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We investigate higher order entropies for compressible fluid models and related a prior:
estimates. Higher order entropies are kinetic entropy estimators suggested by Enskog
expansion of Boltzmann entropy. These quantities are quadratic in the density p, veloc-
ity v, and temperature 7" renormalized derivatives. We investigate governing equations
of higher order entropy correctors and related differential inequalities in the natural
situation where the volume viscosity, the shear viscosity, and the thermal conductivity
depend on temperature, essentially in the form 7%, as given by the kinetic theory of
gases. Entropic inequalities are established when || log p|/pymo, [|v/VT || e, ||log T'||BMO
1h0zp/pllree, |hdxv/VT Lo, [|hOaT/T||zee, and ||h*8ZT/T||zee are small enough,

where h = 1/(pT'2~7) is a weight associated with the dependence of the local mean free
path on density and temperature. As an example of application, we investigate global
existence of solutions when the initial values log(po/po), vo/vTo, and log(Ty/T~) are
small enough in appropriate spaces.
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1. Introduction

The mnotion of entropy has been shown to be of fundamental impor-
tance in fluid modeling from both physical and mathematical points of
4,6-12,20-25,27,34,42-44,49-51,58,59,62-64 W have introduced in previous work23-30
a notion of kinetic entropy estimators for fluid models, suggested by Enskog expan-
sion of Boltzmann kinetic entropy. Conditional higher order entropic inequalities
have been established in the situation of incompressible flows spanning the whole
space.?830 In this paper, we investigate higher order entropies for compressible
fluid models and related a priori estimates.

We consider compressible flows spanning the whole space with temperature-
dependent thermal conductivity, shear viscosity and volume viscosity. We only

view.
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consider smooth solutions defined on R™ that are “constant at infinity”. The com-
pressible Navier—Stokes equations can be written in the form

Op+ 0z (pv) =0,

Or(pv) + O+ (pv@v + pI) — Oy (ﬁ@w-vI—i— n (&Cv + 9,0t — %896-1}[)) =0,

Or(pe) + 0z (pev) — 0y (N0, T) = (Ii - %n) (0z-v)* + %77|8$v + 00> — pOy-v,

where ¢ denotes time, x the n-dimensional Cartesian coordinate, p the density, v the
velocity, p the pressure, and e the internal energy per unit mass. We assume for the
sake of notational simplicity that p = pT and e = ¢, T, where T is the temperature
and ¢, is a constant. The transport coefficients k, n and A are smooth functions
of temperature and essentially behave — away from small temperatures — like a
power of temperature T as given by the kinetic theory of gases.

We only consider smooth solutions such that

p— pse € C([0,8, WH2) N CH([0, 7], W12,
v, T = Too € C((0,4], WH2) 0 CH([0, ), W'=22) N L2((0,8), W2,

where [ is an integer such that [ > n/2 4 2, ¢ is some positive time, po, > 0 a fixed
positive density and T, > 0 a fixed positive temperature. We also assume that p
and T are such that p > ppin and T' > Ty where ppin > 0 and Thyi, > 0 are fixed
positive constants.

Higher order entropy correctors are first suggested by Enskog expansion of
Boltzmann kinetic entropy. The corresponding balance equations may also be seen
as a generalization of Bernstein equations to systems of partial differential equa-
tions but expressed with renormalized variables. Higher order entropy correctors
are quadratic with respect to the density, velocity, and temperature renormalized
derivatives and are taken in the form

k |12 k, 2 k|2
Ko ok (1070 |0%v] |0™T|
= ( 2 T T )

where h = 1/(T'z~*p) is a weight associated with the dependence of the local mean
free path on density and temperature. The square of kth derivatives of a scalar
function ¢, like T', p, or v;, 1 < i < n, is defined by |0F¢|*> = Zml:k(k!/a!)(aagb)z
and we set [0Fv|? = Y7, .., [0%v;|?. We derive balance equations of higher order
entropy correctors for compressible fluid models with temperature-dependent vis-
cosities and thermal conductivity.
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Higher order kinetic entropy estimators are obtained upon summing a zeroth
order fluid entropy 7[°! written in the form

2
0l /. PN, 1 v T-Teo T
7+ /Co <p10g<poo> (p poo))+2p m+pcv< T log 7))

with higher order entropy correctors vl?!, 1 < i < k. These kinetic entropy esti-
mators 7% + ... + ~¥ may also be interpreted as kinetic Fisher information
estimators.?? The hyperbolic—parabolic nature of the system of partial differential
equations governing compressible fluids further imposes to consider extra correctors
associated with density which is a hyperbolic variable. These extra correctors are
in the form

8k—1v-ak—1awp
VT p
where 9%u - 09, p is defined as Y, |, _, (k!/a!)0%u;0"0;p. These terms are similar

to the perturbed quadratic terms introduced by Kawashima®? in order to obtain
hyperbolic variable derivative estimates for linearized equations around equilibrium

,y[k— i _ thk—l

states and decay estimates and are used here with renormalized variables as well
as with powers of h as extra weight factors.

We also establish weighted inequalities in Sobolev and Lebesgue spaces. These
inequalities are required in order to establish a priori estimates since we are using
renormalized variables with powers of temperature and density as weights and since
we also consider flows with temperature-dependent thermal conductivity and vis-
cosities. These inequalities assume that a weighted L> norm of the gradients is
finite in addition to the L> or BMO norm of the functions. They differ from previ-
ous inequalities established for incompressible flows?? where only the L or BMO
norm of the functions were assumed to be finite. A weighted L>° norm of the gradi-
ents is required in order to reduce the number of derivation of hyperbolic variables
in a prior: estimates.

Entropic estimates are derived by combining higher order entropy correctors
balance equations with weighted inequalities. We obtain differential inequalities for
higher order entropy correctors when the quantity

v
= |l 1o + ||—= + || logT
%o = Il 1og pllinio H v IR [y
P Lo \/T Lo T Lo T Lo

is small enough. As a consequence, we establish that higher order kinetic entropy
estimators — obtained by summing up a zeroth order entropy with kinetic entropy
correctors — obey conditional entropic principles typically in the following form.

Theorem 1.1. Let (p,v,T) be a smooth solution of the compressible Navier—Stokes
equations and let 1 < k < 1. There exist positive constants Co, a < 1, b, and &}, such
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that when x~, < 6, we have |y12] 4 .. 4 yF=3l| < SO+ 4D and

at/ (7[0]+...+7[k]+d(7[%]_|_..._|_»y[k—%]))dx

—I—b/ pT (1 4 44 Fy dz < 0.

These inequalities are investigated in Sec. 5.4 where more precise statements are
established. Similar estimates are also obtained with the modified higher order
entropy correctors ¥ = ph?#(|0Fr|? + |0Fw|? + ¢,|0"7|?), k > 1, where r = log p,
w=v/\/T, T =1logT, and with ’y[k*%] = ph?* =19k 1.0k 10,7, k > 1.

Upon integrating the corresponding differential inequalities, a priori esti-
mates are obtained for the solutions of the compressible Navier—Stokes equations.
These entropic inequalities and the related a priori estimates are also scaling
invariant. More specifically, in the special case where A = a 7%, n = a,17%,
k = a,7% and ¢, is constant, if (p(t,x),v(t,z),T(¢t,z)) is a solution then
(62771 ¢ p(€Ct, Ca), € v(EC t, ¢ x), €2 T(EC t,¢ x)) is also a solution for any pos-
itive £ and (. The higher order entropy estimates are then invariant — up to a
multiplicative factor — by these two parameters family of transformations.

Since we have formally v/v/T = O(Ma), log(T/Ts) = O(Ma), and log(p/pec) =
O(Ma), where Ma denotes the Mach number, the constraint that x, remains small
may be interpreted as a small Mach number constraint, which is consistent with
Enskog expansion.?* These estimates also provide a thermodynamic interpretation
of the corresponding weighted Sobolev norms involving either renormalized deriva-
tives — or derivatives of the renormalized variable — and involving as well the
dependence on density and temperature of the local mean free path through the
factor h. This factor h ensures in particular that the operator hd, is scale invariant.

Many results have been devoted to the existence of solutions for the compress-
ible Navier-Stokes equations.?442:49:58 We mention in particular the local exis-
tence result of Nash®” and the global existence result around equilibrium states
of Matsumura and Nishida.®> More recently, Danchin'®!6 has established global
existence of solutions in critical hybrid Besov spaces with minimum regularity
for the isentropic as well as the full compressible model around constant equilib-
rium states, and Hoff3"38 has also investigated discontinuous solutions with small
data. Alazard? has further investigated the limit of small Mach number flows for
inviscid as well as viscous compressible flows with large temperature variations.
For general hyperbolic systems we mention the results of Benzoni and Serre* and
Serre,”® and for composite hyperbolic-parabolic systems, the fundamental results of
Kawashima.*243 With respect to weak solutions, we mention the pioneering work of
Lions*? as well as the fundamental results of Feireisl,?*?* Bresch and Desjardins,®*
Bresch, Desjardins, and Vallet,'® Mellet and Vasseur,?® and Feireisl and Novotny.2°

Various aspects of the a priori estimates obtained by these authors are discussed
in Sec. 5.4. Estimates for smooth solutions are generally obtained upon deriving
the governing equations, multiplying by the solution derivatives, and integrating
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in space and time, whereas estimates for weak solutions are usually derived from
energy and zeroth order entropy estimates as well as by using renormalized equa-
tions. The estimates that are closest in spirit to higher order entropy inequalities are
the estimates of Bresch and Desjardins.?¥ Indeed, upon assuming that the volume
and shear viscosity only depend on density x(p) and 7(p) and are constrained by
the relation £(s) — 21(s) = 2(sn/(s) —n(s)) (in our notation), Bresch and Desjardin
have introduced a new entropy in the form (in our notation)

2
oL+ o 1(p) Oup

VT  ~NT p |7

which present many similarities with the higher entropy correctors v/ and *y[%].

Finally, as an example of application of higher order entropic estimates, we
establish a global existence theorem around constant equilibrium states provided
that 1og(po/pec), 10g(To/Tso ), and vg/+/To are small enough in appropriate spaces,
which may be interpreted heuristically as an existence theorem for small Mach
number flows. We do not claim originality in these existence results since it is well
known that such smooth solution exists, but in its variant proof since it illustrates
the use of higher order entropic estimates and the results are formulated in terms
of higher order entropy estimators.

In Sec. 2, we discuss the concept of higher order entropies. In Sec. 3, we derive
higher order entropies governing equations and in Sec. 4, we establish various
weighted inequalities. In Sec. 5, the core of the paper, we establish that higher
order entropies satisfy conditional entropic inequalities. Finally, in Sec. 6, as an
example of application, we concentrate on global solutions.

2. Higher Order Entropies

In this section we briefly motivate the introduction of higher order entropies by
discussing Bernstein equations and Enskog expansion of kinetic entropy.28:2

2.1. A thermodynamic interpretation of Bernstein equations

For parabolic — or elliptic — scalar equations, a priori estimates for derivatives
can be obtained by using Bernstein method.?*” More specifically, consider — as a
simple exemple — the heat equation

Oyu — Au = 0.

Defining ¢ = [0%u|? =37 ;. . <, (85, -+ 8i,u)?, Bernstein equation for the kth
derivative can be written in the form

D ClF — ACTE 4 29k +1y|2 = 0, (2.1)

and more generally, for equations with variables coefficients, Bernstein equations
are associated with sums of squares of derivatives.*” With Bernstein method, the
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higher order derivatives source term [0%+1u|? is discarded, Eq. (2.1) then yields
9 — A¢lFl < 0, and the maximum principle can be used.®*” However, one
may also directly integrate Bernstein equations to get estimates of the integrals
Jan ¢[¥ dz, and this method is still valid if the flux term d,-(9,¢*) is simply a term
in divergence form 8w-<p[k] as may be expected for balance equations associated with
squares of derivatives of solutions of a system of partial differential equations. We
may therefore try to derive equations similar to that of Bernstein for systems of
partial differential equations, with non-negative source terms. In this perspective,
the structure of (2.1) appears to be formally similar to that of an entropy balance,
where (], k > 1, play the rdle of generalized entropies, even though there also exist
zeroth order entropies like u2. In the next section, we introduce a kinetic framework
supporting this entropic interpretation.

2.2. Enskog expansion of Boltzmann kinetic entropy

In a semi-quantum framework, the state of a polyatomic gas is described by a par-
ticle distribution function f(¢,x,c¢,1) — governed by Boltzmann equation — where
t denotes time, = the n-dimensional cartesian coordinate, ¢ the particle velocity,
I the index of the particle quantum state, and Z is the corresponding indexing
set. 11202227 Approximate solutions of Boltzmann’s equation can be obtained from
a first-order Enskog expansion f = f(O(1 + ¢ + O(£?)) where £ is the local
Maxwellian distribution, ¢*) the perturbation associated with the Navier-Stokes
regime and ¢ the usual Enskog formal expansion parameter. The compressible
Navier—Stokes equations for polyatomic gases can then be obtained upon taking
moments of Boltzmann’s equation.!?22.27

The kinetic entropy S = —kg 3 .7 [zn f(log f—1)dec, where kg denotes Boltz-
mann constant, satisfies the H theorem, i.e. the second principle of thermodynam-
ics. Enskog expansion f/f(© =14 e¢M + ... 4 2k¢(F) 1 O(e2+1) then induces
expansions for S¥™ in the form

Gin — 5O = 253 4 390) ... 4 2R GEM O, (2:2)

where S is the usual zeroth-order fluid entropy evaluated from the
Maxwellian distribution f(© and where S® is a sum of terms in the form
kB Y ier Jan [1i<ic) (@)% O de with non-negative integers v; > 0, 1 < i < I,
such that [ = )", ., iv;. For compressible polyatomic gases after detailed calcula-
tions, one can establish that

_ 1
—pS® = N0, T + F(0p-v)* + S, (2.3)

where T denotes the absolute temperature, p the density, v the gas velocity,
d = 0,v + 9yv" — 2(8,-v)I the nonisotropic part of the strain rate tensor, |d|?
the sum |d|? = sz d?j, and where the scalar coefficients \, %, and 77 only depend
on temperature. In a first approximation, using a single term in orthogonal poly-
nomial expansions of perturbed distribution functions, one can establish that
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A = (1/2rgc,)N? /T3, B = (3cy/4rgcine)k?/T?, and § = (1/2rg)n?/T? where c,
is the constant pressure specific heat per unit mass, ¢, the constant volume specific
heat per unit mass, r, the gas constant per unit mass, cin¢ the internal specific
heat per unit mass, A the thermal conductivity, n the shear viscosity, x the volume
viscosity, and the actual values of the numerical factors in front of X, &, and 77 are
evaluated here for n = 3.

More generally, from the general expression of ¢V in the absence of external
forces acting on the particles,?” one can establish that for any j > 2

J v "
: 0%p\" [ 02w YT\ "™
S(J)Zprg< " ) . () ( : ) () @)
Vel ; 1§1;[|§j p Vel T

where vy, v, v, € N, o € N*, and v = (va,V,,V)1<|a<; Must be such that

(a2 ie
2i<lal<jlal(va + v, +v5) = j and where the coefficients ¢, are smooth scalar
functions of logT of order unity. In the even case j = 2k, after integrations by
parts in the integral fRn S(F) dz. in order to eliminate spatial derivatives of order
strictly greater than k, and by using interpolation inequalities, one obtains that

| Jgn S©#F) dz| is essentially controlled by the integral of

n okp kv e, |OFT
A = o | ——= ==+ — , (2.5)
p\/TeT p el rg | T

or equivalently of

2k
= pry | —= 0¥ log p|> + 10" (v/\/raT) > + 210 1o T2) 2.6
3 f’rg(pm) (19t 10moP + 10k 0/ rT + 0k 0g T ) 20

and, in the odd case j = 2k — 1, | fo, S~V dz| is also controlled by [g, v*! dx
and fRn =1 dz. This suggests quantities in the form v* or F*! as (2k)th order
kinetic entropy correctors — or kinetic entropy deviation estimators.?? Note that,
at variance with S, it is not clear that S2*) has a sign, and this is a motivation
for using quantities like v[¥1 and F*! rather than S(*), beyond simplicity. We are
therefore looking for majorizing entropic correctors that we are free to modify for
convenience, e.g. by multiplying the temperature derivatives by the factor ¢, /rg.
These correctors may also be rescaled by mutiplicative constants depending on
k and their temperature dependence may be simplified in accordance with that
of transport coefficients. Finally, a similar analysis can also be conducted for the
Fisher information and suggests the same quantities ¥/ or 3% as higher order
kinetic information correctors.

2.3. Persistence of kinetic entropy

Denoting by 7% a non-negative quantity associated with the zeroth order entropy
S we investigate kinetic entropy estimators in the form 1% 4 ... 4 ¥l with
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0 < k < I, for the solutions of a second-order system of partial differential equa-
tions modeling a compressible fluid. For this system, the zeroth order entropy S(©
is already of fundamental importance as imposed by its hyperbolic-parabolic struc-
ture and the corresponding symmetrizing properties.?7-33:42:44:59 Therefore, we only
consider the quantities v+ . .4+~ 0 < k <1, as a family of mathematical entropy
estimators — of kinetic origin — and we will establish that they indeed satisfy con-
ditional entropic inequalities for solutions of compressible fluid equations. This will
yield incidentally a thermodynamic interpretation of the corresponding weighted
Sobolev norms.

This point of view differs from that of thermodynamic theories that have already
considered entropies differing from that of zeroth order, that is, entropies depend-
ing on transport fluxes or on macroscopic variable gradients. These generalized
12,22 o1 extended
thermodynamics.?® In both situations, new macroscopic equations are correspond-
ingly obtained, that is, “extended fluid models,” which are systems of partial dif-
ferential equations of higher orders than Navier—Stokes type equations.

entropies have been associated notably with Burnett type equations

”

3. Higher Order Entropies Governing Equations

We first present the equations governing compressible fluids and then discuss the
temperature dependence of transport coeflicients as obtained from the kinetic the-
ory of gases. We then derive governing equations for kinetic entropy correctors of
arbitrary order.

3.1. Fluid governing equations

The conservation equations governing compressible fluids can be written?”-4?

Orp + 0y (pv) =0, (3.1)
Ot(pv) + 0z (pv@V +pl) + 0y 11 =0, (3.2)
Oc(pe) + 0z (pev) + 0y-Q = —11:0,v — pdy-v, (3.3)

where t denotes time, x the n-dimensional Cartesian coordinate, p the density, v
the velocity, p the pressure, I the unit tensor, IT the viscous tensor, e the internal
energy per unit mass, and @ the heat flux. In these equation, 0; denotes partial
derivation with respect to time, 9, = (1,...,0,)" the usual spatial differential
operator, and * the transposition operator. We assume for the sake of notational
simplicity that these governing equations are in reduced form in such a way that
the specific gas constant r, is taken to be unity. The pressure is given by the state
law p = pT where T is the temperature and the energy per unit mass e is taken for
simplicity in the form e = ¢, T" where ¢, is a constant.
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The viscous tensor and the heat flux can be obtained from the kinetic theory of
gases and written in the form

IT=—k(T)0y vI —n(T) (83311 + Ot — %833%)[) , (3.4)

Q= —\NT)0,T, (3.5)

where k(T') denotes the volume viscosity, (1) the shear viscosity, and A(7T") the
thermal conductivity. We will denote by d = 0,v + 9, vt — %&:-vl the non-isotropic
part of the strain rate tensor so that Il = —kd,-vI — nd. The assumptions on the
transport coefficients k, 1, and A — which are smooth functions of temperature —
are specified in Sec. 3.2.

Our aim is not to study various boundary conditions and we only consider
the case of functions defined on R™ that are “constant at infinity”. From Galilean
invariance, we can also choose that v vanishes at infinity. Therefore we only consider
smooth solutions such that

p— pee € C([0,F], Wh2) 0 CL([0, 7], Wi—1:2), (3.6)
0, T — Tso € C([0,£], Wh2) 0 CY([0, ], WI=22) A L2((0,5), WHH12), (3.7

where [ is an integer such that [ > [n/2] + 3, i.e. | > n/2 + 2, t is some positive
time, poo > 0 a fixed positive density and T, > 0 a fixed positive temperature. We
also assume that p and T are such that p > ppin and T > Ty, where ppin > 0
and T, > 0 are fixed positive constants. Such smooth solutions are known to
exist2741745:51,57.63 qither locally in time or globally when the initial state is close
to the constant state (poo, 0, T ). We use classical notation for functional spaces!:6°
as for instance W*? = Wk2(R") = WP (R") for the usual Sobolev space with
k>0and1<p< oo, and W=*? for its dual where p’ = p/(p—1).

Remark 3.1. In the special case where A = a\T”, n = a,7”, k = a7, and
¢y iIs constant, if (p(t,z),v(t,z),T(t,z)) is a solution of the Navier—Stokes equa-
tions (3.1)—(3.3), then

(€77 ¢p(ECt, Ca),  EulECt, o), ET(EGH o)), (3:8)

is also a solution for any positive £ and (. For arbitrary transport coefficients, the
one-parameter family obtained by letting £ = 1 is still a family of solutions. The
scaling properties of the incompressible case?” can also be recovered from (3.8) by
letting ¢ = €172,

Remark 3.2. All the results obtained in this paper are also valid if the internal
energy e per unit mass is taken to be e = ¢g + foT ¢y(8)ds with a heat capacity
coefficient ¢, depending on temperature in such a way that

¢ <c, <t T°|07¢y| <G, o2>1,

where ¢ > 0, ¢ > 0, and ¢, > 0, ¢ > 1, are positive constants. We will not explicit
the corresponding results for the sake of simplicity.
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Remark 3.3. The dimension n appearing in the coefficient 2/n of the viscous
tensor (3.4) is normally the full spatial dimension, that is, the dimension n’ of the
velocity phase space of the associated kinetic model. We may still assume that
the spatial dimension of the model has been reduced, that is, the equations are
considered in R™ with n < n’. The full size viscous tensor II’ is then a matrix of
order n’, and the corresponding coefficient is 2/n’. However, if we denote by II the
upper left block of size n of II', that is, the useful part of I, we may rewrite II in
the form

In=- (m—i— (z - %) n) Op-vl — 1 (&v—i—@wvt - %&-UI) , (3.9)

n

where [ is the unit tensor in n dimensions. Therefore, using a smaller dimension n
instead of the full dimension n’ in the coefficient of the viscous tensor is equivalent
to increasing the volume viscosity by the amount 2n(n’ — n)/nn’/. As a practical
example, we have n’ = 3 in our physical world, but we may still consider a fluid
model with n = 2, and upon modifying the volume viscosity, the coefficient 2/3 in
IT can be transformed into 1.

Remark 3.4. The fluid governing equations have been derived®'® by Navier in
1822, Cauchy in 1823, Poisson in 1831, Saint-Venant in 1843 — from an unpublished
work of 1837 — and Stokes in 1845.

3.2. Temperature dependent transport coefficients

We discuss in this section the temperature dependence of transport coefficients in a
dilute gas. The situation of a dense gas will be addressed in Sec. 3.7 for completeness.
Only the assumptions on transport coefficients associated with a dilute gas — as
derived from the kinetic theory of gases — will be used in this paper.

Thermal conductivity, shear viscosity, and volume viscosity of a polyatomic
dilute gas depend on temperature

A=XNT), n=nT), r==r(T), (3.10)

as shown by the kinetic theory of gases.'??227 When one term Sonine-Wang -
Chang—Uhlenbeck polynomial expansions are used to evaluate perturbed distri-
bution functions, the coefficients A/c,, n and x are found in the form A\/¢, =
a\T2 /022 = a, T2 /022" and k/n = a.c™¢M /2 where ay, a, and a,
are constants, Q(>2)* a reduced collision integral, ¢ the internal heat capacity per
unit mass, and £ a collision number associated with internal energy relaxation.
Note in particular that the ratios A/c,n and k/n are bounded. For the rough rigid
sphere model for instance, we have exactly'®?? \/c, = aT2, n = ot,,Tl/2 and
k = a,T"/2. Similarly, for particles interacting as point centers of repulsion with an
interaction potential V' = ¢/r”, where r is the distance between two particles, one
establishes'?22 that Q(22* is proportional to T2/ so that we have A ey = a)T%,
and n = a,7% with » = 1/2 + 2/v, and k inherits the same scaling x = a,T%*
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if we assume that ¢™, ¢ | and ¢, are constants. The temperature exponent
then varies from s = 1/2 for rigid spheres with v = oo up to » = 1 for Maxwell
molecules with v = 4.

More generally, consider particles interacting with a Lennard—Jones v/ poten-
tial V = 4e((o/r)” — (0/r)"") where o denotes the collision diameter, & the potential
well depth, and v, v/ are intergers with v > v/ and typical values v = 12, v/ = 6.1%:22
Collision integrals like 2(>2)* then only depend on the reduced temperature kgT/e,
and, when kpT /¢ is large, the repulsive part r—" is dominant'? so that collision inte-
grals behave like T'° with s = 1/2 + 2/v for large T'. In particular, the logarithm
log Q22 has linear asymptotes as function of log T, and d* log Q(>2)* /d(log T')*
is bounded for any k > 1. In addition, classical models indicate that ¢, &t
and ¢, converge towards constants for large temperatures.27 As a consequence,
log A\, logn, and logk have parallel linear asymptotes as function of logT’, and
d*log \/d(log T)*, d*logn/d(logT)*, and d*logr/d(logT)* are bounded for any
k > 1, or equivalently, (1/\)T*d*\/dT*, (1/n)T*d*n/dT*, and (1/k)T*d*k/dT*
are bounded for any k£ > 1.

Similar results are also obtained when more than one term are taken into account
in orthogonal polynomial expansions of perturbed distribution functions. Indeed,
all collision integrals Q(*9)* 4 j > 1, have a common temperature behavior, that
is, all ratios of collision integrals are bounded, as for instance for Lennard-Jones
or Stockmayer potentials.??2” These collision integrals are then used to define the
coefficients of the transport linear systems which thus share a common temperature
scaling. As a consequence, the transport coefficients, which are obtained through
solutions of transport linear systems, inherit a common temperature scaling.?”

On the other hand, in our particular application, we are only interested in
solutions such that T > Ty, where Th,i, is fixed and positive. In this situation,
the behavior of transport coefficients for small temperatures is not relevant and
only the repulsive part of the interaction potential between particles plays a role.
Therefore, from a mathematical point of view, since we are not interested in small
temperatures, we assume that A, 7, and k are C*°(0, 00), that there exist s, a > 0,
and a > 0 with

al” <N e, <al”, oT” <p<al”, al”<k<al”, (3.11)
and that, for any integer o > 1, there exists a, > 0 with
T (|07 + |0Fn| + |07K]) < @xT*. (3.12)

Kinetic theory suggests that 1/2 < 3 < 1 but the situations where 0 < » < 1/2 or
2 > 1 are still interesting to investigate from a mathematical point of view.

Remark 3.5. Theoretical calculations and experimental measurements have
shown that the viscosity ratio x/n is of order unity for polyatomic gases.b1%22
Using a one or two terms expansion in Sonine—Wang—Chang—Uhlenbeck polynomi-
als for the perturbed distribution associated with volume viscosity, it is established
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for instance that x/n = J
ber £ associated with internal energy relaxation is usually taken to be a simple
decreasing function of temperature and the internal heat capacity per unit mass
"t is associated with the various internal energy modes like rotation, vibration or
electronic. In particular, the internal heat capacity is such that ¢ > e for linear
molecules and ¢ > %rg for nonlinear molecules solely from rotational degrees of
freedom. Volume viscosity also arise in dense gases and in liquids so that its absence

in monatomic dilute gases is an exception rather than a rule.%22

rgcMEM /c2 for a polyatomic gas. The collision num-

3.3. Higher order kinetic entropy estimators

Following the physical ansatz (2.5) and taking into account the simplifications asso-
ciated with the temperature dependence of transport coefficients (3.11) and with a
specific gas constant taken to be unity, we define the (2k)th order kinetic entropy
corrector v[¥ by

W ok (107012 10M2|OMTP
'Y[ ] — ph ( g + T + ¢y T2 , (3.13)
where h = 1/(T2~%p). If a = (ay, ..., ay,) € N is a multi-index, we denote as usual

by 9% the differential operator 97" - - - 9% and by |« its order o] = a1 + -+ - + aup,
and the square of kth derivatives of a scalar function ¢, like T', p, or v;, 1 <i < n,
is defined by

0" g)> = > Z—!‘(aaqs)Q = Y (0n0,0)% (3.14)

la|=k 1<iy,....ix<n

where k!/a! are the multinomial coefficients.!450 Similarly, for a vector function
like v we define [9*v[> = 37, ., [0%vil*.

This choice of v*} yields more convenient higher order entropic estimates. Cal-
culations show that it eliminates various quadratic terms associated with hyper-
bolic variables, thanks to symmetry properties. This choice can also be associated
with symmetrized forms of the system of partial differential equations. Denoting
U = (p,pv,p(e + $[v|?)) the conservative variable, v = —(9,5)* the entropic
variable, z = (p,v,T)! the natural variable, which is also a normal variable,3344
and defining the matrix Ay = (9,V)'3,Vv(9,V) associated with normal forms of the
system of partial differenial equations,?®** one can rewrite the higher order entropy
correctors in the form ¥l = A2k (97, Ay0%z), where h is the weight associated with
the dependence of the local mean free path [ = n/ p\/rg—T on density and temper-
ature. This choice of ¥ can also be associated with a “spatial gradient” Fisher
information with for instance ! = h2 ez ks f]R" |0, log f©)2£©) de, where f(©)
is the local Maxwellian distribution discussed in Sec. 2.2.
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Remark 3.6. We define similarly the pth power of derivatives |0F¢[P by

|
CATEY %(8%)” = > (0 0,0), (3.15)
loe|=F 1<i1,0yifp<n
and these definitions (3.14)-(3.15) are compatible with the classical definition
already used in Sec. 2.1 when p = 2. These natural definitions also simplify the
analytic form of higher order entropies governing equations. In agreement with
(3.14) we also set for future use

| |
* gt = Y %awaw G ESSY %aaviaaaip. (3.16)
la|l=k la|=k
1<i<n

In order to recast the zeroth order entropy balance equation into a more con-
venient form we introduce a modified zeroth order entropy 7[%. The mathematical
fluid entropy —S(©) can be shown to be a strictly convex function of the conserva-
tive variables?”* u = (p, pv, p(e+ 2v-v))". Denoting by E"" = p(e+ v-v) the total
energy per unit volume, we define 4% = Co9l% where ¥l is the modified zeroth
order entropy

1/1[0] =50 4 S§2> + (aps(o))oo(p — peo) + (aEtotS(O))oo(EtOt . Ef;’f)7

and Cy is a positive constant that will be taken large enough. The zeroth order
term ~ is easily rewritten in the form

2
o/, — PN, 1 v T-Tow (T
7/ Co (plog<pm) (p poo)>+2pToo+pcu< T log 7))

(3.17)

Thanks to the fact that v and T are parabolic variables, we can expect source
terms in the form [0*+1T/T'|? and |0¥t'v/v/T|? to appear in the governing equation
for vl — up to weight factors. However, since p is a hyperbolic variable, there will
be no such corresponding source term [0%+1p/p|? for density. A priori estimates for
density derivatives and more generally of hyperbolic variables derivatives indeed
require to introduce extra entropic corrector terms. These extra corrector terms will
yield source terms in the form |9%p/p|?. These terms are similar to the perturbed
quadratic terms introduced by Kawashima?®? in order to obtain hyperbolic variable
derivative estimates for linearized equations around equilibrium states and decay
estimates.*? They are used here with renormalized variables, as well as with powers
of h as extra weights factors, in order to obtain higher order entropic principles.
More specifically, we define the quantity ’y[k’%] by

lE=3] ph%—lak‘lv 910
VT p

and we will see that in the ’y[k’%] governing equation there is a source term in the
form |0%p/p|?> — up to weight factors. From a physical point of view, we also note

(3.18)
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that v/*~2! is of the general form (2.4) for S~V Finally, we define the (2k)th
order kinetic entropy estimator by

T = 40 4 3™ (4l ayli=8)), k>0, (3.19)
1<i<k

where a is a parameter that will be chosen small enough. The quantities ”y[i’%],
1 < i < k, are multiplied by the small rescaling factor a in (3.19) so as not to
modify the majorizing properties of the correctors 4% k > 0.

Similarly, following the physical ansatz (2.6), we define the modified (2k)th order
kinetic entropy corrector 4¥! by

A = ph?F(|0Fr]? + [0Fw]? + ey |07, (320)
where r = log p, w = v/\/i and 7 = logT. We correspondingly define
;Y[kf%] — ph2R =1k 1y 9k 1 g, 1, (3.21)
101 = 419" and introduce the modified (2k)th order kinetic entropy estimators

T = 5004 S (56 1 050-31), k>0, (3.22)

1<i<k

The entropy correctors v*! and 5%, as well as the estimators ' and f[k]7 will
be shown to have similar properties and both may be used to derive a priori esti-
mates. Strictly speaking, we should term v[¥ and 4/ “(2k)th order kinetic entropy
correctors” or “(2k)th order kinetic entropy deviation estimators”, and ¥~ 2! and
Flk=3] «(2k — 1)th order kinetic entropy correctors”, and '™ and T* “mathemati-
cal (2k)th order entropies”, or “(2k)th order kinetic entropy estimators”. However,
we will often informally term ~[¥, 3%, v[k_%], &[k_%], Ikl and TI* “higher order
entropies”.

Remark 3.7. Entropic correctors can also be defined by using the derivatives of
the strain rate tensor 0¥ 'd instead of that of velocity 9*v. We have chosen to
work with the derivatives of velocity 9*v for the sake of simplicity. It is also possi-
ble to define extra entropic correctors in the form ph?*~19*=1(9,-v)0* p/(v/Tp)
and ph?*=19k=1(9,-w)0*1r but their properties are similar to that of ’y[k’%] and
’y[k*%]. Entropic estimators can also be defined in the form

P = Al 4 §° iyl 4 ayli3), k>0, (3.23)
1<i<k

K — 5000 4 Z o' (311 + a5li=2]y, k>0, (3.24)
1<i<k

where 0 is a fixed parameter smaller than unity, but the corresponding results are
similar to the simpler situation 6 = 1.
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Remark 3.8. As suggested by a referee, it is also possible to define higher order
entropic correctors of fractional order 4[*!, s > 0, upon defining fractional deriva-
tives with Fourier transform. The explicit conservation equations for entropy cor-
rectors obtained in the next sections have then to be replaced by communators but
such generalizations are out of the scope of the present study.

3.4. Balance equation for v* and 'y[k_%]

Our aim is to establish balance equations for ¥ and 7["“’%]. In Sec. 5, we will
use these equations to derive a priori estimates and to establish that ' satisfies
conditional entropic principles.

Proposition 3.9. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)~(3.5) with regularity (3.6), (3.7) and let 1 < k <. Then the
following balance equation holds in D'((0,%) x R™) and L*((0,f), Wi=k=11)

O™ + 0y (vy ) + 0 ! 4 7l 4 lH 4 WIH = o, (3.25)
(k] [kl (K] TK] 1 l—k,1 [kl .o
where 4", Ty, 547, wy € LY((0,8), W ). The term my" is given by
A OFFIT2 o |OF T2 k4 22 |9R (9, 0) 2
kKl — 9, 2p2(k+1) [ 2 e n x 2
Ty =2 (T% 7 T T | Tx ) (320
where g = pTz=) and h = 1/(pT2~*). The term E[ Iis in the form

k(1 —2x)X 2h2(k+1)|8 P| AT
T P> T

Z[yk] _ ZCUVN¢T07%8%¢H£]€+1)HEJ€+1) +
ovpug

(3.27)

where Coupp are constants and the sum extends over ¢ € {A\,n,k}, 0 < o < k,
vV = (Vonyou a)l<|a\<k+17 Ho= (:U“OL7IU’:)UIU’:)I¢)1§|O(‘§]€+17 VOHV(I)UV(ZMMOMM:}?M:; S N7
a € N™. The products HE,kH) and HLkH) are defined by

I(+D = gpk+l H (@)Va (@)Vﬂ (W_T)”" ) (3.28)

1< <k +1 P vT T
where v denotes — with a slight abuse of notation — any of its components
U1,...,Un, and v omust be such that 32 <pyrlol(Va + v, +05) = K+ 1,

Dlalmki1 Yo = 0, X nmer1 Vo + Ve + pg + pa) < 1. Furthermore the term

w»[,k] s gwen by

wyf] — Z CVNHl(Ik)HLk+1)7 (3.29)
Vi
where the summation extends over Zlg\a|§k la|(va + V., + V') = kK,
Z1<\0t|<k lal(pa + py + ) = k + 1, and ¢, are constants. Finally the flux
<P[k] (@Eﬁ]a ce SOEWJL) is in the form

(p[ykl] Z Col/qulTU ”8U¢hﬂ(k)ﬂ(k+1 —+ ZC #lhn(k H(k)

oV v
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Proof. The proof — given in Appendix A — is lengthy and tedious but presents
no serious difficulties. O

[k . W K K]

is a flux and 7", 4", wy "~ are source terms. The source
only contains the temperature and velocity (k + 1)th derivatives squared
as expected from the hyperbolic—parabolic nature of system of partial differential
equations. In the products H(VkJr ) appearing in Ely] there is a total number of k£ + 1
derivations and there is no derivative of order k + 1 of density. Moreover, there is
at most one derivative of order k + 1 of temperature or velocity components in the
product H(VkH)HEfH) so that one of the terms IS o (kﬂ) is split between
two or more derivative factors. The products HL]’” ) (k]

appearlng in wy" are such that
2 al=kt1(Ha+ o+ pg) = 0 and are always split between several derivative factors.

In Proposition 3.9, ¢
(K]

term 7y

We investigate the [+~ 2l balance equation for compressible fluids with temper-
ature dependent transport coefficients.

Proposition 3.10. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)—(3.5) with regularity (3.6), (3.7) and let 1 < k <. Then the
following balance equation holds in D’(( JHXR™) and LY((0,1), Wi=k=11)

O3] 4 0, (oy 31y 4 9, B iRl el R g (3.30)
where (p[kaé], 77’[7167%7 E’[Yk7§7 L’k 2] S Ll((():i)vwl_k,l). Th@ term ngié] ZS
given by

[ 31 0" p|®
w2 = g?p2k e (3.31)

where g = pT2=) and h = 1/(pT2~*). The term E[Yk_%] is in the form
K+ 2n=b) 0% (0,v) Q
T vT —p’
(33

N

= oD FOFSIPIIHY —
ovpgp

2)

where cqyup are constants and the sums are over ¢ € {\,n,k}, 0 <o <k, v =

(Vo Vs Va)1<al<hr 1= (Has B B )1<|al<k+15 Vo Vas Vi Has o o € Ny a € N™.

The products H,(,k) and Hgﬁ'l) are defined as in the governing equation for v* and

Pi<jal<k [ (ta + po + pe) = k+ 1. Furthermore the term wlyk_%] is given by

kp ok k=19 |2
e ch O ¢ 2h2ka#ﬂ—g2h2kw, (3.33)
p

where c,, are constants and at least one of the two products H(k) or H(k)

18 split between two or more derwative factors. Finally the flux ga[ -3

((p[yl 2]7~-~780[m 2]) is in the form

<p£ffﬁ Z cwlhﬂf,k_l)ﬂff).

v
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Proof. The proof — lengthy and tedious — presents no serious difficulties and is

similar to that of Proposition 3.9. O
_1 1 _1 1

In Proposition 3.10, cpgk 2lis a flux and 7r£ylC 2] [k 2], wgk 2] are source terms.

The term 7T»[Y el will help to complete the missing gradlent terms in wly U, The

products HfﬁH) in E[Vk 31 4o not contain derivatives of order k + 1 and are thus

split between two or more derivative factors.

3.5. Balance equation for 4*! and '?[k_%]

We establish balance equations for 5, and 5*=2]. In Sec. 5, we will use these
equations to derive a priori estimates and to establish that %] satisfies conditional
entropic principles.

Proposition 3.11. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)~(3.5) with regularity (3.6), (3.7) and let 1 < k <. Then the
following balance equation holds in D'((0,%) x R™) and L*((0,f), Wi=k=11)

0™ + 0, (07 + 9, P+l S WM = o, (3.34)
where go[ 3 ,[Yk] [k],
Lyk]7 ,[?k], Lyk]7 [k] € L*((0,t), W'=k1). The term 7r[ Vis given by

A 4 n=2
Rl B A e

where g = pTz=) and h = 1/(pT2=*). The term E[ Iis in the form
E(1 — 230\

e*7 ¢y

[k] Z Co'l/u,¢e %T80¢H(k+l H(k—‘rl) +
v

g >R P AT, (3.36)

where cqyypp are constants and the sum extends over ¢ € {A\,n,k}, 0 < o < k,
Vv = (Vouyom a)0<|a\<k+17 H= (Ma7ﬂloz7ﬂlo/4)0§|a\§k+lv Vavyéuyg7ﬂa7“la7ﬂlo/4 S N7
o € N". The products H(l~C+1 nd Hf,kﬂ) are defined by

IFED = ghk+t T (%) (0%w)" (9%7)", (3.37)

0< ]| <k+1
where w denotes — with a slight abuse of notation — any of its components
Wi, ..., Wy, and i and v must be such that 37, <\, <pyr |0l (va + 14 +1v7) =k + 1,

Dlal=ki1 Ya =0,30 20 Watvy) =0, 30,5 Wa+va+ e +ug) <1

(K]

Furthermore the term ws™ is given by

[k] Zc H (k+1) +gzh2k+1ak78k(aﬂ)_w+g2h2k+1akr8k(aﬂ).w

- igzh%ﬂ8”“10-11)8”“(&C-w) - %gzh%ﬂﬁkw-wak(@acr)-w, (3.38)

Co Co



84 V. Giovangigli

o . k k41 )
where we use similar notation for H,(, ) s for H& + )7 the summation extends over

Y i<jal< lol(va + Vo +g) =k, 21<)al<k [l (pa + to + o) =k +1, and ¢, are

constants. Finally the flux cp%k] = (chYkl]7 cey @Lﬁ]l) is in the form

(P[ﬁ,kl] _ Z CUU#¢Z€7%Ta$¢hH(Vk)H§Lk+1) + Z Cuﬂlhnyﬂ)ﬂfﬁ).

oV v
Proof. The proof is similar to that of Proposition 3.9 and is omitted. O
In Proposition 3.11, w%k] is a flux and w%k], Z%k]7 w%k] are source terms. The term

W%k] only contains the temperature and velocity (k + 1)th derivatives squared as
expected from the hyperbolic—parabolic structure of system of partial differential
equations. In the products H,(,kH) appearing in E%k] there is a total of £+ 1 deriva-
tions and there is no derivative of order k + 1 of density. Note that powers of the
Hl(,kH) but not of 7 or r. In addition, there
is at most one derivative of order k£ 4+ 1 of temperature or velocity components in
the product H,(,kH)HE,kH) so that one of the terms Hl(,kH) or Hffﬁ'l) is split between
D appearing in w%k]

2 la|=k+1(Ba + 1o + ) = 0 and are thus split between two or more derivatives
factors.

renormalized velocity w may appear in

two or more derivative factors. The products Hﬂﬁ' are such that

Proposition 3.12. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)—(3.5) with regularity (3.6), (3.7) and let 1 < k <. Then the
following balance equation holds in D'((0,%)xR™) and L'((0,t), W!=F=L1)

1 1 1 1
DA 4 0, (A B]) 0, U gl R R g (339
k=31 _[k—3] _[k—3 [k—35] 1 I—k,1 k=31
where 5 %, me %, w2y %L wy P € L ((0,¢), W ). The term w2 s
given by
k— 1L
3 = 2n2k g2, (3.40)
where g = e t2(0=97 gnd h = e =277 The term E%ki%] is in the form
(k=3 k) py(k+1 “+2(n71)77 23 2k+1 9k, ok
513 =) Coppge 7TOTSIPTIFTY — ———"h 1ok re* (8,-w)
v
1 A
+ 566792h2k+18k718w7" -w@kilAT, (3.41)

where cqyup are constants and the sums are over ¢ € {\,n,k}, 0 <o <k, v =

/ /7 _ / 1 / 1 / " n
(Vouyouya)1§|a\§k7 B = (Ma7ua7ﬂa)1§|a\§k+l7 Vay Vs Vo Has He s He EN7 a e N,

The products H,(,k) and Hffﬁ'l) are defined as in the governing equation for %! and
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_1
Z1g\a|§k lo|(po + pil, + pl2) = k + 1. Furthermore the term w,[?k 2] 4 given by

[kfz] ZCVN H(k) +g2h2kak,rak 2h2’“|8k*1(8x-w)|2

- §gzh2k8k71(8$-w)8k71((%T) cw — %gzh%(?k*l(@gyw)@k*l(8331“) W

Cy
- %g“’h%ak—l(aﬂ) ~wdk (0,7 - w, (3.42)

(k)

where ¢, are constants and at least one of the products Il or H(k) is split between

derivatives factors. Finally the flux @L 3 _ (@Ll 2], .. .,gp[m 2]) is of the form

90[5_2] chlhnl(jkq)nﬁk)'

1 1 1
In Proposition 3.12, @Lf 2 is a flux and ng 2} E[~k 2l wgk 2l are source terms.
Note that 7T,[~Y 3l will help to complete the missing gradient terms in W%k_l]. In
1
addition, in ELY]C al , there is no derivative of order k + 1 in H(kﬂ)

3.6. Higher order entropies for zero Mach number flows

Asymptotic expansions of higher order entropies with respect to small Mach and
Knudsen numbers have been investigated.?! These asymptotic studies have been
performed by using rescaled variables and rescaled equations in terms of the Mach
and Knudsen numbers as well as by using molecular coordinates.?! Kinetic entropy
estimators have been shown to be related to the Sobolev norm of the variable
(log(p/poe),v/VT,10g(T/Ts)) in molecular coordinates.

In this asymptotic framework,3! upon reordering higher order entropies in terms
of the Mach number, it is easily checked that the velocity and the gradient of the
density are then of the same order. More specifically, upon reordering the higher
order correctors in terms of the Mach number, the following variant of the (2k)th
order kinetic entropy corrector /¥l is naturally obtained

R 9% pl2 8(k71) 2 akT2

These variants are especially adapted to the zero Mach number equations where
pT = Cte and where the energy conservation equation is a pure thermal balance?”
which can first be used to estimate the temperature. Then, at the next steps, 0¥~ 1v
and OFT and 9%p have to be estimated simultaneously upon using 7", 0 <1 < k.
On the other hand, as pointed out by a referee, in order to obtain estimates
for data with low regularity, Bresch and Desjardin® and Danchin'® have used func-
tional spaces such that the gradient of the density and the velocity have the same
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regularity. An interesting extension of this work would thus be to consider the vari-
ant entropy estimators 7% + ... + 3% 1 < k <1, either for the zero Mach number
equations or else for the fully compressible equations.

3.7. Transport coefficients in a dense gas

In this section, for self completeness, we address some of the model modifica-
tions required for dense gases. Indeed, the behavior of compressible fluid models
at low/high densities and at low/high temperatures has been a key ingredient in
recent advances concerning the existence of global weak solutions®?:23,24:49
as classical solutions.%? A first fundamental point is the state law which may deviate
from the ideal gas law, as for instance Van der Waal’s equation of state. A second
ingredient is the dependence of transport coefficients in terms of density. In the
remaining part of this section we discuss some results obtained from the kinetic
theory of dense gases.

The status of the kinetic theory of dense gases is not as well developed as that
of dilute gases. A first attempt towards a kinetic theory of dense gases is that of
Enskog for hard spheres. The advantages of the rigid sphere model is that collisions
are instantaneous so that the probability of simultaneous multiple encounters is

as well

negligible. Enskog corrections involve the mechanism of collisional transfer which
is the principal transport mechanism in dense gases — since the particles are almost
packed together — so that transport by molecular flow becomes very difficult.!?-22
The transport coefficients (T, p), n(T, p), and k(T p), obtained from Enskog theory
of dense gases, are in the form

A
A:»£+Amp+haw¥,7%=%+mﬁ+nm®@? K = rag(bp)?,

where Ao, A1, A2, 1o, M, N2 and ko are only functions of temperature. In these
relations, b denotes the covolume, which can be taken to be constant, and g denotes
a function of the state of the gas which models the increase of probability for
collisions due to the volume occupied by the gas. This probability factor g can
be modeled!??? as a series or as a rational fraction in the density g(p). More
generally, it is also possible to relate the quantities g and b to the state law.!2:22
The probability factor g(p) must be such that g(0) = 1 in such a way that Ay and
1o correspond to the coefficients for a dilute gas. It is worthwhile to note than even
for a monatomic gas of hard spheres there is a nonzero volume viscosity for dense
states.

More general theories of dense gases are based on multiple velocity-distribution
functions and on the BBGKY-hierarchy of equations.'??? Formal expressions of
the transport coefficients have been obtained upon assuming that the two-particle
distribution is a time-independent functional of the usual one-particle distribution
function — Bogoliubov’s functional assumption. The transport coefficients are typ-
ically expressed in the form??

© = o+ p1p+ pap® + Pop’logp+ -+,
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where ¢ denotes either A, n, or k, and the functions g, 1, @2, and @, only depend
on temperature. In particular, the expansions contain terms in the form p?logp
associated with recollisions.

Even though the results obtained for dense gases are far from being completed,
the models proposed so far shed light on the dependence of transport coefficients
as suggested by theoretical physics. In particular, the coefficients usually share
a common functional dependence in terms of temperature and density and there
is a coefficient of volume viscosity. A very interesting application of the density
dependence of transport coefficients is that of Bresch and Desjardins®? as discussed
in Sec. 5.4.

4. Weighted Inequalities

We investigate weighted inequalities in Sobolev and Lebesgue spaces. 3:26,29,35,36,53

These inequalities are required for renormalized variables with powers of tempera-
ture and density as weights as well as for temperature dependent thermal conduc-
tivity and viscosities.

4.1. Differential identities

Let «;, 1 < ¢ < n, be nonnegative integers and a = (aq,...,a,) € N® be the
corresponding multi-index. We denote by 0 the differential operator o7 --- 9%
and by |«/| its order |a| = ag + -+ 4+ ;. The derivative of superpositions has been
investigated in particular by Vol'pert and Hudjaev®® and the following proposition
is established by induction on |a].

Lemma 4.1. Let | > 1, f be a smooth scalar function of u € RY, uy,... u; be
smooth scalar functions of x € R™, and let « be a multi-inder o = (o, ..., qp)
with |a] > 1. The partial derivatives of the superposition fou = f(ui,...u;) can be
written in the form
0%(fou) = coudf [] (9%uj)*, (4.1)
o 1<|BI< ]l
1<j<

where ¢,y are non-negative integer and the sum is over o € N, 1 < |o| < |a,
= (pss)i<|g|<|al1<j<i With pg; € N, B € N, j € N, such that

S omsi=o5 > Busi=o, (42)
1<|BI<]al 1<|BI<]a]
1<5<

so that we have in particular Zﬂj 1Bl 1s; = |-

When | = 1, that is when u is scalar, the identity (4.1) is sometimes called
Fad di Bruno’s formula although it seems to have first been published by Tiburce
Abadie.?® The rescaled unknowns r = logp, w = v/\/T, and 7 = log T, naturally
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appear in higher order entropy estimates. We will need the following differential
identities?? easily established by induction on |a| and the next lemma will be used
for temperature as well as for density.

Lemma 4.2. Let T be smooth and positive and o be a multi-index. Then we have

a;T => e [ @ =07+> e [ (@), (4.3)

1<[B]<] e weo 1Bl < el =1

where p = (pp)i<|g|<|a| With ug € N, B € N, and ¢, are non-negative integer
coefficients. The sum is extended over the p such that

> Bus=a,

1<[B]<] e

so that we have in particular 3, <5<\ 18l1ts = |al, and the only term with |3] =
|ae| corresponds to 0“T. Conversely, we have

a%:%% 11 (WTT)M 8QT+Z 11 (a%r)”f*’ (4.4)

1<[B]<] e 1<|Bl< e —1

where ¢, are integer coefficients and the sum is extended over the same set of .

Lemma 4.3. Let T and v be smooth, T be positive, i with 1 < i < n, and o be a
multi-index. Then we have

a“l =S ] @760, (4.5)

pé 1<[B[<] e

where p = (pg)i<|gi<|als #s € N, 8 € N, & € N", ¢,5 are non-negative integer
coefficients, and the sum is extended over the p and &, such that
0<a<a, Z Bus + & = «a.
1<|BI<]al

More precisely, isolating the only term 0“w; corresponding to & = « and all the

terms corresponding to & = (0,...,0), we have
0%v; -
L — 9%w; + Cua AP r)He 9% w,; + c IPr)How,;, (4.6
e 1<|Bl< el H 1<|Bl< el
where the & in the middle sum are such that 1 <|&| < |a|. Conversely, we have
9°TN\"" 9%,
wi =Y 1 (_) , (4.7)
o T
pa 1<IBI<] el VT

and more precisely

o, _ 0% T\ 9% AT\ v;
re=2esas () GeZa I (F) &

1<|BI<] e ® 1<[B]<] o

(4.8)

where C;L& are integer coefficients and the sums are extended over the same sets.
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4.2. Weighted operators

A natural condition associated with weights!326:53 has been shown to be the Muck-
enhoupt property A4,, where 1 <p < oo.

Definition 4.4. Let g € L] _(R") be positive and let 1 < p < cc. The function g
satisfies the Muckenhoupt condition A, if

l9]a, Sup<|Q|/gdx) <|Q|/g P 1da:>p_1<oo,

where the supremum is taken over all cubes Q.

For detailed studies about the Muckenhoupt property we refer to the book of
Garcia-Cuerva and Rubio de Francia.?® We have in particular A, N 4, = Anin(p,q)
and the weights of A, have their logarithms in BMO.26:53 A locally summable
function f belongs to the space BMO(R") if

||f||BMo=sgpﬁ/ (@) — fol dz < oo,

where the supremum is taken over all cubes ) and where fQ = 1/|Q| fQ x) dx
denotes the average of f over Q.52 The function space BMO has been mtroduced
by John and Nirenberg®® and naturally arises when estimating the norms of the
weighted operators TYR;T~? where R; = (—A)*lﬂal, 1 < i < n, are Riesz
transforms, or when using the Coifman and Meyer inequalities.’*%® The space
BMO and its dual H' have already been used in the context of the Navier-Stokes
equations.*0:48:49

Theorem 4.5. There exist constants b(n) and B(n) such that for any 0 € R, any
u € BMO, and any 1 < p < oo, the condition

1 .
10[]|ullByvo < §b(n) min(1,p — 1),
implies that exp(fu) € A, and
[exp(Bu)]a, < (14 B(n))".

Moreover, the constants b(n) and B(n) only depend on n and are thus invariant by
a change of scale in the coordinate system.

Proof. These estimates are proved in Ref. 29 and the scale invariance of b(n)
and B(n) is straightforward since both the BMO seminorm and the A, condition
number [g]4, are scale invariant. O

We now investigate the continuity of Calderéon-Zygmund operators in weighted
Lebesgue spaces. In the following theorem the quantitites ¢y, ¢1, co are the constants
naturally associated with the norm of a Calderén-Zygmund operator G.53
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Theorem 4.6. Let G be a Calderon—Zygmund operator, let 1 < p < oo, and let
gP be a weight in A,. Then the operator G is bounded in LP(gPdx), or equivalently,
the operator gGg~* is bounded in LP, with norm lower than C(co, c1,c2,n,p, [g]4,),
where ¢y, c1, c2 are the constants naturally associated with the norm of G.

Proof. We refer to the books of Garcia-Cuerva and Rubio de Francia?® and of
Yves Meyer.3 O

4.3. Multilinear estimates

We investigate weighted multilinear estimates for derivatives with weights in A,
classes!®26:29,35.36.53 and we denote by CJ(R™) the set of continuous function that
vanish at infinity. The following multilinear estimates have been obtained in pre-
vious work?® by using the Wiener algebra A(R™) instead of the space CJ(R™)
but the proofs are similar thanks to the density of D(R™) in WH2(R") N CY(R™).
The proof of this theorem essentially relies on the Coifman—Meyer theory and on
Theorem 4.6.

Theorem 4.7. Let k > 1, 1 > 1 be integers, and o/, 1 < j < I, be multi-
indices such that |a/| > 1,1 < j < I, and k = Zlgjgl |ad]. Let 1 < p < oo,
gP? € Ay and uy,...,u;, be such that there exist constants uj .. with uj — uj o €
WHE2(R™) N CY(R™), and such that gd*u; € LP, 1 < j < 1. There exists a constant
c=c(k,n,p,[g"]a,) only depending on (k,n,p,[g"]a,), such that

g I] o7u|| <e ( 11 |Uj||BMo> 190" uil| v, (4.9)

1<5<1 p 1<i<t ~ 1<5<
i
and thus
J _
g [T o%ui|| < clulipollgd™ull, (4.10)
1<5<1 Lr
where

lullevo = > llujllevo,  llgd™ullf, = D 190" u;%-
1<5<1 1<5<
We now investigate multilinear estimates where a weighted L> norm of the
gradient is used to decrease the total number of derivations k in the upper bound.
We denote by C}(R™) the set of continuously differentiable functions that vanish at
infinity with their gradients.

Theorem 4.8. Letk > 2,1 > 2 be integers, and ol 1< 7 <1, be multi-indices such
that a7 > 1,1 <j <, and k = doi<j< |o?|. Let 1 < p < oo, g be positive, g € Li. .

with logg € BMO, and uy,...,u;, be such that there exist constants uj o, with
Uj — Ujoo € WETLER™) NCL(R™). Let h be the weight h = exp(f1ur + -+ - + Ouy),
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where 0| < 0 and 6 > 0. There exist constants § = §(k,n,p,0) and ¢ = c(k,n, p,0),
only depending on (k,n,p, ), such that if || log g||Bvo + X 1<j<i llujllBvo < 6, then,
whenever ghk’lak’luj € L? and ghk’28k’2uj € LP, 1 < j <1, the following

estimates hold

gh* TT 0%uj|| < cllulliollhdzull =l gh* = 0" ul| s
1<5<1 Lr
1 (1—3)* houll2 pE—2gk—2 411
+c Lpssllullpyo [1hOzull 7= lg UHLP’ (4.11)
where

hdsulle = > [h0susllzm,  llgh™ ™, = 3 Igh™a™u;L,.,

1<5<1 1<5<
and where 1x~3 =1 if k > 3 and 1x>3 = 0 if k < 3 so that in the special situation
2 <k < 3, the second term on the right-hand side of (4.11) is absent.

Proof. If there exists one multi-index a/° such that |a7°| = 1 we can directly write
that

gh* T o*'wi|| < IhOeujyllee|lgh* " T 0*'ui| . (4.12)
1<5<l g 1<5<1 L
J#jo

and use the multilinear estimates of Theorem 4.7. The weight gh*~! is in the 4,
class and [gPhP(F=1)) 4, is bounded by a constant only depending on n and p from
Theorem 4.5 for § small enough since ||log(gh*~!)||zmo < (1 + k6)d provided we
select § < 1b(n)min(1,p—1)/(1+k0). This covers in particular the situation where
2 < k < 3 since it is assumed that [ > 2 so that there is at least one first-order
derivative factor 9" u;, with |a/°| = 1 in this case.

Keeping in mind that [ > 2, we can now assume that |a!| > 2 and |a?| > 2, so
that k > 4, and write o' = &' +e;,, a® = &% +e,,, where |a!| = k—1, |a%| = k-1,
and i1,i2 € {1,...,n}. We have denoted by e;, 1 < i < n, the canonical basis of R™
with e; = (6i1,...,0in), where ;5 is the Kronecker symbol, so that 0% = 0;. We
introduce the auxiliary functions vi = ho;,u; and vo = h0;,us and write that

k o kaar (V1Y qas (V2 o
1<5<i 3<j<l
Next we expand the derivatives by using Lemma 4.1
a, (V1 1 z _
o (ﬁ) “h Z%uaﬂlvl [T (@%uy)res, (4.13)

Bip 1<IB1<
1<j<l
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where C5,, are non-negative integer coefficients, and the sum is over 0 < 1 < &
and 1 = (ugj)i<ipi<ia)1<j<t With gy € N, 8 € N', 1 < j <1, and } 5, Bug; =
a1 — 1. We can thus write that

ghk H 8aj u; = Z cﬁlﬁzdghk’28@1v18@V2 H 8aj uj H 86‘j ﬂj, (414)

1<j<i G124 3<5<l 1<j<i

where the derivative factors arising from the derivation of 1/h in (4.13) are rewritten
in the form ngjgi o {j, where (0y,...,0;) are proper replicates of uy,...,u;. We
can then use the inequality (4.9) of Theorem 4.7 to estimate the IP norm of each
term in the sum (4.14). Inequality (4.9) is used with the weight gh*~2 and with
the variables (vi,va,us,...,u;,01,...,0;). The weight gh*=2 is in the A, class for
§ small enough and [gPhP(F—2))] 4, is bounded by a constant only depending on
n and p from Theorem 4.5 provided that § < $b(n)min(1,p — 1)/(1 + kf). We
can thus estimate the P norm of gh* IL <j<i 9% u 4, up to multiplicative constants

depending on (k,n,p,#), in terms of

Ivallsvo [T lusllsvo JT lldjllemollgh® 20" 2vi ]|,
3<5<! 1<5<i

Ivillevo TT llusllevo TT ldsllmuvollgh®20%2va] .,
3<j<l 1<5<i

Ivillmvolvallsvo [T luillsvmo [T lasllemollgh® =204 2ui|,,, 3 <i<I,

3<5<i 1<5<i
JFi
and
vi|Bmol|v2| BMO u; || BMO Ujl|Bmollgh™ ™ =0" =04 || ;. <i<l
Vi llBnmo | va|l [ujl 16 [ ollgh* 20" 04| ,,, 1< <
3<j<l 1<5<i
J#i

Expanding then the derivatives 0% 2v; = 8k’2(h8ij uj), j = 1,2, it is easily
checked that thk_Qak_ij |lzr is majorized by a multiplicative constant multiplied
by Y <icq [lgh* 10" u;|| 1» and the proof is complete since one may choose § such
that 0 < 0 < 1. m

Remark 4.9. The space of smooth functions with compact support D(R™) is dense
in Wh2(R™")NBMO(R™) — for the norm || - |lyyx.2 + || - || Bmo of course — if and only
if & > n/2. Indeed, for k < n/2, D(R™) is not even dense in W*2(R") N L>°(R")
and counterexemples are classically found in the form of series of needles.?? On
the other hand, for k = n/2, we have W»2(R") N BMO(R") = W"?2(R"), whereas
for k > n/2, WF2(R") is included in CJ(R™). We have introduced the natural
simplifying assumption u; — uj .. € W*2(R") N CY(R™) since it will be sufficient
for our applications, since C§(R™) C L*(R™) ¢ BMO(R"), and since D(R") is
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always dense in W*2(R") N CJ(R™), even for k < n/2, as easily established by
truncation and smoothing. Similarly, when using the gradient norms ||hdyu;|| e,
1 <j <, we have introduced the natural simplifying assumption that u; —u; o €
WH2(R™) N CL(R™) since it will be sufficient for our applications.

4.4. Weighted products of derivatives

We first investigate products of derivatives of the rescaled unknowns 7 and w with
powers of temperature and density as natural weights.?? Since in our applications w
and 7 will be parabolic variables, the total number of derivations k is left unchanged
in the estimates.

Theorem 4.10. Let k > 1 be an integer, 8 > 0 be positive, 1 < p < oo, T be
such that T — Too € WF2(R™) N CY(R™) for some constant 7o, and let r € BMO.

There exist positive constants 6(n,p,0) and c(k,n,p), only depending on (n,p,0)
and (k,n,p), respectively, such that if |r||sBmo + ||7]|BMO < 6, then for any a, b with
la| 4 |b] < 0, any integer | > 1, and any multi-indices o, 1 < j <1, with || > 1,
1 <5 <1, and 21§j§l|aj| = k, whenever e*" T 9%t ¢ LP(R™), the following
inequality holds

< clrliolle™ 0 | . (4.15)
Lp

J
ea‘r+br H 9%

1<j<1

Further assuming that w € WF2(R™")NCY(R™), e?™ 07 9Fw € LP(R™), and 0 < [ <1,
then

1—
< e((lwlvo + lI7llevo)

J J
eaT+br H 9% w H 9%+

1<5<t I+1<5<1

p
% (”ea-rerrakaLp + ”ea-rerrakTHLp) ,

(4.16)

where we have naturally defined ||e®™ T 0Fw]?, = di<i<n le® ™+t 0k w, |1, and on
the left-hand member of (4.16), with a slight abuse of notation, we have denoted by
w any of its components wi, ..., Wsy,.

We now investigate products of derivatives of the rescaled unknowns r, 7 and
w. Since in our applications r will be a hyperbolic variable, the total number of
derivations appearing in the estimates needs to be decreased by using a weighted
L> norm of the gradients.

Theorem 4.11. Let k > 2 be an integer, > 0 be positive, 1 < p < oo, T, T,
w be such that T — Too, 7 — Too,w € WFLZ(R™) N CH(R™) for some constants T
and roo. Let a, b, @ and b be constants with |a| + |b| < 0, |a| + |b| < 0, and let g =
exp(at+br) and h = exp(ar+br). Let | > 2, let o7, 1 < j < 1, be multi-indices with
lad| >1,1<j <1, and Z1gjgl |a?| = k. There exist positive constants §(k,n, p, )
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and c(k,n,p,0), only depending on (k,n,p,0), such that if |r|smo + [|7]|BMO < 9,
then whenever gh*=10F 1y, gh*=19%=1w, ghk*=19F 17, gh*=20%2pr ghF—29F 2w,
ghF=20%=27 ¢ LP(R™), and 1 <1 <[ <, we have the estimates

gh* H 0y H 0" w H o' r

1<5<i I+1<5<l I+1<5<1 Lr
< ol Zll5io 1h0x 2l L= || gh* = 0% V2] | o
~(1=3)* ~ _ o~
+issl|Zling 170aZ] 3 [l gh* 20422 1, (4.17)
where we have denoted 7 = (r,w,T) and
[Zllevo = [I7llBmo + [[wllBmo + [I7][BMO, (4.18)
11027 e = ||hDur|| oo + |hOpw] e + ||AOsT | 1oe s (4.19)
lgh™ o™zl = [lgh™d™ |7, + [|gh™ 0™ w||T, + [lgh™d™ 7|}, (4.20)

for any m € N* and on the left-hand member of (4.17), with a slight abuse of
notation, we have denoted by w any of its components w1, ..., w,. In particular, in
the situation where 2 < k < 3, the second term on the right-hand side of in (4.17)
s absent.

Proof. Theorems 4.10 and 4.11 are direct consequences of the multilinear estimates
of Theorems 4.7 and 4.8. O

4.5. Weighted products of renormalized derivatives

We now estimate products of derivatives of density, temperature and velocity com-
ponents rescaled by the proper renormalizing factors.

Theorem 4.12. Let k > 1 be an integer, § > 0 be positive, 1 < p < oo, T be such
that T > Twin > 0 and T — To, € WE2(R™) N CY(R™) for some positive constant
T and p be positive such that r = logp € BMO. There exist positive constants

o(n,p,0) and c(k,n,p), only depending on (n,p,0) and (k,n,p), respectively, such
that if || log p||emo + || log T'||Bvo < 6, then for any real a and b such that |a|+|b| < 6,
any integer I > 1, and any multi-indices o/, 1 < j < I, with [o/] > 1,1 < j <,
and Y21 << |’ | = k, whenever Tp?(OFT)/T € LP(R™), we have the estimates

o1

T%p" .
&2

(4.21)

a o°'T _
T 11 TH < cl|log T aio
1<j<i e
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Assuming v € WF2(R™) N CY(R™), | log pllBvmo + |\v/\/T|\Loo + [[logT|lpmo < 0,
whenever T9p"(9%v) /T € LP(R™), we have for 0 <1 <1

Tabnavl—[$ SC(‘
o0

1<j<i l+1<j<l
kv
% Te by v
(H Pt

where, on the left-hand member, with a slight abuse of notation, we have denoted
by v any of its components vy, ..., vy,.

v

VT

[—1
+|1og7wBMo)

| ,),

(4.22)

»

’ Lr

Theorem 4.13. Let k > 2 be an integer, § > 0 be positive, 1 < p < oo, p, v, T, be
such that p > pmins T > Tiin, and p — peo,v, T — T € WFLZ(R?) N CH(R™)
for positive constants poo, Pmin, T and Tmin. Let a, b a, and IE be constants
with |a| + |b] < 0, |a| + [b] < 0, and let g = T%", h = T%%". Let 1 > 2,
al, 1 < j < 1, be multi-indices with |o?| > 1, 1 < j < I, and Zlgjgl lad| =
k. There exist positive constants 0(k,n,p,0) and c(k,n,p,0), only depending on
(k,n,p,0), such that if || log pllmo + |[v/VT ||~ + || log T|lemo < 6(k,n, p, ), then
whenever gh* =1 (9% p) /p, gh* = (9%~ ) /VT, gh*=1(9"~'T)/T, gh*=2(8*~2p)/p,
ghF=2(8%=20) /T, gh*=2(8*2T)/T € LP(R"), we have for 0 <1 <1<

9%y o'

k

ot T 22 11 7 1 =7
1<j<l I+1<5<l I+1<j< r
< ||zl hOuZ| e || gh ™ 0" 2|

+ lissl[Zling 1727 2l gh* =202, (4.23)

where, on the left-hand member, with a slight abuse of notation, we have denoted

by v any of its components vy, ..., vy, and where Z = (r,w,T) and
IZl 50 = Il 1og pllevo + llo/VT || z= + || log Tl suo, (4.24)
1RO Z|| e = Hh% . + ‘ h% . + HhaITT . (4.25)

for any m € N*. In particular, in the situation where 2 < k < 3, the second term
on the right-hand side of (4.23) is absent. Note that there is a L norm for the
rescaled velocity w in || Z|| 5o -



96 V. Giovangigli

Proof. The proof of Theorems 4.12 and 4.13 essentially relies on Theorems 4.10
and 4.11 and on the differential identities established in Lemmas 4.2 and 4.3. Con-
sidering temperature as a typical example, the differential identities and Theorem
4.10 yield estimates in the form

T, H ov'T

T < ol 1og T a0 | 0" 0" 7 | s, (4.27)
1)<t

|LP
and similarly that

k
(7 -)

\ < ¢l 1og Tl mnio | 770" v,
Lr

where ¢ = ¢(k,n,p). Therefore for c(k,n,p)||log T||pmo < 1/2 we have

1 kT
LTt < HT“#’T <

3
LP_2

I1Tp°0" 7| 1o, (4.28)

and reinserting (4.28) in (4.27) completes the proof of (4.21). The same procedure
can be applied to get estimates of | T%pd%p/p||r» and | T%p*0*v/v/T||1» and then
to obtain (4.22) and (4.23). m|

Remark 4.14. Assuming that T — T, € W22(R") N CH(R™), T > Tpnin > 0 and
[llog T'||gmo is small enough, we obtain from Theorem 4.13 that

2
0°T?
. /n W dx. (429)

In contrast, when T — T, € W32(R™) NCY(R™), T > Tnin > 0, and || log T'||mo is
small enough, we obtain from Theorem 4.12 that

0T
T

o,7°
| e da < el ox Tl

0,11° TP
/Rn Tora dr < | log T[|5vo L T dz. (4.30)

5. Higher Order Entropy Estimates

In this section we investigate higher order entropy estimates for compressible flows
spanning the whole space. We establish entropic inequalities when the quantities
1og pllpvo, [[v/VT |[r<, [log Tllevo, [1h0ep/pllre, |h:0/VT |1, [|h0:T/T || 1=,
and ||h202T/T )|z~ are small enough, where h = 1/(pT'2~*) is a weight associated
with the dependence of the local mean free path I = n/ p\/rg—T on density and
temperature. In the following, all constants associated with a priori estimates and
entropic inequalities may depend on the system parameters a, @, a,, 0 > 1, s,
and ¢,. However, these dependencies are made implicit in order to avoid notational
complexities and only the dependence on k and n is made explicit.
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5.1. Preliminaries

The balance equations of higher order correctors can be integrated over R™ and [0, ¢]
where 0 < t <t thanks to the regularity properties of the solution. Considering the
7[¥ balance equation (3.25) as a typical example, we have the following result.

Lemma 5.1. Let (p,v,T) be a smooth solution of the compressible Navier—Stokes
equations (3.1)—(3.5) with reqularity (3.6)—~(3.7) and let 1 < k <. Then the follow-
ing equation holds in D'(0,t) and L'(0,1)

815/ 7[k]dx_i_/ (W[Wk]—kz[f]-l-w[f])dx:Q (5.1)
n Rn

and the following equation holds in C°[0,1]

t
/ Ak e +// (wlyk] + Zlyk] + w,[yk])d:c = / ’y([)k] dx, (5.2)
R" 0 JRn n

where 'y([Jk] denotes the functional v*! evaluated at initial conditions.

Proof. This lemma results from standard manipulations using distributional
derivatives and test functions in the form of tensor products ¢(t)i(x). O

As a consequence of Lemma 5.1, integrating the balance equation (3.25) for [
with 1 < k <[, we deduce that

8,5/ LK) dx—!—/ 7r,[yk] dxﬁ/ |E£Yk]|d$+/ |w,[yk]|dx, (5.3)

so that we have to investigate the integrals [, |E£Yk] |dz and [g, |w,[,k]|da:. Similarly,

we obtain by integrating the balance equation (3.30) for 'y[k*%] that

815/ W[’“’%ldwr/ ] dwg/ |E[wk_%]|d$+/ W e, (5.4
n n n Rﬂ.

_1 _1

and we have to investigate the integrals [, |E£Yk 2] |dz and [, |w,[yk 2]|da:. We will
. . . k k

simultaneously estimate the analogous integrals fR" |E%]|dx and fR" |w£~y ]1|dac asso-

ciated with the balance equation of 4¥ as well as the integrals [, |E[~Yk7§]|dx and

_1
Sz |w£~yk 2]|alac associated with the balance equations for 7/F—2],
It will be convenient to denote by . the quantity

v
Xy = Hlogp”BMO + Hﬁ‘

Oz
|
P

+ |[log T'|| Bmo
LOO

02T
T

0.7

2
T h

, (55)
L=

+n
LOO

"

+ Hha_v
Lo \/T

Lo
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and similarly by x5 the quantity

x5 = lITllBmo + [[w|| 2 + [|7|lBMO
+ [|hOer| 1o + [[hOzw]| Lo + |y || Lo + |h2O27| Lo (5.6)

It can easily be established that x, < x5(1 4+ x5) and x5 < x4(1 + x4) so that
Xy < 1 implies that %)@ < x5 < 2x4, and x5 < 1 implies that %Xi < xy <
2x5, and assuming that either x, or x5 is small is equivalent. We will establish
that entropic inequalities hold for T'¥! and T when X~ Or X5 are small enough.
These quantities x. and x5 are invariant under the change of scales (3.8) described
in Remark 3.1. They can also be interpreted as involving the natural variables
log p, v/ \/7"g—T , and log T, appearing in Maxwellian distributions'! and the natural
scale h associated with the local mean free path n/ p\/rg—T . Since we have formally
v/\/rsT = O(Ma), log(T/Ts) = O(Ma), and log(p/psc) = O(Ma), where Ma
denotes the Mach number, the constraint that x, or x5 remain small may be
interpreted as a small Mach number constraint, which is consistent with Enskog

expansion.4

5.2. A priori estimates

We first investigate the integrals [, |Eg€] |dz and [, |w£k]|da:, where £ denotes any
of the symbols v or 7, by using the weighted inequalities established in Sec. 4.

Proposition 5.2. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)—~(3.5) with regularity (3.6), (3.7), let 1 < k < I, and let
& denote any of the symbols v or 4. There exist positive constants 6(k,n) and
ek = c(k,n) such that for x¢ < 6 we have

_3 _
/ IEEk]Idx < Cka/ (Wék] +7T£k 2] +7r[k Uy 11€>2(7TgC 2] —|—7T£k 2]))dar;. (5.7)
n R’V'L

1 _ _3 _
/ |w£k]|dx§0k><§/ (w1 (1 Al ) da (5.8)
R Rn

Proof. We only give the proof for £ = 4 since the proof for £ =  is similar. We
have from (3.36)
k(1 —230)\

e*Tc,

I T
ovud

g2h2(k+1) |akT|2AT,

and the integral associated with the last term is directly majorized by

A 1
[ gtk iar o < clpoPr e [ 2l P aa,
Rn €77 Rn

—2T

where c is a constant since \e is bounded. Considering then the terms of E[ ]

appearing in the sum we observe that the quantities e=*79%¢ are bounded Smce
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02¢ =1 crney ComT ™0 ¢, where ¢,y are constants and where ¢ € {k,n, A}, so
that we only have to estimate the I? norms of the products H,(,kH).

First note that any factor w in Y s independently estimated by ||w|| .
When Hl(,kH) only contains derivatives of w and 7 — in particular if there is a
derivative of order k 4+ 1 — we obtain from Theorem 4.10 applied to (w, ) with k

replaced by k£ + 1, that when x5 is small enough

1
2
D < elrllavo + i { [ alacf” (59)

R

where Ny = 37 <o j<hp1(Va + Vo +70) = 2i<jaj<nt1 (Vo + vi). However, if the
product Hf,kﬂ) is split — in particular if there is a derivative of density — we
obtain from Theorem 4.11 applied to (r,w, ) with k replaced by k + 1, that when

X5 is small enough
TS 12 < ellZl i 1| hORZ]| o [l gh* 07 12
~(N,—3 + ~ _ o~
+clisalZltng Y 17073 lght 012 12,

keeping the notation of Theorems 4.11 for ||h0,Z||z~ and ||gh™O™Z|| 2. Therefore,
we obtain that
1

1 _ -3 — 2
[T 2 < CXg”_l {/R (W%k 2] +7T[$ Uy 1k>2(7r£~yk 2] +7r£~yk 2])) dw} ,

(5.10)

where ¢ = ¢(k, n) thanks to x5 <1 and
i i) 2 li—3] [i—1] ;
g 2 < T s z, <i<k,
lgh'0"z||fa <b | (75 > +75 )d 1<i<k
Rn
(k+1)

where b is independent of ¢ and n. Since one of the two products II,, or Hﬂ”l)
is split, we can combine the inequalities (5.9) and (5.10) in the form

1 _3 _
|‘H£k+1)HLk+1)||L1 Squ/ (W%k]+ﬂgk—l]+w£yk 2]+1k>2(7r[$ 2]+W%k 2]))dx7

n

where ¢ depends on k& and n. On the other hand, in the expression of w%kk the

products Hffﬂ) are always split between several derivative factors, so that the
inequality (5.8) is established in a similar way. The proof in the situation & = - is
similar with Theorems 4.10 and 4.11 replaced by Theorems 4.12 and 4.13. O

Proposition 5.3. Let (p,v,T) be a smooth solution of the compressible Navier—
Stokes equations (3.1)~(3.5) with regularity (3.6), (3.7), let 1 < k < I, and let
& denote any of the symbols v or 7. There exist positive constants §(k,n) and
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ek = c(k,n) such that for x¢ < 6 we have

_1 _1 _ _3 _
|E[£k 2]| dr < crXe (7‘('?] +7r£k 2l +7T£k Uy 1k>2(77£k 2! +7rg€ 2]))da:
mn RTL

—|—co{/ Wék]da?} {/ ﬂ'ék_é]da:} ) (5.11)

k—1 k—1 _ k—3 —
[l < [ @ el s toal Y 4l ) o

) }
+ Cé)/ ﬂ_ék—l] dx —+ CIO {/ ﬂ—gc*%] dx} {/ ﬂ-gC—l] de} ,

(5.12)

N

where ¢y and ¢, are constants independent of k and n.

Proof. Considering first the case £ = v and the expression (3.41) for Z[kié], all
terms in the sum are estimated as in the proof of Proposition 5.2. More specifically,
the I? norm of H,(,k) is estimated with Theorem 4.12 applied to p, v, and T', whereas
the I? norm of the split product Hffﬁ'l) is estimated with Theorem 4.13 applied to
p, v, ad T with k replaced by k + 1. Furthermore, the remaining extra terms are

1
directly estimated in terms of ng], ngi 2l and W[Vk_l]. The same argument is valid
_1
for w,[yk 2] using the expression (3.33) as well as in the case £ = 4 using (3.42) and
(3.42). i

5.3. Zeroth order entropic inequalities

We now recast the classical zeroth order entropic inequality into a convenient form
that will be used to investigate entropic principles associated with T'*].

Proposition 5.4. Let 7% be given by (3.17). Then ~1% > 0 and the following
balance equation holds

T Ty 2 I
0y /Co + 0+ (pv(soo — )+ pucy + vl ) + 0y (i S —U)

Teo 2T T T T
MNOTP?  mld? | K(0sv)? _
+< T2 + 5T + T dz = 0.

Moreover, there exist positive constants By and dg > 0 such that for Co > By and
X~ < 0 we have

(5.13)

at/ ) dx+/ % dz <o, (5.14)
where we define from (3.26)
2 2 n—2 )2
7 — 922 (LIMI L 0w R R (@00) )

T T2 T> T T T
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Proof. It is easily established that both the temperature and density parts of
~0 are non-negative so that v > 0. Multiplying the total mass equation by
(0,5) o0 = 500 — €00/Too — g, the total energy equation by (9ot S0y = 1/The,
and subtracting to this linear combination the fluid entropy governing equation
yields (5.13). Integrating this balance equation (5.13), keeping in mind the regu-
larity assumptions such that fluxes and sources are in L*((0,7), L*(R™)), we obtain

that
AT nld? | K(0xv)”
[0] —
8t/n*y dx + Co Rn( Tz + 9T + T dx = 0.

From the properties of the transport coefficients we obtain

2 t|2
8t/ o dx+C0(ﬂ/2)/ T ('8}? 110 +;a”””) | ) dx < 0.

On the other hand, for any v € W12 and any index pair (4, j) we haveS!

28jvi = ((9j11¢ + 8ﬂ}j) — Z Rle(aﬂ}i + 81-111) + Z RlRi(alUj + 8jvl), (5.15)

1<i<n 1<i<n

where R; = (—A)~/20; are the Riesz transforms, 1 < i < n, and from the conti-
nuity of Calderon—Zygmund operators in weighted Legesgue spaces established in
Theorem 4.6 we deduce that there exists a constant ¢(n, 5) such that

002 [ 1850 + (0:0)')
/andxﬁc B e

for || log T'||pmo < d(n, ») small enough. By combining these estimates and by using
that 7% = ¢2h? we obtain

11
(0] 2a [0] <
at/ﬂ dz + Cole/ a)1+61+4n/nﬂ-7 dr <0,

and selecting Co > 2(1 + ¢)(1 4 4n)a/a completes the proof. |

We also recast the classical zeroth order entropic inequality into a convenient
form that will be needed to investigate entropic principles associated with T'*,

Proposition 5.5. Let 7% =~ by given be (3.17). Then 7% > 0 and the balance
equation (5.13) holds. Moreover, there exist positive constants By and & > 0 such
that for Co > Bg and x5 < &

at/ 10 d:c+/ i dx <0, (5.16)

where we define from (3.35)

n—2

A + =
WLYO] — 2¢2h? <€7|8w7|2 + €%|8ww|2 + M(&MUP) )

6%7'
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Proof. This is a consequence of the proof of Proposition 5.4 and of the differential
relations

&»v 1
=ow+ —wo;Tt, 1<i<mn,
VT 2
which yield that [, W[VO] dz is minorized by (1 —¢x3) [gn w%o] dzx. O

5.4. Higher order entropic inequalities

Our goal in this section is to obtain entropic inequalities for the (2k)th order kinetic
entropy estimators

Tl — 7[0] + Z (VM + Cw[i—%]) E>0 (5.17)
1<i<k
and
Tk — F1O1 4 Z (:Y[i] + aﬁ[i*%]) k> 0. (5.18)
1<i<k

The quantities ’y[i*%] and ﬁ[i’%l, 1 < ¢ < k, are multiplied by a small rescaling
factor a in (5.17) and (5.18) so as not to modify the majorizing properties of the
correctors v and 301, i > 0.

Lemma 5.6. Let (p,v,T) be a smooth solution of the compressible Navier—Stokes
equations (3.1)—(3.5) with regularity (3.6), (3.7), assume that T > Twin. There exists
Bo(Tmin/Too) such that for Co > Bp, 0<a <1, and 0 <k <l

1 3

SO+ M) <TH <S04 9lH), o <k <, (5.19)
1 ~

5(&[0] 4 AlY) <TH < g(&[‘” +o 43 o<k <L (5.20)

Moreover, assuming that T > Ty and p < pmax, there exists Bo(Timin/T o,
Poo/ Pmax) such that for Co > B,

P = rool? + [w]? + T — 7o) < 4. (5.21)

Proof. Using the Cauchy—Schwarz inequality, it is straightforward to check that
i—1
yli=3]| S{phr‘)“‘” C—

forany 1 <i:< k<]
1 1
2) 2 2) 2
h2i
VT }{p }
1

12 2
<! <ph2<i—1> 0" w )

-2
Therefore, half of the density part of 4!l and of the velocity part of vl/~1 compen-
sate for |1~ 2] provided we ensure that 4% > plv/v/T|? but this is a consequence
of Co > 2T /Tmin. The same method also applies for the modified estimators

o

4 thi %
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Fli=3] 1 < < k, and this yields inequalities (5.19) and (5.20) upon summing over
1 <i < k. Inequality (5.21) is a consequence of
Tnin| 12 |U|2
<
T

T .
T — Too |2 < exp(T — Too) — 1 — (T — Too)s
2T
valid for Tiin < 7, where Tiin = 1og Tinin, Too = log T and Ty < Too, and of
Poo 7 = roo|? < exp(roo — 1) — 1 — (1o — 1),
2pmax
valid for 7 < rpax, where Tmax = 108 pmax, Too = 108 poo and 7o < Tmax letting
By = max(l 2T°°, g‘;ax) and C() > Byg. O

In the following, we assume that Cy has been chosen large enough such that the
inequalities of Propositions 5.4-5.5, and 5.6 hold.

Theorem 5.7. Let (p,v,T) be a smooth solution of the compressible Navier—Stokes
equations (3.1)—(3.5) with regularity (3.6)—(3.7) and let 1 < k < I. There exist
positive constants a < 1 and dx(k,n) such that for a < a and x~, < dxa we have

1 1
at/ I dz + —/ ( OI4 N (il + anl é])> dx <0, (5.22)
n 5 n
1<i<k
and for a < a and x5 < dxa we have

- 1 [ 11—
8t/n1“[”“]dx+g/n< Y (s s 2])> dx < 0. (5.23)

1<i<k

Proof. We only consider the case £ = «y since the proof is similar for the modified
estimators £ = 4. From the differential inequality (5.3) for A1 <i<k<I and
the results of Proposition 5.2, we obtain that

8t/ A de 4 (1 - 2Cin)/ il dz < 2Cin/ (W[Vi_%] + ali= 1) da
n Rn n

_ 4 [i-3] | [i—2)
+ 1is22eixy | (my 2 47y de.
(5.24)

Similarly, from the differential inequality (5.4), and the results of Proposition 5.3
we obtain that

0 =3 dz 4+ (1 — 2¢0 — 2eix,) | 7 Fde < G 4o, il g
n nv T €0 CiX~ § Ty xr < Teg CiX~ § T, dx

/2 ) 3 .
+ (Co + 4— + 200@) / 71',[;71] dx + 1i>22cixv/ (7r£f 2l + WI;*Q]) dx.
Rn n

(5.25)



104 V. Giovangigli

Forming (5.24)4a(5.25), we obtain after some algebra

o . 2 -
8,5/ (v + av[l_%]) dzr + (1 —2¢ixy —a (C—O + 261X7)> / 7r,[yl] dx
n 460 R»

+ (a(l —2ep — 2¢ixy) — ZCiX,,)/ 7'('»[:7%] dx

n

/2
< (a (cg + Z% + 2cixy) + QCin) / =1 dz
0 Re

.
+1,202(1 +a)cm/ (el =% 4 7l-2) g, (5.26)

n

Assuming then that

1
< - — ,
0<a = 17 260 107 2(1%1'&;(]@61))(’}/ 107

IA
|

c2 <1 o c? o1
a— < —, a — —
deg — 107 07 4ey ) — 107

that is, @ < @ and x < dya with

_ . 1 460 460 5 1
a = 1min =
7102’ 10(c? + 4eocy) )’ " 20 max ¢;’
1<i<k

we obtain that

8t/ (v + ayli=21y da + % (ﬂg] + awg_%]) dx
n Rﬂ.

3 i— 2 li—3] i
< 0 Jen 7T,[Y 1 dx+1i>2EX7/n(a7T7 2 —|—7r,[y A da. (5.27)

Summing for 1 < < k, and adding to the zeroth order inequality (5.14) we finally
obtain (5.22) and the proof of (5.23) is similar. |

Corollary 5.8. Let (p,v,T') be a smooth solution of the compressible Navier—Stokes
equations (3.1)—~(3.5) with regularity (3.6), (3.7) and let 1 < k < I. There ewist
positive constants Co, a < 1, b and 0, (k,n) such that when x~ < 6} we have

«%/ A 4y Wa(y 3] = 3) g

+b | pT (M 4. 44y az <o, (5.28)
RTL

and when x5 < 0 we have

at/ (:Y[O] IS @[k] + d(:y[%] NI :}/[k—%])) dr

+ b/ pT = (FW 4. 4 50y gz < 0. (5.29)
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Proof. This is a consequence of Theorem 5.7 in the special situation a = a letting
8% = dxa, b =amin(1,a)/5(1 + ¢,), and using pT*=* = g2 /p. O

Theorem 5.7 and Corollary 5.8 show that the (2k)th order kinetic entropy esti-
mators ¥l and T obey entropic principles. Upon integrating these inequalities
(5.28) and (5.29), a priori estimates are obtained for the solutions of the compress-
ible Navier—Stokes equations. These entropic inequalities and the related a priori
estimates are also invariant — up to a multiplicative factor — by the change of
scales (3.8) described in Remark 3.1 and naturally associated with the Navier—
Stokes equations. Since we have formally v/\/rsT = O(Ma), log(T/Ts) = O(Ma),
and log(p/pss) = O(Ma), where Ma denotes the Mach number, the constraint that
X~ Or x5 remain small may be interpreted as a small Mach number constraint,
which is consistent with Enskog expansion.?* These estimates also provide a ther-
modynamic interpretation of the corresponding weighted Sobolev norms involving
either renormalized derivatives for T'*), or derivatives of the renormalized vari-

3344 __ for T and involving as well

able Z — which is also a normal variable
the dependence on density and temperature of the local mean free path through
the factor h. This factor h ensures in particular that the operator hd, is scale
invariant.

Many recent works have been devoted to the compressible Navier—Stokes equa-
tions and related a prior: estimates. Estimates for smooth solutions are generally
obtained upon deriving the governing equations, multiplying by the solution deriva-
tives and integrating in space and time, whereas estimates for weak solutions are
usually derived from energy and zeroth order entropy estimates as well as by using
renormalized equations.

Danchin!®'6 has established the existence of global solutions around constant
equilibrium states in critical hybrid Besov spaces with minimum regularity. In order
to established this existence result, Danchin has derived a priori estimates for lin-
earized equations in hybrid Besov spaces using Littlewood—Paley decompositions.
Since Danchin only considered the scaling properties associated with incompressible
models, some norms used in these papers do not appear to be scaling invariant with
respect to the two-parameter family of transformations of Remark 3.1 but scaling
invariance is easily recovered upon restoring the dependence of various constants on
the state at infinity (poo, Tao). The main difference with Danchin’s estimates is that
there are established for linearized equations and contain an explicit time depen-
dence. They are also established with equations with constant transport coefficients
and associated with the functions (p — poo)/pocs V/VTeos (T — Teo)/Teo, Whereas
the entropic estimates mainly consider log(p/pso), v/VT, and log(T/Ts,). Another
difference is that in Danchin’s estimates, the velocity and the gradient of the den-
sity have the same regularity. This is a key point when dealing with data with low
regularity which is not taken into account with the entropic estimates derived in
this paper. In particular, Danchin’s existence result is stronger than the example
of application presented in the next section.
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The general estimates of Kawashima®?4? for symmetric hyperbolic-parabolic
composite systems can be applied to the compressible flows equations and the
results be compared with higher order entropic estimates. In particular, the extra
correctors v*=2) or k=2 are similar to the perturbed quadratic terms intro-
duced by Kawashima for linearized equations around equilibrium states and decay
estimates. The differences are that we are using renormalized variable as well as
powers of h as extra weights factors in order to maintain scaling invariance and we
also directly obtain differential inequalities associated with solutions of non linear
equations.

Alazard? has investigated local existence of smooth solutions and the limit
of small Mach numbers for a family of flows covering inviscid as well as vis-
cous flows. Some norms used in this paper do not appear to be scaling invari-
ant but invariance is easily recovered upon restoring the dependence of various
constants in the state at infinity (poo, Zoo). The main difference with Alazard’s esti-
mates is that there are established for linearized equations and contain an explicit
time dependence. They are also associated with the functions log(p/peo), v/vTwo,
log(T/Ts,), whereas the entropic estimates mainly consider log(p/pec), v/V/T, and
log(T'/Tw). On the other hand, Alazard’s estimates are established for a fam-
ily of flows encompasing inviscid as well as viscous flows and are uniform with
respect to the flow parameters.? In addition, the linearized equations are unstable
because of the large temperature variations so that the estimates cannot be obtained
by differentiating nor localizing in frequency spaces by means of littlewood-Paley
operators.?

Hoff37:38 has investigated the existence of discontinuous solutions around con-
stant equilibrium states for n = 2 and n = 3. The transport coefficients are assumed
to be constants in these studies and there is a constraint on the ratio x/n. The vari-
ous estimates are essentially associated with the energy and the zeroth order entropy
inequalities. Hoff has shown in particular the importance of the effective viscous
pressure p¢ = (k + Q("n—_l)n)&g-v — (p — poo) which naturally arises in the governing
equations. This quantity is free of jump discontinuities, has weak continuity prop-
erties, and has also been used by Lions, Vaigan and Khazikhov, and Feireisl. This
quantity scales like pT" so that the rescaled effective pressure (1/pT)2h?*|0%p¢|?
be estimated in terms of y[% 4 - . 41 but the effective viscous pressure does not
seem to play a fundamental role for smooth solutions as it does for discontinuous

can

or weak solutions.

Lions?? has investigated the existence of global weak periodic solutions in dimen-
sions n = 2 and n = 3 upon modifying the state law and the thermal conductivity
coefficient. The pressure has been taken in the form p = g(p)(T + 6), where § > 0
and g is a continuous non-decreasing function with g(0) = 0, lim, . g(p)p~* exists
and is positive with a > 1, and fol (g(s)/s?)ds < oco. The thermal conductivity has
been taken such that A = A\(T') is continuous for 7' > 0 and lim7_ ., A(T)T~? exists
and is positive. In his pioneering books, Lions has established the existence of
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global weak solutions to the compressible Navier—Stokes equations for a and b large
enough using the energy and zeroth order entropy estimates as well as compactness
properties of weak sequences of approximated solutions.%’

Feireisl?3:24 has investigated the existence of global weak solutions in dimensions
n = 2 and n = 3. Feireisl has stabilized the governing equations at low/high
temperatures and low/high dentities by introducing in particular a cold pressure.
The pressure is in the form p(p,T) = p.(p) + Tpo(p) where p.(0) = 0, pL.(p) >
arp?~t—bfor p >0, pc(p) < azp? +bfor p >0, and pe(0) = 0, pj(p) > 0 for p > 0,
and py(p) < azp" +b for p > 0, where v > n/2, T < v/2if n=2,T =~/3 if n = 3,
and aq, as, az, and b and positive constants. The transport coefficients are assumed
to depend on temperature and such that 0 < a < n(T) <, |s(T)| <afor T >0,
and 0 < a(1+7*) < \(T) < a(1+T7¢) for T > 0 where a > 2. Such an assumption
for \(T') yields in particular an I* estimate of 9, T from the zeroth order entropic
estimates. Feireisl’s estimates are then essentially that of energy and zeroth order
entropy combined with the notion of renormalized solutions and weak limits in L.
Among the fundamental difficulties are density oscillations and concentrations in
temperature.?? Feireirsl has used in particular the weak continuity properties of the
the effective viscous pressure p® = (k + 21 — %n)@aj-v —(p— Po)-

Bresch and Desjardins®? have investigated the existence of global weak solu-
tions for compressible Navier—Stokes equations. In their study, they have stabilized
the governing equations at low/high temperatures and low/high dentities by intro-
ducing in particular a cold pressure. More specifically, the state law p = p. + Tpg
contain a cold pressure term p. which may still vanish away from zero.®° The trans-
port coefficients k(p) and 7(p) only depend on the density p and are such that there
exists a constraint in the form r(s) — 2n(s) = 2(sn/(s) — n(s)) (in our notation).
We refer to Bresch and Desjardins®? for the full set of assumptions of the state law
and the transport coefficients. Under these assumptions, Bresch and Desjardin have
obtained existence of global weak solutions by using a new entropy in the form (in
our notation)

/ ) 2
7| 422 Oer
VT VT »p
which presents many similarities with the higher entropy correctors v and 7[%1.

These are the estimates which are closer in spirit to the higher order entropic
inequalities investigated in this paper.

6. Global Solutions

Many results have been devoted to the existence of solutions to the compress-
ible Navier—Stokes equations. Local existence of smooth solutions has been estab-
lished by Nash®” and global existence around equilibrium states by Matsumura
and Nishida.”! Kawashima has established global existence of smooth solutions
around constant equilibrium states for composite hyperbolic-parabolic symmetric
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42:43 which can also be applied to the situation of compressible flows. The
cases of multicomponent flows with complex chemistry and ambipolar reactive plas-
mas have also been investigated.3?:33

More recently, Danchin'®!6 has established global existence of solutions in crit-
ical hybrid Besov spaces with minimum regularity for the isentropic as well as the

systems

full compressible model around constant equilibrium states.

Hoff3738 has also investigated discontinous solutions with small data. Alazard,?
Danchin,'”'® and Feireisl and Novotny?® have further investigated the limit of small
Mach number flows in various functional settings.

With respect to weak solutions, we mention the pioneering work of Lions* as
well as the fundamental results of Feireisl,?>2% Bresch and Desjardins,®° Bresch,
Desjardins, and Vallet,!? 50

Our aim in this section is more limited since we only want to illustrate higher
order entropy estimates. Therefore, we investigate global existence of smooth solu-
tions when the initial values log(po/poo ), vo/v/To, and log(Ty /T ) are small enough
in appropriate weighted spaces. Although the set of assumptions (3.11)—(3.12) on
transport coefficents derived from the kinetic theory is new, we do not claim orig-
inality in these existence results — since it is well known that such smooth solu-
tions exists — but in their proof which illutrates the use of higher order entropic
estimates.

and Mellet and Vasseur.

6.1. Local existence

We denote by z the combined unknown z = (p,v,T) and accordingly by Z., the
equilibrium point Zeo = (pso, 0, Tao) With pog > 0, Voo = 0 and T, > 0. We denote
by O, = (0,00) x R™ x (0, 00) the natural domain for the variable z.

Theorem 6.1. Letn > 1 and 1 > [n/2] + 3 be integers and let b > 0 be given. Let
Oy be an open bounded convex set such that Oy C Oy, dy with 0 < dy < d(Oyg, 00,),
and define Oy = {z € Oy; d(z,00) < d1}. There ezists t > 0 small enough, which
only depends on Og, di and b, such that for any 7o with ||Zo — Zeo|lwr2 < b and
zo € Oy, there exists a unique local solution z = (p,v,T) to the system (3.1)—(3.3)
with initial condition

(p(O,x)7v(07x)7T(07x)) = (po(x),vo(x)7T0(x)), (6'1)
such that
(p(t,x),v(t,x), T(t,x)) € Oy, (6.2)
and
p—pee € CO[0,T], WH(R™)) N CH([0,T], W2 (R™)), (6.3)

v, T — T € C°([0,2], WEE(R™)) N CH([0, 7], W22(R™)) N L2((0, 1), WHB2(R™)).
(6.4)
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In addition, there exists C' > 0 which only depends on Oq, dy, and b, such that

Oiugf{llp(S) = poclliyr + 1) [fyee + I1T(s) = Toollfir2 }

t
+/0 {llp(s) = poolliyre + [0(s)[frsre + 1T(s) = Toclfyrvra} ds
< C(llpo = peclliyrz + llvollfyre + 1To = Toollfye2)- (6.5)

Proof. There are many proofs for local existence of solutions in various functional
settings.2741 45:51.57.63 We refer the reader to Kawashima*?3 for a general proof
concerning hyperbolic—parabolic symmetric systems in normal form. This proof is
also adapted to the parameter dependent case in Giovangigli and Graille.3? O

6.2. Properties of the solutions
We establish in this section that the solutions constructed in Theorem 6.1 are as

smooth as expected from initial data.

Theorem 6.2. The solutions obtained in Theorem 6.1 inherit the regularity of Zo,
that is, for any k > 1 such that Zg — Zso € Wk2, we have

p— peo € CO([0, 2], WF2) n CH([0, 2], Wh—12), (6.6)
v, T — Tso € CO([0,2], WEH) N CL([0, 2], WF=22) 0 L2((0,1), WFHE2). (6.7)
In particular, 7 is smooth when Zg — Zoo € W*2(R™) for any k € N.
Proof. Let k > [ be such that zy — Zs. € W¥2 and denote by el¥ the quantity
elfl = 0% p|? + |0%v|? 4 |0*T|2. We have to estimate el*! in order to establish
(6.6), (6.7).
Assume first that the regularity properties (6.6), (6.7) hold. A balance equation

for el¥! can easily be derived — and is simpler than that of 4% of 5% — and written
in the form

Oe™ + 8, (veltl) 4+ 0, I 4 wlFl 4 sIM 4 GIH = 0. (6.8)

This equation holds in D’((0,£)xR™) and L*((0,%), W11, ¥l € ¢O([0,7], L"),
and M, 7l s LM e £1((0,7), LY(R™)). The term 7 is given by

2\ 2 2(in +
T‘,Lk] — _|ak+1T|2 + _’r]|ak+1v|2 + (377 "i) |8k(8$v)|2, (69)
PCuy P P
and the term ZLk] is of the form
s =37 g T phone O GIIFHDTIRHD, (6.10)

oV
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where the sums are over 0 < 0 < k, ¢ € {\n, Kk}, v = (Va,V, Vo )1<|a|<k+1
n = (Mouufxvug)lg\a|§k+l7 Vm”&»”{;f»ﬂa»ﬂfpﬂg S N? o € N The quantities aup,qﬁ

)

and b,,4 are integers depending on v, i and ¢. The products ﬁl(,kH are defined by

ofy = I (%)= (0%v)"=(0°T)", (6.11)
1<]a|<k+1
where v denotes any of its components v1,...,v,, and ¥ must be such that
Z lo|(ve + V), + V) =k +1, Z Vo =0,
1<|a|<k+1 |a|=k+1

so that there is a total of k + 1 derivations and there is no derivative of order k + 1
of density. In addition, we have >, ;1 (Vg +va + 1y + pg) < 1, so that there is

at most one derivative of (k+ 1)th order in the product ﬁf,kﬂ)ﬁﬂcﬂ). Furthermore
the term wyﬂ] is given by

oy 2T
K] _ vy b TR T(k+1) knakig .
wi = EW ey T pP TITIHD o Ok To*(9,v) (6.12)
2T k k k k
+ 78 PO (0y-v) — 2p0" pO~(Dy-v), (6.13)

ﬁ&k—o—l)

.y . =(k .
where we use similar notation for H,(, ) as for and the summation extends

over

Yo lalatvatv)=k > lal(kat o+ p) =k+ 1,
1<]a|<k 1<la|<k

so that in particular } -, _; 1 (Ha + Ho + 1) = 0 and there are always at least two

derivative factors in the product ﬁffﬂ). Finally the flux gp[ek] = (gp[ekl], R gogﬁ) is in
the form
P =37 covppTane pheone 95 I TIR+D). (6.14)

ovpl
After integrating Eq. (6.8) over R" and using uniform lower bounds on \/pc,
and 7/p, thanks to (6.2), we obtain that there exists a § > 0 with

8t/ eWlde+26 [ (|07H1T)2 + (07 w|?) dx < c/ (=M W) de, 1<j <k
n Rn

R

Now regrouping all derivatives of order k£ + 1 appearing in Z[ek] in the left member,

using 2y < ex? +4y?/e, we only have to estimate the L? norm of multiple products
with k + 1 derivations H,(,kH) with at least two derivative factors or of multiple
products with only k derivations Hl(,k). From Theorem 4.8 and since ||Z — Zoo|| Lo,
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and [|0z]| e, are finite thanks to [ > n/2+ 1, whenever the product oY s split,
we have estimates in the form

D1 < el 93200 (@ ey
Rn

where ¢ only depends on ||Z||~. The products ﬁ,(,k) are also estimated, thanks to
Theorem 4.7. Combining these estimates, we obtain after some algebra that

at/ el] dx+5/ (|07 T+ (07 of?) da gc/ (e elflyde, 1<j<k,
Rn Rn

where § and ¢ depend on L estimates of z and 9z. Upon summing these inequalities
and using Gronwall lemma we deduce that fRn el dz remain uniformly bounded
over the whole time interval under consideration [0,¢] and we thus have a uniform
upper bound B for the sobolev norm ||z — Z|lyr2 < B. This also implies that
fot Sz |07 T2 dazdt and fot Jgn 107 0| dadt are finite.

Now from the local existence theorem, there exists a positive time 0 < ¢/ < ¢
constructed with the parameters Oy, d; and 2B, where a solution with regularity
(6.6), (6.7) exists and coincide with z. The preceding estimates then show that the
local existence theorem can be used repeatedly over [0,¢] since we have the uniform
bound ||Z — Zeo|lwr.2 < B over this interval so that finally (6.6), (6.7) hold over
[0,7]. Moreover, when zg — Z, is in W2 for any k > 0, 2 — 7, is in C°([0, %], WH2)
for any k, and we recover the regularity with respect to time from the governing
equations so that z is smooth. O

In the next propositions, we reformulate for convenience the local existence
theorem in terms of the combined unknown 7z = (r, w, 7) associated with the renor-
malized variables r, w and .

Lemma 6.3. Denote by F:(0,00)xR"x(0,00) — R"*2 the application defined by
F(z) = 2, that is, F(p,v,T) = (r,w,7) = (logp,v/VT,logT). Then F is a O
diffeomorphism and its Jacobian matriz reads

L9 o0
P
0o o0 £

Moreover, for any M, > 0, My, > 0, M, > 0, defining 0= (=Mpy My ) X (— My, My ) X
(=M, M, ), the corresponding open set O = F~1(O) is convez.

Proof. The proof is similar to that of the incompressible case.?” O
Proposition 6.4. Let M, > 0, My, > 0, M, > 0, define

60 = (_MraMr) X (_MwaMw)n X (_MT7MT)7

and Oy = F~H(Oy). Let 0 < dy < d(Dy,00,), Oy = {z € O,; d(z,00) < dr}, and
select an arbitrary b > 0. From Theorem 6.1 we have a local solution built with the
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paramaters Ogp, dy, and b. This solution is then such that
r—1s € CU[0,2], WY N CL([0,E], WL, (6.15)
w,T — Too € CO[0, 2], WH2) N CL([0,2], W22) N L2((0,1), WHE2), (6.16)
and there exists C > 0 which only depend on Og, di, and b, such that

Oiugf{llr(S) — Toolliyre + w(s) [y + 17(s) = Too Gy}

£
+/ {llr(s) = roclfyr2 + lw(s)[fy1.2 + 17(5) = Tocllfyis1.2} ds
0
< C(llro = roolliyee + lwollfyes + 170 — oo lfyr.2)- (6.17)

Moreover, the kinetic estimators are such that T, T e C([0,£], L*(R™)).

Proof. The set Oy = F _1(60) is convex and from Theorem 6.1, there exists a
local solution built with Oy, di and b. We then have estimates in the form

12 = Zoolwiz < |2 = Zoollwiz < CllZ — Zoo || w2, (6.18)
where ¢, and ¢, only depend on O; and [ thanks to the classical estimates

1%(9) = ¥ (0)llwre < Collell ez, (L + llzee)*HIgllwe.z, (6.19)

where Oy is a convex open set with ¢(z) € Op, © € R™. Similarly, the regularity
properties are direct consequences of the estimates

1%(8) = (@) llwr2 < Colldllcra,) (L + 1llwee + [ Gllws2)*(l¢ = Bllwes,
(6.20)

where Oy is a convex open set with ¢(x)~6 O, q@(a:) € Oy, x € R", and k is such
that k& > [n/2] + 1. The properties TU, T ¢ C([0,%], L'(R™)) are then straight-
forward to establish. O

6.3. Global existence

In this section, we investigate global existence of solutions for which the quantity
X3 = |I7llByo + lwll e + |7 llB7o + 1Dz (| Lo + [[ROzw]| oo + 2o || Lo + [|R2 037 || Lo
remains small. We investigate solutions with given bounds pmin < p < pPmax and
Tiin < T < Tiax, where pnin < pPoo < Pmax and Tmin < Too < Tax, and assume
that Cy has been chosen large enough as in Lemma 5.6. We will also use the results
of Corollary 5.8 and assume that the fixed value a = @ has been selected for the
parameter a in this section.

Theorem 6.5. Letn > 1 and ! > [n/2]+3 be integers. Assume that the coefficients
A, K, and n satisfy (3.11), (3.12). There exists dr (1, n, Tiin, Tmax, Pmin, Pmax) > 0
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such that for po, vo and Ty satisfying Tmin < infre To, supge To < Thmax, Pmin <
infgn po, SUPgn Po < Pmaxs Zo — Zeo € W2 and

/ T da < or, (6.21)

where f([)l] denotes the functional TV evaluated at initial conditions, there erists a
unique global solution z = (p,v,T) with initial conditions

(p(0,2),0(0,2), T(0, ) = (po (), vo(x), To(x)), (6.22)

such that
P — PoosT — Too € C°([0,00), Wh2) 0 C1([0, 00), W'T12), (6.23)
0, W, T — Too, T — Too € CY([0, 00), WH2) N C1([0, 00), W22, (6.24)

Dup, Oy € L2((0,00), W12)  9,T, 8,7, 00, 0pw € L*((0,00), Wh?),  (6.25)

and we have the estimates

t
/ ' dz + Q// pT =AM 4o ) dadt < / T da. (6.26)
Rn 0 ™ n
Furthermore, we have
tlim |Z(t, ) = Zoo|| L= = 0. (6.27)
Proof. We investigate solutions such that ppin < p < pmax and Tin < T < Thax-
For such solutions, thanks to classical estimates in the form
2 = Zssllcz < collZ — Zos |l wio+2.2,
where lp = [n/2] + 1 we have the inequalities
1Z = Zoo | + X5 < cxlZ = Zoo [l wio+2.2

and

crl|Z = Zoo |3y < / T da,
thanks to Lemma 5.6 where ¢, and cr depend on Tiin, Tmax; Pmins Pmax and I. In
order to obtain a value of dr small enough, so that the higher order entropic esti-
mates of Theorem 5.7 hold, we will ensure that ép < crd?/4¢2 where 6 is defined
in Corollary 5.8 and this value will indeed insure that y5 < 6/ /2. Corresponding
to this value of dr, we have estimates in the forms ||Z — Zoo|| 20« < ¢ (6r/cr)?/? and
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1Z = Zoo|lwi2 < (6r/cr)'/2. We now select M, > 0, My, > 0, and M, > 0, such that

IOg(pmin/poo) <=M, <M, < IOg(pmax/poo)7

log(Twmin/Two) < —Mr < M; < l0g(Timax/Too),
and define
Op = (—My, My) X (=M, My)" X (—M;, M),
and for 6 > 0
O5 = {2 € R"2; ||z — Zoo|| < cy(6/cr)/?}.
For §y small enough we have

Oas, = {7 € R"2 |12 — Zuo || < V2¢,(80/cr)?} € Oy,

) c 5/2
Or = min (%,6()) .

X

and we now set

The open set Oy = ]—"1((’30) is convex and let 0 < d; < d(Oy,d0,), and define
O = {z € O,;d(z,00) < di} and O; = F(O;). Now for functions taking their
values in O; we have inequalities in the form [|Z — Zeo|lyr2 < Gl|Z — Zoollyyro2
where ¢, only depends on k and O;. We thus obtain the a priori estimate ||z —
Zoo|lwi2 < (01 /cr)'/?. We now set b = ¢,(dr/cr)*/? + 1 and from Theorem 6.1
and Proposition 6.4 we have local solutions over a time interval [0,¢] built with the
paramaters Oy, dy, and b.

Let now po, vo, and Ty satisty Tin < infge T, supgn 70 < Tmax, Pmin < infre p,
SUPRn £ < Pmaxs 20— Zoo € Wh2, and fRn f‘g] dx < dr. Then by construction zg € Qg
and [|Zo — Zoo|lwt2 < b, and we have a local solution over the time interval [0,7].
Letting

x4(t) = [[r(t; )levo + lw(t, )l zee + I17(¢ ) l[Bnvo + 1At ) er(t, )| oo
+Iht, )0sw(t, L + |h(t, V0ut(t, )= + B2 (t, ) 027 (¢, )|z,

we also have by construction x5(0) < 6//2 and we claim that for any ¢ € [0,7] we
also have x5(t) < 6{ /2. We introduce the set

€={s€(0,8];V 1€ 05, x5(t) < (2/3)8, 2(t) € F~}(Oas,)},

which is not empty since ¢ — x5(t) is continuous, x5(0) < dy/2, and z(0) € Os, so
that z(0) € F~1(Os,). Denoting e = sup & we have x5(t) < (2/3)d over [0,e] so
that the entropic estimates of Theorem 5.7 hold and we have

/f“]dxg/ tlde <o, 0<t<e.

This now implies that x5 (t) < 0y /2 and that pmin < p < pmax and Trin < T < Tiax
uniformly over [0, €] so that e = ¢. From the above a priori estimates, we also obtain
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that for ¢ € [0,7] we have ||Z(t) — Zoo||z < ¢y (6r/cr)/?, so that z(t) € Op, and
|Z(t) — Zoo|[y12 < b—1 < b, in particular at ¢ = . We may now use again the
local existence theorem over [¢,2f] and an easy induction shows that the solution
is a global solution.

The asymptotic stability is obtained by letting ®(t) = [ (F +- -+ 5= ) d
and establishing that

/|Mmm+/ @Mmmgc/fﬁm.
0 0 R»
This shows that lim;_, o [|0,%(, -)||wi-22 = 0, and using the interpolation inequality

gllco < Colldk ozl

where n/a = 2(I — 1) we conclude that lim; o ||Z(Z, ) — Zeo||co = 0, and next that
limy oo [12(t,-) — Zoo]lco = 0. 0

7. Conclusion

Higher order entropic estimates have been established for compressible equa-
tions whenever the quantities || log p|/zmo, ||v/VT ||, ||logT|symos |[hdep/pl L,
|hOwv/NT|| oo, ||hO2T )T || o<, and ||h202T /T || 1, are small enough. An asymptotic
expansion of higher order entropies for small Mach and Knudsen numbers has also
been performed.30:31

A first natural extension of this work would be to investigate other types of
higher order entropy estimators where the velocity and the gradient of the density
have the same regularity. This is indeed a key point for dealing with data with
low regularity as shown by Danchin'® and Bresch and Desjardins®® and since such
entropies are a natural reordering of the higher order entropies used in this paper
in term of the Mach number.

Another natural extension would also be to investigate the situation dense gas
where gradient entropies have already been used — albeit with some constraint
between the visosities — in order to obtain weak solutions with large data.®?

Appendix A. Derivation of the v*! Balance Equation

We derive the balance equation for the entropic correctors v, The proof is lengthy
and tedious but presents no serious difficulties.

To obtain more concise analytic expressions, it is convenient to define a; =
1+ k(1 —25) and by, = —1 + 2k in such a way that

AFl =

L (10 Rl 0T
Tak—lpbk p2 T voo2 .
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In order to obtain a balance equation for ¥ for smooth solutions we form its time
differential 9~

gl 4 (ax — D)0%p|>  ap|0Fv|®  co(an + 1)|0FT|? 9T
7 Takpkar? Tak+1pbk Tak+2pbk t

be +2)[0%p|2  br|0Fv|? b1 |OFT |2 k! 0°To*0 T
(B DIOR | BIE  e0TEY e R T,

la|=k
k! o~ pa atp k! 80[111‘80[8{(}1'
-2 Z ol Tar—1 bk+2 -2 Z JW:O, (A1)
lal|=k 1<i<n
|| =k

and we use the governing equations in order to express 0;T, d;p and Oyv in terms
of spatial gradients

Op = —p0y-v — V- Oy p, (A.2)

Opvi = % > o (Uajw +ndiv; + (/‘”v - %7]) am'v6ij> - %@(pT) — v- 0305,

1<j<n
(A.3)
T
= P 2 . 2 _ — . —_ .
T = — > 05( A&T)+ || pCU(am v)’ = =0pv—v-d,T.
1<j<n
(A.4)

We denote respectively by 77, T7°, T9T T2 and T9”, the five sums appearing in
the governing equation for 9;v¥, keeping in mind that the time derivative terms
Op, Orv and ;T have been replaced by their expressions (A.2)-(A.4). We first
examine separately higher order derivative contributions associated with each sum
T, 7°, 79T T9 and T9. The lower order derivative terms of convective origin
are examined altogether at the end.

The term in 77 associated with |9¥p|2 AT, which is not of the admissible
form, is isolated in ELYk] whereas all terms associated with |9%p|?|0,T|?, |0%p|?|d|?,
and |0%p|?|0,-v|? are of the admissible form, that is, in the form

D Covuo T OFGIITIE Y,
ovug

where ¢4 are constants and the products H(Vkﬂ) and Hﬂ”l) are defined by

H’(/kJrl) :ghk+1 H (@)V& <@>Va (a;T)Va
1<jaj<hrt P VT

The sums are over ¢ € {\n,k}, 0 < 0 <k, v = (Va, Vo Vi )1<|a|<k+1> I =

[e 2o}

(Lhaus s on)1< || <k+15 Vs Veys Vers s s ey € N, o € N™, and g and v must be
such that 32, | <py [ (Va +v6+v0) = k41, 301 <)o <ppr (o + 16+ 10) = k+1,
Dlal=ti1(Va T Ha) = 0, 304 21 (Vo + Vo + pig + o) < 1, so that there is no
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derivative of order k 4 1 of density and at most one derivative of order k£ + 1 of

temperature or velocity components in the product H(VkH)Hff“). In particular,
one of the terms T or Hﬂ”l) is always split between two or more derivative

factors.

Similarly, all terms of 77 in the form |O*T|?|d|?, |O*T|?|0,-v|? |0%v|?|d|* and
|0Fv|2]0,-v|? are of the admissible form. On the other hand, the terms associated
with |OFT'[20,- (A0, T) and |0¥v|?0,- (\J,T) are integrated by parts. They yield flux
contributions and source terms in the form

B Z 5, ((ak +1)|0FT|? ay|0Fv|?

T2+ak pbk CUT1+ak pbk ) AalT’

1<i<n

which are easily rewritten as sums of terms like cUVNT"_”ai‘,’«)\HE,kH)HLkH) with at
most one derivative of (k + 1)th order. All other contributions from 77 as well as
all contributions from 7 and 77 are of lower order type.

We now consider the term 797 with each contribution at a time. The most
important contribution in 797 is that associated with

Koo (1
—2Cv Z Jwa (pz@l(A@lT)) .
1<i<n
|| =k

We then write

AalTalp

l(91(/\(917") = 0 (1/\81T> + 3
P P P

and the contributions associated with 9;(A9,T/pc,) are integrated by parts. This
yields source terms in the form

k! 0°T \ .. (AT
AP (T““’wbk>a ( P )
1<i<n
la|=k

After expanding the derivatives, using the differential identities of Sec. 4.1, the
above sum can be written as

k’! 80‘81T (90‘T81T (90‘T81p
Z (1+ ag)

2. o \ TTarpbe Torac i~ R v
|al=k
L T\’ B\
< [prare Sl (57) T(57) oar).
g & p
av Ié; 8



118 V. Giovangigli

where the summations and products extend over 1 <1 < n, |a| =k, 0 < & < q,
a#0,1<o<|al, Y58(vs+us) =a, 1 <|B <lal,and > 5v3 = 0. We can

now extract for WLY] the term in the form A\(9“9,T)? which can be written as

S K(@°0T)? 5 (k+1)! (9°T)?

a Tl—‘—akpbk a! Tl—i—ak pbk ’
1<i<n

la|=k

|| =k+1

thanks to the properties of multinomial coefficients.’*%% All other terms are of
admissible form for =i i.e. in the form ¢y, 77~ *0FAIF VI with at most
one derivative of (k+1)*" order since Y5 |Blvs+1+|a—al = k+1. More specifically,
we can factorize T~% in the first factors, 77 in the parenthesis, and all the terms
involving derivatives of 07 A are multiplied and divided by T thanks to gvg=0.

The contributions associated with A9, T9;p/p? are integrated by parts thanks
to a decomposition in the form o = & + e;, where |@| = k — 1, as well as the
contributions in 79T associated with n|d|?> + x(9,-v)?, and only yield admissible
source terms. More specifically, we decompose each multi-index a with || =
into &« = & + e;, where |&| = k — 1, iy is chosen arbitrarily with «;, # 0, and
e1,...,e, denotes the canonical basis of N, so that we have 9% = 999, . We can
then integrate these terms by parts and obtain sources in the form

0T o
Z aia (T1+akpbk ) 9 (nd”)
1<i,j<n
|| =k

Upon expanding the derivatives with the help of the differential identities estab-
lished the Sec. 4.1, all these terms are of admissible form for E[k].
We now consider the sum 72 and its most important contribution is that

corresponding to 9%, (nd + kd,-vI) which reads

i 1
-2 E k0% 0% | =0, ’r]aﬂh‘—Fnaﬂ}l—F H——’r] Oy 004
a' Takpbk p
1<4,l<n
|| =k

where §;; is the Kronecker symbol. We first consider the contribution associated
with nojv; using the identity

1 1 01 p0;
—8l(n8lvi) =0, (—nalw) + —lp2 v
P P P

and focus on the contributions of the terms 9;(ndjv;/p). The contributions associ-

ated with 9;p0;v; are of admissible form for ZLYk] after one integration by parts using

o = &+ e;, and the corresponding details are omitted. After integration by parts
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we obtain sources in the form

0%v; o (Mo,
’ Z (T“kpbk)a ( P )
1<1l<n

|| =k

Expanding the derivatives, the sum is rewritten

k! [ 0%0v; 0%v; 0T b 80‘1}1-8”)
1§1’2,l:§n J Takpblc — Gk Tak-+1pbk- — Yk TakJrlpkarl
la|=k

I
N0 + Y CaauT70Fn H (‘9 T) 11 (?) oo, |

avp B

D=

where the summations and products extend over 1 <i,l <n, |a| =k, 0 < a < a,
a#0,1<o<|al, > ;6vs+ps) =a 1 <|8]<lal, and } ;v = 0. We can

(k]

extract the term in the form n(9*9v;)? for 7" which is rewritten as

) Z k! (0%0yv;)? .y Z (k+1)! (0%v;)?

a' Takpbk a' Tak'pbk'7
1<4,l<n 1<i<n

la|=k la|=k+1

thanks to the properties of multinomial coefficients. All the other terms are of
admissible form for ZLYk]7 that is, in the form cUVNT”*”a%nHI(,kH)H,(fH) with at
most one derivative of (k + 1)th order.

The contributions associated with nd;v; is treated in an analogous way with the
identity

81(178@1;1) = 8T7781T8m + 0; (T]alvl) — 8Tn<‘9¢T8wl-,

(] -

and yields a source term for 7, in the form

| e 2
2n Z et (0% 0pu)” .

al Taxpbr
1<i<n

ler|=k

Finally, the terms (k — %n)@m-vdu can be treated in a similar way and yields a

(k] in the form

2 k! ((90‘(91111)2

2 JE— —_— 7

<H nn) 1<zl<:n ol Takpbk ,
ol =k

source term for 7

as well as contributions of the admissible form.
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Lower order convective terms first yield the contributions

[ (ak — DIOFp2  aglokv*  ey(ax +1)|0FT|? T
Takpbk+2 T(Lk—‘rlpbk Tak+2pbk U O

(b +2)|0%p|>  bpl0Fv? cub|OFT|? 5
o Tak—lpbk+3 Takpbk_‘—l + Tak+1pbk+1 "Ozp
k! 0T 0%(v-0,T) k! 0%p0*(v-0rp)
+ 2(3@ |Z a Tak+1pbk- - |Z a Takflpbk+2
al=k al=k
k! 0%0;0%(v- O,v;)
—9 M St a7
I;n al Takpbk ,
la|=k

and all terms proportional to v are easily recast in the form v-9,7, so that the
only remaining contributions are the sources

k!
B,, Hla—06)
Z Z Caﬁa' Tak+1 bka ud ar
|a|=k 0<f<a
1<i<n 1<)

9 Z Z ¢ ﬂ&aﬁvla(a—ﬁ)@p

la|=k 0<B<a
1<i<n  1<(8]

9 k9% 980,900y

Z Z CaﬁaTakpbk v P
lal=k 0<f<a

1<i,i<n 1<)

which are easily rewritten in the form CWH(VIC)HEJ’“H).
The remaining first-order terms are then in the form

B ((ak —1)|0Fp]2  apl0*v|* ey (ap + 1)|8kT|2) Ty v

Tk pbk +2 T(Lk—‘rlpbk Tak+2pbk Co
(e 2R | BE  ebdPTEY
k! k! 0%p
+2 > o Tam bka (Tyv)+2 ) e Wa (pOy-v)
lo=k loa|=Fk
k 0% vl (%p
2 o i .
|;\;k

The first two sums are easily recast in the admissible form c,,NH(k)HE,kH). In the
last three sums, it is then important to separate admissible terms form unsplit ones
that is, to separate terms with three or more derivatives — which are then of the
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admissible form — from quadratic terms. The third and fourth terms yield the
special source terms

8”“T8”“(8 “v) OFpdk (0, v)
Takpbk Tak_lpbk"l'l :

+2 (A.5)

In the last sum, the contributions associated with 9;T" are integrated by parts and
yield admissible terms plus the special term

00N D)
Tak pbk

)

which compensates with the first term of (A.5). Finally, the special contributions
associated with T9;p/p = T0;log p are integrated by parts and yields the source
term
_28kpak(aw'v)
Tak—lpbk +17

which compensate with the second term of (A.5). This compensation of quadratic
terms involving hyperbolic variables are the consequence of the symmetric structure
of the system of partial differential equations.

Let now (p,v,T) be a smooth solution of the compressible Navier-Stokes equa-
tions (3.1)-(3.5) with regularity (3.6)—(3.7), and assume that T > Ty,;, and that
£ > pmin. The preceding derivation of the *! balance equation can then be justified
for 0 < k < I by using mollifiers and classical properties of commutators.2:43.63

Moreover, from classical interpolation inequalities the following lemmas ensure
that <p[k] [k] E’[Yk], [Vk] € LY((0,1), Wi=k1y,

Lemma A.1. Leti > 1, o7, 1 < 7 < 1, be multi-indices such that |aj| > 1,
1<j<i,andletk = Zlgjgi |a|. Let uy, ..., u;, be such that there exist constants
Ujoo With uj —uj e € W™2(R™)NCY(R™) and assume that 1 < k < m. There exists
a constant ¢ = ¢(m,n) only depending on (m,n), such that

IT oy < cflu = uso | (10%ull 2 + -+ + 10™u]| 22), (A.6)
1<y<i Wm—k2
where

Ju—usollzee = D> luj = ujeoll=,

1<j<i

o™ ulZe = > 110"z,

1<j<i
and the derivatives of ngjgi o~ u; can be evaluated by using Leibniz’ formula.

Lemma A.2. Let i > 2, o/, 1 < j < i, be multi-indices such that |o?| > 1,
1<j<i,andletk = Z1gjgi |ad|. Let uy, ..., u;, be such that there exist constants
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Ujoo With uj —uj e € W™2(R™) N CH(R™) and assume that 2 < k < m + 1. There
exists a constant ¢ = ¢(m,n) only depending on (m,n), such that

H aaj uj;

1<5<i

< e(llu—uoolz + 100l ) TH (10 ul 2 + - + 0™ u]| z2),

Wm+l—k,2

(A7)

where

1Osullze = D [10zujllz=,

1<j<i
and the derivatives of ngjgi o~ u; can be evaluated by using Leibniz’ formula.

These lemmas can be established by using classical interpolation inequalities®
or by using Theorems 4.7 and 4.8 with a weight unity.

Lemma A.3. Let m >0, and a, b € W™2(R"). Then ab € W™ and there exists
a constant c(m,n) only depending on (m,n) such that

labllwma < cllallwm.2||bllwmz, (A8)
and the derivatives of ab can be evaluated by using Leibniz’ formula.

This lemma is a direct consequence of Holder inequality.
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