

whereas the dynamic condition reads

~ o~ A ~ 29— A~

O Ngys = Ogyg * Mgy — € Fyf/gcgasngasa
where

n ((68 h ) (eaﬂ/]{gas)Q + 1)71/2(_665/&;&57 €0y h ) )

gas z 'bgas y'tgasy

and where the normal component of the stress tensor in gas reads
Ogas * Ngag = ~PatmMgas-

By decomposing the dynamic boundary condition componentwise, we obtain the
three equations

- ~ ~ 1
€§8§ hgas + /7'7 <28:,L\ ﬂ(fe(% hgas) + (8@& + 856) (7€a§hga‘s) + - 82@ + 685 ’L/l\)>
€
= 637f/gagasaiﬁgas, (623)
T ~ - ~ 1, _
PO s + n((afu + 050)(—€d5 hg%) +20;0(—€05 hygas) + ;831) + 68§w>
= Egﬁf/gcg%a‘/ hg%a (624)
1 ~ 1 ~
B ﬁ( (ea5 W+ —a;a) (—eds ogus) + (eaya b ag) (=03 hg) + 23;@)
€ €

= 7627f/g8gasa (625)

where the reduced curvature C,,; can be written

o~

a%h\ (1 + 62(85;;%%) ) + a" gdb(l te (a h ) ) - 2628fﬁgasayﬁgasa;@\h\gdb
(1+e (35 hgas)? + €2(D5hgas) )2

Cgas =

(6.26)

Similarly, at the reduced free boundary z — ﬁsub = 0 between the fluid and the
substrate we can write that

w = af hsub + ua&f hsub + Ua@ hsuba

and the dynamic condition reads

~
~ o~

o ~ ~ 2_ ~
O Ny = Ogub * Ngup — € fo/SCsubnsubv
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with
ﬁsu‘b = ((eaiﬁsub)2 + (68§E5ub)2 + 1) 71/2(685;;&11)’ eayﬁsubv _1)t'

The normal component of the stress—tensor in the fluid substrate reads

&sub ° i'\lsub = _ﬁsubﬁsulw

where Dg, is assumed to be hydrostatic. The dynamic vector boundary condition can
be decomposed componentwise and yields that

N ~ ~ 1
—€ep0z hau, + ﬁ<285 (€05 hap,) + (05U + 050) (€05 hau,) — ;6;& — €03 171)

1~ ~ = ~
hsub g (685 hsub) - 63 ’Yf/scsubai hsuba (627)

T a
T ~ - e o~ o T 1, .y
7epa§hsub -+ n <(ayu -+ 8} ’U) (665 hsub) -+ 28@”0(68@]18“]0) — 282’0 — e@;fw)
1~ ~ o~ ~
= _;hsubg(eaghsub) - 63,}/f/scsubajhsuba (628)
(1, A N =~ 1, . . =~ .
p+7 ( (— Oz u+ ed5 w) (605 hgwy) + (— 0-0+ 68@w> (€05heu) — 283111)
€ € ‘
1~ .
= g hsubg + 627f/scsub‘ (629)

Finally, the rescaled thermal boundary conditions at the top and bottom inter-
faces, are of the form

 —0-T(e05 hyps) — 0T (€0 b)) + 1/€0:T  _,

-]\ T (e hie ) y (iy g ) /€ :E)\gas(T—Tgas),
((6655 hgas)2 + (eajhgas)Q + 1) 1/2

0T (D5 hyy) + 0-T(eDshyy) — 1/€0sT  —, -

) (6 z b) y (6 Y b) /6 :e)\sub(T_Tsub)7

((GaEEwb)2 + (eagﬁsub)2 + 1)1/2

where ?gas and iub are the rescaled given temperatures in gas and in the substrate
flow respectively, and where X, and M\, are the rescaled heat exchange
coefficients.

7. Derivation of the Saint-Venant Equations

The governing equations presented in Sec. 2 and investigated in Secs. 3—5 are now
derived from an asymptotic analysis of the three-dimensional incompressible
equations modeling thin viscous sheets over fluid substrates presented in Sec. 6.
Asymptotic expansions are a powerful tool for deriving governing equations of multi-
scale medias. We refer in particular to the monographs of Milton Van Dyke®" for
asymptotic methods in fluid mechanics, Roseau® and Sanchez-Hubert and Sanchez-

Palencia’ for asymptotic analysis of vibrating continuous media, and Sanchez-Palencia®
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and Benssousan, Lions and Papanicolaou® for asymptotic expansions in homogeniz-
ation theory. In the context of thin viscous sheets over fluid substrates we mention in
particular Howell*"*? who investigated isothermal flows. Gerbeau and Perthame have
revisited the derivation and validated the Saint-Venant model by a direct numerical
comparison with the underlying incompressible model.'” Audusse et al. have also
recently investigated multilayer media'? and Bresch and Noble have investigated
mathematically the situation of nonflat bottoms."!

The two-dimensional Saint-Venant system of partial differential equations with
an energy equation and temperature-dependent transport coefficient will be obtained
as the zeroth-order limit of the three-dimensional incompressible model presented in
Sec. 6. We remind that, in the asymptotic limit, the fluid parameters Re, Pr, Ec, Fr,
Ca, and Ex are assumed to be of zeroth-order with respect to e. The quantities
associated with the three-dimensional incompressible model are generally denoted by
roman fonts whereas the quantities associated with the Saint-Venant two-dimen-
sional asymptotic limit will be denoted with italic fonts. The pressure in the three-
dimensional flow is denoted by p for instance whereas it will be denoted by p in the

two-dimensional Saint-Venant limit model.

7.1. Asymptotic expansions

In order to derive the Saint-Venant equations modeling thin viscous sheets over a
fluid substrate from the three-dimensional fluid equations described in Sec. 6, we
expand in powers of the small parameter €2 the fluid variables

U =Ty + €Uy + O(e), (7.1)
V=T + €20y + O(e?), (7.2)
W = Wy + 2wy + O(e?), (7.3)
T =Ty + €Ty + O(e%). (7.4)

We also expand the free boundaries h,,; and hy,, and we define
h(t, ,y) = hgas(t, 2,y) = hou (t, 2, 1), (7.5)

in such a way that

h=hg + €2hy + O(eh), (7.6)
P = Pgae + €2 hgap + O(€Y), (7.7)
By = o + €2hgupz + O(€?). (7.8)

Note that, after some algebra, only the factor ¢ appears in the rescaled equations
presented in Secs. 6.2—6.3. The asymptotic expansions (7.1)—(7.8) in terms of €2 are
thus natural as they are in the small Mach number limit.
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7.2. Zeroth-order terms and compressibility
The terms of order €2 in the % and ¥ governing equations first yield that
9z(My0zug) = 0,
a?(ﬁoazﬁo) = 07
where
Mo = 1(T)).
These relations show that 705, and 7,057, are constants. However, the ¢! terms
in the dynamic boundary conditions at the fluid/gas and fluid/substrate interfaces
yield that 0;uy = 0 and 057y = 0 at both interfaces. We thus deduce that 0;4; =0
and 057 = 0 for all Z in such a way that
aO = {'[’\O(t\v 3"\’ @\)7
/’&0 = 7i]\O tafiv /y\)
Similarly, the energy conservation equation yields at order ¢~2 that
—0z(X0:T5) = To((9570)* + (957p)*),
where
Ao = A(T),
in such a way that 0;( )\OaATU) = 0 since 951y = 0 and 57, = 0. Since the ¢! terms
of the thermal boundary conditions yield that X0 TO = 0 at both the fluid/gas and

fluid /substrate interfaces, we again conclude that 05 TO =0 for all Z in such a way
that

Ty =Ty(t.2,9).
This shows that ho, Ug, g, and To — and incidentally 7, and A\, — only depend on
( z,7), and ho, Uy, Vg, and TO will constitute the variables of the resulting Saint-
Venant two-dimensional model. We will also denote by v, the two-dimensional
velocity vector vy = (1, vy)*.
On the other hand, from the incompressibility equation at zeroth-order we obtain
that

Oz 1y = — (0 Uy + 957),
so that 05w, is independent of 2. This shows that wj is an affine function of Z and that

@0 (t\v /.Z'\, fl/\a h’gas()) - @0 (/t\a ?E\v @\, hsub()) (aA Uy + a UO)( gas0 iub()) .

From the zeroth-order kinematic conditions at z = hsubO and z = hsubO we next
deduce that

af (Egaso h%ubO) + uO aA ( gas) hqubO) + vO 8A ( gas) — hsubO)
_(a’z\ U + 8§U0)(hga50 - hsubO)a (79)
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which finally yields that
7 ho + 05 (hly) + 05 (hety) = 0. (7.10)

We have thus obtained a compressible model where the zeroth-order height l/z\o plays
the role of a density.

7.3. Zeroth-order pressure

From the zeroth-order terms of the normal momentum conservation equation (6.20)
we next obtain that

—05 (Mo0zy) — 05(My050y) — 202(Tj0zWp) + IzPy = Lo,
but since 051y = 0, 59y = 0, 057y = 0 and 9% W, = 0, we deduce from this relation
that
9Py = Bo-
This shows that the pressure is hydrostatic since
8o = g = Cte,
where g =8, = (0,0, g;)" and g, is negative. The relation 0;p, = g, implies that

ﬁ()(tv/x\v @\v /Z\) = /ﬁO(ta EL'\, /y\a hgas()) + g() ('/Z\_ hgas())a
but the third component of the dynamic condition at the fluid/gas interface also
yields at zeroth-order that —pgy + 2700z Wy = 0 at 2 = hy,y in such a way that

Do(t, 2,9, 2) = 27y0z g + 80(Z — hgas)-
On the other hand, the dynamic condition at zeroth-order at the fluid /substrate
interface gives —pg + 270z Wy = — % heuo 8o at Z = hgy SO that

~ ~ ~ ~ 1~
~ ~

Po (t7 /'T\v Y, hgas()) - ﬁO(tv /'737 /y\a hsub()) = - ; hsub()g()v

and since the pressure at zeroth-order is hydrostatic we also have

~

50 (t\a /.T\, @\7 hgasO) - /150 (t\7 /37\, ?/\7 hsubO) = EO(hgaSO - hsubO)'
We deduce from these relations that EO = l/{gaso — il\subO =— %}/L\subo and finally that
hgasO = (1 - a)hOa hsubO = _ahO' (711)

These conditions (7.11) are easily interpreted as an equilibrium condition above the
substrate bath. Since the height of the outer free substrate bath is taken to be zero,
we have of course EgaSO > 0 and 77;111,0 < 0. Finally, since 05wy = — (05 uy + 957) and
hgaso = (1 — a)hgy, we have established that

A~

Dot 7, 9,2) = —270(0; Ty + O50) + Zo(Z — (1 — a)hy). (7.12)
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7.4. Zeroth-order momentum equations
The horizontal momentum conservation equations at zeroth-order yield
97 Up + U0 Uy + Vo0 uy — 95 (27005 Uy) — O3 (Mo (05 Uy + O57))
— 02(M0=1) — 0= (Mo o) + 5By = 0 (7.13)
and
O3V + Uy05 0y + Vy050y — 05 (Mo (95 ug + 957y)) — 05(27g0570p)
— 0z (Thh0zs) — 0 (Tho 05 o) + 03Dy = 0. (7.14)
Integrating the first equation between f/;subo and fALgaSO we obtain that

ho (97 g + g5 Ty + 005 Uy — 05 (21005 Uy)) — floay(ﬁo(a@ﬂo + 057))
71\2;«'\50
EubD

o~
~

where, for any function ¢ of (¢,Z,7,2), the bracket [¢] denotes the corresponding
function of (¢,,7) defined by

A~ ~ ~ A~

[[¢]](t\7 ?E\v @\) = ¢(t\a :/I"\v @\7 Egaso (t7 /.CL'\, @\)) - ¢(ta 57 @\7 hsubO (ta :/E\v ?/\)) (716)

We now use the dynamic boundary condition at zeroth-order in the z-direction at
both interfaces to get that

D095 hgaso — 2700 U0z hgaso — To(95 g + 050) 05 hgaso + ToOz Wy + 1o05 Uy = 0,
—D09 hsuno + 27003 U0 hsuno + N0 (05 Uy + 0500) 05 hauno — ToOz Wo — Mo Us

Bsubo — o 7
== gOaE hsubO'
a
By adding these relations we deduce that

No[0+ 1y + 05 Wy |+ DOz ho — 2700 U5 ho — Mo (05 Uy + 0509) 0y hg
= —ahy8)0; ho, (7.17)

where
po = (1 —a)p(t, 2,7, Egas()) +aPo (£, 2, 7, hauno)- (7.18)
From the expression (7.12) of Dy we obtain that
Po = ~271(05 Ty + 03%) — Boaho, (7.19)
so that

o[0Ty + 05 W] = 27005 Upds ho + To(D5Tg + 95T0) 5 ho
+27i0(5 Ty + 0559) 05 hy. (7.20)
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Furthermore, we deduce from (7.12) that
93 Do = —03 (2M(95 Uy + 057)) — (1 — 2)0; ho, (7.21)

and 0.y is independent of z. Combining (7.15), (7.20), (7.21), and since 05Dy is
independent of z, we finally obtain that

o (D7 Ty + T Tig + ToDy lg — 05 (27905 Thp)) — hody (770D Tl + 057))
— 27o(03 Uy + 0570) 95 hg — 21905 g0z hg — Mo (05 Uy + 0500) 05 ho
+ ho(=07 (27095 Uy + 957,)) — (1 — a) gy hy) = 0. (7.22)

After some algebra this equation can be rewritten in the form
hoQ7 g + hoTigds g + ﬁoﬁo%% — 05 (h2T005 Tg) — ay(ﬁoﬁo(ayao + 057))
— 05 (R270(05 7 + 0370)) — 5 (1~ 2)Eods Ry = . (7.2
Using the compressibility equation (7.10) and defining the new pressure

=2
(1 —a)[go|ho, (7.24)

N | =

—~ 1 )
Po = —5(1 —a)gohy =

not to be confused with Py, and defining the new viscous tensor

Hozz = —Toho(405 Uy + 20;0,), Moz = —Tohe(d5 T + 057), (7.25)
the equation governing 7, is rewritten in the form
07 (hoTio) + 05 (hotig) + 05 (hyTigBy) + 05 Mozz + 05 Mozy + 05h0 = 0. (7.26)

We can proceed similarly for the second horizontal momentum conservation
equation which yields upon integration between hg,y and hg,y that

ho(9r By + T3 +TI5T — hodz (7o (D5 + 05%5))) — 95 (2Te05%)
?L\gaﬂt)
= No[0502 + O o] + 85D dz = 0. (7.27)

hsub0

We now use the dynamic boundary condition at zeroth-order in the y-direction at
both interfaces to get that
D005 hgaso — Mo(95g + 9500)0z hgaso — 270050005 higaso
+ o0y Wy + Mo050y = 0,
—P00 hsuno + 0 (05 Ug + 0500) 95 hauno + 270050007 hsuno

e e oo howno _ 5 2
- 7708@?110 — Mo0;0y = — 5: goaghsubo-
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By adding these relations we deduce that
70 [0502 + 05w + 1508@}?0 — Mo(05 Uy + 03)05 ho — Qﬁoay@oaygo
= —ahy gy ho, (7.28)
so that from (7.18)
0o [050 + 05 wo] = 7o (95 g + 9579)0 ho
+ 279050005 ho + 27 (95 Uy + 057;)- (7.29)
Furthermore, we deduce from (7.12) that
030 = —05(27y(95 Uy + 057y)) — (1 — )05 hy, (7.30)

and J;Dy is independent of 2. Combining (7.27), (7.29), (7.30), and since 95Dy is
independent of Z, we finally obtain that

hoQ¢ Ty + holigd5 Ty + anoagﬁo — 03 (ﬁoﬁo(%ﬂo + 05%)) — a@(ﬁtﬂﬁoa@@o)

~ o - . 1 _ ~2
Defining
Iy = —ﬁogo(ayao +057), IHogy = ~Tigh(205 g + 4057), (7.32)

the equation governing v, is easily rewritten in the form
9z (hotiy) + 05 (hotigty) + 05 (hov) + 05 Mgz + 05 Moz5 + 0599 = 0. (7.33)
Upon defining v, = (Uy,7y)%, & = (z,7)?, and
— Ton I
HO _ _Ozz _Ozy , (734)
oGz 1oy
both momentum equations can be rewritten in vector form
97 (hg®y) + 85 + (he®y @ By + Dol ) + 8 - I, = 0, (7.35)
in such a way that the height i?o plays the role of a density and p, the role of a

pressure for the two-dimensional Saint-Venant model.

7.5. Zeroth-order energy equation

Upon using 031y = 050y = 8;?0 = 02\ = 0, the energy conservation equation at
zeroth-order yields that

Evoa? ?O + Evoﬂoag j:‘() + /C\voi)\oayj\—'o — 85 (Xoai ?O)
= 05(MN05Ty) = 0:(N0:T5) = (7.36)
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where the zeroth-order viscous dissipation ®, is given by

—

D) = 5 ToEc(4(95Ug)* 4 4(9509)* 4 4(95 g + 0530,)* + 2(051y + 05379)*). (7.37)

Integrating Eq. (7.36) between Esubo and Egaso we obtain that
ho(EuoaffTo + ajoaoaifo + 6vo@oaﬂﬁo — 05 (Xoaifo)) - hoay(xo?o)
- }/;060 - XO [[82?2]] - 0 (738)

We now use the thermal boundary condition at zeroth-order at both interfaces to get
that

_XO(_aE ?065 il\gaso - 63?085 i/l\gaso + 82?2) =
— (05 ?0555 Esubo + 35?035 Esub() - 52?2) =A

By adding these equations we obtain that
- X [[62?2]] + XOBETO(% Eo + Xoagj\ﬂoayﬁo = X(*)(?0 - TOmix)> (7.39)

where we have defined

and

Combining (7.38), (7.39) we obtain that
EO(EUO({)??O + CuolipO Ty + a;oﬁoagfo) —0; (ﬁo A0z ?0)) — 05 (hg ATy) — hy [
- 7X(§(TO - TOmix)' (740)
Furthemore, the dissipation term i/z\o ®, is easily rewritten in the form
]/7:060 = —Ecﬁoiaiao. (741)
Denoting the heat loss term by
i\lo = _Xg(fo - j\—‘Omix)ﬂ (742)

the internal energy per unit mass by

st

/1:0 1 ~
o= e+ [ GlP)dr + 5 (1= 2)Eclf, (7.3
T

and the heat flux vector by
60 - (QOEa gog)t7 (744)
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where
Qs = —hg N5 T, Qyj = —goxoapfo’ (7.45)
the energy conservation equation is rewritten in the form
71\08? éo + Eo/ﬁo . 85 éo + 65 . 60 + Ecﬁ035 . %0 + ECﬁo : 856]\0 == j‘\[o. (746)

Note that the inclusion of the term (1 — a)Ec|§O|EO in the internal energy is as-
sociated with the pressure work term Ecp,@ - v, in the energy equation thanks to
the relation 07 ho + B - a9 ho + f?oai -9y = 0. Finally, upon multiplying the
momentum governing equation by the velocity vector v,, we obtain the kinetic
energy governing equation, which can be multiplied by Ec and added to the internal
energy governing equation in order to obtain the total energy conservation equation
in the form

a?(ﬁoégm) +0; - ((Eoéf)m + Ecpy)®y) + 85 - (Qo + EcII - vy) = ﬁ;[m (7.47)
where

~tot

1 5
ey = éy+ §Ec(ug +7¢), (7.48)
is the reduced total energy per unit mass.

7.6. Resulting model

From the previous sections, we can summarize the zeroth-order rescaled governing
equations in the form

Oy + 85 - (hot) = 0, (7.49)
9z (hg®y) + 85 + (hyy ® Ty + pol) + 8 - T = 0, (7.50)
3?(’;)@3“) + 85 - ((hoel + Echy)y) + 85 - (Qo + EcII - By) = H,. (7.51)

The pressure py is given by (7.24), the total energy ¢{* by (7.48), and internal energy
¢y by (7.43). The viscous tensor IT is given by (7.25), (7.32), the heat flux Q, by
(7.45) and the heat loss term H, by (7.42).

Upon restoring the physical dimensions of the flow quantities ¢ = (z)t/ (u),
T = <$>§ hy = €()hy, vy :@Wo, po = (h){u)*po, ett)(i: (co)(T)eg", Iy =
(B () Ty, Qo = (h){ude,(T)Qq, and Hy = () (u){c,) (T)H/ (x), we obtain after
some algebra that

dthg + 0y + (hovy) = 0, (7.52)
3t(h0v0) + 8m . (ho’vo ® Vg + poI) + 8m . Ho = 0, (753)

9;(hoen") + 8y - ((hoet™ + po)vy) + By -+ (Qp + I - vg) = Hy. (7.54)
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The scaled thermodynamic relations are

1
eq = e+ 5 (ug +v(), (7.55)
st T 1
co=cii+ [ erdr 1= a)lglh, (7.56)
TS‘
1 2
Po = 5(1 — a)lgolho- (7.57)

The scaled viscous tensor is given by

H T H T
Iy = —vyho(Byvy + B,vh 4 28, - voI) = < 0 0 y> (7.58)
HOyz HOyy
with
H()zz = _V()h()(4azu() + 283;“0)7 H()xy = _VOh’O(ayuO + 81/00)1
oy, = —voho(Oyug + 0,vp), My, = —vhg(20,u + 40,1y),
where the kinematic viscosity is given by
T
vy = MT0). (7.59)

p

Strictly speaking, only the quantity pII/h, is homogeneous to a viscous tensor and
IT/hy to a kinematic viscous tensor. Similarly, only the quantity ppy/hy is homo-
geneous to a pressure and p,/hg to a kinematic pressure. However, the multiplication
by hg is natural in a two-dimensional context since then internal constraints arise
through lines and not surfaces. Finally, the heat flux is given by

Qo = (Qoz» Qo) ' = —20ho(0,Ty,0,Ty)", (7.60)

where the kinematic thermal conductivity is given by

(7.61)

Strictly speaking, only the quantity pQg/hg is homogeneous to a heat flux and Qq/hy
to a kinematic heat flux. On the other hand, the heat loss term reads

>\*
HO = - 70 (TO - TO]‘HiX)7 (762)

¥k *
where Xy = Xygas + Apgun, and

* *

o )\()gasT()gas + AOsubTOSub
Omix — ¥ ¥
Ogas + )‘Osub

(7.63)
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This model (7.52)—(7.63) is exactly the model that we have investigated in Secs. 2—5
of this paper.

Remark 7.1. The expression of the viscous tensor (7.58) indicate that there is
always a volume viscosity term for this viscous sheet over fluid substrates as for

polyatomic gases.”

Remark 7.2. Saint-Venant models with a local energy partial differential equation
should not be confused with isothermal models incorporating a global kinetic energy
balance as investigated for instance by Kanayama.**

7.7. Boundary conditions

We present in this section typical free boundary conditions associated with thin
viscous sheets over fluid substrates. These boundary conditions are written at the free
boundary of the two-dimensional Saint-Venant model. These boundary conditions
are not used in this paper and are only written here for completeness. We also discuss
their validity associated with the positivity of the sheet thickness A in the framework
of wettability theory.'”

The two-dimensional Saint-Venant equations governing thin viscous sheets have
been derived in the previous sections from the three-dimensional incompressible
Navier—Stokes equations governing incompressible fluids. Similarly, the boundary
conditions associated with the two-dimensional Saint-Venant model will be derived
from the boundary conditions and conservation equations of the three-dimensional
model.

Exchanging eventually the role of x and y, we may assume that the free boundary
can locally be written in the form z = Xj (¢,y). The local geometry of such a free
boundary = Xj (¢, y) is depicted in Fig. 2. The boundary conditions associated with
the two-dimensional Saint-Venant model at the free boundary = = X (¢,y) can be
decomposed into a kinematic condition, a dynamic momentum boundary condition,
and a thermal boundary condition.

We first investigate the dynamic momentum boundary condition at the free
boundary. To this aim, we consider a slice of the free boundary of the three-dimensional
incompressible model in the plane spanned by n;, and e,, where n, is the outward unit

Y
€T = Xb(t7 y)

\
T

Fig. 2. A local chart of the free boundary in the zy plane.
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Fig. 3. Schematic of a slice of the thin viscous sheet free boundary.

normal of the free boundary z = X, in the xy plane as depicted in Fig. 2
n, = (1 + (8yXb)2)71/2(17 7ayXb7 0))t (764)

We next define e; = n;, and e; = e, A e; in such a way that e;, e;, e, form a direct
orthonormal basis, and we denote by (Z, , z) the corresponding coordinates so that &
is measured along ny;,. The geometry of the corresponding slice in the plane (Z, z) of
the free boundary associated with the three-dimensional model is presented in Fig. 3
where the fluid lay above the substrate. The asymptotic dynamic boundary condition
is obtained upon integrating the horizontal momentum equation in the domain pPQR.
Since this domain is assumed to be of size O(e?), all inertial terms will be neglected in
comparison with the force terms that are O(e). The forces acting on this volume are
the surface tension forces, the viscous constraints on PR, and Archimedes’ forces on
QRr. Note that we only consider the horizontal momentum equation so that there is no
gravity term.

Since the pressure in the substrate fluid is hydrostatic, and keeping in mind that
all pressures are evaluated relative to the atmospheric pressure, the resultant of
Archimedes’ forces on Qr can be written

- / psubghsubnsubdssub7
QR

where S, is the arclength along the curve (Z, ﬁsub(t, Z,9)). In this expression, we
have denoted hgyy, (¢, Z, §) = hyy, (¢, 2, y) and ng, the corresponding outward oriented
normal vector

ai hsubnb — €,
n il
o V 1+ (ai hsub)2

Since the normal vector ng,, is oriented downward, the arc Qr must be oriented from
Q to R. The horizontal projection of this Archimedes’ force is easily evaluated as

- 1
/ psubghsubnsub : nbd‘ssub = §psubg(h§ub(Q) - hzub(R))’ (765)
QR

since

3.% hsub

V 1+ (aihsub)2 )

Ng,p * 1Ny, =

dgsub ="V 1+ (aa%h'sub)2 dz.
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On the other hand, the curvatures in the Z-direction are O(1/¢) whereas the cur-
vatures in the g-direction are O(e) — and may be neglected — in such a way that
the total curvatures C,,s and Cg,, may be approximated as

8%hgas
(1 + (8ihgas)2)3/2 ,

652? hsub
(1 + (ai hsub) 2) 3/2°

Cgas = Csub = (766)

Using these expressions, the surface tension forces acting on PQr can be written
/ 85 (Vf'/g‘rgas)d‘ggas + 85 (’Yf/s‘rsub)dgsuba
PQ QR

where T, is the tangent vector along the arc (Z, B (t,Z,7y)) oriented from q to R,
and §,,; and T, are the arclength and tangent vector along the arc (&, hy,(t, T, 7))
oriented from P to Q. We have used in particular the differential relations 0;7,,, =
CoasNgys and O;Tgyp, = CoypNgyp,- Furthermore, since ng,, is upward and the arc pQ
oriented from P to Q, we may assume that at zeroth-order 7,,,(P) = e; = n,,. Simi-
larly, since ng, is downward and the arc Qr oriented from q to R, we may assume that
at zeroth-order 7, (R) = —e; = —n,. Integrating along the arcs Pq and Qr, the
surface tension forces are thus found to be

’Yf/s,(Tsub(R) - Tsub(Q)) + ,Yf/g(Tgas(Q) - Tgas(P))'

We now use the fundamental relation relating the tangent vectors at the triple-
point Q

_'Yf/sTsub(Q) + 7f/ngas(Q) — Vg/sText (Q) =0, (767)

where 2 — hey, = 0 denotes the free surface between gas and the fluid substrate, 7,
the surface tension between gas and the fluid substrate, s a point as depicted in Fig. 3,
(%, hex (t, %, 7)) the arc qs oriented from Q to s, and Ty the corresponding tangent
vector. Since this arc is oriented from Q to s with n, oriented upward, we may
assume that at zeroth-order 7. (S) = ez = ny,. This relation (7.67) can be used to
simplify the expression of the surface tension forces by eliminating all quantities
associated with the triple point Q, provided we can express the tangent vector
T (Q). To this aim, we can use the dynamic equilibrium condition at the gas/
substrate interface which states that

Osub * Next = Ogas * Mext — Cext’)/g/snext = Ogas * Nyt — as~(7g/s‘rext)a (768)

where C. is the total curvature of the surface z = h, which may also be approxi-
mated as

a%hext
(1+ (Ozhext) )%

Cext = (769)
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Using that the pressure is hydrostatic in the fluid substrate, we deduce from (7.68)
that

/ psubghoxtncxt dgcxt + Wg/s(Tcxt(Q) — Text (S)) = 0.
Qs

Eliminating the contributions associated with the triple point, the resulting hori-
zontal force on the control volume PQr is found to be

/ (pI - TId) -1y, dz — nb/ Psub@RsupNsup, * Iy, Sy,
PR

QR

- nb/ psubghextnext 1, dgext — 1y ('Yf/s + Vijg — 'Yg/s)'
Qs

The horizontal projection of the surface tension force due to the substrate is easily
evaluated as

~ 1
/ psubghextnext * 1y dsext = §psubg(hgxt(s) - hzxt(Q))J (770)
Qs

since

03 het
Neg oy = ——t g5 = /1 + (D5 hey) 2 di,
ext s 1+(65hext)2 ext ( et)

and we may choose the vertical axis in such a way that h.(S) = 0 since pressures are
measured relative to the atmospheric pressure. Upon defining

_ Ye/s — Vi)s — Vi/g

; (7.71)

gl

and using the relations (7.65) and (7.70), the resulting horizontal force on the control
volume PQR at zeroth-order reads

1
/ (poI — 1pdy) - my, dz — m, (5 Pan |80l 2o (R) + m) : (7.72)
PR

Since the control volume PQR is of the order of €2, we can neglect the inertial term and
write that the resulting force (7.72) vanishes at zeroth-order.

The zeroth-order force [ o (Dol — nody) - 1y, dz can be evaluated from the expression
of the zeroth-order strain tensor d; and of the zeroth-order pressure p,. Since the
second-order tensor d, restricted to the plane spanned by e, and e, can be written as
8,v, + 8,v} and is independent of z, we directly obtain upon integration that

/ nodg * my, dz = 19ho (8, vy + Oy v() - 1.
PR
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On the other hand, from py = —21y(9,ug + dyvy) + goz — (1 — a)gohy, we obtain upon
integration that

1
—/ Po dz = 21ghg(0ug + 0yvg) + §Phggo~
PR

The last term 1 ph{g, can then be combined with the contribution 2 py,p,|go|h 2 (R)
from (7.72) to form the pressure term ppy = 1 p(1 — a)gyh§ of the two-dimensional
model. On the other hand, the term 2nyh(0,uy + 0,v,) will complete the isotropic
part of II,. Upon combining the above relations and dividing by the fluid density p we
have finally established the dynamic boundary condition

—(poI + I1j)) - ny, = ymy,, (7.73)

where v = (Vg/s — Vs — ’Yf/g)/p'

Remark 7.3. It is interesting to note that in the zeroth-order governing equations
the surface tensions do not appear. Surface tensions only play a role in the zeroth
order dynamic boundary conditions.

We can proceed similarly for the thermal boundary condition by considering the
control domain PQr. We observe then that the heat exchange coefficients are of order
O(e) as are the length of the arcs pPq and QR in such a way that

/ QO ° ngas d'ggas = / /\Eas(TO - Tgas)dggas = 0(62),
PQ PQ

QO s Dgyp d§s11b = / )‘leb(TO - T;ub)dgsub = 0(62)1

QR QR

where Qg = —X\g0,7; is the three-dimensional zeroth-order heat flux. Upon inte-
grating the heat conservation equation in the domain PQR, we thus obtain at zeroth-
order that

/ )\oamTO Ny dz = 0,
PR

and therefore

Qq-ny, =0, (7.74)
where Qo = —hyA\g0,1} is the zeroth-order heat flux for the Saint-Venant model.
Finally, since the free surface z = X (¢, y) is a streamline of the two-dimensional flow
model, we obtain the natural kinematic condition

Uy = 81}Xb + ’anyXb.

This boundary condition can equivalently be obtained by integrating the incom-
pressibility condition @, - v = 0 on the control domain PQR and is easily rewritten in
the coordinate independent form

ho(vy — vp,) -1y, = 0, (7.75)
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where v, = 0,X,, is the velocity of the free boundary and it is well known that the
normal velocity vy, + ny, is an intrinsic quantity associated with the free boundary.

The boundary conditions for the two-dimensional Saint-Venant model at the free
boundary are finally constituted by the kinematic condition (7.75), the dynamic
momentum boundary condition (7.73), and the thermal condition (7.74).

Finally we would like to address the validity of this set of boundary conditions.
From the above derivation, these conditions are physically relevant when the domain
PQR is of size O(€?), that is, when its horizontal diameter remains of size O(e). In this
situation, there is an abrupt change at the free boundary of the three-dimensional
domain and the resulting quantity hy can be considered to be positive up to the free
boundary of the two-dimensional Saint-Venant system.

The physical origin of such a behavior is associated with wettability theory'® and
with the sign of the spreading parameter vy, s — V¢/s — ¢/, This parameter is negative
for molten glass on molten tin or oil on water for instance. In this situation, from the
dynamic boundary condition (7.73), we obtain that the equilibrium thickness g,
such that by = =7 is given by hOcq - (2(7f/s + Vtjg — 7g/s)/(1 - a)goﬂ) 172
by de Genes, Brochard-Wyart, and Quéré.'® Surface tension therefore prevents h to
be too small when the spreading parameter is negative and this is the case for float
glasses where the equilibrium thickness is 7., &~ 7mm or octane on water where the
equilibrium thickness is hgeq ~ 3.7 mm."” On the contrary, the spreading parameter is
positive for Polydimethylsiloxanes on water.'®

Finally, from a mathematical point of view, if we neglect the surface tension, we
note that these boundary conditions disappear when hy = 0, that is, in the presence

of a vacuum state, as they should as established by Sanchez-Hubert and Sanchez
l.41

as discussed

Palencia,”" Bresch,® and Li et al.*! in various frameworks in the isothermal case.
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