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We investigate the derivation and the mathematical properties of a Saint-Venant model with an

energy equation and with temperature-dependent transport coe±cients. These equations model
shallow water °ows as well as thin viscous sheets over °uid substrates like oil slicks, atlantic

waters in the Strait of Gilbraltar or °oat glasses. We exhibit an entropy function for the system

of partial di®erential equations and by using the corresponding entropic variable, we derive a

symmetric conservative formulation of the system. The symmetrized Saint-Venant quasilinear
system of partial di®erential equations is then shown to satisfy the nullspace invariance property

and is recast into a normal form. Upon establishing the local dissipative structure of the line-

arized normal form, global existence results and asymptotic stability of equilibrium states are
obtained. We ¯nally derive the Saint-Venant equations with an energy equation taking into

account the temperature-dependence of transport coe±cients from an asymptotic limit of a

three-dimensional model.

Keywords: Saint-Venant model; shallow water model; thin viscous sheet; °uid substrate; free

boundary.
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1. Introduction

We investigate the derivation and mathematical properties of a viscous Saint-Venant

system of partial di®erential equations with an energy equation and with temperature-

dependent transport coe±cients. These equations model shallow water °ows as well as

thin viscous sheets over °uid substrates like oil slicks on water, surface atlantic waters

above the denser Mediterranean sea in the Strait of Gilbraltar or °oat glasses used for

the production of plate glass. Modeling temperature variations is important in various
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environmental and engineering applications like °oat glasses and this motivates the

present study.

We ¯rst present the Saint-Venant system of partial di®erential equations with an

energy equation and temperature-dependent transport coe±cients. We exhibit an

entropy function for the system of partial di®erential equations and by using the

corresponding entropic variable, we derive a symmetric conservative formulation of

the system. The symmetrizing variable is obtained from the entropy and not from the

kinetic energy as investigated by Tadmor,55 Hauke,29 and Carey12 in the isothermal

case. These symmetrized systems may also be useful for ¯nite element discretizations

and numerical simulations as investigated by Hughes, Franca and Mallet,33 Chalot,

Hughes and Shakib,13 Hauke29 and Carey.12

The symmetrized Saint-Venant system of partial di®erential equations is then

shown to satisfy the nullspace invariance property and is recast into a normal form,

that is, in the form of a symmetric hyperbolic�parabolic composite system. We next

establish stability conditions of the source term as well as the local dissipative

structure of the linearized normal system around constant equilibrium states. In

particular, the entropy production is non-negative and the source term lies in the

range of its derivative at equilibrium. Global existence results and asymptotic

stability of equilibrium states are then obtained from Kawashima's theory of

hyperbolic�parabolic systems37 and its extension to systems with source terms.25

Numerous existence results can be found in the literature concerning the Saint-

Venant system without an energy equation in various functional settings. We refer

the reader notably to Serre,52 Dafermos,14 Sanchez-Hubert and Sanchez-Palencia51

for inviscid models, and Kanayama and Ushijima,35 Bernardi and Pironneau,5

Ton,56 Kloeden,39 Sundbye,54 Orenga,45 Lions,42 and Wang and Xu59 for viscous

Saint-Venant models with constant viscosity coe±cients. Global weak solutions

have also been investigated by Bresch,8 Bresch and Desjardins,9 Bresch, Desjardins

and M�etivier,10 and Li et al.41 with density dependent viscosities, using a gradient

entropy,8 and Li et al.41 also considered the vanishing of vacuum states. Initial

value problems have also been studied with various natural boundary conditions and

we refer to Sanchez-Hubert and Sanchez-Palencia,51 Sundbye,54 Orenga,45 Bresch,8

Levermore and Sammarino,40 and Li et al.41 Note that, when there are vacuum states

at the boundary, the boundary conditions disappear.8,41,51 To the authors' knowledge,

it is the ¯rst time that the quasilinear Saint-Venant model with an energy equation

and temperature-dependent transport coe±cients is investigated.

In the remaining part of the paper we derive the Saint-Venant equations with an

energy equation taking into account the temperature-dependence of transport coef-

¯cients. These equations are derived from an asymptotic study of a three-dimensional

incompressible model of a thin viscous sheet over a °uid substrate. The °uid sub-

strate is incompressible and is modeled by using the hydrostatic approximation. We

also derive typical free boundary conditions for the Saint-Venant model from the

three-dimensional governing equations and free boundary conditions associated with

the viscous sheet.
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Numerous derivations of the viscous Saint-Venant system of partial di®erential

equations without an energy equation and with a constant viscosity can also be found

in the literature. The inviscid equations were ¯rst written by Saint-Venant in 1871.16

The viscous equations have been investigated by Kanayama and Ushijima34 and

Gerbeau and Perthame19 who further validated the Saint-Venant model by a direct

numerical comparison with the underlying incompressible model.19 Bresch and Noble

also investigated the mathematical derivation of shallow water type equations with

non-°at bottoms. For viscous layers on a °uid substrate, Howell has derived a Saint-

Venant model by performing an asymptotic analysis.31,32 Multilayer Saint-Venant

models have recently been investigated by Audusse,1 Audusse and Bristeau,2 and

Kanayama and Dan.36 A Saint-Venant model with a temperature equation has been

introduced by Benqu�e, Haugel, and Viollet3 and used by Podsetchine, Schernewski,

and Tejakusuma48 to investigate the Oder Lagoon. The derivation of a Saint-Venant

model of a thin viscous sheet over a °uid substrate with a temperature equation and

taking into account the temperature-dependence of transport coe±cients as well as

that of boundary conditions from an asymptotic analysis is new to the authors'

knowledge.

2. Governing Equations

We summarize in this section the Saint-Venant equations governing thin viscous

sheets over °uid substrates as well as shallow water °ows. We include an energy

equation in the model since temperature variations are important in various engin-

eering and environmental applications.

2.1. Conservation equations

The equations governing shallow water °ows and thin viscous sheets over °uid

substrates express the conservation of mass, horizontal momentum and energy. The

mass conservation equation can be written in the form

@thþ @xðhuÞ þ @yðhvÞ ¼ 0; ð2:1Þ

where t denotes time, ðx; yÞ the horizontal Cartesian coordinates, h the height of the

shallow water °ow or of the viscous sheet in the vertical direction, u the velocity in

the x-direction, and v the velocity in the y-direction. The momentum equations in the

x- and y-directions can be written as

@tðhuÞ þ @xðhu2 þ pÞ þ @yðhuvÞ þ @x�xx þ @y�xy ¼ 0; ð2:2Þ
@tðhvÞ þ @xðhuvÞ þ @yðhv2 þ pÞ þ @x� yx þ @y� yy ¼ 0; ð2:3Þ

where p is the kinematic pressure and � xx, �xy, � yx, and � yy are the coe±cients of

the kinematic viscous tensor¦ . Finally the total energy conservation equation can be

written in the form

@tðhetotÞ þ @xððhetot þ pÞuÞ þ @yððhetot þ pÞvÞ
þ @xðQx þ �xxuþ �xyvÞ þ @yðQy þ � yxuþ � yyvÞ ¼ H; ð2:4Þ
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where etot is the total energy per unit mass, Qx, Qy are the components of the

kinematic heat °ux Q and H denotes the heat loss term.

Since the Saint-Venant system of partial di®erential equations is naturally written

in two dimensions, we will use in the following sections the indexing set C ¼ fx; yg
which is more explicit than the set C ¼ f1; 2g.

2.2. Thermodynamic properties

In the Saint-Venant system, the kinematic pressure is given by

p ¼ 1

2
�h2; ð2:5Þ

where � is a constant associated with gravity. On the other hand, the total energy per

unit mass etot of the °uid sheet is given by

etotðh;T Þ ¼ eþ 1

2
ðu2 þ v2Þ; ð2:6Þ

where e denotes the °uid sheet internal energy per unit mass. The internal energy e

can be written as

eðh;T Þ ¼ est þ
Z T

T st

cvð�Þ d� þ
1

2
�h; ð2:7Þ

where cv is the heat capacity at constant volume per unit mass of the °uid, T the

absolute temperature and est the formation energy of the °uid at the standard

temperature T st. We also de¯ne for convenience the formation energy at zero tem-

perature e0 ¼ est �
R T st

0
cvð�Þ d� in such a way that the internal energy e can also be

written as e ¼ e0 þ
R T
0
cvð�Þ d� þ 1

2 �h.

In comparison with the perfect gas model, we note that, with the Saint-Venant

system modeling °uid sheets, the height h plays the role of a density, the °uid is

barotropic with a quadratic dependence of the pressure p on height h and the internal

energy per unit mass of the °uid sheet e depends on both temperature T and height h.

The natural compatibility relation42 between p and e is also satis¯ed since

h2@he ¼ p� T@T p ¼ 1
2 �h

2 so that there exists an entropy per unit mass s such that

Gibbs relation T ds ¼ deþ pdð1=hÞ holds. From Gibbs relation, it is easily shown

that T@T s ¼ @T e ¼ cv and T@hs ¼ @he� p=h2 ¼ 0 in such a way that

s ¼ sst þ
Z T

T st

cvð�Þ
�

d�; ð2:8Þ

where sst is the formation entropy of the °uid at temperature T st. The Gibbs function

is further de¯ned as g ¼ eþ p=h� Ts and will be required to express the entropic

symmetrizing variable. Note ¯nally that the Gibbs function g can be decomposed

into gðh;T Þ ¼ gðT Þ þ �h where g only depends on temperature and reads

g ¼ est þ
R T
T st cvð�Þ d� � T ðsst þ

R T
T st

cvð�Þ
� d�Þ.
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Remark 2.1. Strictly speaking, denoting by � the ��� constant ��� density of the

°uid, only the quantity �p=h is homogeneous to a pressure and p=h to a kinematic

pressure. However, these h factors are natural since the equations are in two

dimensions so that the internal constraints are transmitted through contact lines and

not contact surfaces. Similarly, the quantity �eh is the internal energy per unit

horizontal surface and �sh the entropy per unit horizontal surface of the °uid sheet.

2.3. Transport °uxes

The transport °uxes of the °uid sheet, that is, the kinematic viscous tensor¦ and the

kinematic heat °ux Q, can be obtained from an asymptotic analysis as presented in

Sec. 7. The kinematic viscous tensor is of the form

¦ ¼ ��hð@xvþ @xv
t þ 2@x ¢vIÞ; ð2:9Þ

where @x denotes the derivation vector @x ¼ ð@x; @yÞ t, v the velocity vector

v ¼ ðu; vÞ t, x the componentx ¼ ðx; yÞ t, � the kinematic shear viscosity of the °uid, I

the two-dimensional unit tensor, and superscript t indicates the transposition operator.

The viscous tensor¦ thus corresponds to the usual two-dimensional formulation with

a \shear viscosity" h� and a \volume viscosity" 3h�. There is thus a volume viscosity

term as for polyatomic gases.7 Upon decomposing the viscous tensor, we obtain

¦ ¼
�xx �xy

� yx � yy

� �
¼ ��h 2ð2@xuþ @yvÞ @yuþ @xv

@yuþ @xv 2ð@xuþ 2@yvÞ

� �
: ð2:10Þ

Wealso de¯ne, for future use, the kinematic pressure tensorP ¼ pI þ¦ , which can be

interpreted as a kinematic momentum °ux tensor. In addition, the kinematic heat °ux

is given by

Q ¼ ðQx;QyÞ t ¼ �{h@xT ; ð2:11Þ

where { is the kinematic thermal conductivity of the °uid.

Remark 2.2. Strictly speaking, denoting by � the ��� constant ��� density of the

°uid, only the quantity �¦=h is homogeneous to a viscous tensor and ¦=h to a

kinematic viscous tensor. Similarly, only the quantity �Q=h is homogeneous to a heat

°ux and Q=h to a kinematic heat °ux. However, these h factors are natural since the

internal constraints are transmitted through contact lines in two-dimensional

models. We still denote ¦ the \viscous tensor" and Q the \heat °ux" for the sake of

simplicity. The quantities � ¼ �� and � ¼ {� are the dynamic viscosity and the

thermal conductivity, respectively, of the °uid.

Remark 2.3. Erroneous forms of the viscous terms are often found in the liter-

ature as for instance the forms �@x ¢ ð�ð@xðhvÞ þ @xðhvÞ t þ 2@x ¢ ðhvÞIÞÞ or �h@x ¢
ð�ð@xvþ @xv

t þ 2@x ¢ vIÞÞ instead of the correct form obtained from asymp-

totics �@x ¢ ð�hð@xvþ @xv
t þ 2@x ¢vIÞÞ. Only the correct later form is energeti-

cally consistent as shown by Gent.18
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2.4. Source terms

Heat exchanges are important in the modeling of shallow water °ows48 and various

viscous sheets such that oil slicks and °oat glasses.31 We consider a heat loss term in

the form

H ¼ ���ðT � T eÞ;
where T e is a given constant ambiant temperature and �� a heat exchange coe±cent.

Remark 2.4. Various other e®ects may be taken into account in the Saint-Venant

system of partial di®erential equations depending on the particular application under

consideration. For shallow water °ows, it is possible for instance to take into account

friction forces, wind e®ects, coriolis forces due to earth rotation and the sea

depth.12,19 In the modeling of oil spills it is also important to take into account

friction forces, water currents, shoreline deposition, wind e®ects and evaporation.46

These extra source terms would not essentially modify the mathematical analysis

that will be presented in the following sections.

Remark 2.5. Depending on the particular application under investigation, various

terms may also be neglected in the Saint-Venant system of partial di®erential

equations as for instance the kinetic energy terms in the energy conservation

equation. However, these terms have been kept since they are important for

structural purposes. They guarantee that the structure of the system is that of a

symmetrizable system of partial di®erential equations of hyperbolic�parabolic

nature as will be shown in the following sections.

Remark 2.6. We only investigate in this paper the well-posedness of the Cauchy

problem with no vacuum states. On the other hand, various boundary conditions

associated with shallow water type equations are discussed by Bresch,8 Sundbye,54

Orenga,45 Li et al.,41 and Sanchez-Hubert and Sanchez-Palencia.51 Note in particular

that, when there are vacuum states at the boundary, no boundary conditions are to

be imposed as shown by Sanchez-Hubert and Sanchez-Palencia for vibrating shallow

waters51 using the theory of elliptic degenerate operators of Bouendi and Goulaouic,6

and by Bresch8 and Li et al.41 who established in particular that the adherence

condition should be written in the form hv ¼ 0 so that it disappears when h ¼ 0.

3. Quasilinear Form

The governing equations presented in Sec. 2 are recast into a quasilinear vector form

in this section.

3.1. Conservative and natural variables

The conservative variable U associated with Eqs. (2.1)�(2.4) is given by

U ¼ ðh;hu;hv;hetotÞ t; ð3:1Þ
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and the natural variable Z by

Z ¼ ðh;u; v;T Þ t; ð3:2Þ
where h is the vertical height of the viscous sheet or of the shallow water °ow playing

the role of a density, u; v are the horizontal components of the mass averaged °ow

velocity in such a way that the velocity vector is v ¼ ðu; vÞ t, etot is the total energy

per unit mass of the °uid, t is the transposition symbol, and T is the absolute

temperature.

The components of U naturally appear as conserved quantities in the Saint-

Venant system with an energy equation. On the other hand, the components of the

natural variable Z are more practical to use in actual calculations of di®erential

identities.

3.2. Vector equations

The Saint-Venant equations modeling thin viscous sheet over °uid substrates or

shallow water °ows (2.1)�(2.4) can be rewritten in the compact form

@tU þ @xFx þ @yFy þ @xF
dis
x þ @yF

dis
y ¼ �; ð3:3Þ

where @t is the time derivative operator, @x; @y are the space derivative operator in

the x and y directions respectively, Fx and Fy are the convective °uxes in the x- and

y-directions respectively, F dis
x and F dis

y are the dissipative °uxes in the x- and

y-directions respectively, and � is the source term. We will use the indexing set

C ¼ fx; yg in the following for the sake of simplicity.

From Sec. 2 the convective °uxes Fx and Fy in the x- and y-directions are given by

Fx ¼ ðhu;hu2 þ p;huv;hetotuþ puÞ t; ð3:4Þ

Fy ¼ ðhv;hvu;hv2 þ p;hetotvþ pvÞ t; ð3:5Þ

where p is the pressure and etot the total energy per unit mass. The dissipative °uxes

F dis
x and F dis

y in the x- and y-directions are

F dis
x ¼ ð0;�xx;�xy;Qx þ �xxuþ �xyvÞ t; ð3:6Þ

F dis
y ¼ ð0;� yx;� yy;Qy þ � yxuþ � yyvÞ t; ð3:7Þ

where ¦ is the kinematic viscous stress�tensor (2.9)�(2.10) and Q the kinematic

heat °ux vector (2.11). Finally, the source term is given by

� ¼ ð0; 0; 0;HÞ t; ð3:8Þ
where H is the heat loss term.

These equations have to be completed by the relations expressing the transport

°uxes ¦ and Q, the thermodynamic properties p and etot, and the source term �,

already presented in Sec. 2. These relations have been given in terms of the natural

variable and are used in the following sections to rewrite the system as a quasilinear

system in terms of the conservative variable U .

Saint-Venant Model with Variable Temperature 1257



3.3. Mathematical assumptions

We describe in this section the mathematical assumptions concerning the thermo-

dynamic properties and the transport coe±cients associated with the Saint-Venant

equations. These assumptions are assumed to hold in Secs. 3�5.

(Th1) The °uid density � and the pressure factor � are positive constants. The

formation energy est and the formation entropy sst are constants. The speci¯c

heat per unit mass cv, is a C1 function of T � 0 and there exist positive

constants cv and cv with 0 < cv � cvðT Þ � cv, for T � 0.

(Tr1) The kinematic shear viscosity �, the kinematic thermal conductivity {, and

the thermal exchange coe±cient �� are C1 functions of T for T > 0.

(Tr2) The kinematic thermal conductivity {, the kinematic shear viscosity �, and

the heat exchange coe±cient �� are positive functions.

Remark 3.1. The adiabatic situation where �� ¼ 0 is also easily investigated and we

only assume that �� > 0 in order to simplify the formal presentation. Similarly, the

situations where � and { are functions of both T and h are easily taken into account.

3.4. Dissipation matrices and quasilinear system

In this section, we rewrite the system of partial di®erential equations (3.3) as a

quasilinear system of second-order partial di®erential equations in terms of the

conservative variable U . In order to express the natural variable Z in terms of the

conservative variable U , we ¯rst investigate the map Z ! U and its range.

Proposition 3.2. The map Z 7! U is a C1 di®eomorphism from the open set OZ ¼
ð0;1Þ � R2 � ð0;1Þ onto an open set OU . The open set OU is convex and given by

OU ¼ fðu1;u2;u3;u4Þ 2 R
4; u1 > 0; u4 � �ðu1;u2;u3Þ > 0g; ð3:9Þ

where � : ð0;1Þ � R2 ! R is de¯ned by

�ðu1;u2;u3Þ ¼
1

2

u2
2 þ u2

3

u1

þ e0u1 þ
1

2
�u2

1;

and where e0 is the formation energy of the °uid at zero temperature.

Proof. From Assumption (Th1) and the expression of thermodynamic properties, we

¯rst deduce that the map Z ! U is C1 over the domain OZ . On the other hand, it is

straightforward to show that the map Z ! U is one-to-one and that

@ZU ¼

1 0 0 0

u h 0 0

v 0 h 0

etot þ 1

2
�h hu hv hcv

0BBBB@
1CCCCA;
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so that the matrix @ZU is nonsingular over OZ . From the inverse function theorem,

we deduce that Z ! U is a C1 di®eomorphism onto an open set OU . From

hetot ¼ heþ 1
2hv ¢ v, the expressions of e, and (Th1), it is then established that OU is

given by (3.9). The convexity of OU is ¯nally a consequence of the convexity of �,

which is established by evaluating its second derivative. More speci¯cally, for u1 > 0

and u2;u3 2 R, we have

@ 2
u1� ¼ u2

2 þ u2
3

u3
1

þ �; @ 2
u1u2� ¼ � u2

u2
1

; @ 2
u1u3� ¼ � u3

u2
1

;

@ 2
u2� ¼ @ 2

u3� ¼ 1

u1

; @ 2
u2u3� ¼ 0;

in such a way that for any ðx1;x2;x3Þ 2 R3 we have

X
1�i;j�3

xixj@
2
uiuj� ¼ �x2

1 þ
1

u1

x2 �
u2

u1

x1

� �
2

þ 1

u1

x3 �
u3

u1

x1

� �
2

;

and the matrix ð@ 2
uiuj�Þ1�i;j�3 is positive de¯nite over ð0;1Þ� R2.

In Sec. 2.3, the transport °uxes¦ andQ and, therefore, the dissipative °uxes F dis
x

and F dis
y , have been expressed in terms of the gradient of the natural variable Z. By

using Proposition 3.2, these dissipation °uxes can thus be expressed as functions of

the conservative variable gradients

F dis
i ¼ �

X
j2C

BijðUÞ@jU ;

where C ¼ fx; yg and BijðUÞ, i; j 2 C, are the dissipation matrices. The matrix

BijðUÞ is a square matrix of dimension 4, which relates the dissipative °ux in direc-

tion i to the gradient of U in direction j.

We may further introduce the Jacobian matrices Ai, i 2 C, of the convective

°uxes Fi, i 2 C, de¯ned by

Ai ¼ @UFi; i 2 C;

and ¯nally rewrite the system (3.3) in the quasilinear form

@tU þ
X
i2C

AiðUÞ@iU ¼
X
i;j2C

@iðBijðUÞ@jUÞ þ �ðUÞ; ð3:10Þ

where the matrix coe±cients are de¯ned on the open convex set OU . As a direct

consequence of (Th1) and (Tr1), the system coe±cients satisfy the following property

(Edp1)

(Edp1) The convective °uxes Fi, i 2 C, the dissipation matrices Bij, i; j 2 C, and the

source term � are smooth functions of the variable U 2 OU .
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Expanding the sums over C ¼ fx; yg, these equations can also be written in the

more explicit form

@tU þAxðUÞ@xU þ AyðUÞ@yU
¼ @xðBxxðUÞ@xUÞ þ @xðBxyðUÞ@yUÞ
þ @yðByxðUÞ@xUÞ þ @yðByyðUÞ@yUÞ þ �ðUÞ: ð3:11Þ

The detailed form of the coe±cient matrices AiðUÞ, i 2 C, and BijðUÞ, i; j 2 C, will

not be needed in the following, and, therefore, will not be given.

4. Symmetrization of Saint-Venant Equations

For hyperbolic systems of conservation laws, the existence of a conservative sym-

metric formulation has been shown to be equivalent to the existence of an entropy

function.17,28,44 These results have been generalized to the case of second-order

quasilinear systems of equations by Kawashima and Shizuta.20,25,38 Kawashima and

Shizuta38 have also shown that, when the nullspace naturally associated with dis-

sipation matrices is a ¯xed subspace, a symmetric system of conservation equations

can be put into a normal form, that is, in the form of a symmetric hyperbolic�
parabolic composite system. Giovangigli and Massot20,25 have further characterized

all possible normal forms for such systems.

In this section, we investigate the symmetrization of the Saint-Venant system

with an energy equation (3.10). We exhibit a mathematical entropy function and

derive the corresponding conservative symmetric form. This symmetric form is then

used to derive a normal form. The symmetrizing variable is obtained from the

entropy and not from the kinetic energy as investigated by Tadmor,55 Hauke,29 and

Carey12 in the isothermal case. These symmetrized systems may also be useful for

¯nite element discretizations and numerical simulations as discussed by Chalot,

Hughes and Shakib,13 Hughes, Franca and Mallet,33 Hauke29 and Carey.12 The

assumptions concerning thermodynamic properties (Th1) and transport properties

(Tr1), (Tr2) are assumed to hold in this section.

4.1. Entropy and symmetric conservative form

The following de¯nition of a symmetric (conservative) form for the system (3.10) is

adapted from Kawashima and Shizuta.20,25,38

De¯nition 4.1. Consider a C1 dipheomorphism U ! V from the open domain OU

onto an open domain OV and consider the system in the V variable

~A0ðV Þ@tV þ
X
i2C

~AiðV Þ@iV ¼
X
i;j2C

@ið ~BijðV Þ@jV Þ þ ~�ðV Þ; ð4:1Þ

where

~A0 ¼ @V U ; ~Ai ¼ Ai@V U ¼ @V Fi;

~Bij ¼ Bij@V U ; ~� ¼ �:

(
ð4:2Þ
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The system is said of the symmetric form if the matrices ~A0, ~Ai, i 2 C, and ~Bij,

i; j 2 C, satisfy the following properties (S1)�(S4).

(S1) The matrix ~A0 is symmetric positive de¯nite for V 2 OV .

(S2) The matrices ~Ai, i 2 C, are symmetric for V 2 OV .

(S3) We have ~B
t
ij ¼ ~Bji for i; j 2 C, and V 2 OV .

(S4) The matrix ~B ¼
P

i;j2C ~BijðV Þwiwj is symmetric and positive semide¯nite, for

V 2 OV and w 2 �1, where �1 is the unit sphere in two dimensions.

The following generalized de¯nition of a mathematical entropy function is

adapted20,25 from Kawashima37 and Kawashima and Shizuta.38

De¯nition 4.2. Consider a C1 function �ðUÞ de¯ned over the open convex domain

OU . The function � is said to be an entropy function for the system (3.10) if the

following properties hold:

(E1) The function � is a strictly convex function of U 2 OU in the sense that the

Hessian matrix @ 2
U� is positive de¯nite over OU .

(E2) There exists real-valued C1 functions qi ¼ qiðUÞ such that

ð@U�ÞAi ¼ @Uqi; i 2 C; U 2 OU :

(E3) We have the property that, for any U 2 OU

@ 2
U�

� ��1
Bt

ji ¼ Bij @
2
U�

� ��1
; i; j 2 C:

(E4) The matrix ~B ¼
P

i;j2C BijðUÞ @ 2
U�ðUÞ

� ��1wiwj is symmetric positive semi-

de¯nite for any U 2 OU and any w 2 �1.

Kawashima and Shizuta have established20,25,38 the equivalence between con-

servative symmetrizability and the existence of an entropy function.

Theorem 4.3. The system (3.10) admits an entropy function � de¯ned over the open

convex setOU if and only if it can be symmetrized over the open convex setOU . In this

situation the symmetrizing variable V and the entropy function can be chosen such

that

V ¼ ð@U�Þ t: ð4:3Þ

As is usual for compressible gases,38 mixtures of reacting gases,20,25 ambipolar

plasmas,23 we de¯ne the mathematical entropy function � of the Saint-Venant sys-

tem with an energy equation as the opposite of the physical entropy hs

� ¼ �hs;

where s is the entropy per unit mass of the °uid under consideration (2.8). The

mathematical entropy � is associated with the physical entropy per unit surface hs

and not the entropy per unit volume as usual. The corresponding entropic variable

V ¼ ð@U�Þ t;

Saint-Venant Model with Variable Temperature 1261



is then easily evaluated as

V ¼ 1

T
g� 1

2
v ¢v;u; v;�1

� �
t

;

where g is the Gibbs function.

Proposition 4.4. The change of variable U 7! V is a C1 di®eomorphism from the

open convex set OU onto an open set OV . The open set OV is given by

OV ¼ fðu1;u2;u3;u4Þ 2 R
4;u4 < 0; u1 �  ðu2;u3;u4Þ > 0g; ð4:4Þ

where  : R2 � ð�1; 0Þ ! R is given by

 ðu2;u3;u4Þ ¼ �u4gð�1=u4Þ þ
1

2

u2
2 þ u2

3

u4

;

and where the Gibbs function has been decomposed into gðh;T Þ ¼ gðT Þ þ �h.

Proof. From Proposition 3.2, the map Z ! U is a C1 di®eomorphism fromOZ onto

OU , so that we only have to show that the map Z ! V is a C1 di®eomorphism from

OZ onto the open set OV . From Assumption (Th1) and the expression of

thermodynamic properties, we ¯rst deduce that the map Z ! V is C1 over the

domainOZ . It is then straightforward to show that the map Z ! V is one-to-one and

that its range is OV since the Gibbs function can be decomposed in the form

gðh;T Þ ¼ gðT Þ þ �h. In addition, the matrix @ZV is easily shown to be nonsingular

over OZ from its triangular structure and the proof is complete, thanks to the inverse

function theorem.

The conservative symmetric form is now investigated in the following theorem.

Theorem 4.5. The function � is a mathematical entropy for the system (3.10), that

is, � satis¯es Properties (E1)�(E4) of De¯nition 4.2. The symmetrized system

associated with the entropic variable V 2 OV can be written

~A0@tV þ
X
i2C

~Ai@iV ¼
X
i;j2C

@i ~Bij@jV
� �

þ ~�; ð4:5Þ

and satis¯es Properties (S1)�(S4) of De¯nition 4.1. The matrix ~A0 is given by

~A0 ¼
T

�

1 Sym

v v� vþ �hI

etot þ 1

2
�h etot þ 3

2
�h

� �
v t �0

0BBBB@
1CCCCA;

where

�0 ¼ etot þ 1

2
�h

� �
2

þ �hðu2 þ v2 þ TcvÞ:
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Since this matrix is symmetric, we only give its block lower triangular part and write

\Sym" in the upper triangular part. Denoting by » ¼ ð	x; 	yÞ t an arbitrary vector of

R2, the matrices ~Ai, i 2 C, are given by

X
i2C

~Ai	i ¼
T

�

v ¢ » Sym

vðv ¢ »Þ þ �h» �v;v

etot þ 3

2
�h

� �
v ¢ » �e;v �1v ¢ »

0BBBB@
1CCCCA;

where

�v;v ¼ v ¢ »v� vþ �hðv� »þ »� vþ 2v ¢ »IÞ;

�e;v ¼ etot þ 5

2
�h

� �
v ¢ »v t þ etot þ 1

2
�h

� �
�h» t;

�1 ¼ etot þ 5

2
�h

� �
etot þ 1

2
�h

� �
þ �hðu2 þ v2 þ TcvÞ:

The dissipation matrices, are given by

~Bxx ¼ hT�

0 0 0 0

0 4 0 4u

0 0 1 v

0 4u v 
þ 3u2

0BBB@
1CCCA; ~Bxy ¼ hT�

0 0 0 0

0 0 2 2v

0 1 0 u

0 v 2u 3uv

0BB@
1CCA;

~Byx ¼ hT�

0 0 0 0

0 0 1 v

0 2 0 2u

0 2v u 3uv

0BB@
1CCA; ~Byy ¼ hT�

0 0 0 0

0 1 0 u

0 0 4 4v

0 u 4v 
þ 3v2

0BBB@
1CCCA;

where 
 ¼ {T=� þ ðu2 þ v2Þ. Denoting by » ¼ ð	x; 	yÞ t and ³ ¼ ð�x; �yÞ t arbitrary

vectors of R2, we have

X
i;j2C

~Bij	i�j ¼ hT�

0 0 Sym

0 2»� ³ þ ³ � »þ » ¢ ³I
0 2v ¢ ³» t þ v ¢ »³ t þ ³ ¢ »v t 
³ ¢ »þ 3v ¢ »v ¢ ³

0@ 1A:
Finally, the source term ~� is given by

~� ¼ �:

Proof. The calculation of the matrices ~A0, ~Ai, i 2 C, and ~Bij, i; j 2 C, is lengthy but

straightforward and, therefore, is omitted. This calculation is easily conducted by

using the natural variable Z as an intermediate variable. The symmetry properties of
~A0, ~Ai, i 2 C, and ~Bij, i; j 2 C, required in (S1)�(S4) are then obtained.
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Consider then a vector x 2 R4, with components ðxh; xu; xv; xT Þ t. After a little

algebra, we obtain

xt ~A0x ¼ T

�
�hðxu þ uxT Þ2 þ �hðxv þ vxT Þ2
�

þ xh þ uxu þ vxv þ etot þ 1

2
�h

� �
xT

� �
2

þ �hcvTx
2
T

�
; ð4:6Þ

so that from (Th1) and the positivity of �, cv and T , we deduce that ~A0 is posi-

tive de¯nite. Furthermore, a straightforward calculation leads to the following

expression

x t ~BðV ;wÞx ¼ T�h 3ðwxðxu þ uxT Þ þ wyðxv þ vxT ÞÞ2
�

þðxu þ uxT Þ2 þ ðxv þ vxT Þ2 þ
{

�T
x2T

�
; ð4:7Þ

where x ¼ ðxh; xu; xv; xT Þ t and w2
x þ w2

y ¼ 1. The matrix ~B ��� easily shown to

be symmetric ��� is thus positive semide¯nite from the positivity properties of

transport coe±cients. Finally, � also satis¯es (E1)�(E4) with qx ¼ �u and qy ¼ �v, as

is easily checked and � is strictly convex since ~A0 is positive de¯nite over the open

convex set OU .

We have thus established in this section that the Saint-Venant system satis¯es the

property:

(Edp2) The quasilinear Saint-Venant system of partial di®erential equations (3.10)

admits an entropy function � on the open convex set OU .

4.2. Normal forms of Saint-Venant equations

The quasilinear Saint-Venant system of partial di®erential equations (3.10) has

smooth coe±cients and admits an entropy function, that is, satis¯es the properties

(Edp1) and (Edp2). Introducing the symmetrizing variable V ¼ ð@U�Þ t, the corre-

sponding symmetric system (4.5) then satis¯es Properties (S1)�(S4). However,

depending on the range of the dissipation matrices ~B, this system lies between the

two limit cases of a hyperbolic system and a strongly parabolic system. In order to

split the variables between hyperbolic and parabolic variables, we have to put the

system into a normal form, in the form of a symmetric hyperbolic�parabolic com-

posite system.25,37,38

To this aim, introducing a new variable W , associated with a di®eomorphism

V ! W from OV onto OW , changing of variable V ¼ V ðW Þ in (4.5) and multiplying

on the left side by the transpose of the matrix @WV , we get a new system in the

variable W and have the following de¯nition of a normal form.38

De¯nition 4.6. Consider a system in symmetric form, as in De¯nition 4.1, and a

di®eomorphism V ! W from the open set OV onto an open set OW . The system in
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the new variable W

A0ðW Þ@tW þ
X
i2C

AiðW Þ@iW ¼
X
i;j2C

@iðBðW Þ@jW Þ þ T ðW ; @xW Þ þ �ðW Þ; ð4:8Þ

where

A0 ¼ ð@WV Þ t ~A0ð@WV Þ; Bij ¼ ð@WV Þ t ~Bijð@WV Þ;
Ai ¼ ð@WV Þ t ~Aið@WV Þ; � ¼ ð@WV Þ t ~�;
T ¼ �

X
i;j2C

@ið@WV Þ t ~Bijð@WV Þ@jW ;

8>>><>>>: ð4:9Þ

satis¯es properties (S1)�(S4) rewritten in terms of overbar quantities. This system is

then said to be of the normal form if there exists a partition of f1; . . . ; 4g into

I ¼ f1; . . . ;n0g and II ¼ fn0 þ 1; . . . ; 4g, such that the following properties hold.

(Nor1) The matrices A0 and Bij have the block structure

A0 ¼
A

I;I
0 0

0 A
II;II
0

 !
; Bij ¼

0 0

0 B
II;II
ij

 !
:

(Nor2) The matrix B
II;II
ij ðW ;wÞ ¼

P
i;j2C B

II;II
ij ðW Þwiwj is positive de¯nite for W 2

OW and w 2 �1.

(Nor3) Denoting @x ¼ ð@x; @yÞ t, we have

T ðW ;@xW Þ ¼ ðTIðW ;@xWIIÞ; TIIðW ;@xW ÞÞ t;
where we have used the vector and matrix block structure induced by the parti-

tioning of f1; . . . ; 4g into I ¼ f1; . . . ;n0g and II ¼ fn0 þ 1; . . . ; 4g, so that we have

W ¼ ðWI ;WIIÞ t, for instance.

A su±cient condition for system (4.1) to be recast into a normal form is that the

nullspace naturally associated with dissipation matrices is a ¯xed subspace of R4.

This is Condition N introduced by Kawashima and Shizuta. In the following lemma,

we establish that the nullspace invariance property holds for the Saint-Venant sys-

tem of partial di®erential equations.

Proposition 4.7. Let V 2 OV , w ¼ ðwx;wyÞ t 2 �1, and denote

~BðV ;wÞ ¼
X
i;j2C

~BijðV Þwiwj:

The nullspace of the matrix ~B is one-dimensional and given by

Nð ~BÞ ¼ spanð1; 0; 0; 0Þ t;
and we have ~BijNð ~BÞ ¼ 0, for i; j 2 C.

Proof. According to (4.7) the matrix ~B is positive semide¯nite, so that its nullspace

is constituted by the vectors x of R4 such that xt ~Bx ¼ 0. Denoting x ¼
ðxh;xu;xv;xT Þ t and using (4.7), the null condition xt ~Bx ¼ 0 implies that xT ¼ 0
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and xu ¼ xv ¼ 0 and conversely. We have thus obtained that the nullspace of
~BðV ;wÞ is one-dimensional and spanned by ð1; 0; 0; 0Þ t, and it is thus independent

of V 2 OV and w 2 �1. Finally, one easily checks that ~Bijð1; 0; 0; 0Þ t ¼ 0, for

i; j 2 C.

We have thus established the following property

(Edp3) The nullspace of the matrix ~BðV ;wÞ ¼
P

i;j2C ~BijðV Þwiwj does not depend

on V and w 2 �1, dimðNð ~BÞÞ ¼ 1, and we have ~BijðV ÞNð ~BÞ ¼ 0, i; j 2 C.

We now investigate normal forms for the system (3.10), or, equivalently, for the

system (4.5). Since the nullspace of the matrix ~B is spanned by the ¯rst canonical

basis vector, the invertible matrix P of Lemma 3.7 of Giovangigli and Massot25 can

be taken to be the unit tensor in R4;4 so that the auxiliary variables are simply

U 0 ¼ U and V 0 ¼ V . Since U 0
I ¼ UI ¼ h and V 0

II ¼ VII ¼ ðu; v;�1Þ=T , we obtain

from the general characterization of normal form the following result.

Theorem 4.8. Any normal form of the system (4.1) is given by a change of variable

in the form

W ¼ �IðhÞ; �II
u

T
;
u

T
;
�1

T

� �� �
t

;

where �I and �II are two di®eomorphisms of R and R3 respectively, and we have

T ðW ; @xW Þ ¼ ð0; TIIðW ;@xWIIÞÞ t:

We can next use the possibility of mixing the parabolic components ��� the V 0
II ¼

VII components ��� established in Theorem 4.8, in order to simplify the analytic

expression of the normal variable and, consequently, of the matrix coe±cients

appearing in the normal form. More speci¯cally, we select the variable W ¼ Z

W ¼ ðh;u; v;T Þ t;

easily obtained by combining the V 0
II ¼ VII components and derive the corresponding

normal form of the governing equations.

Theorem 4.9. The system in the variable W ¼ ðWI ;WIIÞ t, on the open convex set

OW ¼ ð0;1Þ � R2 � ð0;1Þ, with hyperbolic variable

WI ¼ h;

and parabolic variable

WII ¼ ðu; v;T Þ t;

can be written in the form

A
I;I
0 @tWI þ

X
i2C

A
I;I
i @iWI þ

X
i2C

A
I;II
i @iWII ¼ 0; ð4:10Þ
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A
II;II
0 @tWII þ

X
i2C

A
II;I
i @iWI þ

X
i2C

A
II;II
i @iWII ¼

X
i;j2C

@iðB
II;II
ij @jWIIÞ þ TII þ �II ;

ð4:11Þ

and is of the normal form. The matrix A0 is given by

A0 ¼
1

T

� 0 0

0 hI 0

0 0
hcv
T

0BB@
1CCA:

Denoting by » ¼ ð	x; 	yÞ t an arbitrary vector of R2, the matrices Ax and Ay are

given by

X
i2C

Ai	i ¼
1

T

�v ¢ » Sym

�h» hv ¢ »I
0 0

hcv
T

v ¢ »

0BB@
1CCA: ð4:12Þ

Denoting by » ¼ ð	x; 	yÞ t and ³ ¼ ð�x; �yÞ t arbitrary vectors of R2, the dissipation

matrices, Bij are such that

X
i;j2C

Bij	i�j ¼
h

T

0 Sym

02�1 �ð2»� ³ þ ³ � »þ » ¢ ³IÞ
0 01�2

{

T
» ¢ ³I

0BB@
1CCA;

or equivalently

Bxx ¼ h

T

0 0 0 0

0 4� 0 0

0 0 � 0

0 0 0
{

T

0BBBB@
1CCCCA; Bxy ¼

h

T

0 0 0 0

0 0 2� 0

0 � 0 0

0 0 0 0

0BB@
1CCA;

Byx ¼ h

T

0 0 0 0

0 0 � 0

0 2� 0 0

0 0 0 0

0BB@
1CCA; Byy ¼

h

T

0 0 0 0

0 � 0 0

0 0 4� 0

0 0 0
{

T

0BBBB@
1CCCCA:

The term TII is easily evaluated as

TII ¼ � 1

T 2
ð0;¦ ¢@xT ;¦ :@xvþQ ¢@xT Þ t;

whereas the source term � ¼ ð�I ; �IIÞ t ¼ ð@WV Þ t� is given by

� ¼ 0; 0; 0;� ��

T 2
ðT � T eÞ

� �
t

:
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Proof. The calculations are lengthy but straightforward and make use of

Theorem 4.5 and Assumptions (Th1), (Tr1) and (Tr2).

It is remarkable that the Saint-Venant system of partial di®erential equations

with a temperature equation can be recast into a symmetric hyperbolic�parabolic

form already obtained for multicomponent reactive compressible °ows,25 partial

equilibrium chemistry models,27 and ambipolar plasmas.23 In the next section we

investigate global existence around equilibrium states and asymptotic stability of the

resulting system of partial di®erential equations. Di®erent existence results could also

be obtained for such symmetrized systems, as for instance local existence results, by

using the general theory of Volpert and Hudjaev58 as investigated for instance for

total vibrational nonequilibrium °ows26 and anisotropic magnetized plasmas.24

5. Global Existence for the Saint-Venant Equations

In the previous sections, we have established that the quasilinear Saint-Venant

system of partial di®erential equations is symmetrizable and can be written in a

normal form and we have already established properties (Edp1)�(Edp3). In this

section we will ¯rst investigate the existence of constant equilibrium states or

property (Edp4). We will next investigate the corresponding linearized normal form

and linearized source term. We will indeed establish the local dissipativity properties

labeled by (Dis1)�(Dis4) that will insure the asymptotic stability of equilibrium

states.20,25 In particular, global existence of solution around equilibrium states as well

as decrease estimates will be obtained for the quasilinear Saint-Venant system with

a temperature equation. We will use the normal variable W ¼ Z introduced in

Theorem 4.9 but other normal variables could be used as well.

5.1. Local dissipative structure

We remind that the source term � is given by � ¼ ð0; 0; 0;���ðT � T eÞÞ t, where �� is
a positive coe±cient and T e > 0 a positive temperature.

Proposition 5.1. Let a height he > 0 and a velocity ve ¼ ðue; veÞ t 2 R2 be given.

Then the state U e de¯ned by

U e ¼ ðhe;heue;heve;heetotðhe;T eÞÞ t

is an equilibrium state

�ðU eÞ ¼ 0;

and for this constant stationary state we also have Z e ¼ ðhe;ue; ve;T eÞ t.

Selecting arbitrarily Z e ¼ ðhe;ue; ve;T eÞ t we have established the following

property

(Edp4) There exists a constant equilibrium state U e such that �ðU eÞ ¼ 0.
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We will denote by V e and W e the equilibrium states in the variables V and W ,

respectively. In order to establish a global existence theorem, we further need to

investigate the local dissipative structure of the source term.

Proposition 5.2. The linearized source term ~LðV eÞ ¼ �ð@V ~�ÞðV eÞ at the

stationary state V e constructed in Proposition 5.1 is given by

~LðV eÞ ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ��eT e2

0BBB@
1CCCA; ð5:1Þ

where ��e ¼ ��ðT eÞ. This matrix ~LðV eÞ is symmetric positive semide¯nite and

satis¯es

Rð~LðV eÞÞ ¼ spanð0; 0; 0; 1Þ t;

in such a way that we have �ðUðV ÞÞ ¼ ~�ðV Þ 2 Rð~LðV eÞÞ for all V 2 OV .

Proof. Evaluating the matrix ~LðV eÞ is straightforward, ~LðV eÞ is positive

semide¯nite, and obviously Rð~LðV eÞÞ ¼ spanð0; 0; 0; 1Þ t.

Proposition 5.3. Let U e ¼ UðZ eÞ with Z e ¼ ðhe;ue; ve;T eÞ t be a constant

equilibrium state in OU constructed as in Proposition 5.1. Then there exists a

neighborhood V of V e and a positive constant � such that

�j~�ðV Þj2 � �hV � V e; ~�ðV Þi; V 2 V: ð5:2Þ

Proof. From the expression of V , we obtain

hV � V e; ~�ðV Þi ¼ � ��

T T e
ðT � T eÞ2

and (5.2) since j~�ðV Þj2 ¼ ��2ðT � T eÞ2 and �� is a positive function.

We have thus established Properties (Dis3) and (Dis4)

(Dis3) The smallest linear subspace containing the source term vector ~�ðV Þ, for all
V 2 OV , is included in the range of ~LðV �eÞ, with ~L ¼ ð@VW Þ tLðV �eÞ@VW .

(Dis4) There exists a neighborhood of V �e, in OV , and a positive constant � > 0 such

that, for any V in this neighborhood, we have

�j~�ðV Þj2 � �hV � V �e; ~�ðV Þi:

5.2. Linearized normal form

If we linearize the symmetric hyperbolic�parabolic system (4.10)�(4.11) around a

constant stationary state W e ¼ ðhe;ue; ve;T eÞ t, we obtain the linear symmetric
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system

A0ðW eÞ@tzþ
X
i2C

AiðW eÞ@iz ¼
X
i;j2C

BijðW eÞ@i@jz� LðW eÞz; ð5:3Þ

where the zeroth-order term is de¯ned as LðW eÞ ¼ �ð@W �ÞðW eÞ and is given by

LðW eÞ ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ��e

0BB@
1CCA: ð5:4Þ

Taking into account that (4.10)�(4.11) is a normal form, and since the matrix LðW eÞ
is symmetric positive semide¯nite, we obtain that Property (Dis1) is satis¯ed

(Dis1) The matrix A0ðW eÞ is symmetric positive de¯nite, the matrices AiðW eÞ,
i 2 C, are symmetric, we have the reciprocity relations ðBijðW eÞÞ t ¼
BjiðW eÞ, i; j 2 C, and the matrix LðW eÞ is symmetric positive semide¯nite.

We next have to investigate the existence of compensating matrices Kj, j 2 C

as introduced by Kawashima.25,37,53 In the following proposition, we denote by

BðW e; »Þ the matrix BðW e; »Þ ¼
P

i;j2C Bij	i	j.

Proposition 5.4. For a su±ciently small and positive a, the matrices Kj, j 2 C,

de¯ned by

X
j2C

	jK
j ¼ a

0 » t 0

�» 02�2 02�1

0 01�2 0

0@ 1AA0ðW eÞ�1;

where » ¼ ð	x; 	yÞ t, are compensating matrices. In particular, the products

KjA0ðW eÞ are skew-symmetric and the matrixX
i;j2C

KjAiðW eÞ	i	j þ BðW e; »Þ;

is positive de¯nite for » 2 �1.

Proof. It is obvious by construction that the products KjA0ðW eÞ, j 2 C, are skew-

symmetric. On the other hand, a direct calculation yields

X
i;j2C

	jK
jAiðW eÞ	i ¼ a

�j»j2 ðve ¢ »Þ» t 0

�ðve ¢ »Þ» �he»� » 02�1

0 01�2 0

0B@
1CA; ð5:5Þ

where the superscript e indicates that the corresponding quantity is evaluated atW e.

As a consequence, for » 2 �1, and x ¼ ðxh;xu;xv;xT Þ t, we have j»j ¼ 1, and there
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exists 
 > 0 such that

xt;
X
i;j2C

	j;K
jAið;W eÞ	ix

* +
� a�

2
ðx2

h � 
ðx2
u þ x2

v þ x2
T ÞÞ:

Using now Property (Nor2), the matrixX
i;j2C

KjAiðW eÞ	i	j þ BðW e; »Þ

is positive de¯nite for » 2 �1 and a su±ciently small.

We have thus established (Dis2)

(Dis2) The linearized system is strictly dissipative in the sense that there exists

compensating matrices Kj, j 2 C.

Remark 5.5. Di®erent formulations can be used in order to establish the strict

dissipativity of the linearized normal form as investigated by Shizuta and

Kawashima.53 However, we have chosen to directly establish the stronger

Proposition 5.4 which implies the existence of a combined compensating matrix

K ¼
P

j2C Kj	j as discussed by Shizuta and Kawashima.53

5.3. Global existence and asymptotic stability

In the previous sections, we have established that Properties (Edp1)�(Edp4) and

(Dis1)�(Dis4) are satis¯ed. Therefore the existence theorems established in Refs. 20

and 25 can be applied to the system (4.10)�(4.11) governing shallow water °ows or

thin viscous sheets over °uid substrates written in theW ¼ ðWI ;WIIÞ t variable, with
the hyperbolic variable

WI ¼ h;

and the parabolic variable

WII ¼ ðu; v;T Þ t:

Theorem 5.6. Consider the system (4.10)�(4.11) with d ¼ 2, l � ½d=2� þ 2, and let

W 0ðxÞ be such that

W 0 �W e 2 W l
2ðRdÞ:

Then, if jjW 0 �W ejj
l;2
is small enough, there exists a unique global solution to the the

Cauchy problem (4.10)�(4.11)

A0@tW þ
X
i2C

Ai@iW ¼
X
i;j2C

@iðBij@jW Þ þ T þ �;
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with initial condition

W ð0;xÞ ¼ W 0ðxÞ;
such that

WI �W e
I 2 C 0ð½0;1Þ;W l

2ðRdÞÞ \ C 1ð½0;1Þ;W l�1
2 ðRdÞÞ;

WII �W e
II 2 C 0ð½0;1Þ;W l

2ðRdÞÞ \ C 1ð½0;1Þ;W l�2
2 ðRdÞÞ;

ð5:6Þ

and

@xWI 2 L2ð0;1;W l�1
2 ðRdÞÞ;

@xWII 2 L2ð0;1;W l
2ðRdÞÞ:

(
Furthermore, W satis¯es the estimate

jjWðtÞ �W ejj2
l;2
þ
Z t

0

ðjj@xhð�Þjj 2l�1;2
þ jj@xuð�Þjj2l;2

þ jj@xvð�Þjj2l;2 þ jj@xT ð�Þjj2l;2Þ d� � 
jjW 0 �W ejj 2
l;2
; ð5:7Þ

where 
 is a positive constant and supx2R d jW ðtÞ �W ej goes to zero as t ! 1.

Theorem 5.7. Keeping the assumptions of the preceding theorem, assume that

d ¼ 2, l � ½d=2� þ 3 and W 0 �W e 2 W l
2ðRdÞ \ LpðRdÞ with p 2 ½1; 2Þ. Then, if

jjW ðtÞ �W ejj
l�2;2

þ jjW ðtÞ �W ejj
0;p

is small enough, the unique global solution to the

Cauchy problem satis¯es for t 2 ½0;1Þ the decay estimate

jjWðtÞ �W ejj
l�2;2

� 
ð1þ tÞ��ðjjW ðtÞ �W ejj
l�2;2

þ jjW ðtÞ �W ejj
0;p
Þ;

where 
 is a positive constant and � ¼ d� ð1=2p� 1=4Þ.

Remark 5.8. Theorems 5.6 and 5.7 are easily adapted to the situation d ¼ 1,

further assuming that p ¼ 1, or to the situation ��e ¼ 0 where T e can then be chosen

arbitrarily. Various extra e®ects like friction forces or wind e®ects can also easily be

taken into account in Theorem 5.6.

Remark 5.9. We have investigated in this paper the Cauchy problem for the

equations governing thin viscous sheets over °uid substrates. Similar methods could

be applied to investigate strong solutions to Initial-Boundary value problems in the

absence of vacuum by imposing classical Navier�Stokes type boundary conditions as

discussed for instance by Sundbye,54 Orenga,45 Lions,42 and Bresch.8 On the other

hand, global weak solutions have been investigated by Bresch,8 Bresch and

Desjardins,9 and Li et al.41 by using gradient entropies, and higher order entropies

have also been discussed by Giovangigli.21,22

6. A Thin Viscous Sheet Model

We investigate in Secs. 6 and 7 a three-dimensional model of a thin viscous sheet over

a °uid substrate and its two-dimensional asymptotic limit.
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We ¯rst present in this section the three-dimensional partial di®erential equations

governing a thin viscous layer of an incompressible °uid with two free boundaries, an

upper °uid/gas boundary and a lower °uid/substrate boundary. The upper gas may

depend on a particular application under concern and will be denoted by \gas" for

the sake of notational simplicity. On the other hand, the °uid substrate will be

modeled by using the hydrostatic approximation. In Sec. 7, we will perform an

asymptotic analysis and derive the Saint-Venant equations with an energy equation

and temperature-dependent transport coe±cients from the three-dimensional gov-

erning equations presented in this section.

There are various examples of such viscous layers over °uid substrates as for

instance oil slicks over water,30 °oat glasses,47 and Atlantic waters over the deeper

denser Mediterranean sea in the Strait of Gilbraltar.43

During the spreading of an oil spill, there indeed exist several regimes where it can

be modeled as a thin viscous sheet over a water substrate.46 This is notably the case

during the gravity/viscous or viscous/surface-tension spreading regimes.30 The

incompressible oil °ow then presents two free boundaries, the upper oil/air interface

and the lower oil/sea interface. More re¯ned models may also include other e®ects

like wind dispersion, water currents, shore deposition, evaporation, or dissolution, in

order to describe more realistically oil slick trajectories.46

In a °oat glass, molten glass is °owing and °oating above molten tin, and is

progressively cooled in order to produce plate glass.31,32,47 This procedure gives the

glass sheet a smooth interface and modern windows are made from °oat glasses. The

incompressible molten glass °ow then presents two free boundaries, the upper glass/

gas interface and the lower glass/tin interface. The reducing atmosphere above the

molten glass and the tin bath is typically a mixture of nitrogen and hydrogen to

prevent the oxidation of tin.

On the other hand, in the Strait of Gilbraltar, the denser Mediterranean sea °ows

below Atlantic waters penetrating in the Alboran sea. These phenomena may be

modeled by using bi-layer Saint-Venant shallow water equations.43 More recently,

multi-layer Saint-Venant equations have also been investigated.1,2,36,43

Nevertheless, we will not discuss a particular application in the following sections

since the models investigated may be applied to quite di®erent situations. We will

thus generically denote by \°uid" the liquid constitutive of the viscous sheet, by

\gas" the gas above the sheet, and by \substrate" or \°uid substrate" the liquid

substrate below the sheet.

6.1. Setting of the problem

We consider a three-dimensional °ow governed by the incompressible Navier�Stokes

equations with temperature-dependent transport coe±cients. The °ow con¯gur-

ation is depicted in Fig. 1 with an upper °uid/gas free boundary and a lower °uid/

substrate free boundary. The incompressible °uid constitutive of the viscous sheet

is termed the \°uid", the gas above the viscous sheet is termed the \gas", and the
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lower °uid constitutive of the substrate is termed the \substrate" or the \°uid

substrate".

The equations governing the viscous incompressible °uid can be written in the

nonconservative form

@x ¢v ¼ 0;

�@tvþ �v ¢@xvþ @xp� @x ¢ ð�dÞ ¼ �g;

�cv@tT þ �cvv ¢@xT � @x ¢ ð�T Þ ¼ 1

2
�d:d;

where @x ¼ ð@x; @y; @zÞ t is the three-dimensional gradient vector, � the constant

density of the incompressible °uid, v ¼ ðu; v;wÞ t the three-dimensional velocity

vector, p the pressure of the three-dimensional glass °ow, g ¼ ð0; 0; gÞ t the gravity

assumed to be constant and vertical, d ¼ @xvþ @xv
t the strain tensor, cv the heat

capacity per unit mass of the incompressible °uid, � the °uid viscosity and � the °uid

thermal conductivity of the °uid. We denote by ðex; ey; ezÞ the canonical basis vec-

tors associated with the three-dimensional Cartesian coordinates x ¼ ðx; y; zÞ t. We

will denote by ¦ ¼ ��d the viscous tensor, P the pressure tensor P ¼ pIþ¦,

¾ ¼ �P the Cauchy stress tensor, andQ the heat °uxQ ¼ ��@xT . Note that we use

italic fonts in order to denote the asymptotic two-dimensional Saint-Venant model

and roman fonts in order to denote the original three-dimensional incompressible

Navier�Stokes model. We will assume in the following that the pressure in the °uid is

measured relative to the atmospheric pressure patm for the sake of simplicity.

The boundary conditions are that of free boundaries at the upper °uid/gas

interface z ¼ hgas and at the lower °uid/substrate interface z ¼ hsub. On the top

boundary, the °uid particles stay on the surface z� hgas ¼ 0 and the usual kinematic

condition yields that

w ¼ @thgas þ u@xhgas þ v@yhgas;

where we have denoted by v ¼ ðu; v;wÞ t the three components of the velocity vector

v. On the other hand, the dynamic condition at the top free boundary can be written

¾ ¢ngas ¼ ¾gas ¢ngas � �f=gCgasngas;

Fig. 1. Schematic of the thin viscous sheet.
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where �f=g is the surface tension between the °uid and gas and Cgas the total curvature
of the surface z ¼ hgas seen from the °uid and given by

Cgas ¼
@ 2
xhgasð1þ ð@yhgasÞ2Þ þ @ 2

yhgasð1þ ð@xhgasÞ2Þ � 2@xhgas@yhgas@
2
xyhgas

ð1þ ð@xhgasÞ2 þ ð@yhgasÞ2Þ3=2
:

In this dynamic boundary condition, the outward normal vector at the °uid/gas

interface is given by

ngas ¼ ðð@xhgasÞ2 þ ð@yhgasÞ2 þ 1Þ�1=2ð�@xhgas;�@yhgas; 1Þ t;

and the stress�tensor in gas by

¾gas ¢ngas ¼ �patmngas;

where patm denotes the atmospheric pressure.

Remark 6.1. A more general dynamic boundary condition taking into account the

spatial variations of the surface tension �f=g can be written in the form

¾ ¢ngas ¼ ¾gas ¢ngas � �f=gCgasngas � ðI� ngas � ngasÞ@x�f=g;

where @x�f=g denotes the gradient of the surface tension �f=g. However, for the sake of

simplicity, we will assume in the following that �f=g is a constant.

Similarly, at the lower boundary, z ¼ hsub, the vertical velocity component w is

given by

w ¼ @thsub þ u@xhsub þ v@yhsub;

and the dynamic condition reads

¾ ¢nsub ¼ ¾sub ¢nsub � �f=sCsubnsub;

where �f=s is the surface tension between the °uid and the substrate, Csub the total

curvature of the surface z ¼ hsub seen from the °uid, and

nsub ¼ ðð@xhsubÞ2 þ ð@yhsubÞ2 þ 1Þ�1=2ð@xhsub; @yhsub;�1Þ t;

the outward unit normal vector at the °uid/substrate interface. Thanks to the

hydrostatic approximation, the normal component of the stress�tensor in the °uid

substrate is given by

¾sub ¢nsub ¼ �psubnsub;

where psub denotes the pressure in the substrate °ow given by

psub ¼ patm þ �subghsub:

From a thermal point of view, at the top and bottom interfaces, we have the

boundary conditions

��@xT ¢ngas ¼ � �
gasðT � TgasÞ;

��@xT ¢nsub ¼ ��
subðT � TsubÞ;

Saint-Venant Model with Variable Temperature 1275



where Tgas and Tsub are given temperatures in the gas and in the substrate °ows,

respectively, and where ��
gas and �

�
sub are the heat exchange coe±cients.

6.2. Rescaled equations

In order to perform an asymptotic analysis of the three-dimensional incompressible

°uid °ow, we need to specify the order of magnitude of the various terms appearing in

the governing equations. For this purpose, for each quantity �, we introduce a typical

order of magnitude denoted by h�i. We introduce in particular a characteristic

horizontal length hxi ¼ hyi and vertical length hzi ¼ �hxi where the aspect ratio � is
the small parameter associated with the thickness of the °uid viscous sheet. We

correspondingly introduce a characteristic horizontal velocity hui ¼ hvi and vertical

velocity hwi ¼ �hui as well as a characteristic density h�i ¼ � where � is the constant

density of the °uid constitutive of the viscous sheet. Denoting by h�i a characteristic

viscosity, the Reynolds number Re is then given by

Re ¼ h�ihuihxi
h�i : ð6:1Þ

We de¯ne the characteristic time from the characteristic length hxi and the

characteristic velocity hui by letting hti ¼ hxi=hui. Denoting by hcvi a typical heat

capacity and h�i a characteristic heat conductivity of the °uid, the characteristic

internal energy is de¯ned by hei ¼ hcvihT i and the Prandtl number Pr by

Pr ¼ h�ihcvi
h�i : ð6:2Þ

Note that cp ¼ cv for an incompressible °uid and that we may set for instance

hcvi ¼ R=m, where R is the perfect gas constant and m the molar mass of the

incompressible °uid. We will also denote by Ec the energy ratio or Eckert number

Ec ¼ hui2
hcvihT i

: ð6:3Þ

For a °uid, this number plays a similar role as that of the square of the Mach number

for a gas. From these de¯nitions we obtain that h�i ¼ h�ihuihxi=Re, hei ¼ hcvihT i ¼
hui2=Ec and h�i ¼ h�ihuihxihcvi=ðRePrÞ. We de¯ne the characteristic pressure as

hpi ¼ h�ihui2 and the Froude number by

Fr ¼ hui2
hgihxi ; ð6:4Þ

so that hgi ¼ hui2=ðFrhxiÞ. Denoting by h�i a typical surface tension, the capillary

number is de¯ned by

Ca ¼ h�ihui
h�i ; ð6:5Þ
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so that h�i ¼ hxih�ihui2=ReCa. We also introduce a typical heat exchange coe±cient

h��i and the reduced quantity

Ex ¼ h��ihxi
h�i : ð6:6Þ

In the asymptotic analysis, performed in the next section, it will be assumed that

Fr ¼ �Fr; Ca ¼ Ca

�
; Ex ¼ �Ex; ð6:7Þ

and that the numbers Re, Pr, Ec, Fr, Ca and Ex are of zeroth-order with respect to �,

that is, are ¯nite as �! 0. Assuming that Ex and 1=Ca are small means that surface

tension e®ects as well as thermal exchanges are corrective e®ects. In order to simplify

the formal presentation, it will be convenient to de¯ne the modi¯ed reduced

quantities

� ¼ b�
Re

; � ¼
b�

PrRe
; ð6:8Þ

g ¼ bg
Fr

; � ¼ b�
ReCa

; �
� ¼

b��
Ex

PrRe
: ð6:9Þ

These quantities are such that

� ¼ h�ihuihxi�; � ¼ h�ihuihxihcvi�; ð6:10Þ

� ¼ �h�ihui2hxi�; g ¼ hui2 g=hxi; ð6:11Þ

�� ¼ �h�ihuihcvi� �
; ð6:12Þ

and will simplify the formal presentation of the asymptotic analysis. From the aspect

ratio of the thin viscous sheet, we also deduce that the curvature is typically of the

order hCi ¼ �=hxi. We will also denote by a the density ratio

a ¼ �

�sub
; ð6:13Þ

where � is the density of the incompressible °uid constitutive of the viscous sheet and

�sub the density of the incompressible substrate °uid.

Remark 6.2. Typical values for density ratios are a ’ 0:70�0:97 between crude oil

and water for oil slicks, a ’ 0:35 between glass and tin for °oat glasses, a ’ 0:997

between Atlantic andMediterranean waters. Typical aspect ratios are � ’ 10�9�10�6

for oil slicks, and � ’ 10�3 for °oat glasses.

Upon de¯ning the reduced quantity b� ¼ �=h�i associated with each quantity � of

the °uid model, we can now estimate the order of magnitude of each term in the

governing partial di®erential equations. Using the general notation for rescaled
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variables, the reduced equations can be written in the form

@ x̂ ¢ bv ¼ 0; ð6:14Þ

@̂ t bvþ bv ¢@ x̂ bvþ @ x̂ bp� @ x̂ ¢ ð�bdÞ ¼ g; ð6:15Þ

bcv@̂ t
bT þ bcvbv ¢@ x̂

bT � @ x̂ ¢ ð�bT Þ ¼ �; ð6:16Þ

where � ¼ 1
2�
bd : bd=Ec is the reduced viscous dissipation term. In order to perform an

asymptotic expansion of all the °ow variables, it is further necessary to explicit the

governing equations in the horizontal and vertical directions. Upon expanding the

°ow vector equations and dividing the vertical momentum equation by the aspect

ratio � we obtain that

@̂x bu þ @̂ybvþ @̂ z bw ¼ 0; ð6:17Þ

@̂ t bu þ bu@̂x bu þ bv@̂y bu þ bw@̂ z bu � @̂x ð2�@̂x buÞ
� @̂y ð�ð@̂y bu þ @̂xbvÞÞ � 1

�2
@̂ z ð�@̂ z buÞ � @̂ z ð�@̂x bwÞ þ @̂x bp ¼ 0; ð6:18Þ

@̂ t bvþ bu@̂xbvþ bv@̂ybvþ bw@̂ zbv� @̂x ð�ð@̂y bu þ @̂xbvÞÞ
� @̂y ð2�@̂y buÞ � 1

�2
@̂ z ð�@̂ zbvÞ � @̂ z ð�@̂y bwÞ þ @̂y bp ¼ 0; ð6:19Þ

@̂ t bw þ bu@̂x bw þ bv@̂y bw þ bw@̂ z bw � @̂x ð�@̂x bwÞ � 1

�2
@̂x ð�@̂ z buÞ

� @̂y ð2�@̂y bwÞ � 1

�2
@̂y ð�@̂ zbvÞ � 1

�2
@̂ z ð2�@̂ z bwÞ þ 1

�2
@̂ z bp ¼ 1

�2
g ð6:20Þ

and

bcv@̂ t
bT þ bcvbu@̂x

bT þ bcvbv@̂y
bT þ bcv bw@̂ z

bT � @̂x ð�@̂x
bT Þ

� @̂y ð�@̂y
bT Þ � 1

�2
@̂ z ð�@̂ z

bT Þ ¼ �; ð6:21Þ

where the reduced viscous dissipation � is given by

� ¼ 1

2
�Ec 4ð@̂x buÞ2 þ 4ð@̂ybvÞ2 þ 4ð@̂ z bwÞ2 þ 2ð@̂y bu þ @̂xbvÞ2�

þ 2
1

�
@̂ zbvþ �@̂y bw� �

2

þ 2 �@̂x bw þ 1

�
@̂ z

� �
2
�
: ð6:22Þ

Remark 6.3. The internal energy per unit mass can also be written e ¼
est þ

R T
T st cvð�Þ d� and the total energy per unit mass is given by etot ¼ eþ 1

2 v ¢v.
The reduced total energy per unit mass ê tot can also be written as ê tot ¼
ê st þ

R bTbT st bcvð�Þd� þ 1
2 Ecðbu 2 þ bv2 þ �2 bw 2Þ.
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6.3. Rescaled boundary conditions

Upon using the general notation associated with rescaled variables, the reduced

kinematic boundary condition at the top rescaled free boundary bz � bhgas ¼ 0 can be

written as

bw ¼ @̂ t
bhgas þ bu@̂x

bhgas þ bv@̂y
bhgas;

whereas the dynamic condition reads

b¾ ¢ bngas ¼ b¾gas ¢ bngas � �2� f=g
bCgasbngas;

where

bngas ¼ ðð�@̂x
bhgasÞ2 þ ð�@̂y

bhgasÞ2 þ 1Þ�1=2ð��@̂x
bhgas;��@̂y

bhgas; 1Þ t;

and where the normal component of the stress tensor in gas readsb¾gas ¢ bngas ¼ �bpatmbngas:

By decomposing the dynamic boundary condition componentwise, we obtain the

three equations

�bp@̂x
bhgas þ b� 2@̂x buð��@̂x

bhgasÞ þ ð@̂y bu þ @̂xbvÞð��@̂y
bhgasÞ þ

1

�
@̂ z bu þ �@̂x bw� �

¼ �3� f=g
bCgas@̂x

bhgas; ð6:23Þ

�bp@̂y
bhgas þ b� ð@̂y bu þ @̂xbvÞð��@̂x

bhgasÞ þ 2@̂ybvð��@̂y
bhgasÞ þ

1

�
@̂ zbvþ �@̂y bw� �

¼ �3�f=gbCgas@̂y
bhgas; ð6:24Þ

�bpþ b� �@̂x bw þ 1

�
@̂ z bu� �

ð��@̂x
bhgasÞ þ �@̂y bw þ 1

�
@̂ zbv� �

ð��@̂y
bhgasÞ þ 2@̂ z bw� �

¼ ��2�f=gbCgas; ð6:25Þ

where the reduced curvature bCgas can be written

bCgas ¼ @ 2
x̂
bhgasð1þ �2ð@̂y

bhgasÞ2Þ þ @ 2by bhgasð1þ �2ð@̂x
bhgasÞ2Þ � 2�2@̂x

bhgas@̂y
bhgas@

2

x̂by bhgas

ð1þ �2ð@̂x
bhgasÞ2 þ �2ð@̂y

bhgasÞ2Þ3=2
:

ð6:26Þ

Similarly, at the reduced free boundary bz � bhsub ¼ 0 between the °uid and the

substrate we can write that

bw ¼ @̂ t
bhsub þ bu@̂x

bhsub þ bv@̂y
bhsub;

and the dynamic condition reads

b¾ ¢ bnsub ¼ b¾sub ¢ bnsub � �2� f=sbCsubbnsub;
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with

bnsub ¼ ðð�@̂x
bhsubÞ2 þ ð�@̂y

bhsubÞ2 þ 1Þ�1=2ð�@̂x
bhsub; �@̂y

bhsub;�1Þ t:

The normal component of the stress�tensor in the °uid substrate readsb¾sub ¢ bnsub ¼ �bpsubbnsub;

where bpsub is assumed to be hydrostatic. The dynamic vector boundary condition can

be decomposed componentwise and yields that

��bp@̂x
bhsub þ b� 2@̂x buð�@̂x

bhsubÞ þ ð@̂y bu þ @̂xbvÞð�@̂y
bhsubÞ �

1

�
@̂ z bu � �@̂x bw� �

¼ � 1

a
bhsub gð�@̂x

bhsubÞ � �3� f=s
bCsub@̂x

bhsub; ð6:27Þ

��bp@̂y
bhsub þ b� ð@̂y bu þ @̂xbvÞð�@̂x

bhsubÞ þ 2@̂ybvð�@̂y
bhsubÞ �

1

�
@̂ zbv� �@̂y bw� �

¼ � 1

a
bhsub gð�@̂y

bhsubÞ � �3� f=s
bCsub@̂y

bhsub; ð6:28Þ

bpþ b� 1

�
@̂ z bu þ �@̂x bw� �

ð�@̂x
bhsubÞ þ

1

�
@̂ zbvþ �@̂y bw� �

ð�@̂y
bhsubÞ � 2@̂ z bw� �

¼ 1

a
bhsub g þ �2� f=s

bCsub: ð6:29Þ

Finally, the rescaled thermal boundary conditions at the top and bottom inter-

faces, are of the form

��
�@̂x

bT ð�@̂x
bhgasÞ � @̂y

bT ð�@̂y
bhgasÞ þ 1=� @̂ z

bT
ðð�@̂x

bhgasÞ2 þ ð�@̂y
bhgasÞ2 þ 1Þ1=2

¼ ��
�
gasðbT � bT gasÞ;

��
@̂x
bT ð�@̂x

bhsubÞ þ @̂y
bT ð�@̂y

bhsubÞ � 1=� @̂ z
bT

ðð�@̂x
bhsubÞ2 þ ð�@̂y

bhsubÞ2 þ 1Þ1=2
¼ ��

�
subðbT � bT subÞ;

where bT gas and bT sub are the rescaled given temperatures in gas and in the substrate

°ow respectively, and where �
�
gas and �

�
sub are the rescaled heat exchange

coe±cients.

7. Derivation of the Saint-Venant Equations

The governing equations presented in Sec. 2 and investigated in Secs. 3�5 are now

derived from an asymptotic analysis of the three-dimensional incompressible

equations modeling thin viscous sheets over °uid substrates presented in Sec. 6.

Asymptotic expansions are a powerful tool for deriving governing equations of multi-

scale medias. We refer in particular to the monographs of Milton Van Dyke57 for

asymptotic methods in °uid mechanics, Roseau49 and Sanchez-Hubert and Sanchez-

Palencia51 forasymptoticanalysis of vibrating continuousmedia,andSanchez-Palencia50
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and Benssousan, Lions and Papanicolaou4 for asymptotic expansions in homogeniz-

ation theory. In the context of thin viscous sheets over °uid substrates we mention in

particular Howell31,32 who investigated isothermal °ows. Gerbeau and Perthame have

revisited the derivation and validated the Saint-Venant model by a direct numerical

comparison with the underlying incompressible model.19 Audusse et al. have also

recently investigated multilayer media1,2 and Bresch and Noble have investigated

mathematically the situation of non°at bottoms.11

The two-dimensional Saint-Venant system of partial di®erential equations with

an energy equation and temperature-dependent transport coe±cient will be obtained

as the zeroth-order limit of the three-dimensional incompressible model presented in

Sec. 6. We remind that, in the asymptotic limit, the °uid parameters Re, Pr, Ec, Fr,

Ca, and Ex are assumed to be of zeroth-order with respect to �. The quantities

associated with the three-dimensional incompressible model are generally denoted by

roman fonts whereas the quantities associated with the Saint-Venant two-dimen-

sional asymptotic limit will be denoted with italic fonts. The pressure in the three-

dimensional °ow is denoted by p for instance whereas it will be denoted by p in the

two-dimensional Saint-Venant limit model.

7.1. Asymptotic expansions

In order to derive the Saint-Venant equations modeling thin viscous sheets over a

°uid substrate from the three-dimensional °uid equations described in Sec. 6, we

expand in powers of the small parameter �2 the °uid variables

bu ¼ bu0 þ �2bu2 þOð�4Þ; ð7:1Þ

bv ¼ bv0 þ �2bv2 þOð�4Þ; ð7:2Þ

bw ¼ bw0 þ �2 bw2 þOð�4Þ; ð7:3Þ

bT ¼ bT 0 þ �2bT 2 þOð�4Þ: ð7:4Þ

We also expand the free boundaries hgas and hsub and we de¯ne

hðt;x; yÞ ¼ hgasðt;x; yÞ � hsubðt;x; yÞ; ð7:5Þ

in such a way that bh ¼ bh0 þ �2bh2 þOð�4Þ; ð7:6Þ

bhgas ¼ bhgas0 þ �2bhgas2 þOð�4Þ; ð7:7Þ

bhsub ¼ bhsub0 þ �2bhsub2 þOð�4Þ: ð7:8Þ

Note that, after some algebra, only the factor �2 appears in the rescaled equations

presented in Secs. 6.2�6.3. The asymptotic expansions (7.1)�(7.8) in terms of �2 are

thus natural as they are in the small Mach number limit.20
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7.2. Zeroth-order terms and compressibility

The terms of order ��2 in the bu and bv governing equations ¯rst yield that

@̂ z ð�0@̂ z bu0Þ ¼ 0;

@̂ z ð�0@̂ zbv0Þ ¼ 0;

where

�0 ¼ �ðbT 0Þ:
These relations show that �0@̂ z bu0 and �0@̂ zbv0 are constants. However, the ��1 terms

in the dynamic boundary conditions at the °uid/gas and °uid/substrate interfaces

yield that @̂ z bu0 ¼ 0 and @̂ zbv0 ¼ 0 at both interfaces. We thus deduce that @̂ z bu0 ¼ 0

and @̂ zbv0 ¼ 0 for all bz in such a way that

bu0 ¼ bu0ðbt; bx; byÞ;bv0 ¼ bv0ðbt; bx; byÞ:
Similarly, the energy conservation equation yields at order ��2 that

�@̂ z ð�0@̂ z
bT 0Þ ¼ �0ðð@̂ z bu0Þ2 þ ð@̂ zbv0Þ2Þ;

where

�0 ¼ �ðbT 0Þ;
in such a way that @̂ z ð�0@̂ z

bT 0Þ ¼ 0 since @̂ z bu0 ¼ 0 and @̂ zbv0 ¼ 0. Since the ��1 terms

of the thermal boundary conditions yield that �0@̂ z
bT 0 ¼ 0 at both the °uid/gas and

°uid/substrate interfaces, we again conclude that @̂ z
bT 0 ¼ 0 for all bz in such a way

that bT 0 ¼ bT 0ðbt; bx; byÞ:
This shows that bh0, bu0, bv0, and bT 0 ��� and incidentally �0 and �0 ��� only depend on

ðbt; bx; byÞ, and bh0, bu0, bv0, and bT 0 will constitute the variables of the resulting Saint-

Venant two-dimensional model. We will also denote by bv0 the two-dimensional

velocity vector bv0 ¼ ðbu0;bv0Þ t.
On the other hand, from the incompressibility equation at zeroth-order we obtain

that

@̂ z bw0 ¼ �ð@̂x bu0 þ @̂ybv0Þ;
so that @̂ z bw0 is independent of bz. This shows that bw0 is an a±ne function of bz and that

bw0ðbt; bx; by; bhgas0Þ � bw0ðbt; bx; by; bhsub0Þ ¼ �ð@̂x bu0 þ @̂ybv0Þðbhgas0 � bhsub0Þ:
From the zeroth-order kinematic conditions at bz ¼ bhsub0 and bz ¼ bhsub0 we next

deduce that

@̂ t ðbhgas0 � bhsub0Þ þ bu0@̂x ðbhgas0 � bhsub0Þ þ bv0@̂y ðbhgas0 � bhsub0Þ
¼ �ð@̂x bu0 þ @̂ybv0Þðbhgas0 � bhsub0Þ; ð7:9Þ
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which ¯nally yields that

@̂ t
bh0 þ @̂x ðbh0bu0Þ þ @̂y ðbh0bv0Þ ¼ 0: ð7:10Þ

We have thus obtained a compressible model where the zeroth-order height bh0 plays
the role of a density.

7.3. Zeroth-order pressure

From the zeroth-order terms of the normal momentum conservation equation (6.20)

we next obtain that

�@̂x ð�0@̂ z bu0Þ � @̂y ð�0@̂ zbv0Þ � 2@̂ z ð�0@̂ z bw0Þ þ @̂ z bp0 ¼ g0;

but since @̂ z bu0 ¼ 0, @̂ zbv0 ¼ 0, @̂ z �0 ¼ 0 and @ 2
ẑ bw0 ¼ 0, we deduce from this relation

that

@̂ z bp0 ¼ g0:

This shows that the pressure is hydrostatic since

g0 ¼ g ¼ Cte;

where g ¼ g0 ¼ ð0; 0; g0Þ t and g0 is negative. The relation @̂ z bp0 ¼ g0 implies that

bp0ðbt; bx; by; bzÞ ¼ bp0ðbt; bx; by; bhgas0Þ þ g0ðbz � bhgas0Þ;
but the third component of the dynamic condition at the °uid/gas interface also

yields at zeroth-order that �bp0 þ 2�0@̂ z bw0 ¼ 0 at bz ¼ bhgas0 in such a way that

bp0ðbt; bx; by; bzÞ ¼ 2�0@̂ z bw0 þ g0ðbz � bhgas0Þ:
On the other hand, the dynamic condition at zeroth-order at the °uid/substrate

interface gives �bp0 þ 2�0@̂ z bw0 ¼ � 1
a
bhsub0 g0 at bz ¼ bhsub0 so that

bp0ðbt; bx; by; bhgas0Þ � bp0ðbt; bx; by; bhsub0Þ ¼ � 1

a
bhsub0 g0;

and since the pressure at zeroth-order is hydrostatic we also have

bp0ðbt; bx; by; bhgas0Þ � bp0ðbt; bx; by; bhsub0Þ ¼ g0ðbhgas0 � bhsub0Þ:
We deduce from these relations that bh0 ¼ bhgas0 � bhsub0 ¼ � 1

a
bhsub0 and ¯nally thatbhgas0 ¼ ð1� aÞbh0; bhsub0 ¼ �abh0: ð7:11Þ

These conditions (7.11) are easily interpreted as an equilibrium condition above the

substrate bath. Since the height of the outer free substrate bath is taken to be zero,

we have of course bhgas0 > 0 and bhsub0 < 0. Finally, since @̂ z bw0 ¼ �ð@̂x bu0 þ @̂ybv0Þ andbhgas0 ¼ ð1� aÞbh0, we have established that

bp0ðbt; bx; by; bzÞ ¼ �2�0ð@̂x bu0 þ @̂ybv0Þ þ g0ðbz � ð1� aÞbh0Þ: ð7:12Þ
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7.4. Zeroth-order momentum equations

The horizontal momentum conservation equations at zeroth-order yield

@̂ t bu0 þ bu0@̂x bu0 þ bv0@̂y bu0 � @̂x ð2�0@̂x bu0Þ � @̂y ð�0ð@̂y bu0 þ @̂xbv0ÞÞ
� @̂ z ð�0@̂ z bu2Þ � @̂ z ð�0@̂x bw0Þ þ @̂xbp0 ¼ 0 ð7:13Þ

and

@̂ t bv0 þ bu0@̂xbv0 þ bv0@̂ybv0 � @̂x ð�0ð@̂y bu0 þ @̂xbv0ÞÞ � @̂y ð2�0@̂ybv0Þ
� @̂ z ð�0@̂ z bu2Þ � @̂ z ð�0@̂y bw0Þ þ @̂y bp0 ¼ 0: ð7:14Þ

Integrating the ¯rst equation between bhsub0 and bhgas0 we obtain thatbh0ð@̂ t bu0 þ bu0@̂x bu0 þ bv0@̂y bu0 � @̂x ð2�0@̂x bu0ÞÞ � bh0@̂y ð�0ð@̂y bu0 þ @̂xbv0ÞÞ
� �0 ½½ @̂ z bu2 þ @̂x bw0 �� þ

Z
ĥgas0

ĥsub0

@̂xbp0 dbz ¼ 0; ð7:15Þ

where, for any function � of ðbt; bx; by; bzÞ, the bracket ½½� �� denotes the corresponding

function of ðbt; bx; byÞ de¯ned by

½½� ��ðbt; bx; byÞ ¼ �ðbt; bx; by; bhgas0ðbt; bx; byÞÞ � �ðbt; bx; by; bhsub0ðbt; bx; byÞÞ: ð7:16Þ

We now use the dynamic boundary condition at zeroth-order in the x-direction at

both interfaces to get that

bp0@̂x
bhgas0 � 2�0@̂x bu0@̂x

bhgas0 � �0ð@̂y bu0 þ @̂xbv0Þ@̂y
bhgas0 þ �0@̂x bw0 þ �0@̂ z bu2 ¼ 0;

�bp0@̂x
bhsub0 þ 2�0@̂x bu0@̂x

bhsub0 þ �0ð@̂y bu0 þ @̂xbv0Þ@̂y
bhsub0 � �0@̂x bw0 � �0@̂ z bu2

¼
bhsub0
a

g0@̂x
bhsub0:

By adding these relations we deduce that

�0½½ @̂ z bu2 þ @̂x bw0 �� þ ~p0@̂x
bh0 � 2�0@̂x bu0@̂x

bh0 � �0ð@̂y bu0 þ @̂xbv0Þ@̂y
bh0

¼ �abh0 g0@̂x
bh0; ð7:17Þ

where

~p0 ¼ ð1� aÞbp0ðbt; bx; by; bhgas0Þ þ abp0ðbt; bx; by; bhsub0Þ: ð7:18Þ

From the expression (7.12) of bp0 we obtain that

~p0 ¼ �2�0ð@̂x bu0 þ @̂ybv0Þ � g0abh0; ð7:19Þ

so that

�0½½ @̂ z bu2 þ @̂x bw0 �� ¼ 2�0@̂x bu0@̂x
bh0 þ �0ð@̂y bu0 þ @̂xbv0Þ@̂y

bh0
þ 2�0ð@̂x bu0 þ @̂ybv0Þ@̂x

bh0: ð7:20Þ
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Furthermore, we deduce from (7.12) that

@̂xbp0 ¼ �@̂x ð2�0ð@̂x bu0 þ @̂ybv0ÞÞ � ð1� aÞ@̂x
bh0; ð7:21Þ

and @̂xbp0 is independent of bz. Combining (7.15), (7.20), (7.21), and since @̂x bp0 is

independent of bz, we ¯nally obtain that

bh0ð@̂ t bu0 þ bu0@̂x bu0 þ bv0@̂y bu0 � @̂x ð2�0@̂x bu0ÞÞ � bh0@̂y ð�0ð@̂y bu0 þ @̂xbv0ÞÞ
� 2�0ð@̂x bu0 þ @̂ybv0Þ@̂x

bh0 � 2�0@̂x bu0@̂x
bh0 � �0ð@̂y bu0 þ @̂xbv0Þ@̂y

bh0
þ bh0ð�@̂x ð2�0ð@̂x bu0 þ @̂ybv0ÞÞ � ð1� aÞg0@̂x

bh0Þ ¼ 0: ð7:22Þ

After some algebra this equation can be rewritten in the form

bh0@̂ t bu0 þ bh0bu0@̂x bu0 þ bh0bv0@̂y bu0 � @̂x ðbh02�0@̂x bu0Þ � @̂y ðbh0 �0ð@̂y bu0 þ @̂xbv0ÞÞ
� @̂x ðbh02�0ð@̂x bu0 þ @̂ybv0ÞÞ � 1

2
ð1� aÞg0@̂x

bh 2

0 ¼ 0: ð7:23Þ

Using the compressibility equation (7.10) and de¯ning the new pressure

bp0 ¼ � 1

2
ð1� aÞg0bh 2

0 ¼
1

2
ð1� aÞjg0jbh 2

0; ð7:24Þ

not to be confused with bp0, and de¯ning the new viscous tensor

� 0̂ x̂ x ¼ ��0bh0ð4@̂x bu0 þ 2@̂ybv0Þ; � 0̂x̂ y ¼ ��0bh0ð@̂y bu0 þ @̂xbv0Þ; ð7:25Þ

the equation governing bu0 is rewritten in the form

@̂ t ðbh0bu0Þ þ @̂x ðbh0bu 2
0Þ þ @̂y ðbh0bu0bv0Þ þ @̂x � 0̂x̂ x þ @̂y � 0̂ x̂ y þ @̂xbp0 ¼ 0: ð7:26Þ

We can proceed similarly for the second horizontal momentum conservation

equation which yields upon integration between bhsub0 and bhgas0 that

bh0ð@̂ t bv0 þ bu0@̂xbv0 þ bv0@̂ybv0 � bh0@̂x ð�0ð@̂y bu0 þ @̂xbv0ÞÞÞ � @̂y ð2�0@̂ybv0Þ
� �0 ½½ @̂ zbv2 þ @̂y bw0 �� þ

Z
ĥgas0

ĥsub0

@̂y bp0 dbz ¼ 0: ð7:27Þ

We now use the dynamic boundary condition at zeroth-order in the y-direction at

both interfaces to get that

bp0@̂y
bhgas0 � �0ð@̂y bu0 þ @̂xbv0Þ@̂x

bhgas0 � 2�0@̂ybv0@̂y
bhgas0

þ �0@̂y bw0 þ �0@̂ zbv2 ¼ 0;

�bp0@̂y
bhsub0 þ �0ð@̂y bu0 þ @̂xbv0Þ@̂x

bhsub0 þ 2�0@̂ybv0@̂y
bhsub0

� �0@̂y bw0 � �0@̂ zbv2 ¼ �
bhsub0
a

g0@̂y
bhsub0:
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By adding these relations we deduce that

�0 ½½ @̂ zbv2 þ @̂y bw0 �� þ ~p0@̂y
bh0 � �0ð@̂y bu0 þ @̂xbv0Þ@̂x

bh0 � 2�0@̂ybv0@̂y
bh0

¼ �abh0 g0@̂y
bh0; ð7:28Þ

so that from (7.18)

�0 ½½ @̂ zbv2 þ @̂y bw0 �� ¼ �0ð@̂y bu0 þ @̂xbv0Þ@̂x
bh0

þ 2�0@̂ybv0@̂y
bh0 þ 2�0ð@̂x bu0 þ @̂ybv0Þ: ð7:29Þ

Furthermore, we deduce from (7.12) that

@̂y bp0 ¼ �@̂y ð2�0ð@̂x bu0 þ @̂ybv0ÞÞ � ð1� aÞ@̂y
bh0; ð7:30Þ

and @̂y bp0 is independent of bz. Combining (7.27), (7.29), (7.30), and since @̂y bp0 is

independent of bz, we ¯nally obtain thatbh0@̂ t bv0 þ bh0bu0@̂xbv0 þ bh0bv0@̂ybv0 � @̂x ðbh0 �0ð@̂y bu0 þ @̂xbv0ÞÞ � @̂y ðbh02�0@̂ybv0Þ
� @̂y ðbh02�0ð@̂x bu0 þ @̂ybv0ÞÞ � 1

2
ð1� aÞg0@̂y

bh 2

0 ¼ 0: ð7:31Þ

De¯ning

� 0̂ŷ x ¼ ��0bh0ð@̂y bu0 þ @̂xbv0Þ; � 0̂ŷ y ¼ ��0bh0ð2@̂x bu0 þ 4@̂ybv0Þ; ð7:32Þ

the equation governing bv0 is easily rewritten in the form

@̂ t ðbh0bv0Þ þ @̂x ðbh0bu0bv0Þ þ @̂y ðbh0bv2
0Þ þ @̂x � 0̂ŷ x þ @̂y � 0̂ŷ y þ @̂ybp0 ¼ 0: ð7:33Þ

Upon de¯ning bv0 ¼ ðbu0;bv0Þ t, bx ¼ ðbx; byÞ t, and
¦ 0 ¼

� 0̂x̂ x � 0̂x̂ y

� 0̂ŷ x � 0̂ŷ y

 !
; ð7:34Þ

both momentum equations can be rewritten in vector form

@̂ t ðbh0bv0Þ þ @ x̂ ¢ ðbh0bv0 � bv0 þ bp0IÞ þ @ x̂ ¢ ¦ 0 ¼ 0; ð7:35Þ

in such a way that the height bh0 plays the role of a density and bp0 the role of a

pressure for the two-dimensional Saint-Venant model.

7.5. Zeroth-order energy equation

Upon using @̂ z bu0 ¼ @̂ zbv0 ¼ @̂ z
bT 0 ¼ @̂ z �0 ¼ 0, the energy conservation equation at

zeroth-order yields that

bcv0@̂ t
bT 0 þ bcv0bu0@̂x

bT 0 þ bcv0bv0@̂y
bT 0 � @̂x ð�0@̂x

bT 0Þ
� @̂y ð�0@̂y

bT 0Þ � @̂ z ð�0@̂ z
bT 2Þ ¼ �0; ð7:36Þ
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where the zeroth-order viscous dissipation �0 is given by

�0 ¼
1

2
�0Ecð4ð@̂x bu0Þ2 þ 4ð@̂ybv0Þ2 þ 4ð@̂x bu0 þ @̂ybv0Þ2 þ 2ð@̂y bu0 þ @̂xbv0Þ2Þ: ð7:37Þ

Integrating Eq. (7.36) between bhsub0 and bhgas0 we obtain thatbh0ðbcv0@̂ t
bT 0 þ bcv0bu0@̂x

bT 0 þ bcv0bv0@̂y
bT 0 � @̂x ð�0@̂x

bT 0ÞÞ � bh0@̂y ð�0bT 0Þ
� bh0�0 � �0 ½½ @̂ z

bT 2 �� ¼ 0: ð7:38Þ

We now use the thermal boundary condition at zeroth-order at both interfaces to get

that

��0ð�@̂x
bT 0@̂x

bhgas0 � @̂y
bT 0@̂y

bhgas0 þ @̂ z
bT 2Þ ¼ �

�
0gasðbT 0 � bT 0gasÞ;

��0ð@̂x
bT 0@̂x

bhsub0 þ @̂y
bT 0@̂y

bhsub0 � @̂ z
bT 2Þ ¼ �

�
0subðbT 0 � bT 0subÞ:

By adding these equations we obtain that

��0 ½½ @̂ z
bT 2 �� þ �0@̂x

bT 0@̂x
bh0 þ �0@̂y

bT 0@̂y
bh0 ¼ �

�
0ðbT 0 � bT 0mixÞ; ð7:39Þ

where we have de¯ned

bT 0mix ¼
�

�
0gas
bT 0gas þ �

�
0sub
bT 0sub

�
�
0gas þ �

�
0sub

and

�
�
0 ¼ �

�
0gas þ �

�
0sub:

Combining (7.38), (7.39) we obtain thatbh0ðbcv0@̂ t
bT 0 þ bcv0bu0@̂x

bT 0 þ bcv0bv0@̂y
bT 0Þ � @̂x ðbh0�0@̂x

bT 0ÞÞ � @̂y ðbh0�0bT 0Þ � bh0�0

¼ �� �
0ðbT 0 � bT 0mixÞ: ð7:40Þ

Furthemore, the dissipation term bh0�0 is easily rewritten in the formbh0�0 ¼ �Ec¦ 0 :@ x̂ bv0: ð7:41Þ
Denoting the heat loss term bybH0 ¼ �� �

0ðbT 0 � bT 0mixÞ; ð7:42Þ
the internal energy per unit mass by

ê0 ¼ ê st þ
Z bT 0bT st

bcv0ð�̂ Þd�̂ þ 1

2
ð1� aÞEcjg0jbh0; ð7:43Þ

and the heat °ux vector by

Q0 ¼ ðQ 0̂x ; Q 0̂y Þ t; ð7:44Þ
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where

Q0̂x ¼ �bh0�0@̂x
bT 0; Q 0̂y ¼ �bh0�0@̂y

bT 0; ð7:45Þ

the energy conservation equation is rewritten in the form

bh0@̂ t ê0 þ bh0bv0 ¢@ x̂ ê0 þ @ x̂ ¢Q0 þ Ecbp0@ x̂ ¢ bv0 þ Ec¦ 0 :@ x̂ bv0 ¼ bH0: ð7:46Þ

Note that the inclusion of the term 1
2 ð1� aÞEcjg0jbh0 in the internal energy is as-

sociated with the pressure work term Ecbp0@ x̂ ¢ bv0 in the energy equation thanks to

the relation @̂ t
bh0 þ bv0 ¢@ x̂

bh0 þ bh0@ x̂ ¢ bv0 ¼ 0. Finally, upon multiplying the

momentum governing equation by the velocity vector bv0, we obtain the kinetic

energy governing equation, which can be multiplied by Ec and added to the internal

energy governing equation in order to obtain the total energy conservation equation

in the form

@̂ t ðbh0ê tot
0 Þ þ @ x̂ ¢ ððbh0ê tot

0 þ Ecbp0Þbv0Þ þ @ x̂ ¢ ðQ0 þ Ec¦ 0 ¢ bv0Þ ¼ bH0; ð7:47Þ

where

ê tot
0 ¼ ê0 þ

1

2
Ecðbu 2

0 þ bv2
0Þ; ð7:48Þ

is the reduced total energy per unit mass.

7.6. Resulting model

From the previous sections, we can summarize the zeroth-order rescaled governing

equations in the form

@̂ t
bh0 þ @ x̂ ¢ ðbh0bv0Þ ¼ 0; ð7:49Þ

@̂ t ðbh0bv0Þ þ @ x̂ ¢ ðbh0bv0 � bv0 þ bp0IÞ þ @ x̂ ¢ ¦ 0 ¼ 0; ð7:50Þ

@̂ t ðbh0ê tot
0 Þ þ @ x̂ ¢ ððbh0ê tot

0 þ Ecbp0Þbv0Þ þ @ x̂ ¢ ðQ0 þ Ec¦ 0 ¢ bv0Þ ¼ bH0: ð7:51Þ

The pressure bp0 is given by (7.24), the total energy ê tot
0 by (7.48), and internal energy

ê0 by (7.43). The viscous tensor ¦ 0 is given by (7.25), (7.32), the heat °ux Q0 by

(7.45) and the heat loss term bH0 by (7.42).

Upon restoring the physical dimensions of the °ow quantities t ¼ hxibt=hui,
x ¼ hxibx, h0 ¼ �hxibh0, v0 ¼ huibv0, p0 ¼ hhihui2bp0, e tot0 ¼ hcvihT iê tot

0 , ¦0 ¼
hhihui2¦ 0, Q0 ¼ hhihuihcvihT iQ0, and H0 ¼ hhihuihcvihT ibH0=hxi, we obtain after

some algebra that

@th0 þ @x ¢ ðh0v0Þ ¼ 0; ð7:52Þ

@tðh0v0Þ þ @x ¢ ðh0v0 � v0 þ p0IÞ þ @x ¢¦0 ¼ 0; ð7:53Þ

@tðh0e
tot
0 Þ þ @x ¢ ððh0e

tot
0 þ p0Þv0Þ þ @x ¢ ðQ0 þ¦0 ¢ v0Þ ¼ H0: ð7:54Þ
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The scaled thermodynamic relations are

e tot0 ¼ e0 þ
1

2
ðu2

0 þ v2
0Þ; ð7:55Þ

e0 ¼ e st
0 þ

Z T0

T st
0

cvð�Þd� þ
1

2
ð1� aÞjg0jh0; ð7:56Þ

p0 ¼
1

2
ð1� aÞjg0jh 2

0: ð7:57Þ

The scaled viscous tensor is given by

¦0 ¼ ��0h0ð@xv0 þ @xv
t
0 þ 2@x ¢v0IÞ ¼

� 0xx � 0xy

� 0yx � 0yy

� �
; ð7:58Þ

with

� 0xx ¼ ��0h0ð4@xu0 þ 2@yv0Þ; � 0xy ¼ ��0h0ð@yu0 þ @xv0Þ;
� 0yx ¼ ��0h0ð@yu0 þ @xv0Þ; � 0xy ¼ ��0h0ð2@xu0 þ 4@yv0Þ;

where the kinematic viscosity is given by

�0 ¼
�ðT0Þ
�

: ð7:59Þ

Strictly speaking, only the quantity �¦0=h0 is homogeneous to a viscous tensor and

¦0=h0 to a kinematic viscous tensor. Similarly, only the quantity �p0=h0 is homo-

geneous to a pressure and p0=h0 to a kinematic pressure. However, the multiplication

by h0 is natural in a two-dimensional context since then internal constraints arise

through lines and not surfaces. Finally, the heat °ux is given by

Q0 ¼ ðQ0x;Q0yÞ t ¼ �{0h0ð@xT0; @yT0Þ t; ð7:60Þ

where the kinematic thermal conductivity is given by

{0 ¼
�ðT0Þ
�

: ð7:61Þ

Strictly speaking, only the quantity �Q0=h0 is homogeneous to a heat °ux andQ0=h0

to a kinematic heat °ux. On the other hand, the heat loss term reads

H0 ¼ � ��0
�

ðT0 � T0mixÞ; ð7:62Þ

where ��0 ¼ ��0gas þ ��0sub and

T0mix ¼
� �
0gasT0gas þ ��0subT0sub

��0gas þ ��0sub
: ð7:63Þ

Saint-Venant Model with Variable Temperature 1289



This model (7.52)�(7.63) is exactly the model that we have investigated in Secs. 2�5

of this paper.

Remark 7.1. The expression of the viscous tensor (7.58) indicate that there is

always a volume viscosity term for this viscous sheet over °uid substrates as for

polyatomic gases.7

Remark 7.2. Saint-Venant models with a local energy partial di®erential equation

should not be confused with isothermal models incorporating a global kinetic energy

balance as investigated for instance by Kanayama.34

7.7. Boundary conditions

We present in this section typical free boundary conditions associated with thin

viscous sheets over °uid substrates. These boundary conditions are written at the free

boundary of the two-dimensional Saint-Venant model. These boundary conditions

are not used in this paper and are only written here for completeness. We also discuss

their validity associated with the positivity of the sheet thickness h in the framework

of wettability theory.15

The two-dimensional Saint-Venant equations governing thin viscous sheets have

been derived in the previous sections from the three-dimensional incompressible

Navier�Stokes equations governing incompressible °uids. Similarly, the boundary

conditions associated with the two-dimensional Saint-Venant model will be derived

from the boundary conditions and conservation equations of the three-dimensional

model.

Exchanging eventually the role of x and y, we may assume that the free boundary

can locally be written in the form x ¼ Xbðt; yÞ. The local geometry of such a free

boundary x ¼ Xbðt; yÞ is depicted in Fig. 2. The boundary conditions associated with

the two-dimensional Saint-Venant model at the free boundary x ¼ Xbðt; yÞ can be

decomposed into a kinematic condition, a dynamic momentum boundary condition,

and a thermal boundary condition.

We ¯rst investigate the dynamic momentum boundary condition at the free

boundary. To this aim, we consider a slice of the free boundary of the three-dimensional

incompressible model in the plane spanned by nb and ez, where nb is the outward unit

Fig. 2. A local chart of the free boundary in the xy plane.
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normal of the free boundary x ¼ Xb in the xy plane as depicted in Fig. 2

nb ¼ ð1þ ð@yXbÞ2Þ�1=2ð1;�@yXb; 0ÞÞt: ð7:64Þ

We next de¯ne e~x ¼ nb and e~y ¼ ez ^ e~x in such a way that e~x ; e~y; ez form a direct

orthonormal basis, and we denote by ð~x; ~y; zÞ the corresponding coordinates so that ~x
is measured along nb. The geometry of the corresponding slice in the plane ð~x; zÞ of
the free boundary associated with the three-dimensional model is presented in Fig. 3

where the °uid lay above the substrate. The asymptotic dynamic boundary condition

is obtained upon integrating the horizontal momentum equation in the domain PQR.

Since this domain is assumed to be of size Oð�2Þ, all inertial terms will be neglected in

comparison with the force terms that are Oð�Þ. The forces acting on this volume are

the surface tension forces, the viscous constraints on PR, and Archimedes' forces on

QR. Note that we only consider the horizontal momentum equation so that there is no

gravity term.

Since the pressure in the substrate °uid is hydrostatic, and keeping in mind that

all pressures are evaluated relative to the atmospheric pressure, the resultant of

Archimedes' forces on QR can be written

�
Z
qr

�subghsubnsubd~ssub;

where ~ssub is the arclength along the curve ð~x; ~hsubðt; ~x; ~yÞÞ. In this expression, we

have denoted ~hsubðt; ~x; ~yÞ ¼ hsubðt;x; yÞ and nsub the corresponding outward oriented

normal vector

nsub ¼ @ ~xhsubnb � ezffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@ ~xhsubÞ2

p :

Since the normal vector nsub is oriented downward, the arc QR must be oriented from

Q to R. The horizontal projection of this Archimedes' force is easily evaluated asZ
qr

�subghsubnsub ¢nbd~ssub ¼ 1

2
�subgðh 2

subðqÞ � h2
subðrÞÞ; ð7:65Þ

since

nsub ¢nb ¼
@ ~xhsubffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð@ ~xhsubÞ2
p ; d~ssub ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@ ~xhsubÞ2

p
d~x:

Fig. 3. Schematic of a slice of the thin viscous sheet free boundary.
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On the other hand, the curvatures in the ~x-direction are Oð1=�Þ whereas the cur-

vatures in the ~y-direction are Oð�Þ ��� and may be neglected ��� in such a way that

the total curvatures Cgas and Csub may be approximated as

Cgas ¼
@ 2

~xhgas

ð1þ ð@ ~xhgasÞ2Þ3=2
; Csub ¼ @ 2

~xhsub

ð1þ ð@ ~xhsubÞ2Þ3=2
: ð7:66Þ

Using these expressions, the surface tension forces acting on PQR can be writtenZ
pq

@ ~sð�f=g¿gasÞd~sgas þ
Z
qr

@ ~sð�f=s¿ subÞd~ssub;

where ¿ sub is the tangent vector along the arc ð~x; ~hsubðt; ~x; ~yÞÞ oriented from Q to R,

and ~sgas and ¿gas are the arclength and tangent vector along the arc ð~x; ~hgasðt; ~x; ~yÞÞ
oriented from P to Q. We have used in particular the di®erential relations @ ~s¿gas ¼
Cgasngas and @ ~s¿ sub ¼ Csubnsub. Furthermore, since ngas is upward and the arc PQ

oriented from P to Q, we may assume that at zeroth-order ¿gasðpÞ ¼ e~x ¼ nb. Simi-

larly, since nsub is downward and the arc QR oriented from Q to R, we may assume that

at zeroth-order ¿ subðrÞ ¼ �e~x ¼ �nb. Integrating along the arcs PQ and QR, the

surface tension forces are thus found to be

�f=sð¿ subðrÞ � ¿ subðqÞÞ þ �f=gð¿gasðqÞ � ¿gasðpÞÞ:

We now use the fundamental relation relating the tangent vectors at the triple-

point Q

��f=s¿ subðqÞ þ �f=g¿gasðqÞ � �g=s¿ extðqÞ ¼ 0; ð7:67Þ

where z� hext ¼ 0 denotes the free surface between gas and the °uid substrate, �g=s
the surface tension between gas and the °uid substrate, S a point as depicted in Fig. 3,

ð~x; ~hextðt; ~x; ~yÞÞ the arc QS oriented from Q to S, and ¿ ext the corresponding tangent

vector. Since this arc is oriented from Q to S with next oriented upward, we may

assume that at zeroth-order ¿ extðsÞ ¼ e~x ¼ nb. This relation (7.67) can be used to

simplify the expression of the surface tension forces by eliminating all quantities

associated with the triple point q, provided we can express the tangent vector

¿ extðqÞ. To this aim, we can use the dynamic equilibrium condition at the gas/

substrate interface which states that

¾sub ¢next ¼ ¾gas ¢next � Cext�g=snext ¼ ¾gas ¢next � @ ~sð�g=s¿ extÞ; ð7:68Þ

where Cext is the total curvature of the surface z ¼ hext which may also be approxi-

mated as

Cext ¼
@ 2

~xhext

ð1þ ð@ ~xhextÞ2Þ3=2
: ð7:69Þ
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Using that the pressure is hydrostatic in the °uid substrate, we deduce from (7.68)

that Z
qs

�subghextnext d~sext þ �g=sð¿ extðqÞ � ¿ extðsÞÞ ¼ 0:

Eliminating the contributions associated with the triple point, the resulting hori-

zontal force on the control volume PQR is found to beZ
pr

ðpI� �dÞ ¢nb dz� nb

Z
qr

�subghsubnsub ¢nb d~ssub

� nb

Z
qs

�subghextnext ¢nb d~sext � nbð�f=s þ �f=g � �g=sÞ:

The horizontal projection of the surface tension force due to the substrate is easily

evaluated as Z
qs

�subghextnext ¢nb d~sext ¼
1

2
�subgðh2

extðsÞ � h2
extðqÞÞ; ð7:70Þ

since

next ¢nb ¼ @ ~xhextffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@ ~xhextÞ2

p ; d~sext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@ ~xhextÞ2

p
d~x;

and we may choose the vertical axis in such a way that hextðsÞ ¼ 0 since pressures are

measured relative to the atmospheric pressure. Upon de¯ning

� ¼
�g=s � �f=s � �f=g

�
ð7:71Þ

and using the relations (7.65) and (7.70), the resulting horizontal force on the control

volume PQR at zeroth-order readsZ
pr

ðp0I� �0d0Þ ¢nb dz� nb

1

2
�subjg0jh2

sub0ðrÞ þ ��

� �
: ð7:72Þ

Since the control volume PQR is of the order of �2, we can neglect the inertial term and

write that the resulting force (7.72) vanishes at zeroth-order.

The zeroth-order force
R
pr
ðp0I� �0d0Þ ¢nb dz can be evaluated from the expression

of the zeroth-order strain tensor d0 and of the zeroth-order pressure p0. Since the

second-order tensor d0 restricted to the plane spanned by ex and ey can be written as

@xv0 þ @xv
t
0 and is independent of z, we directly obtain upon integration thatZ

pr

�0d0 ¢nb dz ¼ �0h0ð@xv0 þ @xv
t
0Þ ¢nb:
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On the other hand, from p0 ¼ �2�0ð@xu0 þ @yv0Þ þ g0z� ð1� aÞg0h0, we obtain upon

integration that

�
Z
pr

p0 dz ¼ 2�0h0ð@xu0 þ @yv0Þ þ
1

2
�h 2

0g0:

The last term 1
2 �h

2
0g0 can then be combined with the contribution 1

2 �subjg0jh
2
extðrÞ

from (7.72) to form the pressure term �p0 ¼ 1
2 �ð1� aÞg0h2

0 of the two-dimensional

model. On the other hand, the term 2�0h0ð@xu0 þ @yv0Þ will complete the isotropic

part of¦0. Upon combining the above relations and dividing by the °uid density �we

have ¯nally established the dynamic boundary condition

�ðp0I þ¦0Þ ¢nb ¼ �nb; ð7:73Þ

where � ¼ ð�g=s � �f=s � �f=gÞ=�.

Remark 7.3. It is interesting to note that in the zeroth-order governing equations

the surface tensions do not appear. Surface tensions only play a role in the zeroth

order dynamic boundary conditions.

We can proceed similarly for the thermal boundary condition by considering the

control domain PQR. We observe then that the heat exchange coe±cients are of order

Oð�Þ as are the length of the arcs PQ and QR in such a way thatZ
pq

Q0 ¢ngas d~sgas ¼
Z
pq

��gasðT0 � TgasÞd~sgas ¼ Oð�2Þ;Z
qr

Q0 ¢nsub d~ssub ¼
Z
qr

��subðT0 � TsubÞd~ssub ¼ Oð�2Þ;

where Q0 ¼ ��0@xT0 is the three-dimensional zeroth-order heat °ux. Upon inte-

grating the heat conservation equation in the domain PQR, we thus obtain at zeroth-

order that Z
pr

�0@xT0 ¢nb dz ¼ 0;

and therefore

Q0 ¢nb ¼ 0; ð7:74Þ
where Q0 ¼ �h0�0@xT0 is the zeroth-order heat °ux for the Saint-Venant model.

Finally, since the free surface x ¼ Xbðt; yÞ is a streamline of the two-dimensional °ow

model, we obtain the natural kinematic condition

u0 ¼ @tXb þ v0@yXb:

This boundary condition can equivalently be obtained by integrating the incom-

pressibility condition @x ¢v ¼ 0 on the control domain PQR and is easily rewritten in

the coordinate independent form

h0ðv0 � vbÞ ¢nb ¼ 0; ð7:75Þ
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where vb ¼ @tXb is the velocity of the free boundary and it is well known that the

normal velocity vb ¢nb is an intrinsic quantity associated with the free boundary.

The boundary conditions for the two-dimensional Saint-Venant model at the free

boundary are ¯nally constituted by the kinematic condition (7.75), the dynamic

momentum boundary condition (7.73), and the thermal condition (7.74).

Finally we would like to address the validity of this set of boundary conditions.

From the above derivation, these conditions are physically relevant when the domain

PQR is of size Oð�2Þ, that is, when its horizontal diameter remains of size Oð�Þ. In this

situation, there is an abrupt change at the free boundary of the three-dimensional

domain and the resulting quantity h0 can be considered to be positive up to the free

boundary of the two-dimensional Saint-Venant system.

The physical origin of such a behavior is associated with wettability theory15 and

with the sign of the spreading parameter �g=s � �f=s � �f=g. This parameter is negative

for molten glass on molten tin or oil on water for instance. In this situation, from the

dynamic boundary condition (7.73), we obtain that the equilibrium thickness h0eq

such that p0 ¼ �� is given by h0eq ¼ ð2ð�f=s þ �f=g � �g=sÞ=ð1� aÞg0�Þ1=2 as discussed
by de Genes, Brochard-Wyart, and Qu�er�e.15 Surface tension therefore prevents h0 to

be too small when the spreading parameter is negative and this is the case for °oat

glasses where the equilibrium thickness is h0eq � 7mm or octane on water where the

equilibrium thickness is h0eq � 3:7mm.15 On the contrary, the spreading parameter is

positive for Polydimethylsiloxanes on water.15

Finally, from a mathematical point of view, if we neglect the surface tension, we

note that these boundary conditions disappear when h0 ¼ 0, that is, in the presence

of a vacuum state, as they should as established by Sanchez-Hubert and Sanchez

Palencia,51 Bresch,8 and Li et al.41 in various frameworks in the isothermal case.
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