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We investigate higher order entropies for compressible fluid models and related a priori
estimates. Higher order entropies are kinetic entropy estimators suggested by Enskog
expansion of Boltzmann entropy. These quantities are quadratic in the density ρ, veloc-
ity v, and temperature T renormalized derivatives. We investigate governing equations
of higher order entropy correctors and related differential inequalities in the natural
situation where the volume viscosity, the shear viscosity, and the thermal conductivity
depend on temperature, essentially in the form T κ , as given by the kinetic theory of
gases. Entropic inequalities are established when ‖ log ρ‖BMO, ‖v/

√
T‖L∞ , ‖ log T‖BMO,

‖h∂xρ/ρ‖L∞ , ‖h∂xv/
√

T‖L∞ , ‖h∂xT/T‖L∞ , and ‖h2∂2
xT/T‖L∞ are small enough,

where h = 1/(ρT
1
2−κ ) is a weight associated with the dependence of the local mean free

path on density and temperature. As an example of application, we investigate global
existence of solutions when the initial values log(ρ0/ρ∞), v0/

√
T0, and log(T0/T∞) are

small enough in appropriate spaces.
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1. Introduction

The notion of entropy has been shown to be of fundamental impor-
tance in fluid modeling from both physical and mathematical points of
view.4,6–12,20–25,27,34,42–44,49–51,58,59,62–64 We have introduced in previous work28–30

a notion of kinetic entropy estimators for fluid models, suggested by Enskog expan-
sion of Boltzmann kinetic entropy. Conditional higher order entropic inequalities
have been established in the situation of incompressible flows spanning the whole
space.28–30 In this paper, we investigate higher order entropies for compressible
fluid models and related a priori estimates.

We consider compressible flows spanning the whole space with temperature-
dependent thermal conductivity, shear viscosity and volume viscosity. We only
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consider smooth solutions defined on R
n that are “constant at infinity”. The com-

pressible Navier–Stokes equations can be written in the form

∂tρ+ ∂x·(ρv) = 0,

∂t(ρv) + ∂x·(ρv⊗v + pI) − ∂x·
(
κ∂x·vI + η

(
∂xv + ∂xv

t − 2
n
∂x·vI

))
= 0,

∂t(ρe) + ∂x·(ρev) − ∂x·(λ∂xT ) =
(
κ− 2

n
η

)
(∂x·v)2 +

1
2
η|∂xv + ∂xv

t|2 − p∂x·v,

where t denotes time, x the n-dimensional Cartesian coordinate, ρ the density, v the
velocity, p the pressure, and e the internal energy per unit mass. We assume for the
sake of notational simplicity that p = ρT and e = cvT , where T is the temperature
and cv is a constant. The transport coefficients κ, η and λ are smooth functions
of temperature and essentially behave — away from small temperatures — like a
power of temperature Tκ as given by the kinetic theory of gases.

We only consider smooth solutions such that

ρ− ρ∞ ∈ C([0, t̄],W l,2) ∩ C1([0, t̄],W l−1,2),

v, T − T∞ ∈ C([0, t̄],W l,2) ∩ C1([0, t̄],W l−2,2) ∩ L2((0, t̄),W l+1,2),

where l is an integer such that l > n/2 + 2, t̄ is some positive time, ρ∞ > 0 a fixed
positive density and T∞ > 0 a fixed positive temperature. We also assume that ρ
and T are such that ρ ≥ ρmin and T ≥ Tmin where ρmin > 0 and Tmin > 0 are fixed
positive constants.

Higher order entropy correctors are first suggested by Enskog expansion of
Boltzmann kinetic entropy. The corresponding balance equations may also be seen
as a generalization of Bernstein equations to systems of partial differential equa-
tions but expressed with renormalized variables. Higher order entropy correctors
are quadratic with respect to the density, velocity, and temperature renormalized
derivatives and are taken in the form

γ[k] = ρh2k

(
|∂kρ|2
ρ2

+
|∂kv|2
T

+ cv
|∂kT |2
T 2

)
,

where h = 1/(T
1
2−κρ) is a weight associated with the dependence of the local mean

free path on density and temperature. The square of kth derivatives of a scalar
function φ, like T , ρ, or vi, 1 ≤ i ≤ n, is defined by |∂kφ|2 =

∑
|α|=k(k!/α!)(∂αφ)2

and we set |∂kv|2 =
∑

1≤i≤n |∂kvi|2. We derive balance equations of higher order
entropy correctors for compressible fluid models with temperature-dependent vis-
cosities and thermal conductivity.
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Higher order kinetic entropy estimators are obtained upon summing a zeroth
order fluid entropy γ[0] written in the form

γ[0]/C0 =
(
ρ log

(
ρ

ρ∞

)
− (ρ− ρ∞)

)
+

1
2
ρ
v2

T∞
+ ρcv

(
T − T∞
T∞

− log
(
T

T∞

))
,

with higher order entropy correctors γ[i], 1 ≤ i ≤ k. These kinetic entropy esti-
mators γ[0] + · · · + γ[k] may also be interpreted as kinetic Fisher information
estimators.29 The hyperbolic–parabolic nature of the system of partial differential
equations governing compressible fluids further imposes to consider extra correctors
associated with density which is a hyperbolic variable. These extra correctors are
in the form

γ[k− 1
2 ] = ρh2k−1 ∂

k−1v√
T

·∂
k−1∂xρ

ρ
,

where ∂ku · ∂k∂xρ is defined as
∑

i,|α|=k(k!/α!)∂αui∂
k∂iρ. These terms are similar

to the perturbed quadratic terms introduced by Kawashima42 in order to obtain
hyperbolic variable derivative estimates for linearized equations around equilibrium
states and decay estimates and are used here with renormalized variables as well
as with powers of h as extra weight factors.

We also establish weighted inequalities in Sobolev and Lebesgue spaces. These
inequalities are required in order to establish a priori estimates since we are using
renormalized variables with powers of temperature and density as weights and since
we also consider flows with temperature-dependent thermal conductivity and vis-
cosities. These inequalities assume that a weighted L∞ norm of the gradients is
finite in addition to the L∞ or BMO norm of the functions. They differ from previ-
ous inequalities established for incompressible flows29 where only the L∞ or BMO
norm of the functions were assumed to be finite. A weighted L∞ norm of the gradi-
ents is required in order to reduce the number of derivation of hyperbolic variables
in a priori estimates.

Entropic estimates are derived by combining higher order entropy correctors
balance equations with weighted inequalities. We obtain differential inequalities for
higher order entropy correctors when the quantity

χγ = ‖ log ρ‖BMO +
∥∥∥∥ v√

T

∥∥∥∥
L∞

+ ‖ logT ‖BMO

+
∥∥∥∥h∂xρ

ρ

∥∥∥∥
L∞

+
∥∥∥∥h∂xv√

T

∥∥∥∥
L∞

+
∥∥∥∥h∂xT

T

∥∥∥∥
L∞

+
∥∥∥∥h2 ∂

2
xT

T

∥∥∥∥
L∞

is small enough. As a consequence, we establish that higher order kinetic entropy
estimators — obtained by summing up a zeroth order entropy with kinetic entropy
correctors — obey conditional entropic principles typically in the following form.

Theorem 1.1. Let (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes
equations and let 1 ≤ k ≤ l. There exist positive constants C0, ā ≤ 1, b, and δ′n such
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that when χγ < δ′n we have |γ[ 12 ] + · · · + γ[k− 1
2 ]| ≤ 1

2 (γ[0] + · · · + γ[k]), and

∂t

∫
Rn

(γ[0] + · · · + γ[k] + ā(γ[ 12 ] + · · · + γ[k− 1
2 ])) dx

+ b

∫
Rn

ρT 1−κ(γ[1] + · · · + γ[k]) dx ≤ 0.

These inequalities are investigated in Sec. 5.4 where more precise statements are
established. Similar estimates are also obtained with the modified higher order
entropy correctors γ̃[k] = ρh2k(|∂kr|2 + |∂kw|2 + cv|∂kτ |2), k ≥ 1, where r = log ρ,
w = v/

√
T , τ = logT , and with γ̃[k− 1

2 ] = ρh2k−1∂k−1w·∂k−1∂xr, k ≥ 1.
Upon integrating the corresponding differential inequalities, a priori esti-

mates are obtained for the solutions of the compressible Navier–Stokes equations.
These entropic inequalities and the related a priori estimates are also scaling
invariant. More specifically, in the special case where λ = aλT

κ, η = aηT
κ,

κ = aκT
κ, and cv is constant, if (ρ(t, x), v(t, x), T (t, x)) is a solution then

(ξ2κ−1 ζ ρ(ξζt, ζx), ξ v(ξζ t, ζ x), ξ2 T (ξζ t, ζ x)) is also a solution for any pos-
itive ξ and ζ. The higher order entropy estimates are then invariant — up to a
multiplicative factor — by these two parameters family of transformations.

Since we have formally v/
√
T = O(Ma), log(T/T∞) = O(Ma), and log(ρ/ρ∞) =

O(Ma), where Ma denotes the Mach number, the constraint that χγ remains small
may be interpreted as a small Mach number constraint, which is consistent with
Enskog expansion.34 These estimates also provide a thermodynamic interpretation
of the corresponding weighted Sobolev norms involving either renormalized deriva-
tives — or derivatives of the renormalized variable — and involving as well the
dependence on density and temperature of the local mean free path through the
factor h. This factor h ensures in particular that the operator h∂x is scale invariant.

Many results have been devoted to the existence of solutions for the compress-
ible Navier–Stokes equations.24,42,49,58 We mention in particular the local exis-
tence result of Nash57 and the global existence result around equilibrium states
of Matsumura and Nishida.51 More recently, Danchin15,16 has established global
existence of solutions in critical hybrid Besov spaces with minimum regularity
for the isentropic as well as the full compressible model around constant equilib-
rium states, and Hoff37,38 has also investigated discontinuous solutions with small
data. Alazard2 has further investigated the limit of small Mach number flows for
inviscid as well as viscous compressible flows with large temperature variations.
For general hyperbolic systems we mention the results of Benzoni and Serre4 and
Serre,59 and for composite hyperbolic–parabolic systems, the fundamental results of
Kawashima.42,43 With respect to weak solutions, we mention the pioneering work of
Lions49 as well as the fundamental results of Feireisl,23,24 Bresch and Desjardins,8,9

Bresch, Desjardins, and Vallet,10 Mellet and Vasseur,50 and Feireisl and Novotnỳ.25

Various aspects of the a priori estimates obtained by these authors are discussed
in Sec. 5.4. Estimates for smooth solutions are generally obtained upon deriving
the governing equations, multiplying by the solution derivatives, and integrating
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in space and time, whereas estimates for weak solutions are usually derived from
energy and zeroth order entropy estimates as well as by using renormalized equa-
tions. The estimates that are closest in spirit to higher order entropy inequalities are
the estimates of Bresch and Desjardins.8,9 Indeed, upon assuming that the volume
and shear viscosity only depend on density κ(ρ) and η(ρ) and are constrained by
the relation κ(s)− 2

nη(s) = 2(sη′(s)−η(s)) (in our notation), Bresch and Desjardin
have introduced a new entropy in the form (in our notation)

ρT

∣∣∣∣ v√T + 2
η′(ρ)√
T

∂xρ

ρ

∣∣∣∣2 ,
which present many similarities with the higher entropy correctors γ[1] and γ[ 12 ].

Finally, as an example of application of higher order entropic estimates, we
establish a global existence theorem around constant equilibrium states provided
that log(ρ0/ρ∞), log(T0/T∞), and v0/

√
T0 are small enough in appropriate spaces,

which may be interpreted heuristically as an existence theorem for small Mach
number flows. We do not claim originality in these existence results since it is well
known that such smooth solution exists, but in its variant proof since it illustrates
the use of higher order entropic estimates and the results are formulated in terms
of higher order entropy estimators.

In Sec. 2, we discuss the concept of higher order entropies. In Sec. 3, we derive
higher order entropies governing equations and in Sec. 4, we establish various
weighted inequalities. In Sec. 5, the core of the paper, we establish that higher
order entropies satisfy conditional entropic inequalities. Finally, in Sec. 6, as an
example of application, we concentrate on global solutions.

2. Higher Order Entropies

In this section we briefly motivate the introduction of higher order entropies by
discussing Bernstein equations and Enskog expansion of kinetic entropy.28,29

2.1. A thermodynamic interpretation of Bernstein equations

For parabolic — or elliptic — scalar equations, a priori estimates for derivatives
can be obtained by using Bernstein method.5,47 More specifically, consider — as a
simple exemple — the heat equation

∂tu− ∆u = 0.

Defining ζ[k] = |∂ku|2 =
∑

1≤i1,...,ik≤n(∂i1 · · ·∂ik
u)2, Bernstein equation for the kth

derivative can be written in the form

∂tζ
[k] − ∆ζ [k] + 2|∂k+1u|2 = 0, (2.1)

and more generally, for equations with variables coefficients, Bernstein equations
are associated with sums of squares of derivatives.47 With Bernstein method, the
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higher order derivatives source term |∂k+1u|2 is discarded, Eq. (2.1) then yields
∂tζ

[k] − ∆ζ [k] ≤ 0, and the maximum principle can be used.5,47 However, one
may also directly integrate Bernstein equations to get estimates of the integrals∫

Rn ζ
[k] dx, and this method is still valid if the flux term ∂x·(∂xζ

[k]) is simply a term
in divergence form ∂x·ϕ[k] as may be expected for balance equations associated with
squares of derivatives of solutions of a system of partial differential equations. We
may therefore try to derive equations similar to that of Bernstein for systems of
partial differential equations, with non-negative source terms. In this perspective,
the structure of (2.1) appears to be formally similar to that of an entropy balance,
where ζ[k], k ≥ 1, play the rôle of generalized entropies, even though there also exist
zeroth order entropies like u2. In the next section, we introduce a kinetic framework
supporting this entropic interpretation.

2.2. Enskog expansion of Boltzmann kinetic entropy

In a semi-quantum framework, the state of a polyatomic gas is described by a par-
ticle distribution function f(t, x, c, i) — governed by Boltzmann equation — where
t denotes time, x the n-dimensional cartesian coordinate, c the particle velocity,
i the index of the particle quantum state, and I is the corresponding indexing
set.11,20,22,27 Approximate solutions of Boltzmann’s equation can be obtained from
a first-order Enskog expansion f = f (0)(1 + εφ(1) + O(ε2)) where f (0) is the local
Maxwellian distribution, φ(1) the perturbation associated with the Navier–Stokes
regime and ε the usual Enskog formal expansion parameter. The compressible
Navier–Stokes equations for polyatomic gases can then be obtained upon taking
moments of Boltzmann’s equation.12,22,27

The kinetic entropy Skin = −kB

∑
i∈I
∫

Rnf(log f−1)dc, where kB denotes Boltz-
mann constant, satisfies the H theorem, i.e. the second principle of thermodynam-
ics. Enskog expansion f/f (0) = 1 + εφ(1) + · · · + ε2kφ(2k) + O(ε2k+1) then induces
expansions for Skin in the form

Skin − S(0) = ε2S(2) + ε3S(3) + · · · + ε2kS(2k) + O(ε2k+1), (2.2)

where S(0) is the usual zeroth-order fluid entropy evaluated from the
Maxwellian distribution f (0) and where S(l) is a sum of terms in the form
kB

∑
i∈I
∫

Rn

∏
1≤i≤l(φ

(i))νif (0) dc with non-negative integers νi ≥ 0, 1 ≤ i ≤ l,
such that l =

∑
1≤i≤l iνi. For compressible polyatomic gases after detailed calcula-

tions, one can establish that

−ρS(2) = λ|∂xT |2 + κ(∂x·v)2 +
1
2
η|d|2, (2.3)

where T denotes the absolute temperature, ρ the density, v the gas velocity,
d = ∂xv + ∂xv

t − 2
n (∂x·v)I the nonisotropic part of the strain rate tensor, |d|2

the sum |d|2 =
∑

ij d
2
ij , and where the scalar coefficients λ, κ, and η only depend

on temperature. In a first approximation, using a single term in orthogonal poly-
nomial expansions of perturbed distribution functions, one can establish that
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λ = (1/2rgcp)λ2/T 3, κ = (3cv/4rgcint)κ2/T 2, and η = (1/2rg)η2/T 2 where cp
is the constant pressure specific heat per unit mass, cv the constant volume specific
heat per unit mass, rg the gas constant per unit mass, cint the internal specific
heat per unit mass, λ the thermal conductivity, η the shear viscosity, κ the volume
viscosity, and the actual values of the numerical factors in front of λ, κ, and η are
evaluated here for n = 3.

More generally, from the general expression of φ(l) in the absence of external
forces acting on the particles,29 one can establish that for any j ≥ 2

S(j) = ρrg

(
η

ρ
√
rgT

)j ∑
ν

cν
∏

1≤|α|≤j

(
∂α

x ρ

ρ

)να
(

∂α
x v√
rgT

)ν′
α (

∂α
xT

T

)ν′′
α

, (2.4)

where να, ν
′
α, ν

′′
α ∈ N, α ∈ N

n, and ν = (να, ν
′
α, ν

′′
α)1≤|α|≤j must be such that∑

1≤|α|≤j |α|(να + ν′α + ν′′α) = j and where the coefficients cν are smooth scalar
functions of logT of order unity. In the even case j = 2k, after integrations by
parts in the integral

∫
Rn S

(2k) dx, in order to eliminate spatial derivatives of order
strictly greater than k, and by using interpolation inequalities, one obtains that
|
∫

Rn S
(2k) dx| is essentially controlled by the integral of

γ[k] = ρrg

(
η

ρ
√
rgT

)2k
∣∣∣∣∂k

xρ

ρ

∣∣∣∣2 +

∣∣∣∣∣ ∂k
xv√
rgT

∣∣∣∣∣
2

+
cv
rg

∣∣∣∣∂k
xT

T

∣∣∣∣2
 , (2.5)

or equivalently of

γ̃[k] = ρrg

(
η

ρ
√
rgT

)2k (
|∂k

x log ρ|2 + |∂k
x(v/

√
rgT )|2 +

cv
rg

|∂k
x logT |2

)
, (2.6)

and, in the odd case j = 2k − 1, |
∫

Rn S
(2k−1) dx| is also controlled by

∫
Rn γ

[k] dx

and
∫

Rn γ
[k−1] dx. This suggests quantities in the form γ[k] or γ̃[k] as (2k)th order

kinetic entropy correctors — or kinetic entropy deviation estimators.29 Note that,
at variance with S(2), it is not clear that S(2k) has a sign, and this is a motivation
for using quantities like γ[k] and γ̃[k] rather than S(2k), beyond simplicity. We are
therefore looking for majorizing entropic correctors that we are free to modify for
convenience, e.g. by multiplying the temperature derivatives by the factor cv/rg.
These correctors may also be rescaled by mutiplicative constants depending on
k and their temperature dependence may be simplified in accordance with that
of transport coefficients. Finally, a similar analysis can also be conducted for the
Fisher information and suggests the same quantities γ[k] or γ̃[k] as higher order
kinetic information correctors.

2.3. Persistence of kinetic entropy

Denoting by γ[0] a non-negative quantity associated with the zeroth order entropy
S(0), we investigate kinetic entropy estimators in the form γ[0] + · · · + γ[k], with
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0 ≤ k ≤ l, for the solutions of a second-order system of partial differential equa-
tions modeling a compressible fluid. For this system, the zeroth order entropy S(0)

is already of fundamental importance as imposed by its hyperbolic–parabolic struc-
ture and the corresponding symmetrizing properties.27,33,42,44,59 Therefore, we only
consider the quantities γ[0]+· · ·+γ[k], 0 ≤ k ≤ l, as a family of mathematical entropy
estimators — of kinetic origin — and we will establish that they indeed satisfy con-
ditional entropic inequalities for solutions of compressible fluid equations. This will
yield incidentally a thermodynamic interpretation of the corresponding weighted
Sobolev norms.

This point of view differs from that of thermodynamic theories that have already
considered entropies differing from that of zeroth order, that is, entropies depend-
ing on transport fluxes or on macroscopic variable gradients. These generalized
entropies have been associated notably with Burnett type equations12,22 or extended
thermodynamics.56 In both situations, new macroscopic equations are correspond-
ingly obtained, that is, “extended fluid models,” which are systems of partial dif-
ferential equations of higher orders than Navier–Stokes type equations.

3. Higher Order Entropies Governing Equations

We first present the equations governing compressible fluids and then discuss the
temperature dependence of transport coefficients as obtained from the kinetic the-
ory of gases. We then derive governing equations for kinetic entropy correctors of
arbitrary order.

3.1. Fluid governing equations

The conservation equations governing compressible fluids can be written27,49

∂tρ+ ∂x·(ρv) = 0, (3.1)

∂t(ρv) + ∂x·(ρv⊗v + pI) + ∂x·Π = 0, (3.2)

∂t(ρe) + ∂x·(ρev) + ∂x·Q = −Π:∂xv − p∂x·v, (3.3)

where t denotes time, x the n-dimensional Cartesian coordinate, ρ the density, v
the velocity, p the pressure, I the unit tensor, Π the viscous tensor, e the internal
energy per unit mass, and Q the heat flux. In these equation, ∂t denotes partial
derivation with respect to time, ∂x = (∂1, . . . , ∂n)t the usual spatial differential
operator, and t the transposition operator. We assume for the sake of notational
simplicity that these governing equations are in reduced form in such a way that
the specific gas constant rg is taken to be unity. The pressure is given by the state
law p = ρT where T is the temperature and the energy per unit mass e is taken for
simplicity in the form e = cvT where cv is a constant.
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The viscous tensor and the heat flux can be obtained from the kinetic theory of
gases and written in the form

Π = −κ(T )∂x·vI − η(T )
(
∂xv + ∂xv

t − 2
n
∂x·vI

)
, (3.4)

Q = −λ(T )∂xT, (3.5)

where κ(T ) denotes the volume viscosity, η(T ) the shear viscosity, and λ(T ) the
thermal conductivity. We will denote by d = ∂xv+ ∂xv

t − 2
n∂x·vI the non-isotropic

part of the strain rate tensor so that Π = −κ∂x·vI − ηd. The assumptions on the
transport coefficients κ, η, and λ — which are smooth functions of temperature —
are specified in Sec. 3.2.

Our aim is not to study various boundary conditions and we only consider
the case of functions defined on R

n that are “constant at infinity”. From Galilean
invariance, we can also choose that v vanishes at infinity. Therefore we only consider
smooth solutions such that

ρ− ρ∞ ∈ C([0, t̄ ],W l,2) ∩ C1([0, t̄ ],W l−1,2), (3.6)

v, T − T∞ ∈ C([0, t̄ ],W l,2) ∩ C1([0, t̄ ],W l−2,2) ∩ L2((0, t̄),W l+1,2), (3.7)

where l is an integer such that l ≥ [n/2] + 3, i.e. l > n/2 + 2, t̄ is some positive
time, ρ∞ > 0 a fixed positive density and T∞ > 0 a fixed positive temperature. We
also assume that ρ and T are such that ρ ≥ ρmin and T ≥ Tmin where ρmin > 0
and Tmin > 0 are fixed positive constants. Such smooth solutions are known to
exist27,41–45,51,57,63 either locally in time or globally when the initial state is close
to the constant state (ρ∞, 0, T∞). We use classical notation for functional spaces1,65

as for instance W k,p = W k,p(Rn) = W k,p
0 (Rn) for the usual Sobolev space with

k ≥ 0 and 1 ≤ p <∞, and W−k,p′
for its dual where p′ = p/(p− 1).

Remark 3.1. In the special case where λ = aλT
κ, η = aηT

κ, κ = aκT
κ, and

cv is constant, if (ρ(t, x), v(t, x), T (t, x)) is a solution of the Navier–Stokes equa-
tions (3.1)–(3.3), then

(ξ2κ−1ζρ(ξζt, ζx), ξv(ξζt, ζx), ξ2T (ξζt, ζx)), (3.8)

is also a solution for any positive ξ and ζ. For arbitrary transport coefficients, the
one-parameter family obtained by letting ξ = 1 is still a family of solutions. The
scaling properties of the incompressible case29 can also be recovered from (3.8) by
letting ζ = ξ1−2κ .

Remark 3.2. All the results obtained in this paper are also valid if the internal
energy e per unit mass is taken to be e = e0 +

∫ T

0
cv(s) ds with a heat capacity

coefficient cv depending on temperature in such a way that

c ≤ cv ≤ c, T σ|∂σ
T cv| ≤ cσ, σ ≥ 1,

where c > 0, c > 0, and cσ > 0, σ ≥ 1, are positive constants. We will not explicit
the corresponding results for the sake of simplicity.
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Remark 3.3. The dimension n appearing in the coefficient 2/n of the viscous
tensor (3.4) is normally the full spatial dimension, that is, the dimension n′ of the
velocity phase space of the associated kinetic model. We may still assume that
the spatial dimension of the model has been reduced, that is, the equations are
considered in R

n with n ≤ n′. The full size viscous tensor Π′ is then a matrix of
order n′, and the corresponding coefficient is 2/n′. However, if we denote by Π the
upper left block of size n of Π′, that is, the useful part of Π′, we may rewrite Π in
the form

Π = −
(
κ+

(
2
n
− 2
n′

)
η

)
∂x·vI − η

(
∂xv + ∂xv

t − 2
n
∂x·vI

)
, (3.9)

where I is the unit tensor in n dimensions. Therefore, using a smaller dimension n
instead of the full dimension n′ in the coefficient of the viscous tensor is equivalent
to increasing the volume viscosity by the amount 2η(n′ − n)/nn′. As a practical
example, we have n′ = 3 in our physical world, but we may still consider a fluid
model with n = 2, and upon modifying the volume viscosity, the coefficient 2/3 in
Π can be transformed into 1.

Remark 3.4. The fluid governing equations have been derived3,19 by Navier in
1822, Cauchy in 1823, Poisson in 1831, Saint-Venant in 1843 — from an unpublished
work of 1837 — and Stokes in 1845.

3.2. Temperature dependent transport coefficients

We discuss in this section the temperature dependence of transport coefficients in a
dilute gas. The situation of a dense gas will be addressed in Sec. 3.7 for completeness.
Only the assumptions on transport coefficients associated with a dilute gas — as
derived from the kinetic theory of gases — will be used in this paper.

Thermal conductivity, shear viscosity, and volume viscosity of a polyatomic
dilute gas depend on temperature

λ = λ(T ), η = η(T ), κ = κ(T ), (3.10)

as shown by the kinetic theory of gases.12,22,27 When one term Sonine–Wang–
Chang–Uhlenbeck polynomial expansions are used to evaluate perturbed distri-
bution functions, the coefficients λ/cv, η and κ are found in the form λ/cv =
aλT

1/2/Ω(2,2)∗, η = aηT
1/2/Ω(2,2)∗, and κ/η = aκc

intξint/c2v where aλ, aη and aκ

are constants, Ω(2,2)∗ a reduced collision integral, cint the internal heat capacity per
unit mass, and ξint a collision number associated with internal energy relaxation.
Note in particular that the ratios λ/cvη and κ/η are bounded. For the rough rigid
sphere model for instance, we have exactly12,22 λ/cv = aλT

1/2, η = aηT
1/2 and

κ = aκT
1/2. Similarly, for particles interacting as point centers of repulsion with an

interaction potential V = c/rν , where r is the distance between two particles, one
establishes12,22 that Ω(2,2)∗ is proportional to T−2/ν so that we have λ/cv = aλT

κ,
and η = aηT

κ with κ = 1/2 + 2/ν, and κ inherits the same scaling κ = aκT
κ
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if we assume that cint, ξint , and cv are constants. The temperature exponent κ

then varies from κ = 1/2 for rigid spheres with ν = ∞ up to κ = 1 for Maxwell
molecules with ν = 4.

More generally, consider particles interacting with a Lennard–Jones ν–ν′ poten-
tial V = 4ε((σ/r)ν−(σ/r)ν′

) where σ denotes the collision diameter, ε the potential
well depth, and ν, ν′ are intergers with ν > ν′ and typical values ν = 12, ν′ = 6.12,22

Collision integrals like Ω(2,2)∗ then only depend on the reduced temperature kBT/ε,
and, when kBT/ε is large, the repulsive part r−ν is dominant12 so that collision inte-
grals behave like T s with s = 1/2 + 2/ν for large T . In particular, the logarithm
log Ω(2,2)∗ has linear asymptotes as function of logT , and dk log Ω(2,2)∗/d(logT )k

is bounded for any k ≥ 1. In addition, classical models indicate that cint, ξint

and cv converge towards constants for large temperatures.27 As a consequence,
logλ, log η, and log κ have parallel linear asymptotes as function of log T , and
dk logλ/d(log T )k, dk log η/d(logT )k, and dk log κ/d(logT )k are bounded for any
k ≥ 1, or equivalently, (1/λ)T kdkλ/dT k, (1/η)T kdkη/dT k, and (1/κ)T kdkκ/dT k

are bounded for any k ≥ 1.
Similar results are also obtained when more than one term are taken into account

in orthogonal polynomial expansions of perturbed distribution functions. Indeed,
all collision integrals Ω(i,j)∗, i, j ≥ 1, have a common temperature behavior, that
is, all ratios of collision integrals are bounded, as for instance for Lennard–Jones
or Stockmayer potentials.22,27 These collision integrals are then used to define the
coefficients of the transport linear systems which thus share a common temperature
scaling. As a consequence, the transport coefficients, which are obtained through
solutions of transport linear systems, inherit a common temperature scaling.27

On the other hand, in our particular application, we are only interested in
solutions such that T ≥ Tmin, where Tmin is fixed and positive. In this situation,
the behavior of transport coefficients for small temperatures is not relevant and
only the repulsive part of the interaction potential between particles plays a role.
Therefore, from a mathematical point of view, since we are not interested in small
temperatures, we assume that λ, η, and κ are C∞(0,∞), that there exist κ, a > 0,
and a > 0 with

aTκ ≤ λ/cv ≤ aTκ, aTκ ≤ η ≤ aTκ, aTκ ≤ κ ≤ aTκ, (3.11)

and that, for any integer σ ≥ 1, there exists aσ > 0 with

T σ(|∂σ
Tλ| + |∂σ

T η| + |∂σ
Tκ|) ≤ aσT

κ. (3.12)

Kinetic theory suggests that 1/2 ≤ κ ≤ 1 but the situations where 0 ≤ κ < 1/2 or
κ > 1 are still interesting to investigate from a mathematical point of view.

Remark 3.5. Theoretical calculations and experimental measurements have
shown that the viscosity ratio κ/η is of order unity for polyatomic gases.6,12,22

Using a one or two terms expansion in Sonine–Wang–Chang–Uhlenbeck polynomi-
als for the perturbed distribution associated with volume viscosity, it is established
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for instance that κ/η = π
4 rgc

intξint/c2v for a polyatomic gas. The collision num-
ber ξint associated with internal energy relaxation is usually taken to be a simple
decreasing function of temperature and the internal heat capacity per unit mass
cint is associated with the various internal energy modes like rotation, vibration or
electronic. In particular, the internal heat capacity is such that cint ≥ rg for linear
molecules and cint ≥ 3

2rg for nonlinear molecules solely from rotational degrees of
freedom. Volume viscosity also arise in dense gases and in liquids so that its absence
in monatomic dilute gases is an exception rather than a rule.6,22

3.3. Higher order kinetic entropy estimators

Following the physical ansatz (2.5) and taking into account the simplifications asso-
ciated with the temperature dependence of transport coefficients (3.11) and with a
specific gas constant taken to be unity, we define the (2k)th order kinetic entropy
corrector γ[k] by

γ[k] = ρh2k

(
|∂kρ|2
ρ2

+
|∂kv|2
T

+ cv
|∂kT |2
T 2

)
, (3.13)

where h = 1/(T
1
2−κρ). If α = (α1, . . . , αn) ∈ N

n is a multi-index, we denote as usual
by ∂α the differential operator ∂α1

1 · · · ∂αn
n and by |α| its order |α| = α1 + · · ·+ αn,

and the square of kth derivatives of a scalar function φ, like T , ρ, or vi, 1 ≤ i ≤ n,
is defined by

|∂kφ|2 =
∑
|α|=k

k!
α!

(∂αφ)2 =
∑

1≤i1,...,ik≤n

(∂i1 · · · ∂ik
φ)2, (3.14)

where k!/α! are the multinomial coefficients.14,60 Similarly, for a vector function
like v we define |∂kv|2 =

∑
1≤i≤n |∂kvi|2.

This choice of γ[k] yields more convenient higher order entropic estimates. Cal-
culations show that it eliminates various quadratic terms associated with hyper-
bolic variables, thanks to symmetry properties. This choice can also be associated
with symmetrized forms of the system of partial differential equations. Denoting
u = (ρ, ρv, ρ(e + 1

2 |v|2))t the conservative variable, v = −(∂uS
(0))t the entropic

variable, z = (ρ, v, T )t the natural variable, which is also a normal variable,33,44

and defining the matrix A0 = (∂zv)t∂uv(∂zv) associated with normal forms of the
system of partial differenial equations,33,44 one can rewrite the higher order entropy
correctors in the form γ[k] = h2k〈∂kz, A0∂

kz〉, where h is the weight associated with
the dependence of the local mean free path l = η/ρ

√
rgT on density and temper-

ature. This choice of γ[k] can also be associated with a “spatial gradient” Fisher
information with for instance γ[1] = h2

∑
i∈I kB

∫
Rn |∂x log f (0)|2f (0) dc, where f (0)

is the local Maxwellian distribution discussed in Sec. 2.2.
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Remark 3.6. We define similarly the pth power of derivatives |∂kφ|p by

|∂kφ|p =
∑
|α|=k

k!
α!

(∂αφ)p =
∑

1≤i1,...,ik≤n

(∂i1 · · ·∂ik
φ)p, (3.15)

and these definitions (3.14)–(3.15) are compatible with the classical definition
already used in Sec. 2.1 when p = 2. These natural definitions also simplify the
analytic form of higher order entropies governing equations. In agreement with
(3.14) we also set for future use

∂kφ∂kψ =
∑
|α|=k

k!
α!
∂αφ∂αψ, ∂kv·∂k∂xρ =

∑
|α|=k

1≤i≤n

k!
α!
∂αvi∂

α∂iρ. (3.16)

In order to recast the zeroth order entropy balance equation into a more con-
venient form we introduce a modified zeroth order entropy γ[0]. The mathematical
fluid entropy −S(0) can be shown to be a strictly convex function of the conserva-
tive variables27,44 u = (ρ, ρv, ρ(e+ 1

2v·v))t. Denoting by etot = ρ(e+ 1
2v·v) the total

energy per unit volume, we define γ[0] = C0ψ
[0] where ψ[0] is the modified zeroth

order entropy

ψ[0] = −S(0) + S(0)
∞ + (∂ρS

(0))∞(ρ− ρ∞) + (∂etotS(0))∞(etot − etot
∞ ),

and C0 is a positive constant that will be taken large enough. The zeroth order
term γ[0] is easily rewritten in the form

γ[0]/C0 =
(
ρ log

(
ρ

ρ∞

)
− (ρ− ρ∞)

)
+

1
2
ρ
v2

T∞
+ ρcv

(
T − T∞
T∞

− log
(
T

T∞

))
.

(3.17)

Thanks to the fact that v and T are parabolic variables, we can expect source
terms in the form |∂k+1T/T |2 and |∂k+1v/

√
T |2 to appear in the governing equation

for γ[k] — up to weight factors. However, since ρ is a hyperbolic variable, there will
be no such corresponding source term |∂k+1ρ/ρ|2 for density. A priori estimates for
density derivatives and more generally of hyperbolic variables derivatives indeed
require to introduce extra entropic corrector terms. These extra corrector terms will
yield source terms in the form |∂kρ/ρ|2. These terms are similar to the perturbed
quadratic terms introduced by Kawashima42 in order to obtain hyperbolic variable
derivative estimates for linearized equations around equilibrium states and decay
estimates.42 They are used here with renormalized variables, as well as with powers
of h as extra weights factors, in order to obtain higher order entropic principles.
More specifically, we define the quantity γ[k− 1

2 ] by

γ[k− 1
2 ] = ρh2k−1 ∂

k−1v√
T

· ∂
k−1∂xρ

ρ
, (3.18)

and we will see that in the γ[k− 1
2 ] governing equation there is a source term in the

form |∂kρ/ρ|2 — up to weight factors. From a physical point of view, we also note



December 26, 2008 8:46 WSPC/103-M3AS 00336

80 V. Giovangigli

that γ[k− 1
2 ] is of the general form (2.4) for S(2k−1). Finally, we define the (2k)th

order kinetic entropy estimator by

Γ[k] = γ[0] +
∑

1≤i≤k

(γ[i] + aγ[i− 1
2 ]), k ≥ 0, (3.19)

where a is a parameter that will be chosen small enough. The quantities γ[i− 1
2 ],

1 ≤ i ≤ k, are multiplied by the small rescaling factor a in (3.19) so as not to
modify the majorizing properties of the correctors γ[k], k ≥ 0.

Similarly, following the physical ansatz (2.6), we define the modified (2k)th order
kinetic entropy corrector γ̃[k] by

γ̃[k] = ρh2k(|∂kr|2 + |∂kw|2 + cv|∂kτ |2), (3.20)

where r = log ρ, w = v/
√
T , and τ = logT . We correspondingly define

γ̃[k− 1
2 ] = ρh2k−1∂k−1w·∂k−1∂xr, (3.21)

γ̃[0] = γ[0], and introduce the modified (2k)th order kinetic entropy estimators

Γ̃[k] = γ̃[0] +
∑

1≤i≤k

(γ̃[i] + aγ̃[i− 1
2 ]), k ≥ 0. (3.22)

The entropy correctors γ[k] and γ̃[k], as well as the estimators Γ[k] and Γ̃[k], will
be shown to have similar properties and both may be used to derive a priori esti-
mates. Strictly speaking, we should term γ[k] and γ̃[k] “(2k)th order kinetic entropy
correctors” or “(2k)th order kinetic entropy deviation estimators”, and γ[k− 1

2 ] and
γ̃[k− 1

2 ] “(2k−1)th order kinetic entropy correctors”, and Γ[k] and Γ̃[k] “mathemati-
cal (2k)th order entropies”, or “(2k)th order kinetic entropy estimators”. However,
we will often informally term γ[k], γ̃[k], γ[k− 1

2 ], γ̃[k− 1
2 ], Γ[k] and Γ̃[k] “higher order

entropies”.

Remark 3.7. Entropic correctors can also be defined by using the derivatives of
the strain rate tensor ∂k−1d instead of that of velocity ∂kv. We have chosen to
work with the derivatives of velocity ∂kv for the sake of simplicity. It is also possi-
ble to define extra entropic correctors in the form ρh2k−1∂k−1(∂x·v)∂k−1ρ/(

√
Tρ)

and ρh2k−1∂k−1(∂x·w)∂k−1r but their properties are similar to that of γ[k− 1
2 ] and

γ̃[k− 1
2 ]. Entropic estimators can also be defined in the form

Γ[k] = γ[0] +
∑

1≤i≤k

θi(γ[i] + aγ[i− 1
2 ]), k ≥ 0, (3.23)

Γ̃[k] = γ̃[0] +
∑

1≤i≤k

θi(γ̃[i] + aγ̃[i− 1
2 ]), k ≥ 0, (3.24)

where θ is a fixed parameter smaller than unity, but the corresponding results are
similar to the simpler situation θ = 1.
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Remark 3.8. As suggested by a referee, it is also possible to define higher order
entropic correctors of fractional order γ[s], s > 0, upon defining fractional deriva-
tives with Fourier transform. The explicit conservation equations for entropy cor-
rectors obtained in the next sections have then to be replaced by communators but
such generalizations are out of the scope of the present study.

3.4. Balance equation for γ[k] and γ[k− 1
2 ]

Our aim is to establish balance equations for γ[k] and γ[k− 1
2 ]. In Sec. 5, we will

use these equations to derive a priori estimates and to establish that Γ[k] satisfies
conditional entropic principles.

Proposition 3.9. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7) and let 1 ≤ k ≤ l. Then the
following balance equation holds in D′((0, t̄) × R

n) and L1((0, t̄),W l−k−1,1)

∂tγ
[k] + ∂x·(vγ[k]) + ∂x·ϕ[k]

γ + π[k]
γ + Σ

[k]
γ + ω[k]

γ = 0, (3.25)

where ϕ[k]
γ , π

[k]
γ , Σ

[k]
γ , ω

[k]
γ ∈ L1((0, t̄),W l−k,1). The term π

[k]
γ is given by

π[k]
γ = 2g2h2(k+1)

(
λ

Tκ

|∂k+1T |2
T 2

+
η

Tκ

|∂k+1v|2
T

+
κ+ n−2

n η

Tκ

|∂k(∂x·v)|2
T

)
, (3.26)

where g = ρT
1
2 (1−κ) and h = 1/(ρT

1
2−κ). The term Σ

[k]
γ is in the form

Σ
[k]
γ =

∑
σνµφ

cσνµφT
σ−κ∂σ

TφΠ(k+1)
ν Π(k+1)

µ +
k(1 − 2κ)λ
cvTκ

g2h2(k+1) |∂kρ|2
ρ2

∆T
T
, (3.27)

where cσνµφ are constants and the sum extends over φ ∈ {λ, η, κ}, 0 ≤ σ ≤ k,

ν = (να, ν
′
α, ν

′′
α)1≤|α|≤k+1, µ = (µα, µ

′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N,

α ∈ N
n. The products Π(k+1)

ν and Π(k+1)
µ are defined by

Π(k+1)
ν = ghk+1

∏
1≤|α|≤k+1

(
∂αρ

ρ

)να
(
∂αv√
T

)ν′
α
(
∂αT

T

)ν′′
α

, (3.28)

where v denotes — with a slight abuse of notation — any of its components
v1, . . . , vn, and ν must be such that

∑
1≤|α|≤k+1 |α|(να + ν′α + ν′′α) = k + 1,∑

|α|=k+1 να = 0,
∑

|α|=k+1 (ν′α + ν′′α + µ′
α + µ′′

α) ≤ 1. Furthermore the term

ω
[k]
γ is given by

ω[k]
γ =

∑
νµ

cνµΠ(k)
ν Π(k+1)

µ , (3.29)

where the summation extends over
∑

1≤|α|≤k |α|(να + ν′α + ν′′α) = k,∑
1≤|α|≤k |α|(µα + µ′

α + µ′′
α) = k + 1, and cνµ are constants. Finally the flux

ϕ
[k]
γ = (ϕ[k]

γ1 , . . . , ϕ
[k]
γn) is in the form

ϕ
[k]
γl =

∑
σνµφ

cσνµφlT
σ−κ∂σ

TφhΠ(k)
ν Π(k+1)

µ +
∑
νµ

cνµlhΠ(k)
ν Π(k)

µ .
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Proof. The proof — given in Appendix A — is lengthy and tedious but presents
no serious difficulties.

In Proposition 3.9, ϕ[k]
γ is a flux and π[k]

γ , Σ
[k]
γ , ω[k]

γ are source terms. The source
term π

[k]
γ only contains the temperature and velocity (k + 1)th derivatives squared

as expected from the hyperbolic–parabolic nature of system of partial differential
equations. In the products Π(k+1)

ν appearing in Σ
[k]
γ there is a total number of k+1

derivations and there is no derivative of order k + 1 of density. Moreover, there is
at most one derivative of order k+ 1 of temperature or velocity components in the
product Π(k+1)

ν Π(k+1)
µ so that one of the terms Π(k+1)

ν or Π(k+1)
µ is split between

two or more derivative factors. The products Π(k+1)
µ appearing in ω[k]

γ are such that∑
|α|=k+1(µα +µ′

α+µ′′
α) = 0 and are always split between several derivative factors.

We investigate the γ[k− 1
2 ] balance equation for compressible fluids with temper-

ature dependent transport coefficients.

Proposition 3.10. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7) and let 1 ≤ k ≤ l. Then the
following balance equation holds in D′((0, t̄)×R

n) and L1((0, t̄),W l−k−1,1)

∂tγ
[k− 1

2 ] + ∂x·(vγ[k− 1
2 ]) + ∂x·ϕ

[k− 1
2 ]

γ + π
[k− 1

2 ]
γ + Σ

[k− 1
2 ]

γ + ω
[k− 1

2 ]
γ = 0, (3.30)

where ϕ
[k− 1

2 ]
γ , π

[k− 1
2 ]

γ , Σ
[k− 1

2 ]
γ , ω

[k− 1
2 ]

γ ∈ L1((0, t̄),W l−k,1). The term π
[k− 1

2 ]
γ is

given by

π
[k− 1

2 ]
γ = g2h2k |∂kρ|2

ρ2
, (3.31)

where g = ρT
1
2 (1−κ) and h = 1/(ρT

1
2−κ). The term Σ

[k− 1
2 ]

γ is in the form

Σ
[k− 1

2 ]
γ =

∑
σνµφ

cσνµφT
σ−κ∂σ

TφΠ(k)
ν Π(k+1)

µ −
κ+ 2(n−1)

n η

Tκ
g2h2k+1 ∂

k(∂x·v)√
T

∂kρ

ρ
,

(3.32)

where cσνµφ are constants and the sums are over φ ∈ {λ, η, κ}, 0 ≤ σ ≤ k, ν =
(να, ν

′
α, ν

′′
α)1≤|α|≤k, µ = (µα, µ

′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n.
The products Π(k)

ν and Π(k+1)
µ are defined as in the governing equation for γ[k] and∑

1≤|α|≤k |α|(µα + µ′
α + µ′′

α) = k + 1. Furthermore the term ω
[k− 1

2 ]
γ is given by

ω
[k− 1

2 ]
γ =

∑
νµ

cνµΠ(k)
ν Π(k)

µ + g2h2k ∂
kT

T

∂kρ

ρ
− g2h2k |∂k−1(∂x·v)|2

T
, (3.33)

where cνµ are constants and at least one of the two products Π(k)
ν or Π(k)

µ

is split between two or more derivative factors. Finally the flux ϕ
[k− 1

2 ]
γ =

(ϕ[k− 1
2 ]

γ1 , . . . , ϕ
[k− 1

2 ]
γn ) is in the form

ϕ
[k− 1

2 ]

γl =
∑
νµ

cνµlhΠ(k−1)
ν Π(k)

µ .
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Proof. The proof — lengthy and tedious — presents no serious difficulties and is
similar to that of Proposition 3.9.

In Proposition 3.10, ϕ[k− 1
2 ]

γ is a flux and π[k− 1
2 ]

γ , Σ
[k− 1

2 ]
γ , ω[k− 1

2 ]
γ are source terms.

The term π
[k− 1

2 ]
γ will help to complete the missing gradient terms in π

[k−1]
γ . The

products Π(k+1)
µ in Σ

[k− 1
2 ]

γ do not contain derivatives of order k + 1 and are thus
split between two or more derivative factors.

3.5. Balance equation for γ̃[k] and γ̃[k− 1
2 ]

We establish balance equations for γ̃[k], and γ̃[k− 1
2 ]. In Sec. 5, we will use these

equations to derive a priori estimates and to establish that Γ̃[k] satisfies conditional
entropic principles.

Proposition 3.11. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7) and let 1 ≤ k ≤ l. Then the
following balance equation holds in D′((0, t̄) × R

n) and L1((0, t̄),W l−k−1,1)

∂tγ̃
[k] + ∂x·(vγ̃[k]) + ∂x·ϕ[k]

γ̃ + π
[k]
γ̃ + Σ

[k]
γ̃ + ω

[k]
γ̃ = 0, (3.34)

where ϕ[k]
γ̃ , π

[k]
γ̃ , Σ

[k]
γ̃ ,

ϕ
[k]
γ̃ , π

[k]
γ̃ , Σ

[k]
γ̃ , ω

[k]
γ̃ ∈ L1((0, t̄),W l−k,1). The term π

[k]
γ̃ is given by

π
[k]
γ̃ = 2g2h2(k+1)

(
λ

eκτ
|∂k+1τ |2 +

η

eκτ
|∂k+1w|2 +

κ+ n−2
n η

eκτ
|∂k(∂x·w)|2

)
, (3.35)

where g = ρT
1
2 (1−κ) and h = 1/(ρT

1
2−κ). The term Σ

[k]
γ̃ is in the form

Σ
[k]
γ̃ =

∑
σνµφ

cσνµφe
−κτ∂σ

τ φΠ(k+1)
ν Π(k+1)

µ +
k(1 − 2κ)λ
eκτcv

g2h2(k+1)|∂kr|2∆τ, (3.36)

where cσνµφ are constants and the sum extends over φ ∈ {λ, η, κ}, 0 ≤ σ ≤ k,

ν = (να, ν
′
α, ν

′′
α)0≤|α|≤k+1, µ = (µα, µ

′
α, µ

′′
α)0≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N,

α ∈ N
n. The products Π(k+1)

ν and Π(k+1)
µ are defined by

Π(k+1)
ν = ghk+1

∏
0≤|α|≤k+1

(∂αr)να (∂αw)ν′
α (∂ατ)ν′′

α , (3.37)

where w denotes — with a slight abuse of notation — any of its components
w1, . . . , wn, and µ and ν must be such that

∑
1≤|α|≤k+1 |α|(να + ν′α + ν′′α) = k + 1,∑

|α|=k+1 να = 0,
∑

|α|=0 (να + ν′′α) = 0,
∑

|α|=k+1 (ν′α + ν′′α + µ′
α + µ′′

α) ≤ 1.

Furthermore the term ω
[k]
γ̃ is given by

ω
[k]
γ̃ =

∑
νµ

cνµΠ(k)
ν Π(k+1)

µ + g2h2k+1∂kτ∂k(∂xτ)·w + g2h2k+1∂kr∂k(∂xτ)·w

− 1
cv
g2h2k+1∂kw·w∂k(∂x·w) − 1

2cv
g2h2k+1∂kw·w∂k(∂xτ)·w, (3.38)
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where we use similar notation for Π(k)
ν as for Π(k+1)

µ , the summation extends over∑
1≤|α|≤ |α|(να + ν′α + ν′′α) = k,

∑
1≤|α|≤k |α|(µα + µ′

α + µ′′
α) = k + 1, and cνµ are

constants. Finally the flux ϕ[k]
γ̃ = (ϕ[k]

γ̃1 , . . . , ϕ
[k]
γ̃n) is in the form

ϕ
[k]
γ̃l =

∑
σνµφ

cσνµφle
−κτ∂σ

τ φhΠ(k)
ν Π(k+1)

µ +
∑
νµ

cνµlhΠ(k)
ν Π(k)

µ .

Proof. The proof is similar to that of Proposition 3.9 and is omitted.

In Proposition 3.11, ϕ[k]
γ̃ is a flux and π

[k]
γ̃ , Σ

[k]
γ̃ , ω[k]

γ̃ are source terms. The term

π
[k]
γ̃ only contains the temperature and velocity (k + 1)th derivatives squared as

expected from the hyperbolic–parabolic structure of system of partial differential
equations. In the products Π(k+1)

ν appearing in Σ
[k]
γ̃ there is a total of k+ 1 deriva-

tions and there is no derivative of order k + 1 of density. Note that powers of the
renormalized velocity w may appear in Π(k+1)

ν but not of τ or r. In addition, there
is at most one derivative of order k + 1 of temperature or velocity components in
the product Π(k+1)

ν Π(k+1)
µ so that one of the terms Π(k+1)

ν or Π(k+1)
µ is split between

two or more derivative factors. The products Π(k+1)
µ appearing in ω[k]

γ̃ are such that∑
|α|=k+1(µα + µ′

α + µ′′
α) = 0 and are thus split between two or more derivatives

factors.

Proposition 3.12. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7) and let 1 ≤ k ≤ l. Then the
following balance equation holds in D′((0, t̄)×R

n) and L1((0, t̄),W l−k−1,1)

∂tγ̃
[k− 1

2 ] + ∂x·(vγ̃[k− 1
2 ]) + ∂x·ϕ

[k− 1
2 ]

γ̃ + π
[k− 1

2 ]
γ̃ + Σ

[k− 1
2 ]

γ̃ + ω
[k− 1

2 ]
γ̃ = 0, (3.39)

where ϕ
[k− 1

2 ]
γ̃ , π

[k− 1
2 ]

γ̃ , Σ
[k− 1

2 ]
γ̃ , ω

[k− 1
2 ]

γ̃ ∈ L1((0, t̄),W l−k,1). The term π
[k− 1

2 ]
γ̃ is

given by

π
[k− 1

2 ]
γ̃ = g2h2k|∂kr|2, (3.40)

where g = er+ 1
2 (1−κ)τ and h = e−r−( 1

2−κ)τ . The term Σ
[k− 1

2 ]

γ̃ is in the form

Σ
[k− 1

2 ]

γ̃ =
∑
νµ

cσνµφe
−κτ∂σ

τ φΠ(k)
ν Π(k+1)

µ −
κ+ 2(n−1)

n η

eκτ
g2h2k+1∂kr∂k(∂x·w)

+
1
2

λ

cveκτ
g2h2k+1∂k−1∂xr · w∂k−1∆τ, (3.41)

where cσνµφ are constants and the sums are over φ ∈ {λ, η, κ}, 0 ≤ σ ≤ k, ν =
(να, ν

′
α, ν

′′
α)1≤|α|≤k, µ = (µα, µ

′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n.
The products Π(k)

ν and Π(k+1)
µ are defined as in the governing equation for γ̃[k] and
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∑
1≤|α|≤k |α|(µα + µ′

α + µ′′
α) = k + 1. Furthermore the term ω

[k− 1
2 ]

γ̃ is given by

ω
[k− 1

2 ]
γ̃ =

∑
νµ

cνµΠ(k)
ν Π(k)

µ + g2h2k∂kτ∂kr − g2h2k|∂k−1(∂x·w)|2

− 1
2
g2h2k∂k−1(∂x·w)∂k−1(∂xτ) · w − 1

2cv
g2h2k∂k−1(∂x·w)∂k−1(∂xr) · w

− 1
4cv

g2h2k∂k−1(∂xτ) · w∂k−1(∂xr) · w, (3.42)

where cνµ are constants and at least one of the products Π(k)
ν or Π(k)

µ is split between

derivatives factors. Finally the flux ϕ[k− 1
2 ]

γ̃ = (ϕ[k− 1
2 ]

γ̃1 , . . . , ϕ
[k− 1

2 ]

γ̃n ) is of the form

ϕ
[k− 1

2 ]

γ̃l =
∑
νµ

cνµlhΠ(k−1)
ν Π(k)

µ .

In Proposition 3.12, ϕ[k− 1
2 ]

γ̃ is a flux and π[k− 1
2 ]

γ̃ , Σ
[k− 1

2 ]
γ̃ , ω[k− 1

2 ]
γ̃ are source terms.

Note that π[k− 1
2 ]

γ̃ will help to complete the missing gradient terms in π
[k−1]
γ̃ . In

addition, in Σ
[k− 1

2 ]

γ̃ , there is no derivative of order k + 1 in Π(k+1)
µ .

3.6. Higher order entropies for zero Mach number flows

Asymptotic expansions of higher order entropies with respect to small Mach and
Knudsen numbers have been investigated.31 These asymptotic studies have been
performed by using rescaled variables and rescaled equations in terms of the Mach
and Knudsen numbers as well as by using molecular coordinates.31 Kinetic entropy
estimators have been shown to be related to the Sobolev norm of the variable
(log(ρ/ρ∞), v/

√
T , log(T/T∞)) in molecular coordinates.

In this asymptotic framework,31 upon reordering higher order entropies in terms
of the Mach number, it is easily checked that the velocity and the gradient of the
density are then of the same order. More specifically, upon reordering the higher
order correctors in terms of the Mach number, the following variant of the (2k)th
order kinetic entropy corrector γ[k] is naturally obtained

γ̂[k] = ρh2(k−1)

(
h2 |∂kρ|2

ρ2
+

|∂(k−1)v|2
T

+ cvh
2 |∂kT |2

T 2

)
. (3.43)

These variants are especially adapted to the zero Mach number equations where
ρT = Cte and where the energy conservation equation is a pure thermal balance27

which can first be used to estimate the temperature. Then, at the next steps, ∂k−1v

and ∂kT and ∂kρ have to be estimated simultaneously upon using γ̂[l], 0 ≤ l ≤ k.
On the other hand, as pointed out by a referee, in order to obtain estimates

for data with low regularity, Bresch and Desjardin8 and Danchin16 have used func-
tional spaces such that the gradient of the density and the velocity have the same
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regularity. An interesting extension of this work would thus be to consider the vari-
ant entropy estimators γ̂[0] + · · ·+ γ̂[k], 1 ≤ k ≤ l, either for the zero Mach number
equations or else for the fully compressible equations.

3.7. Transport coefficients in a dense gas

In this section, for self completeness, we address some of the model modifica-
tions required for dense gases. Indeed, the behavior of compressible fluid models
at low/high densities and at low/high temperatures has been a key ingredient in
recent advances concerning the existence of global weak solutions8,9,23,24,49 as well
as classical solutions.62 A first fundamental point is the state law which may deviate
from the ideal gas law, as for instance Van der Waal’s equation of state. A second
ingredient is the dependence of transport coefficients in terms of density. In the
remaining part of this section we discuss some results obtained from the kinetic
theory of dense gases.

The status of the kinetic theory of dense gases is not as well developed as that
of dilute gases. A first attempt towards a kinetic theory of dense gases is that of
Enskog for hard spheres. The advantages of the rigid sphere model is that collisions
are instantaneous so that the probability of simultaneous multiple encounters is
negligible. Enskog corrections involve the mechanism of collisional transfer which
is the principal transport mechanism in dense gases — since the particles are almost
packed together — so that transport by molecular flow becomes very difficult.12,22

The transport coefficients λ(T, ρ), η(T, ρ), and κ(T, ρ), obtained from Enskog theory
of dense gases, are in the form

λ =
λ0

g
+ λ1bρ+ λ2g(bρ)2, η =

η0
g

+ η1b + η2g(bρ)2, κ = κ2g(bρ)2,

where λ0, λ1, λ2, η0, η1, η2 and κ2 are only functions of temperature. In these
relations, b denotes the covolume, which can be taken to be constant, and g denotes
a function of the state of the gas which models the increase of probability for
collisions due to the volume occupied by the gas. This probability factor g can
be modeled12,22 as a series or as a rational fraction in the density g(ρ). More
generally, it is also possible to relate the quantities g and b to the state law.12,22

The probability factor g(ρ) must be such that g(0) = 1 in such a way that λ0 and
η0 correspond to the coefficients for a dilute gas. It is worthwhile to note than even
for a monatomic gas of hard spheres there is a nonzero volume viscosity for dense
states.

More general theories of dense gases are based on multiple velocity-distribution
functions and on the BBGKY-hierarchy of equations.12,22 Formal expressions of
the transport coefficients have been obtained upon assuming that the two-particle
distribution is a time-independent functional of the usual one-particle distribution
function — Bogoliubov’s functional assumption. The transport coefficients are typ-
ically expressed in the form22

ϕ = ϕ0 + ϕ1ρ+ ϕ2ρ
2 + ϕ̃2ρ

2 log ρ+ · · · ,
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where ϕ denotes either λ, η, or κ, and the functions ϕ0, ϕ1, ϕ2, and ϕ̃2 only depend
on temperature. In particular, the expansions contain terms in the form ρ2 log ρ
associated with recollisions.

Even though the results obtained for dense gases are far from being completed,
the models proposed so far shed light on the dependence of transport coefficients
as suggested by theoretical physics. In particular, the coefficients usually share
a common functional dependence in terms of temperature and density and there
is a coefficient of volume viscosity. A very interesting application of the density
dependence of transport coefficients is that of Bresch and Desjardins8,9 as discussed
in Sec. 5.4.

4. Weighted Inequalities

We investigate weighted inequalities in Sobolev and Lebesgue spaces.13,26,29,35,36,53

These inequalities are required for renormalized variables with powers of tempera-
ture and density as weights as well as for temperature dependent thermal conduc-
tivity and viscosities.

4.1. Differential identities

Let αi, 1 ≤ i ≤ n, be nonnegative integers and α = (α1, . . . , αn) ∈ N
n be the

corresponding multi-index. We denote by ∂α the differential operator ∂α1
1 · · · ∂αn

n

and by |α| its order |α| = α1 + · · · + αn. The derivative of superpositions has been
investigated in particular by Vol’pert and Hudjaev63 and the following proposition
is established by induction on |α|.

Lemma 4.1. Let l ≥ 1, f be a smooth scalar function of u ∈ R
l, u1, . . . , ul be

smooth scalar functions of x ∈ R
n, and let α be a multi-index α = (α1, . . . , αn)

with |α| ≥ 1. The partial derivatives of the superposition f ◦ u = f(u1, . . . ul) can be
written in the form

∂α(f ◦ u) =
∑
σµ

cσµ∂
σf

∏
1≤|β|≤|α|

1≤j≤l

(∂βuj)µβj , (4.1)

where cσµ are non-negative integer and the sum is over σ ∈ N
l, 1 ≤ |σ| ≤ |α|,

µ = (µβj)1≤|β|≤|α|,1≤j≤l with µβj ∈ N, β ∈ N
n, j ∈ N, such that∑

1≤|β|≤|α|
µβj = σj ,

∑
1≤|β|≤|α|

1≤j≤l

βµβj = α, (4.2)

so that we have in particular
∑

βj |β|µβj = |α|.

When l = 1, that is when u is scalar, the identity (4.1) is sometimes called
Faá di Bruno’s formula although it seems to have first been published by Tiburce
Abadie.40 The rescaled unknowns r = log ρ, w = v/

√
T , and τ = logT , naturally
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appear in higher order entropy estimates. We will need the following differential
identities29 easily established by induction on |α| and the next lemma will be used
for temperature as well as for density.

Lemma 4.2. Let T be smooth and positive and α be a multi-index. Then we have
∂αT

T
=
∑

µ

cµ
∏

1≤|β|≤|α|
(∂βτ)µβ = ∂ατ +

∑
µ

cµ
∏

1≤|β|≤|α|−1

(∂βτ)µβ , (4.3)

where µ = (µβ)1≤|β|≤|α| with µβ ∈ N, β ∈ N
n, and cµ are non-negative integer

coefficients. The sum is extended over the µ such that∑
1≤|β|≤|α|

βµβ = α,

so that we have in particular
∑

1≤|β|≤|α| |β|µβ = |α|, and the only term with |β| =
|α| corresponds to ∂ατ . Conversely, we have

∂ατ =
∑

µ

c′µ
∏

1≤|β|≤|α|

(
∂βT

T

)µβ

=
∂αT

T
+
∑

µ

c′µ
∏

1≤|β|≤|α|−1

(
∂βT

T

)µβ

, (4.4)

where c′µ are integer coefficients and the sum is extended over the same set of µ.

Lemma 4.3. Let T and v be smooth, T be positive, i with 1 ≤ i ≤ n, and α be a
multi-index. Then we have

∂αvi√
T

=
∑
µα̃

cµα̃

∏
1≤|β|≤|α|

(∂βτ)µβ∂α̃wi, (4.5)

where µ = (µβ)1≤|β|≤|α|, µβ ∈ N, β ∈ N
n, α̃ ∈ N

n, cµα̃ are non-negative integer
coefficients, and the sum is extended over the µ and α̃, such that

0 ≤ α̃ ≤ α,
∑

1≤|β|≤|α|
βµβ + α̃ = α.

More precisely, isolating the only term ∂αwi corresponding to α̃ = α and all the
terms corresponding to α̃ = (0, . . . , 0), we have
∂αvi√
T

= ∂αwi +
∑
µα̃

cµα̃

∏
1≤|β|≤|α|

(∂βτ)µβ∂α̃wi +
∑

µ

cµ0

∏
1≤|β|≤|α|

(∂βτ)µβwi, (4.6)

where the α̃ in the middle sum are such that 1 ≤ |α̃| < |α|. Conversely, we have

∂αwi =
∑
µα̃

c′µα̃

∏
1≤|β|≤|α|

(
∂βT

T

)µβ ∂α̃vi√
T
, (4.7)

and more precisely

∂αwi =
∂αvi√
T

+
∑
µα̃

c′µα̃

∏
1≤|β|≤|α|

(
∂βT

T

)µβ ∂α̃vi√
T

+
∑

µ

c′µ0

∏
1≤|β|≤|α|

(
∂βT

T

)µβ vi√
T
,

(4.8)

where c′µα̃ are integer coefficients and the sums are extended over the same sets.
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4.2. Weighted operators

A natural condition associated with weights13,26,53 has been shown to be the Muck-
enhoupt property Ap, where 1 ≤ p ≤ ∞.

Definition 4.4. Let g ∈ L1
loc(R

n) be positive and let 1 < p < ∞. The function g

satisfies the Muckenhoupt condition Ap if

[g]Ap = sup
Q

(
1
|Q|

∫
Q

g dx

)(
1
|Q|

∫
Q

g−
1

p−1 dx

)p−1

<∞,

where the supremum is taken over all cubes Q.

For detailed studies about the Muckenhoupt property we refer to the book of
Garcia-Cuerva and Rubio de Francia.26 We have in particular Ap ∩Aq = Amin(p,q)

and the weights of Ap have their logarithms in BMO.26,53 A locally summable
function f belongs to the space BMO(Rn) if

‖f‖BMO = sup
Q

1
|Q|

∫
Q

|f(x) − f̄Q| dx <∞,

where the supremum is taken over all cubes Q and where f̄Q = 1/|Q|
∫

Q
f(x) dx

denotes the average of f over Q.52 The function space BMO has been introduced
by John and Nirenberg39 and naturally arises when estimating the norms of the
weighted operators T θRiT

−θ where Ri = (−∆)−1/2∂i, 1 ≤ i ≤ n, are Riesz
transforms, or when using the Coifman and Meyer inequalities.54,55 The space
BMO and its dual H1 have already been used in the context of the Navier–Stokes
equations.46,48,49

Theorem 4.5. There exist constants b(n) and B(n) such that for any θ ∈ R, any
u ∈ BMO, and any 1 < p <∞, the condition

|θ|‖u‖BMO <
1
2
b(n)min(1, p− 1),

implies that exp(θu) ∈ Ap and

[exp(θu)]Ap ≤ (1 +B(n))p.

Moreover, the constants b(n) and B(n) only depend on n and are thus invariant by
a change of scale in the coordinate system.

Proof. These estimates are proved in Ref. 29 and the scale invariance of b(n)
and B(n) is straightforward since both the BMO seminorm and the Ap condition
number [g]Ap are scale invariant.

We now investigate the continuity of Calderón–Zygmund operators in weighted
Lebesgue spaces. In the following theorem the quantitites c0, c1, c2 are the constants
naturally associated with the norm of a Calderón–Zygmund operator G.53
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Theorem 4.6. Let G be a Calderón–Zygmund operator, let 1 < p < ∞, and let
gp be a weight in Ap. Then the operator G is bounded in Lp(gpdx), or equivalently,
the operator gGg−1 is bounded in Lp, with norm lower than C(c0, c1, c2, n, p, [gp]Ap),
where c0, c1, c2 are the constants naturally associated with the norm of G.

Proof. We refer to the books of Garcia–Cuerva and Rubio de Francia26 and of
Yves Meyer.53

4.3. Multilinear estimates

We investigate weighted multilinear estimates for derivatives with weights in Ap

classes13,26,29,35,36,53 and we denote by C0
0(Rn) the set of continuous function that

vanish at infinity. The following multilinear estimates have been obtained in pre-
vious work29 by using the Wiener algebra A(Rn) instead of the space C0

0(Rn)
but the proofs are similar thanks to the density of D(Rn) in W k,2(Rn) ∩ C0

0(Rn).
The proof of this theorem essentially relies on the Coifman–Meyer theory and on
Theorem 4.6.

Theorem 4.7. Let k ≥ 1, l ≥ 1 be integers, and αj , 1 ≤ j ≤ l, be multi-
indices such that |αj | ≥ 1, 1 ≤ j ≤ l, and k =

∑
1≤j≤l |αj |. Let 1 < p < ∞,

gp ∈ Ap and u1, . . . , ul, be such that there exist constants uj,∞ with uj − uj,∞ ∈
W k,2(Rn) ∩ C0

0(Rn), and such that g∂kuj ∈ Lp, 1 ≤ j ≤ l. There exists a constant
c = c(k, n, p, [gp]Ap) only depending on (k, n, p, [gp]Ap), such that∥∥∥∥∥g ∏

1≤j≤l

∂αj

uj

∥∥∥∥∥
Lp

≤ c
∑

1≤i≤l

( ∏
1≤j≤l

j �=i

‖uj‖BMO

)
‖g∂kui‖Lp , (4.9)

and thus ∥∥∥∥∥g ∏
1≤j≤l

∂αj

uj

∥∥∥∥∥
Lp

≤ c‖u‖l−1
BMO‖g∂ku‖Lp , (4.10)

where

‖u‖BMO =
∑

1≤j≤l

‖uj‖BMO, ‖g∂mu‖p
Lp =

∑
1≤j≤l

‖g∂muj‖p
Lp .

We now investigate multilinear estimates where a weighted L∞ norm of the
gradient is used to decrease the total number of derivations k in the upper bound.
We denote by C1

0(Rn) the set of continuously differentiable functions that vanish at
infinity with their gradients.

Theorem 4.8. Let k ≥ 2, l ≥ 2 be integers, and αj , 1 ≤ j ≤ l, be multi-indices such
that |αj | ≥ 1, 1 ≤ j ≤ l, and k =

∑
1≤j≤l |αj |. Let 1 < p <∞, g be positive, g ∈ L1

loc

with log g ∈ BMO, and u1, . . . , ul, be such that there exist constants uj,∞ with
uj − uj,∞ ∈ W k−1,2(Rn) ∩ C1

0(Rn). Let h be the weight h = exp(θ1u1 + · · · + θlul),
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where |θj | ≤ θ̄ and θ̄ > 0. There exist constants δ = δ(k, n, p, θ̄) and c = c(k, n, p, θ̄),
only depending on (k, n, p, θ̄), such that if ‖ log g‖BMO +

∑
1≤j≤l ‖uj‖BMO < δ, then,

whenever ghk−1∂k−1uj ∈ Lp and ghk−2∂k−2uj ∈ Lp, 1 ≤ j ≤ l, the following
estimates hold∥∥∥∥∥ghk

∏
1≤j≤l

∂αj

uj

∥∥∥∥∥
Lp

≤ c‖u‖l−2
BMO‖h∂xu‖L∞‖ghk−1∂k−1u‖Lp

+ c 1k>3‖u‖(l−3)+

BMO ‖h∂xu‖2
L∞‖ghk−2∂k−2u

∥∥
Lp , (4.11)

where

‖h∂xu‖L∞ =
∑

1≤j≤l

‖h∂xuj‖L∞ , ‖ghm∂mu‖p
Lp =

∑
1≤j≤l

‖ghm∂muj‖p
Lp ,

and where 1k>3 = 1 if k > 3 and 1k>3 = 0 if k ≤ 3 so that in the special situation
2 ≤ k ≤ 3, the second term on the right-hand side of (4.11) is absent.

Proof. If there exists one multi-index αj0 such that |αj0 | = 1 we can directly write
that ∥∥∥∥∥ghk

∏
1≤j≤l

∂αj

uj

∥∥∥∥∥
Lp

≤ ‖h∂xuj0‖L∞

∥∥∥∥∥ghk−1
∏

1≤j≤l

j �=j0

∂αj

uj

∥∥∥∥∥
Lp

, (4.12)

and use the multilinear estimates of Theorem 4.7. The weight ghk−1 is in the Ap

class and [gphp(k−1)]Ap is bounded by a constant only depending on n and p from
Theorem 4.5 for δ small enough since ‖ log(ghk−1)‖BMO ≤ (1 + kθ̄)δ provided we
select δ ≤ 1

2b(n)min(1, p−1)/(1+kθ̄). This covers in particular the situation where
2 ≤ k ≤ 3 since it is assumed that l ≥ 2 so that there is at least one first-order
derivative factor ∂αj0

uj0 with |αj0 | = 1 in this case.
Keeping in mind that l ≥ 2, we can now assume that |α1| ≥ 2 and |α2| ≥ 2, so

that k ≥ 4, and write α1 = α̃1 +ei1 , α2 = α̃2 +ei2 , where |α̃1| = k−1, |α̃2| = k−1,
and i1, i2 ∈ {1, . . . , n}. We have denoted by ei, 1 ≤ i ≤ n, the canonical basis of R

n

with ei = (δi1, . . . , δin), where δij is the Kronecker symbol, so that ∂ei = ∂i. We
introduce the auxiliary functions v1 = h∂i1u1 and v2 = h∂i2u2 and write that

ghk
∏

1≤j≤l

∂αj

uj = ghk∂α̃1

(v1

h

)
∂α̃2

(v2

h

) ∏
3≤j≤l

∂αj

uj .

Next we expand the derivatives by using Lemma 4.1

∂α̃1

(v1

h

)
=

1
h

∑
β̃1µ

cβ̃1µ∂
β̃1v1

∏
1≤|β|≤|α|

1≤j≤l

(∂βuj)µβj , (4.13)
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where cβ̃1µ are non-negative integer coefficients, and the sum is over 0 ≤ β̃1 ≤ α̃1

and µ = (µβj)1≤|β|≤|α̃1|,1≤j≤l with µβj ∈ N, β ∈ N
n, 1 ≤ j ≤ l, and

∑
βj βµβj =

α̃1 − β̃1. We can thus write that

ghk
∏

1≤j≤l

∂αj

uj =
∑

β̃1β̃2α̂

cβ̃1β̃2α̂gh
k−2∂β̃1v1∂

β̃2v2

∏
3≤j≤l

∂αj

uj

∏
1≤j≤l̂

∂α̂j

ûj , (4.14)

where the derivative factors arising from the derivation of 1/h in (4.13) are rewritten
in the form

∏
1≤j≤l̂ ∂

α̂j

ûj , where (û1, . . . , ûl̂) are proper replicates of u1, . . . , ul. We
can then use the inequality (4.9) of Theorem 4.7 to estimate the Lp norm of each
term in the sum (4.14). Inequality (4.9) is used with the weight ghk−2 and with
the variables (v1, v2, u3, . . . , uj , û1, . . . , ûl̂). The weight ghk−2 is in the Ap class for
δ small enough and [gphp(k−2)]Ap is bounded by a constant only depending on
n and p from Theorem 4.5 provided that δ ≤ 1

2b(n)min(1, p − 1)/(1 + kθ̄). We
can thus estimate the Lp norm of ghk

∏
1≤j≤l ∂

αj

uj , up to multiplicative constants
depending on (k, n, p, θ̄), in terms of

‖v2‖BMO

∏
3≤j≤l

‖uj‖BMO

∏
1≤j≤l̂

‖ûj‖BMO‖ghk−2∂k−2v1

∥∥
Lp ,

‖v1‖BMO

∏
3≤j≤l

‖uj‖BMO

∏
1≤j≤l̂

‖ûj‖BMO‖ghk−2∂k−2v2

∥∥
Lp ,

‖v1‖BMO‖v2‖BMO

∏
3≤j≤l

j �=i

‖uj‖BMO

∏
1≤j≤l̂

‖ûj‖BMO‖ghk−2∂k−2ui

∥∥
Lp , 3 ≤ i ≤ l,

and

‖v1‖BMO‖v2‖BMO

∏
3≤j≤l

‖uj‖BMO

∏
1≤j≤l̂

j �=i

‖ûj‖BMO‖ghk−2∂k−2ûi

∥∥
Lp , 1 ≤ i ≤ l̂.

Expanding then the derivatives ∂k−2vj = ∂k−2(h∂ij uj), j = 1, 2, it is easily
checked that ‖ghk−2∂k−2vj‖Lp is majorized by a multiplicative constant multiplied
by
∑

1≤i≤l ‖ghk−1∂k−1ui‖Lp and the proof is complete since one may choose δ such
that 0 < δ ≤ 1.

Remark 4.9. The space of smooth functions with compact support D(Rn) is dense
in W k,2(Rn)∩BMO(Rn) — for the norm ‖ ·‖W k,2 +‖ ·‖BMO of course — if and only
if k ≥ n/2. Indeed, for k < n/2, D(Rn) is not even dense in W k,2(Rn) ∩ L∞(Rn)
and counterexemples are classically found in the form of series of needles.29 On
the other hand, for k = n/2, we have W k,2(Rn) ∩ BMO(Rn) = W k,2(Rn), whereas
for k > n/2, W k,2(Rn) is included in C0

0(Rn). We have introduced the natural
simplifying assumption uj − uj,∞ ∈ W k,2(Rn) ∩ C0

0(Rn) since it will be sufficient
for our applications, since C0

0(Rn) ⊂ L∞(Rn) ⊂ BMO(Rn), and since D(Rn) is
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always dense in W k,2(Rn) ∩ C0
0(Rn), even for k < n/2, as easily established by

truncation and smoothing. Similarly, when using the gradient norms ‖h∂xuj‖L∞ ,
1 ≤ j ≤ l, we have introduced the natural simplifying assumption that uj − uj,∞ ∈
W k,2(Rn) ∩ C1

0(Rn) since it will be sufficient for our applications.

4.4. Weighted products of derivatives

We first investigate products of derivatives of the rescaled unknowns τ and w with
powers of temperature and density as natural weights.29 Since in our applications w
and τ will be parabolic variables, the total number of derivations k is left unchanged
in the estimates.

Theorem 4.10. Let k ≥ 1 be an integer, θ̄ > 0 be positive, 1 < p < ∞, τ be
such that τ − τ∞ ∈ W k,2(Rn) ∩ C0

0(Rn) for some constant τ∞ and let r ∈ BMO.
There exist positive constants δ(n, p, θ̄) and c(k, n, p), only depending on (n, p, θ̄)
and (k, n, p), respectively, such that if ‖r‖BMO + ‖τ‖BMO < δ, then for any a, b with
|a| + |b| ≤ θ̄, any integer l ≥ 1, and any multi-indices αj , 1 ≤ j ≤ l, with |αj | ≥ 1,
1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k, whenever eaτ+br∂kτ ∈ Lp(Rn), the following

inequality holds∥∥∥∥∥eaτ+br
∏

1≤j≤l

∂αj

τ

∥∥∥∥∥
Lp

≤ c‖τ‖l−1
BMO‖eaτ+br∂kτ‖Lp . (4.15)

Further assuming that w ∈ W k,2(Rn)∩C0
0(Rn), eaτ+br∂kw ∈ Lp(Rn), and 0 ≤ l̄ ≤ l,

then∥∥∥∥∥eaτ+br
∏

1≤j≤l̄

∂αj

w
∏

l̄+1≤j≤l

∂αj

τ

∥∥∥∥∥
Lp

≤ c (‖w‖BMO + ‖τ‖BMO)l−1

×
(
‖eaτ+br∂kw‖Lp + ‖eaτ+br∂kτ‖Lp

)
,

(4.16)

where we have naturally defined ‖eaτ+br∂kw‖p
Lp =

∑
1≤i≤n ‖eaτ+br∂kwi‖p

Lp and on
the left-hand member of (4.16), with a slight abuse of notation, we have denoted by
w any of its components w1, . . . , wn.

We now investigate products of derivatives of the rescaled unknowns r, τ and
w. Since in our applications r will be a hyperbolic variable, the total number of
derivations appearing in the estimates needs to be decreased by using a weighted
L∞ norm of the gradients.

Theorem 4.11. Let k ≥ 2 be an integer, θ̄ > 0 be positive, 1 < p < ∞, τ, r,

w be such that τ − τ∞, r − r∞, w ∈ W k−1,2(Rn) ∩ C1
0(Rn) for some constants τ∞

and r∞. Let a, b, ā and b̄ be constants with |a| + |b| ≤ θ̄, |ā| + |b̄| ≤ θ̄, and let g =
exp(aτ+br) and h = exp(āτ+ b̄r). Let l ≥ 2, let αj , 1 ≤ j ≤ l, be multi-indices with
|αj | ≥ 1, 1 ≤ j ≤ l, and

∑
1≤j≤l |αj | = k. There exist positive constants δ(k, n, p, θ̄)



December 26, 2008 8:46 WSPC/103-M3AS 00336

94 V. Giovangigli

and c(k, n, p, θ̄), only depending on (k, n, p, θ̄), such that if ‖r‖BMO + ‖τ‖BMO < δ,

then whenever ghk−1∂k−1r, ghk−1∂k−1w, ghk−1∂k−1τ, ghk−2∂k−2r, ghk−2∂k−2w,

ghk−2∂k−2τ ∈ Lp(Rn), and 1 ≤ l̄ ≤ l̃ ≤ l, we have the estimates∥∥∥∥∥ghk
∏

1≤j≤l̄

∂αj

r
∏

l̄+1≤j≤l̃

∂αj

w
∏

l̃+1≤j≤l

∂αj

τ

∥∥∥∥∥
Lp

≤ c‖z̃‖l−2
BMO‖h∂xz̃‖L∞‖ghk−1∂k−1z̃‖Lp

+ c1k>3‖z̃‖(l−3)+

BMO ‖h∂xz̃‖2
L∞‖ghk−2∂k−2z̃‖Lp , (4.17)

where we have denoted z̃ = (r, w, τ) and

‖z̃‖BMO = ‖r‖BMO + ‖w‖BMO + ‖τ‖BMO, (4.18)

‖h∂xz̃‖L∞ = ‖h∂xr‖L∞ + ‖h∂xw‖L∞ + ‖h∂xτ‖L∞ , (4.19)

‖ghm∂mz̃‖p
Lp = ‖ghm∂mr‖p

Lp + ‖ghm∂mw‖p
Lp + ‖ghm∂mτ‖p

Lp (4.20)

for any m ∈ N
∗ and on the left-hand member of (4.17), with a slight abuse of

notation, we have denoted by w any of its components w1, . . . , wn. In particular, in
the situation where 2 ≤ k ≤ 3, the second term on the right-hand side of in (4.17)
is absent.

Proof. Theorems 4.10 and 4.11 are direct consequences of the multilinear estimates
of Theorems 4.7 and 4.8.

4.5. Weighted products of renormalized derivatives

We now estimate products of derivatives of density, temperature and velocity com-
ponents rescaled by the proper renormalizing factors.

Theorem 4.12. Let k ≥ 1 be an integer, θ̄ > 0 be positive, 1 < p < ∞, T be such
that T ≥ Tmin > 0 and T − T∞ ∈ W k,2(Rn) ∩ C0

0(Rn) for some positive constant
T∞ and ρ be positive such that r = log ρ ∈ BMO. There exist positive constants
δ(n, p, θ̄) and c(k, n, p), only depending on (n, p, θ̄) and (k, n, p), respectively, such
that if ‖ log ρ‖BMO+‖ logT ‖BMO < δ, then for any real a and b such that |a|+|b| ≤ θ̄,

any integer l ≥ 1, and any multi-indices αj , 1 ≤ j ≤ l, with |αj | ≥ 1, 1 ≤ j ≤ l,

and
∑

1≤j≤l |αj | = k, whenever T aρb(∂kT )/T ∈ Lp(Rn), we have the estimates

∥∥∥∥∥T aρb
∏

1≤j≤l

∂αj

T

T

∥∥∥∥∥
Lp

≤ c‖ logT ‖l−1
BMO

∥∥∥∥T aρb ∂
kT

T

∥∥∥∥
Lp

. (4.21)
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Assuming v ∈ W k,2(Rn) ∩ C0
0(Rn), ‖ log ρ‖BMO + ‖v/

√
T‖L∞ + ‖ logT ‖BMO < δ,

whenever T aρb(∂kv)/
√
T ∈ Lp(Rn), we have for 0 ≤ l̄ ≤ l∥∥∥∥∥T aρb

∏
1≤j≤l̄

∂αj

v√
T

∏
l̄+1≤j≤l

∂αj

T

T

∥∥∥∥∥
Lp

≤ c

(∥∥∥∥ v√
T

∥∥∥∥
L∞

+ ‖ logT ‖BMO

)l−1

×
(∥∥∥∥T aρb ∂

kv√
T

∥∥∥∥
Lp

+
∥∥∥∥T aρb ∂

kT

T

∥∥∥∥
Lp

)
,

(4.22)

where, on the left-hand member, with a slight abuse of notation, we have denoted
by v any of its components v1, . . . , vn.

Theorem 4.13. Let k ≥ 2 be an integer, θ̄ > 0 be positive, 1 < p <∞, ρ, v, T, be
such that ρ ≥ ρmin, T ≥ Tmin, and ρ − ρ∞, v, T − T∞ ∈ W k−1,2(Rn) ∩ C1

0(Rn)
for positive constants ρ∞, ρmin, T∞ and Tmin. Let a, b ā, and b̄ be constants
with |a| + |b| ≤ θ̄, |ā| + |b̄| ≤ θ̄, and let g = T aρb, h = T āρb̄. Let l ≥ 2,
αj , 1 ≤ j ≤ l, be multi-indices with |αj | ≥ 1, 1 ≤ j ≤ l, and

∑
1≤j≤l |αj | =

k. There exist positive constants δ(k, n, p, θ̄) and c(k, n, p, θ̄), only depending on
(k, n, p, θ̄), such that if ‖ log ρ‖BMO + ‖v/

√
T‖L∞ + ‖ logT ‖BMO < δ(k, n, p, θ̄), then

whenever ghk−1(∂k−1ρ)/ρ, ghk−1(∂k−1v)/
√
T , ghk−1(∂k−1T )/T, ghk−2(∂k−2ρ)/ρ,

ghk−2(∂k−2v)/
√
T , ghk−2(∂k−2T )/T ∈ Lp(Rn), we have for 0 ≤ l̄ ≤ l̃ ≤ l∥∥∥∥∥∥ghk

∏
1≤j≤l̄

∂αj

ρ

ρ

∏
l̄+1≤j≤l̃

∂αj

v√
T

∏
l̃+1≤j≤l

∂αj

T

T

∥∥∥∥∥∥
Lp

≤ c‖z̃‖′l−2
BMO‖h∂xz̃‖′L∞‖ghk−1∂k−1z̃‖′Lp

+ c1k>3‖z̃‖′(l−3)+

BMO ‖h∂xz̃‖′2L∞‖ghk−2∂k−2z̃‖′Lp , (4.23)

where, on the left-hand member, with a slight abuse of notation, we have denoted
by v any of its components v1, . . . , vn, and where z̃ = (r, w, τ) and

‖z̃‖′BMO = ‖ log ρ‖BMO + ‖v/
√
T‖L∞ + ‖ logT ‖BMO, (4.24)

‖h∂xz̃‖′L∞ =
∥∥∥∥h∂xρ

ρ

∥∥∥∥
L∞

+
∥∥∥∥h∂xv√

T

∥∥∥∥
L∞

+
∥∥∥∥h∂xT

T

∥∥∥∥
L∞

, (4.25)

‖ghm∂mz̃‖′pLp =
∥∥∥∥ghm∂

mρ

ρ

∥∥∥∥p

Lp

+
∥∥∥∥ghm ∂mv√

T

∥∥∥∥p

Lp

+
∥∥∥∥ghm ∂mT

T

∥∥∥∥p

Lp

, (4.26)

for any m ∈ N
∗. In particular, in the situation where 2 ≤ k ≤ 3, the second term

on the right-hand side of (4.23) is absent. Note that there is a L∞ norm for the
rescaled velocity w in ‖z̃‖′BMO.



December 26, 2008 8:46 WSPC/103-M3AS 00336

96 V. Giovangigli

Proof. The proof of Theorems 4.12 and 4.13 essentially relies on Theorems 4.10
and 4.11 and on the differential identities established in Lemmas 4.2 and 4.3. Con-
sidering temperature as a typical example, the differential identities and Theorem
4.10 yield estimates in the form∥∥∥∥∥T aρb

∏
1≤j≤l

∂αj

T

T

∥∥∥∥∥
Lp

≤ c‖ logT ‖l−1
BMO‖T aρb∂kτ‖Lp , (4.27)

and similarly that∥∥∥∥T aρb

(
∂kT

T
− ∂kτ

)∥∥∥∥
Lp

≤ c‖ logT ‖BMO‖T aρb∂kτ‖Lp ,

where c = c(k, n, p). Therefore for c(k, n, p)‖ logT ‖BMO < 1/2 we have

1
2
‖T aρb∂kτ‖Lp ≤

∥∥∥∥T aρb ∂
kT

T

∥∥∥∥
Lp

≤ 3
2
‖T aρb∂kτ‖Lp , (4.28)

and reinserting (4.28) in (4.27) completes the proof of (4.21). The same procedure
can be applied to get estimates of ‖T aρb∂kρ/ρ‖Lp and ‖T aρb∂kv/

√
T‖Lp and then

to obtain (4.22) and (4.23).

Remark 4.14. Assuming that T − T∞ ∈ W 2,2(Rn) ∩ C1
0(Rn), T ≥ Tmin > 0 and

‖ logT ‖BMO is small enough, we obtain from Theorem 4.13 that∫
Rn

|∂xT |6
T 5+a

dx ≤ c‖ logT ‖2
BMO

∥∥∥∥∂xT

T

∥∥∥∥2

L∞

∫
Rn

|∂2T |2
T 1+a

dx. (4.29)

In contrast, when T − T∞ ∈W 3,2(Rn) ∩ C0
0(Rn), T ≥ Tmin > 0, and ‖ logT ‖BMO is

small enough, we obtain from Theorem 4.12 that∫
Rn

|∂xT |6
T 5+a

dx ≤ c‖ logT ‖4
BMO

∫
Rn

|∂3T |2
T 1+a

dx. (4.30)

5. Higher Order Entropy Estimates

In this section we investigate higher order entropy estimates for compressible flows
spanning the whole space. We establish entropic inequalities when the quantities
‖ log ρ‖BMO, ‖v/

√
T‖L∞ , ‖ logT ‖BMO, ‖h∂xρ/ρ‖L∞, ‖h∂xv/

√
T‖L∞ , ‖h∂xT/T ‖L∞,

and ‖h2∂2
xT/T ‖L∞ are small enough, where h = 1/(ρT

1
2−κ) is a weight associated

with the dependence of the local mean free path l = η/ρ
√
rgT on density and

temperature. In the following, all constants associated with a priori estimates and
entropic inequalities may depend on the system parameters a, a, aσ, σ ≥ 1, κ,
and cv. However, these dependencies are made implicit in order to avoid notational
complexities and only the dependence on k and n is made explicit.
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5.1. Preliminaries

The balance equations of higher order correctors can be integrated over R
n and [0, t]

where 0 ≤ t ≤ t̄ thanks to the regularity properties of the solution. Considering the
γ[k] balance equation (3.25) as a typical example, we have the following result.

Lemma 5.1. Let (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes
equations (3.1)–(3.5) with regularity (3.6)–(3.7) and let 1 ≤ k ≤ l. Then the follow-
ing equation holds in D′(0, t̄) and L1(0, t̄)

∂t

∫
Rn

γ[k]dx+
∫

Rn

(π[k]
γ + Σ

[k]
γ + ω[k]

γ ) dx = 0, (5.1)

and the following equation holds in C0[0, t̄ ]∫
Rn

γ[k] dx+
∫ t

0

∫
Rn

(π[k]
γ + Σ

[k]
γ + ω[k]

γ ) dx =
∫

Rn

γ
[k]
0 dx, (5.2)

where γ[k]
0 denotes the functional γ[k] evaluated at initial conditions.

Proof. This lemma results from standard manipulations using distributional
derivatives and test functions in the form of tensor products ϕ(t)ψ(x).

As a consequence of Lemma 5.1, integrating the balance equation (3.25) for γ[k]

with 1 ≤ k ≤ l, we deduce that

∂t

∫
Rn

γ[k] dx+
∫

Rn

π[k]
γ dx ≤

∫
Rn

|Σ[k]
γ | dx+

∫
Rn

|ω[k]
γ | dx, (5.3)

so that we have to investigate the integrals
∫

Rn |Σ[k]
γ |dx and

∫
Rn |ω[k]

γ |dx. Similarly,
we obtain by integrating the balance equation (3.30) for γ[k− 1

2 ] that

∂t

∫
Rn

γ[k− 1
2 ] dx +

∫
Rn

π
[k− 1

2 ]
γ dx ≤

∫
Rn

|Σ[k− 1
2 ]

γ | dx+
∫

Rn

|ω[k− 1
2 ]

γ | dx, (5.4)

and we have to investigate the integrals
∫

Rn |Σ[k− 1
2 ]

γ |dx and
∫

Rn |ω[k− 1
2 ]

γ |dx. We will
simultaneously estimate the analogous integrals

∫
Rn |Σ[k]

γ̃ |dx and
∫

Rn |ω[k]
γ̃ |dx asso-

ciated with the balance equation of γ̃[k] as well as the integrals
∫

Rn |Σ[k− 1
2 ]

γ̃ |dx and∫
Rn |ω[k− 1

2 ]

γ̃ |dx associated with the balance equations for γ̃[k− 1
2 ].

It will be convenient to denote by χγ the quantity

χγ = ‖log ρ‖BMO +
∥∥∥∥ v√

T

∥∥∥∥
L∞

+ ‖logT ‖BMO

+
∥∥∥∥h∂xρ

ρ

∥∥∥∥
L∞

+
∥∥∥∥h∂xv√

T

∥∥∥∥
L∞

+
∥∥∥∥h∂xT

T

∥∥∥∥
L∞

+
∥∥∥∥h2 ∂

2
xT

T

∥∥∥∥
L∞

, (5.5)
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and similarly by χγ̃ the quantity

χγ̃ = ‖r‖BMO + ‖w‖L∞ + ‖τ‖BMO

+ ‖h∂xr‖L∞ + ‖h∂xw‖L∞ + ‖h∂xτ‖L∞ + ‖h2∂2
xτ‖L∞ . (5.6)

It can easily be established that χγ ≤ χγ̃(1 + χγ̃) and χγ̃ ≤ χγ(1 + χγ) so that
χγ ≤ 1 implies that 1

3χγ ≤ χγ̃ ≤ 2χγ , and χγ̃ ≤ 1 implies that 1
3χγ̃ ≤ χγ ≤

2χγ̃ , and assuming that either χγ or χγ̃ is small is equivalent. We will establish
that entropic inequalities hold for Γ[k] and Γ̃[k] when χγ or χγ̃ are small enough.
These quantities χγ and χγ̃ are invariant under the change of scales (3.8) described
in Remark 3.1. They can also be interpreted as involving the natural variables
log ρ, v/

√
rgT , and logT , appearing in Maxwellian distributions11 and the natural

scale h associated with the local mean free path η/ρ
√
rgT . Since we have formally

v/
√
rgT = O(Ma), log(T/T∞) = O(Ma), and log(ρ/ρ∞) = O(Ma), where Ma

denotes the Mach number, the constraint that χγ or χγ̃ remain small may be
interpreted as a small Mach number constraint, which is consistent with Enskog
expansion.34

5.2. A priori estimates

We first investigate the integrals
∫

Rn |Σ[k]
ξ |dx and

∫
Rn |ω[k]

ξ |dx, where ξ denotes any
of the symbols γ or γ̃, by using the weighted inequalities established in Sec. 4.

Proposition 5.2. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7), let 1 ≤ k ≤ l, and let
ξ denote any of the symbols γ or γ̃. There exist positive constants δ(k, n) and
ck = c(k, n) such that for χξ < δ we have∫

Rn

|Σ[k]
ξ | dx ≤ ckχξ

∫
Rn

(π[k]
ξ + π

[k− 1
2 ]

ξ + π
[k−1]
ξ + 1k>2(π

[k− 3
2 ]

ξ + π
[k−2]
ξ )) dx. (5.7)∫

Rn

|ω[k]
ξ | dx ≤ ckχξ

∫
Rn

(π[k]
ξ + π

[k− 1
2 ]

ξ + π
[k−1]
ξ + 1k>2(π

[k− 3
2 ]

ξ + π
[k−2]
ξ )) dx. (5.8)

Proof. We only give the proof for ξ = γ̃ since the proof for ξ = γ is similar. We
have from (3.36)

Σ
[k]
γ̃ =

∑
σνµφ

cσνµφe
−κτ∂σ

τ φΠ(k+1)
ν Π(k+1)

µ +
k(1 − 2κ)λ
eκτcv

g2h2(k+1)|∂kr|2∆τ,

and the integral associated with the last term is directly majorized by∫
Rn

λ

eκτ
g2h2(k+1)|∂kr|2|∆τ | dx ≤ c‖h2∂2τ‖L∞

∫
Rn

π
[k− 1

2 ]

γ̃ dx,

where c is a constant since λe−κτ is bounded. Considering then the terms of Σ
[k]
γ̃

appearing in the sum we observe that the quantities e−κτ∂σ
τ φ are bounded since
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∂σ
τ φ =

∑
1≤m≤σ cσmT

m∂m
T φ, where cσm are constants and where φ ∈ {κ, η, λ}, so

that we only have to estimate the L2 norms of the products Π(k+1)
ν .

First note that any factor w in Π(k+1)
ν is independently estimated by ‖w‖L∞ .

When Π(k+1)
ν only contains derivatives of w and τ — in particular if there is a

derivative of order k + 1 — we obtain from Theorem 4.10 applied to (w, τ) with k
replaced by k + 1, that when χγ̃ is small enough

‖Π(k+1)
ν ‖L2 ≤ c(‖τ‖BMO + ‖w‖L∞)Nν−1

{∫
Rn

π
[k]
γ̃ dx

} 1
2

, (5.9)

where Nν =
∑

1≤|α|≤k+1(να + ν′α + ν′′α) =
∑

1≤|α|≤k+1(ν
′
α + ν′′α). However, if the

product Π(k+1)
ν is split — in particular if there is a derivative of density — we

obtain from Theorem 4.11 applied to (r, w, τ) with k replaced by k + 1, that when
χγ̃ is small enough

‖Π(k+1)
ν ‖L2 ≤ c‖z̃‖Nν−2

BMO ‖h∂xz̃‖L∞‖ghk∂kz̃‖L2

+ c1k>2‖z̃‖(Nν−3)+

BMO ‖h∂xz̃‖2
L∞‖ghk−1∂k−1z̃‖L2 ,

keeping the notation of Theorems 4.11 for ‖h∂xz̃‖L∞ and ‖ghm∂mz̃‖L2 . Therefore,
we obtain that

‖Π(k+1)
ν ‖L2 ≤ cχNν−1

γ̃

{∫
Rn

(π[k− 1
2 ]

γ̃ + π
[k−1]
γ̃ + 1k>2(π

[k− 3
2 ]

γ̃ + π
[k−2]
γ̃ )) dx

} 1
2

,

(5.10)

where c = c(k, n) thanks to χγ̃ ≤ 1 and

‖ghi∂iz̃‖2
L2 ≤ b

∫
Rn

(π[i− 1
2 ]

γ̃ + π
[i−1]
γ̃ ) dx, 1 ≤ i ≤ k,

where b is independent of i and n. Since one of the two products Π(k+1)
ν or Π(k+1)

µ

is split, we can combine the inequalities (5.9) and (5.10) in the form

‖Π(k+1)
ν Π(k+1)

µ ‖L1 ≤ cχγ̃

∫
Rn

(π[k]
γ̃ + π

[k−1]
γ̃ + π

[k− 1
2 ]

γ̃ + 1k>2(π
[k− 3

2 ]

γ̃ + π
[k−2]
γ̃ )) dx,

where c depends on k and n. On the other hand, in the expression of ω[k]
γ̃ , the

products Π(k+1)
µ are always split between several derivative factors, so that the

inequality (5.8) is established in a similar way. The proof in the situation ξ = γ is
similar with Theorems 4.10 and 4.11 replaced by Theorems 4.12 and 4.13.

Proposition 5.3. Let (ρ, v, T ) be a smooth solution of the compressible Navier–
Stokes equations (3.1)–(3.5) with regularity (3.6), (3.7), let 1 ≤ k ≤ l, and let
ξ denote any of the symbols γ or γ̃. There exist positive constants δ(k, n) and
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ck = c(k, n) such that for χξ < δ we have∫
Rn

|Σ[k− 1
2 ]

ξ | dx ≤ ckχξ

∫
Rn

(π[k]
ξ + π

[k− 1
2 ]

ξ + π
[k−1]
ξ + 1k>2(π

[k− 3
2 ]

ξ + π
[k−2]
ξ )) dx

+ c0

{∫
Rn

π
[k]
ξ dx

} 1
2
{∫

Rn

π
[k− 1

2 ]

ξ dx

} 1
2

, (5.11)

∫
Rn

|ω[k− 1
2 ]

ξ | dx ≤ ckχξ

∫
Rn

(π[k]
ξ + π

[k− 1
2 ]

ξ + π
[k−1]
ξ + 1k>2(π

[k− 3
2 ]

ξ + π
[k−2]
ξ )) dx

+ c′0

∫
Rn

π
[k−1]
ξ dx+ c′0

{∫
Rn

π
[k− 1

2 ]

ξ dx

} 1
2
{∫

Rn

π
[k−1]
ξ dx

} 1
2

,

(5.12)

where c0 and c′0 are constants independent of k and n.

Proof. Considering first the case ξ = γ and the expression (3.41) for Σ
[k− 1

2 ]
γ , all

terms in the sum are estimated as in the proof of Proposition 5.2. More specifically,
the L2 norm of Π(k)

ν is estimated with Theorem 4.12 applied to ρ, v, and T , whereas
the L2 norm of the split product Π(k+1)

µ is estimated with Theorem 4.13 applied to
ρ, v, ad T with k replaced by k + 1. Furthermore, the remaining extra terms are
directly estimated in terms of π[k]

γ , π[k− 1
2 ]

γ and π[k−1]
γ . The same argument is valid

for ω[k− 1
2 ]

γ using the expression (3.33) as well as in the case ξ = γ̃ using (3.42) and
(3.42).

5.3. Zeroth order entropic inequalities

We now recast the classical zeroth order entropic inequality into a convenient form
that will be used to investigate entropic principles associated with Γ[k].

Proposition 5.4. Let γ[0] be given by (3.17). Then γ[0] ≥ 0 and the following
balance equation holds

∂tγ
[0]/C0 + ∂x·

(
ρv(s∞ − s) + ρvcp

T − T∞
T∞

+ ρv
|v|2
2T∞

)
+ ∂x·

(
q

T∞
− q

T
+

Π·v
T

)
+
(
λ|∂xT |2
T 2

+
η|d|2
2T

+
κ(∂x·v)2

T

)
dx = 0. (5.13)

Moreover, there exist positive constants B0 and δ0 > 0 such that for C0 ≥ B0 and
χγ < δ0 we have

∂t

∫
Rn

γ[0] dx+
∫

Rn

π[0]
γ dx ≤ 0, (5.14)

where we define from (3.26)

π[0]
γ = 2g2h2

(
λ

Tκ

|∂xT |2
T 2

+
η

Tκ

|∂xv|2
T

+
κ+ n−2

n η

Tκ

(∂x·v)2
T

)
.
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Proof. It is easily established that both the temperature and density parts of
γ[0] are non-negative so that γ[0] ≥ 0. Multiplying the total mass equation by
(∂ρS

(0))∞ = s∞ − e∞/T∞ − rg, the total energy equation by (∂etotS(0))∞ = 1/T∞,
and subtracting to this linear combination the fluid entropy governing equation
yields (5.13). Integrating this balance equation (5.13), keeping in mind the regu-
larity assumptions such that fluxes and sources are in L1((0, t̄), L1(Rn)), we obtain
that

∂t

∫
Rn

γ[0] dx+ C0

∫
Rn

(
λ|∂xT |2
T 2

+
η|d|2
2T

+
κ(∂x·v)2

T

)
dx = 0.

From the properties of the transport coefficients we obtain

∂t

∫
Rn

γ[0] dx+ C0(a/2)
∫

Rn

Tκ

(
|∂xT |2
T 2

+
|∂xv + (∂xv)t|2

T

)
dx ≤ 0.

On the other hand, for any v ∈ W 1,2 and any index pair (i, j) we have61

2∂jvi = (∂jvi + ∂ivj) −
∑

1≤l≤n

RlRj(∂lvi + ∂ivl) +
∑

1≤l≤n

RlRi(∂lvj + ∂jvl), (5.15)

where Ri = (−∆)−1/2∂i are the Riesz transforms, 1 ≤ i ≤ n, and from the conti-
nuity of Calderòn–Zygmund operators in weighted Legesgue spaces established in
Theorem 4.6 we deduce that there exists a constant c̄(n,κ) such that∫

Rn

|∂xv|2
T 1−κ

dx ≤ c̄

∫
Rn

|∂xv + (∂xv)t|2
T 1−κ

dx,

for ‖ logT ‖BMO < δ(n,κ) small enough. By combining these estimates and by using
that Tκ = g2h2 we obtain

∂t

∫
Rn

γ[0] dx+ C0(a/2a)
1

1 + c̄

1
1 + 4n

∫
Rn

π[0]
γ dx ≤ 0,

and selecting C0 ≥ 2(1 + c̄)(1 + 4n)a/a completes the proof.

We also recast the classical zeroth order entropic inequality into a convenient
form that will be needed to investigate entropic principles associated with Γ̃[k].

Proposition 5.5. Let γ̃[0] = γ[0] by given be (3.17). Then γ̃[0] ≥ 0 and the balance
equation (5.13) holds. Moreover, there exist positive constants B0 and δ0 > 0 such
that for C0 ≥ B0 and χγ̃ < δ0

∂t

∫
Rn

γ̃[0] dx+
∫

Rn

π
[0]
γ̃ dx ≤ 0, (5.16)

where we define from (3.35)

π
[0]
γ̃ = 2g2h2

(
λ

eκτ
|∂xτ |2 +

η

eκτ
|∂xw|2 +

κ+ n−2
n η

eκτ
(∂x·w)2

)
.
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Proof. This is a consequence of the proof of Proposition 5.4 and of the differential
relations

∂iv√
T

= ∂iw +
1
2
w∂iτ, 1 ≤ i ≤ n,

which yield that
∫

Rn π
[0]
γ dx is minorized by (1 − cχγ̃)

∫
Rn π

[0]
γ̃ dx.

5.4. Higher order entropic inequalities

Our goal in this section is to obtain entropic inequalities for the (2k)th order kinetic
entropy estimators

Γ[k] = γ[0] +
∑

1≤i≤k

(γ[i] + aγ[i− 1
2 ]) k ≥ 0 (5.17)

and

Γ̃[k] = γ̃[0] +
∑

1≤i≤k

(γ̃[i] + aγ̃[i− 1
2 ]) k ≥ 0. (5.18)

The quantities γ[i− 1
2 ] and γ̃[i− 1

2 ], 1 ≤ i ≤ k, are multiplied by a small rescaling
factor a in (5.17) and (5.18) so as not to modify the majorizing properties of the
correctors γ[i] and γ̃[i], i ≥ 0.

Lemma 5.6. Let (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes
equations (3.1)–(3.5) with regularity (3.6), (3.7), assume that T ≥ Tmin. There exists
B0(Tmin/T∞) such that for C0 ≥ B0, 0 < a ≤ 1, and 0 ≤ k ≤ l

1
2
(γ[0] + · · · + γ[k]) ≤ Γ[k] ≤ 3

2
(γ[0] + · · · + γ[k]), 0 ≤ k ≤ l, (5.19)

1
2
(γ̃[0] + · · · + γ̃[k]) ≤ Γ̃[k] ≤ 3

2
(γ̃[0] + · · · + γ̃[k]), 0 ≤ k ≤ l. (5.20)

Moreover, assuming that T ≥ Tmin and ρ ≤ ρmax, there exists B0(Tmin/T∞,
ρ∞/ρmax) such that for C0 ≥ B0,

ρ(|r − r∞|2 + |w|2 + cv|τ − τ∞|2) ≤ γ[0]. (5.21)

Proof. Using the Cauchy–Schwarz inequality, it is straightforward to check that
for any 1 ≤ i ≤ k ≤ l

|γ[i− 1
2 ]| ≤

{
ρh2(i−1)

∣∣∣∣∂i−1v√
T

∣∣∣∣2
} 1

2
{
ρh2i

∣∣∣∣∂iρ

ρ

∣∣∣∣2
} 1

2

≤ 1
2

(
ρh2(i−1)

∣∣∣∣∂i−1v√
T

∣∣∣∣2 + ρh2i

∣∣∣∣∂iρ

ρ

∣∣∣∣2
)
.

Therefore, half of the density part of γ[i] and of the velocity part of γ[i−1] compen-
sate for |γ[i− 1

2 ]| provided we ensure that γ[0] ≥ ρ|v/
√
T |2 but this is a consequence

of C0 ≥ 2T∞/Tmin. The same method also applies for the modified estimators
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γ̃[i− 1
2 ], 1 ≤ i ≤ k, and this yields inequalities (5.19) and (5.20) upon summing over

1 ≤ i ≤ k. Inequality (5.21) is a consequence of

Tmin

2T∞
|w|2 ≤ |v|2

2T∞
,

Tmin

2T∞
|τ − τ∞|2 ≤ exp(τ − τ∞) − 1 − (τ − τ∞),

valid for τmin ≤ τ , where τmin = logTmin, τ∞ = logT∞ and Tmin ≤ T∞, and of
ρ∞

2ρmax
|r − r∞|2 ≤ exp(r∞ − r) − 1 − (r∞ − r),

valid for r ≤ rmax, where rmax = log ρmax, r∞ = log ρ∞ and r∞ ≤ rmax letting
B0 = max(1, 2T∞

Tmin
, ρmax

2ρ∞
) and C0 ≥ B0.

In the following, we assume that C0 has been chosen large enough such that the
inequalities of Propositions 5.4–5.5, and 5.6 hold.

Theorem 5.7. Let (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes
equations (3.1)–(3.5) with regularity (3.6)–(3.7) and let 1 ≤ k ≤ l. There exist
positive constants ā ≤ 1 and δn(k, n) such that for a ≤ ā and χγ < δna we have

∂t

∫
Rn

Γ[k] dx+
1
5

∫
Rn

(
π[0]

γ +
∑

1≤i≤k

(π[i]
γ + aπ

[i− 1
2 ]

γ )

)
dx ≤ 0, (5.22)

and for a ≤ ā and χγ̃ < δna we have

∂t

∫
Rn

Γ̃[k] dx+
1
5

∫
Rn

(
π

[0]
γ̃ +

∑
1≤i≤k

(π[i]
γ̃ + aπ

[i− 1
2 ]

γ̃ )

)
dx ≤ 0. (5.23)

Proof. We only consider the case ξ = γ since the proof is similar for the modified
estimators ξ = γ̃. From the differential inequality (5.3) for γ[i], 1 ≤ i ≤ k ≤ l, and
the results of Proposition 5.2, we obtain that

∂t

∫
Rn

γ[i] dx+ (1 − 2ciχγ)
∫

Rn

π[i]
γ dx ≤ 2ciχγ

∫
Rn

(π[i− 1
2 ]

γ + π[i−1]
γ ) dx

+ 1i>22ciχγ

∫
Rn

(π[i− 3
2 ]

γ + π[i−2]
γ ) dx.

(5.24)

Similarly, from the differential inequality (5.4), and the results of Proposition 5.3
we obtain that

∂t

∫
Rn

γ[i− 1
2 ] dx+ (1 − 2ε0 − 2ciχγ)

∫
Rn

π
[i− 1

2 ]
γ dx ≤

(
c2
0

4ε0
+ 2ciχγ

)∫
Rn

π[i]
γ dx

+
(

c′0 +
c′20
4ε0

+ 2ciχγ

)∫
Rn

π[i−1]
γ dx+ 1i>22ciχγ

∫
Rn

(π[i− 3
2 ]

γ + π[i−2]
γ ) dx.

(5.25)
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Forming (5.24)+a(5.25), we obtain after some algebra

∂t

∫
Rn

(γ[i] + aγ[i− 1
2 ]) dx+

(
1 − 2ciχγ − a

(
c2
0

4ε0
+ 2ciχγ

))∫
Rn

π[i]
γ dx

+ (a(1 − 2ε0 − 2ciχγ) − 2ciχγ)
∫

Rn

π
[i− 1

2 ]
γ dx

≤
(
a

(
c′0 +

c′20
4ε0

+ 2ciχγ

)
+ 2ciχγ

)∫
Rn

π[i−1]
γ dx

+ 1i>22(1 + a)ciχγ

∫
Rn

(π[i− 3
2 ]

γ + π[i−2]
γ ) dx. (5.26)

Assuming then that

0 < a ≤ 1, 2ε0 =
1
10
, 2( max

1≤i≤k
ci)χγ ≤ a

10
,

a
c2
0

4ε0
≤ 1

10
, a

(
c′0 +

c′20
4ε0

)
≤ 1

10
,

that is, a ≤ ā and χγ < δna with

ā = min
(

1,
4ε0
10c2

0

,
4ε0

10(c′20 + 4ε0c′0)

)
, δn =

1
20 max

1≤i≤k
ci
,

we obtain that

∂t

∫
Rn

(γ[i] + aγ[i− 1
2 ]) dx+

7
10

∫
Rn

(π[i]
γ + aπ

[i− 1
2 ]

γ ) dx

≤ 3
10

∫
Rn

π[i−1]
γ dx+ 1i>2

2
10
χγ

∫
Rn

(aπ[i− 3
2 ]

γ + π[i−2]
γ ) dx. (5.27)

Summing for 1 ≤ i ≤ k, and adding to the zeroth order inequality (5.14) we finally
obtain (5.22) and the proof of (5.23) is similar.

Corollary 5.8. Let (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes
equations (3.1)–(3.5) with regularity (3.6), (3.7) and let 1 ≤ k ≤ l. There exist
positive constants C0, ā ≤ 1, b and δ′n(k, n) such that when χγ < δ′n we have

∂t

∫
Rn

(γ[0] + · · · + γ[k]ā(γ[ 12 ] + · · · + γ[k− 1
2 ])) dx

+ b

∫
Rn

ρT 1−κ(γ[1] + · · · + γ[k]) dx ≤ 0, (5.28)

and when χγ̃ < δ′n we have

∂t

∫
Rn

(γ̃[0] + · · · + γ̃[k] + ā(γ̃[ 12 ] + · · · + γ̃[k− 1
2 ])) dx

+ b

∫
Rn

ρT 1−κ(γ̃[1] + · · · + γ̃[k]) dx ≤ 0. (5.29)
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Proof. This is a consequence of Theorem 5.7 in the special situation a = ā letting
δ′n = δnā, b = āmin(1, a)/5(1 + cv), and using ρT 1−κ = g2/ρ.

Theorem 5.7 and Corollary 5.8 show that the (2k)th order kinetic entropy esti-
mators Γ[k] and Γ̃[k] obey entropic principles. Upon integrating these inequalities
(5.28) and (5.29), a priori estimates are obtained for the solutions of the compress-
ible Navier–Stokes equations. These entropic inequalities and the related a priori
estimates are also invariant — up to a multiplicative factor — by the change of
scales (3.8) described in Remark 3.1 and naturally associated with the Navier–
Stokes equations. Since we have formally v/

√
rgT = O(Ma), log(T/T∞) = O(Ma),

and log(ρ/ρ∞) = O(Ma), where Ma denotes the Mach number, the constraint that
χγ or χγ̃ remain small may be interpreted as a small Mach number constraint,
which is consistent with Enskog expansion.34 These estimates also provide a ther-
modynamic interpretation of the corresponding weighted Sobolev norms involving
either renormalized derivatives for Γ[k], or derivatives of the renormalized vari-
able z̃ — which is also a normal variable33,44 — for Γ̃[k], and involving as well
the dependence on density and temperature of the local mean free path through
the factor h. This factor h ensures in particular that the operator h∂x is scale
invariant.

Many recent works have been devoted to the compressible Navier–Stokes equa-
tions and related a priori estimates. Estimates for smooth solutions are generally
obtained upon deriving the governing equations, multiplying by the solution deriva-
tives and integrating in space and time, whereas estimates for weak solutions are
usually derived from energy and zeroth order entropy estimates as well as by using
renormalized equations.

Danchin15,16 has established the existence of global solutions around constant
equilibrium states in critical hybrid Besov spaces with minimum regularity. In order
to established this existence result, Danchin has derived a priori estimates for lin-
earized equations in hybrid Besov spaces using Littlewood–Paley decompositions.
Since Danchin only considered the scaling properties associated with incompressible
models, some norms used in these papers do not appear to be scaling invariant with
respect to the two-parameter family of transformations of Remark 3.1 but scaling
invariance is easily recovered upon restoring the dependence of various constants on
the state at infinity (ρ∞, T∞). The main difference with Danchin’s estimates is that
there are established for linearized equations and contain an explicit time depen-
dence. They are also established with equations with constant transport coefficients
and associated with the functions (ρ − ρ∞)/ρ∞, v/

√
T∞, (T − T∞)/T∞, whereas

the entropic estimates mainly consider log(ρ/ρ∞), v/
√
T , and log(T/T∞). Another

difference is that in Danchin’s estimates, the velocity and the gradient of the den-
sity have the same regularity. This is a key point when dealing with data with low
regularity which is not taken into account with the entropic estimates derived in
this paper. In particular, Danchin’s existence result is stronger than the example
of application presented in the next section.
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The general estimates of Kawashima42,43 for symmetric hyperbolic-parabolic
composite systems can be applied to the compressible flows equations and the
results be compared with higher order entropic estimates. In particular, the extra
correctors γ[k− 1

2 ] or γ̃[k− 1
2 ] are similar to the perturbed quadratic terms intro-

duced by Kawashima for linearized equations around equilibrium states and decay
estimates. The differences are that we are using renormalized variable as well as
powers of h as extra weights factors in order to maintain scaling invariance and we
also directly obtain differential inequalities associated with solutions of non linear
equations.

Alazard2 has investigated local existence of smooth solutions and the limit
of small Mach numbers for a family of flows covering inviscid as well as vis-
cous flows. Some norms used in this paper do not appear to be scaling invari-
ant but invariance is easily recovered upon restoring the dependence of various
constants in the state at infinity (p∞, T∞). The main difference with Alazard’s esti-
mates is that there are established for linearized equations and contain an explicit
time dependence. They are also associated with the functions log(p/p∞), v/

√
T∞,

log(T/T∞), whereas the entropic estimates mainly consider log(ρ/ρ∞), v/
√
T , and

log(T/T∞). On the other hand, Alazard’s estimates are established for a fam-
ily of flows encompasing inviscid as well as viscous flows and are uniform with
respect to the flow parameters.2 In addition, the linearized equations are unstable
because of the large temperature variations so that the estimates cannot be obtained
by differentiating nor localizing in frequency spaces by means of littlewood-Paley
operators.2

Hoff37,38 has investigated the existence of discontinuous solutions around con-
stant equilibrium states for n = 2 and n = 3. The transport coefficients are assumed
to be constants in these studies and there is a constraint on the ratio κ/η. The vari-
ous estimates are essentially associated with the energy and the zeroth order entropy
inequalities. Hoff has shown in particular the importance of the effective viscous
pressure pe = (κ+ 2(n−1)

n η)∂x·v− (p− p∞) which naturally arises in the governing
equations. This quantity is free of jump discontinuities, has weak continuity prop-
erties, and has also been used by Lions, Vaigan and Khazikhov, and Feireisl. This
quantity scales like ρT so that the rescaled effective pressure (1/ρT )2h2k|∂kpe|2 can
be estimated in terms of γ[0]+· · ·+γ[k+1], but the effective viscous pressure does not
seem to play a fundamental rôle for smooth solutions as it does for discontinuous
or weak solutions.

Lions49 has investigated the existence of global weak periodic solutions in dimen-
sions n = 2 and n = 3 upon modifying the state law and the thermal conductivity
coefficient. The pressure has been taken in the form p = g(ρ)(T + δ), where δ ≥ 0
and g is a continuous non-decreasing function with g(0) = 0, limρ→∞ g(ρ)ρ−a exists
and is positive with a > 1, and

∫ 1

0
(g(s)/s2)ds < ∞. The thermal conductivity has

been taken such that λ = λ(T ) is continuous for T ≥ 0 and limT→∞ λ(T )T−b exists
and is positive. In his pioneering books, Lions has established the existence of
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global weak solutions to the compressible Navier–Stokes equations for a and b large
enough using the energy and zeroth order entropy estimates as well as compactness
properties of weak sequences of approximated solutions.49

Feireisl23,24 has investigated the existence of global weak solutions in dimensions
n = 2 and n = 3. Feireisl has stabilized the governing equations at low/high
temperatures and low/high dentities by introducing in particular a cold pressure.
The pressure is in the form p(ρ, T ) = pc(ρ) + Tpθ(ρ) where pc(0) = 0, p′c(ρ) ≥
a1ρ

γ−1− b for ρ > 0, pc(ρ) ≤ a2ρ
γ + b for ρ ≥ 0, and pθ(0) = 0, p′θ(ρ) ≥ 0 for ρ > 0,

and pθ(ρ) ≤ a3ρ
Γ + b for ρ ≥ 0, where γ > n/2, Γ < γ/2 if n = 2, Γ = γ/3 if n = 3,

and a1, a2, a3, and b and positive constants. The transport coefficients are assumed
to depend on temperature and such that 0 < a ≤ η(T ) ≤ a, |κ(T )| ≤ a for T ≥ 0,
and 0 < a(1+Tα) ≤ λ(T ) ≤ a(1+Tα) for T ≥ 0 where α ≥ 2. Such an assumption
for λ(T ) yields in particular an L2 estimate of ∂xT from the zeroth order entropic
estimates. Feireisl’s estimates are then essentially that of energy and zeroth order
entropy combined with the notion of renormalized solutions and weak limits in L1.
Among the fundamental difficulties are density oscillations and concentrations in
temperature.23 Feireirsl has used in particular the weak continuity properties of the
the effective viscous pressure pe = (κ+ 2η − 2

nη)∂x·v − (p− p∞).
Bresch and Desjardins8,9 have investigated the existence of global weak solu-

tions for compressible Navier–Stokes equations. In their study, they have stabilized
the governing equations at low/high temperatures and low/high dentities by intro-
ducing in particular a cold pressure. More specifically, the state law p = pc + Tpθ

contain a cold pressure term pc which may still vanish away from zero.8,9 The trans-
port coefficients κ(ρ) and η(ρ) only depend on the density ρ and are such that there
exists a constraint in the form κ(s) − 2

nη(s) = 2(sη′(s) − η(s)) (in our notation).
We refer to Bresch and Desjardins8,9 for the full set of assumptions of the state law
and the transport coefficients. Under these assumptions, Bresch and Desjardin have
obtained existence of global weak solutions by using a new entropy in the form (in
our notation)

ρT

∣∣∣∣ v√T + 2
η′(ρ)√
T

∂xρ

ρ

∣∣∣∣2 ,
which presents many similarities with the higher entropy correctors γ[1] and γ[ 12 ].
These are the estimates which are closer in spirit to the higher order entropic
inequalities investigated in this paper.

6. Global Solutions

Many results have been devoted to the existence of solutions to the compress-
ible Navier–Stokes equations. Local existence of smooth solutions has been estab-
lished by Nash57 and global existence around equilibrium states by Matsumura
and Nishida.51 Kawashima has established global existence of smooth solutions
around constant equilibrium states for composite hyperbolic-parabolic symmetric
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systems42,43 which can also be applied to the situation of compressible flows. The
cases of multicomponent flows with complex chemistry and ambipolar reactive plas-
mas have also been investigated.32,33

More recently, Danchin15,16 has established global existence of solutions in crit-
ical hybrid Besov spaces with minimum regularity for the isentropic as well as the
full compressible model around constant equilibrium states.

Hoff37,38 has also investigated discontinous solutions with small data. Alazard,2

Danchin,17,18 and Feireisl and Novotnỳ25 have further investigated the limit of small
Mach number flows in various functional settings.

With respect to weak solutions, we mention the pioneering work of Lions49 as
well as the fundamental results of Feireisl,23,24 Bresch and Desjardins,8,9 Bresch,
Desjardins, and Vallet,10 and Mellet and Vasseur.50

Our aim in this section is more limited since we only want to illustrate higher
order entropy estimates. Therefore, we investigate global existence of smooth solu-
tions when the initial values log(ρ0/ρ∞), v0/

√
T0, and log(T0/T∞) are small enough

in appropriate weighted spaces. Although the set of assumptions (3.11)–(3.12) on
transport coefficents derived from the kinetic theory is new, we do not claim orig-
inality in these existence results — since it is well known that such smooth solu-
tions exists — but in their proof which illutrates the use of higher order entropic
estimates.

6.1. Local existence

We denote by z the combined unknown z = (ρ, v, T ) and accordingly by z∞ the
equilibrium point z∞ = (ρ∞, 0, T∞) with ρ∞ > 0, v∞ = 0 and T∞ > 0. We denote
by Oz = (0,∞) × R

n × (0,∞) the natural domain for the variable z.

Theorem 6.1. Let n ≥ 1 and l ≥ [n/2] + 3 be integers and let b > 0 be given. Let
O0 be an open bounded convex set such that O0 ⊂ Oz, d1 with 0 < d1 < d(O0, ∂Oz),
and define O1 = {z ∈ Oz; d(z,O0) < d1}. There exists t̄ > 0 small enough, which
only depends on O0, d1 and b, such that for any z0 with ‖z0 − z∞‖W l,2 < b and
z0 ∈ O0, there exists a unique local solution z = (ρ, v, T ) to the system (3.1)–(3.3)
with initial condition

(ρ(0, x), v(0, x), T (0, x)) = (ρ0(x), v0(x), T0(x)), (6.1)

such that

(ρ(t, x), v(t, x), T (t, x)) ∈ O1, (6.2)

and

ρ− ρ∞ ∈ C0([0, t̄ ],W l,2(Rn)) ∩ C1([0, t̄ ],W l−1,2(Rn)), (6.3)

v, T − T∞ ∈ C0([0, t̄ ],W l,2(Rn)) ∩C1([0, t̄ ],W l−2,2(Rn)) ∩ L2((0, t̄),W l+1,2(Rn)).
(6.4)
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In addition, there exists C > 0 which only depends on O0, d1, and b, such that

sup
0≤s≤t̄

{‖ρ(s) − ρ∞‖2
W l,2 + ‖v(s)‖2

W l,2 + ‖T (s)− T∞‖2
W l,2}

+
∫ t̄

0

{‖ρ(s) − ρ∞‖2
W l,2 + ‖v(s)‖2

W l+1,2 + ‖T (s) − T∞‖2
W l+1,2} ds

≤ C(‖ρ0 − ρ∞‖2
W l,2 + ‖v0‖2

W l,2 + ‖T0 − T∞‖2
W l,2). (6.5)

Proof. There are many proofs for local existence of solutions in various functional
settings.27,41–45,51,57,63 We refer the reader to Kawashima42,43 for a general proof
concerning hyperbolic–parabolic symmetric systems in normal form. This proof is
also adapted to the parameter dependent case in Giovangigli and Graille.32

6.2. Properties of the solutions

We establish in this section that the solutions constructed in Theorem 6.1 are as
smooth as expected from initial data.

Theorem 6.2. The solutions obtained in Theorem 6.1 inherit the regularity of z0,

that is, for any k ≥ l such that z0 − z∞ ∈ W k,2, we have

ρ− ρ∞ ∈ C0([0, t̄ ],W k,2) ∩ C1([0, t̄ ],W k−1,2), (6.6)

v,T − T∞ ∈ C0([0, t̄ ],W k,2) ∩ C1([0, t̄ ],W k−2,2) ∩ L2((0, t̄),W k+1,2). (6.7)

In particular, z is smooth when z0 − z∞ ∈W k,2(Rn) for any k ∈ N.

Proof. Let k ≥ l be such that z0 − z∞ ∈ W k,2 and denote by e[k] the quantity
e[k] = |∂kρ|2 + |∂kv|2 + |∂kT |2. We have to estimate e[k] in order to establish
(6.6), (6.7).

Assume first that the regularity properties (6.6), (6.7) hold. A balance equation
for e[k] can easily be derived — and is simpler than that of γ[k] of γ̃[k] — and written
in the form

∂te
[k] + ∂x·(ve[k]) + ∂x·ϕ[k]

e + π[k]
e + Σ

[k]
e + ω[k]

e = 0. (6.8)

This equation holds in D′((0, t̄)×R
n) and L1((0, t̄),W−1,1), e[k] ∈ C0([0, t̄ ], L1),

and ϕ[k]
e , π[k]

e , Σ
[k]
e , ω[k]

e ∈ L1((0, t̄), L1(Rn)). The term π
[k]
e is given by

π[k]
e =

2λ
ρcv

|∂k+1T |2 +
2η
ρ
|∂k+1v|2 +

2(1
3η + κ)
ρ

|∂k(∂x·v)|2, (6.9)

and the term Σ
[k]
e is of the form

Σ
[k]
e =

∑
σνµ

cσνµφT
aνµφρbνµφ∂σ

TφΠ̂(k+1)
ν Π̂(k+1)

µ , (6.10)
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where the sums are over 0 ≤ σ ≤ k, φ ∈ {λ, η, κ}, ν = (να, ν
′
α, ν

′′
α)1≤|α|≤k+1,

µ = (µα, µ
′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n. The quantities aνµφ

and bνµφ are integers depending on ν, µ and φ. The products Π̂(k+1)
ν are defined by

Π̂(k+1)
ν =

∏
1≤|α|≤k+1

(∂αρ)να(∂αv)ν′
α(∂αT )ν′′

α , (6.11)

where v denotes any of its components v1, . . . , vn, and ν must be such that∑
1≤|α|≤k+1

|α|(να + ν′α + ν′′α) = k + 1,
∑

|α|=k+1

να = 0,

so that there is a total of k+ 1 derivations and there is no derivative of order k+ 1
of density. In addition, we have

∑
|α|=k+1(ν

′
α + ν′′α + µ′

α + µ′′
α) ≤ 1, so that there is

at most one derivative of (k+1)th order in the product Π̂(k+1)
ν Π̂(k+1)

µ . Furthermore
the term ω

[k]
e is given by

ω[k]
e =

∑
νµ

cνµT
aνµρbνµΠ̂(k)

ν Π̂(k+1)
µ − 2T

cv
∂kT∂k(∂x·v) (6.12)

+
2T
ρ
∂kρ∂k(∂x·v) − 2ρ∂kρ∂k(∂x·v), (6.13)

where we use similar notation for Π̂(k)
ν as for Π̂(k+1)

µ and the summation extends
over ∑

1≤|α|≤k

|α|(να + ν′α + ν′′α) = k,
∑

1≤|α|≤k

|α|(µα + µ′
α + µ′′

α) = k + 1,

so that in particular
∑

|α|=k+1(µα +µ′
α +µ′′

α) = 0 and there are always at least two

derivative factors in the product Π̂(k+1)
µ . Finally the flux ϕ[k]

e = (ϕ[k]
e1 , . . . , ϕ

[k]
en) is in

the form

ϕ
[k]
el =

∑
σνµl

cσνµφlT
aνµφρbνµφ∂σ

TφΠ̂(k)
ν Π̂(k+1)

µ . (6.14)

After integrating Eq. (6.8) over R
n and using uniform lower bounds on λ/ρcv

and η/ρ, thanks to (6.2), we obtain that there exists a δ > 0 with

∂t

∫
Rn

e[j] dx+2δ
∫

Rn

(|∂j+1T |2 + |∂j+1v|2) dx ≤ c

∫
Rn

(|Σ[k]
e |+ |ω[k]

e |) dx, 1 ≤ j ≤ k.

Now regrouping all derivatives of order k + 1 appearing in Σ
[k]
e in the left member,

using xy ≤ εx2 + 4y2/ε, we only have to estimate the L2 norm of multiple products
with k + 1 derivations Π̂(k+1)

ν with at least two derivative factors or of multiple
products with only k derivations Π̂(k)

ν . From Theorem 4.8 and since ‖z − z∞‖L∞ ,
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and ‖∂z‖L∞ , are finite thanks to l > n/2+1, whenever the product Π̂(k+1)
ν is split,

we have estimates in the form

‖Π̂(k+1)
ν ‖2

L2 ≤ c(1 + ‖∂z‖L∞)2(k−1)

∫
Rn

(e[1] + · · · + e[k]) dx,

where c only depends on ‖z‖L∞ . The products Π̂(k)
ν are also estimated, thanks to

Theorem 4.7. Combining these estimates, we obtain after some algebra that

∂t

∫
Rn

e[j] dx+δ
∫

Rn

(|∂j+1T |2+ |∂j+1v|2) dx ≤ c

∫
Rn

(e[1]+ · · ·+e[k]) dx, 1 ≤ j ≤ k,

where δ and c depend on L∞ estimates of z and ∂z. Upon summing these inequalities
and using Gronwall lemma we deduce that

∫
Rn e

[k] dx remain uniformly bounded
over the whole time interval under consideration [0, t̄ ] and we thus have a uniform
upper bound B for the sobolev norm ‖z − z∞‖W k,2 ≤ B. This also implies that∫ t̄

0

∫
Rn |∂j+1T |2 dxdt and

∫ t̄

0

∫
Rn |∂j+1v|2 dxdt are finite.

Now from the local existence theorem, there exists a positive time 0 < t′ ≤ t̄

constructed with the parameters O0, d1 and 2B, where a solution with regularity
(6.6), (6.7) exists and coincide with z. The preceding estimates then show that the
local existence theorem can be used repeatedly over [0, t̄ ] since we have the uniform
bound ‖z − z∞‖W k,2 ≤ B over this interval so that finally (6.6), (6.7) hold over
[0, t̄]. Moreover, when z0−z∞ is in W k,2 for any k ≥ 0, z−z∞ is in C0([0, t̄ ],W k,2)
for any k, and we recover the regularity with respect to time from the governing
equations so that z is smooth.

In the next propositions, we reformulate for convenience the local existence
theorem in terms of the combined unknown z̃ = (r, w, τ) associated with the renor-
malized variables r, w and τ .

Lemma 6.3. Denote by F : (0,∞)×R
n×(0,∞) → R

n+2 the application defined by
F(z) = z̃, that is, F(ρ, v, T ) = (r, w, τ) = (log ρ, v/

√
T , logT ). Then F is a C∞

diffeomorphism and its Jacobian matrix reads

∂zF =


1
ρ 0 0

0 I√
T
− 1

2
v

T
3
2

0 0 1
T

 .

Moreover, for any mr > 0, mw > 0, mτ > 0, defining Õ = (−mr,mr)×(−mw,mw)n×
(−mτ ,mτ ), the corresponding open set O = F−1(Õ) is convex.

Proof. The proof is similar to that of the incompressible case.29

Proposition 6.4. Let mr > 0, mw > 0, mτ > 0, define

Õ0 = (−mr,mr) × (−mw,mw)n × (−mτ ,mτ ),

and O0 = F−1(Õ0). Let 0 < d1 < d(O0, ∂Oz), O1 = {z ∈ Oz; d(z,O0) < d1}, and
select an arbitrary b > 0. From Theorem 6.1 we have a local solution built with the
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paramaters O0, d1, and b. This solution is then such that

r − r∞ ∈ C0([0, t̄ ],W l,2) ∩C1([0, t̄ ],W l−1,2), (6.15)

w,τ − τ∞ ∈ C0([0, t̄ ],W l,2) ∩ C1([0, t̄ ],W l−2,2) ∩ L2((0, t̄),W l+1,2), (6.16)

and there exists C > 0 which only depend on O0, d1, and b, such that

sup
0≤s≤t̄

{‖r(s) − r∞‖2
W l,2 + ‖w(s)‖2

W l,2 + ‖τ(s) − τ∞‖2
W l,2}

+
∫ t̄

0

{‖r(s) − r∞‖2
W l,2 + ‖w(s)‖2

W l+1,2 + ‖τ(s) − τ∞‖2
W l+1,2} ds

≤ C(‖r0 − r∞‖2
W l,2 + ‖w0‖2

W l,2 + ‖τ0 − τ∞‖2
W l,2). (6.17)

Moreover, the kinetic estimators are such that Γ[l], Γ̃[l] ∈ C([0, t̄ ], L1(Rn)).

Proof. The set O0 = F−1(Õ0) is convex and from Theorem 6.1, there exists a
local solution built with O0, d1 and b. We then have estimates in the form

cz‖z̃− z̃∞‖W l,2 ≤ ‖z − z∞‖W l,2 ≤ cz‖z̃ − z̃∞‖W l,2 , (6.18)

where cz and cz only depend on O1 and l thanks to the classical estimates

‖ψ(φ) − ψ(0)‖W k,2 ≤ C0‖ψ‖Ck(Oφ)(1 + ‖φ‖L∞)k−1‖φ‖W k,2 , (6.19)

where Oφ is a convex open set with φ(x) ∈ Oφ, x ∈ R
n. Similarly, the regularity

properties are direct consequences of the estimates

‖ψ(φ) − ψ(φ̂)‖W k,2 ≤ C0‖ψ‖Ck+1(Oφ)(1 + ‖φ‖W k,2 + ‖φ̂‖W k,2)k‖φ− φ̂‖W k,2 ,

(6.20)

where Oφ is a convex open set with φ(x) ∈ Oφ, φ̂(x) ∈ Oφ, x ∈ R
n, and k is such

that k ≥ [n/2] + 1. The properties Γ[l], Γ̃[l] ∈ C([0, t̄ ], L1(Rn)) are then straight-
forward to establish.

6.3. Global existence

In this section, we investigate global existence of solutions for which the quantity
χγ̃ = ‖r‖BMO+‖w‖L∞ +‖τ‖BMO+‖h∂xr‖L∞ +‖h∂xw‖L∞ +‖h∂xτ‖L∞ +‖h2∂2

xτ‖L∞

remains small. We investigate solutions with given bounds ρmin < ρ < ρmax and
Tmin < T < Tmax, where ρmin < ρ∞ < ρmax and Tmin < T∞ < Tmax, and assume
that C0 has been chosen large enough as in Lemma 5.6. We will also use the results
of Corollary 5.8 and assume that the fixed value a = ā has been selected for the
parameter a in this section.

Theorem 6.5. Let n ≥ 1 and l ≥ [n/2]+3 be integers. Assume that the coefficients
λ, κ, and η satisfy (3.11), (3.12). There exists δΓ(l, n, Tmin, Tmax, ρmin, ρmax) > 0
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such that for ρ0, v0 and T0 satisfying Tmin < infRn T0, sup
Rn T0 < Tmax, ρmin <

infRn ρ0, sup
Rn ρ0 < ρmax, z0 − z∞ ∈W l,2 and∫

Rn

Γ̃[l]
0 dx ≤ δΓ, (6.21)

where Γ̃[l]
0 denotes the functional Γ̃[l] evaluated at initial conditions, there exists a

unique global solution z = (ρ, v, T ) with initial conditions

(ρ(0, x), v(0, x), T (0, x)) = (ρ0(x), v0(x), T0(x)), (6.22)

such that

ρ− ρ∞, r − r∞ ∈ C0([0,∞),W l,2) ∩ C1([0,∞),W l−1,2), (6.23)

v, w, T − T∞, τ − τ∞ ∈ C0([0,∞),W l,2) ∩ C1([0,∞),W l−2,2), (6.24)

∂xρ, ∂xr ∈ L2((0,∞),W l−1,2) ∂xT, ∂xτ, ∂xv, ∂xw ∈ L2((0,∞),W l,2), (6.25)

and we have the estimates∫
Rn

Γ̃[l] dx+ b

∫ t

0

∫
Rn

ρT 1−κ(γ̃[1] + · · · + γ̃[l]) dxdt ≤
∫

Rn

Γ̃[l]
0 dx. (6.26)

Furthermore, we have

lim
t→∞ ‖z(t, ·) − z∞‖L∞ = 0. (6.27)

Proof. We investigate solutions such that ρmin < ρ < ρmax and Tmin < T < Tmax.
For such solutions, thanks to classical estimates in the form

‖z̃− z̃∞‖C2
0
≤ c0‖z̃ − z̃∞‖W l0+2,2 ,

where l0 = [n/2] + 1 we have the inequalities

‖z̃ − z̃∞‖L∞ + χγ̃ ≤ cχ‖z̃ − z̃∞‖W l0+2,2

and

cΓ‖z̃ − z̃∞‖2
W l,2 ≤

∫
Rn

Γ̃[l] dx,

thanks to Lemma 5.6 where cχ and cΓ depend on Tmin, Tmax, ρmin, ρmax and l. In
order to obtain a value of δΓ small enough, so that the higher order entropic esti-
mates of Theorem 5.7 hold, we will ensure that δΓ ≤ cΓδ

′2
n /4c

2
χ where δ′n is defined

in Corollary 5.8 and this value will indeed insure that χγ̃ ≤ δ′n/2. Corresponding
to this value of δΓ, we have estimates in the forms ‖z̃− z̃∞‖L∞ ≤ cχ(δΓ/cΓ)1/2 and
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‖z̃ − z̃∞‖W l,2 ≤ (δΓ/cΓ)1/2. We now select mr > 0, mw > 0, and mτ > 0, such that

log(ρmin/ρ∞) < −mr < mr < log(ρmax/ρ∞),

log(Tmin/T∞) < −mτ < mτ < log(Tmax/T∞),

and define

Õ0 = (−mr,mr) × (−mw,mw)n × (−mτ ,mτ ),

and for δ > 0

Õδ = {z ∈ R
n+2; ‖z − z̃∞‖ ≤ cχ(δ/cΓ)1/2}.

For δ0 small enough we have

Õ2δ0 = {z ∈ R
n+2; ‖z − z̃∞‖ ≤

√
2cχ(δ0/cΓ)1/2} ⊂ Õ0,

and we now set

δΓ = min
(
cΓδ

′2
n

4c2χ
, δ0

)
.

The open set O0 = F−1(Õ0) is convex and let 0 < d1 < d(O0, ∂Oz), and define
O1 = {z ∈ Oz; d(z,O0) < d1} and Õ1 = F(O1). Now for functions taking their
values in O1 we have inequalities in the form ‖z − z∞‖W k,2 ≤ cz‖z̃ − z̃∞‖W k,2

where cz only depends on k and O1. We thus obtain the a priori estimate ‖z −
z∞‖W l,2 ≤ cz(δΓ/cΓ)1/2. We now set b = cz(δΓ/cΓ)1/2 + 1 and from Theorem 6.1
and Proposition 6.4 we have local solutions over a time interval [0, t̄ ] built with the
paramaters O0, d1, and b.

Let now ρ0, v0, and T0 satisfy Tmin < infRn T0, sup
Rn T0 < Tmax, ρmin < infRn ρ,

sup
Rn ρ < ρmax, z0−z∞ ∈W l,2, and

∫
Rn Γ̃[l]

0 dx ≤ δΓ. Then by construction z0 ∈ O0

and ‖z0 − z∞‖W l,2 < b, and we have a local solution over the time interval [0, t̄ ].
Letting

χγ̃(t) = ‖r(t, ·)‖BMO + ‖w(t, ·)‖L∞ + ‖τ(t, ·)‖BMO + ‖h(t, ·)∂xr(t, ·)‖L∞

+ ‖h(t, ·)∂xw(t, ·)‖L∞ + ‖h(t, ·)∂xτ(t, ·)‖L∞ + ‖h2(t, ·)∂2
xτ(t, ·)‖L∞ ,

we also have by construction χγ̃(0) ≤ δ′n/2 and we claim that for any t ∈ [0, t̄ ] we
also have χγ̃(t) ≤ δ′n/2. We introduce the set

E = {s ∈ (0, t̄ ]; ∀ t ∈ [0, s], χγ̃(t) ≤ (2/3)δ′n, z(t) ∈ F−1(Õ2δ0)},

which is not empty since t→ χγ̃(t) is continuous, χγ̃(0) ≤ δn/2, and z̃(0) ∈ Õδ0 so
that z(0) ∈ F−1(Õδ0). Denoting e = supE we have χγ̃(t) ≤ (2/3)δ′n over [0, e] so
that the entropic estimates of Theorem 5.7 hold and we have∫

Rn

Γ̃[l] dx ≤
∫

Rn

Γ̃[l]
0 dx ≤ δΓ, 0 ≤ t ≤ e.

This now implies that χγ̃(t) ≤ δ′n/2 and that ρmin < ρ < ρmax and Tmin < T < Tmax

uniformly over [0, e] so that e = t̄. From the above a priori estimates, we also obtain
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that for t ∈ [0, t̄ ] we have ‖z̃(t) − z̃∞‖L∞ ≤ cχ(δΓ/cΓ)1/2, so that z(t) ∈ O0, and
‖z(t) − z∞‖W l,2 ≤ b − 1 < b, in particular at t = t̄. We may now use again the
local existence theorem over [t̄, 2t̄ ] and an easy induction shows that the solution
is a global solution.

The asymptotic stability is obtained by letting Φ(t) =
∫

Rn(γ̃[1] + · · ·+ γ̃[l−1]) dx
and establishing that∫ ∞

0

|Φ(t)|dt +
∫ ∞

0

|∂tΦ(t)|dt ≤ C

∫
Rn

Γ̃[l]
0 dx.

This shows that limt→∞ ‖∂xz̃(t, ·)‖W l−2,2 = 0, and using the interpolation inequality

‖φ‖C0 ≤ C0‖∂l−1
x φ‖a

L2‖φ‖1−a
L2 ,

where n/a = 2(l− 1) we conclude that limt→∞ ‖z̃(t, ·)− z̃∞‖C0 = 0, and next that
limt→∞ ‖z(t, ·) − z∞‖C0 = 0.

7. Conclusion

Higher order entropic estimates have been established for compressible equa-
tions whenever the quantities ‖ log ρ‖BMO, ‖v/

√
T‖L∞ , ‖ logT ‖BMO, ‖h∂xρ/ρ‖L∞ ,

‖h∂xv/
√
T‖L∞ , ‖h∂xT/T ‖L∞, and ‖h2∂2

xT/T ‖L∞, are small enough. An asymptotic
expansion of higher order entropies for small Mach and Knudsen numbers has also
been performed.30,31

A first natural extension of this work would be to investigate other types of
higher order entropy estimators where the velocity and the gradient of the density
have the same regularity. This is indeed a key point for dealing with data with
low regularity as shown by Danchin16 and Bresch and Desjardins8,9 and since such
entropies are a natural reordering of the higher order entropies used in this paper
in term of the Mach number.

Another natural extension would also be to investigate the situation dense gas
where gradient entropies have already been used — albeit with some constraint
between the visosities — in order to obtain weak solutions with large data.8,9

Appendix A. Derivation of the γ[k] Balance Equation

We derive the balance equation for the entropic correctors γ[k]. The proof is lengthy
and tedious but presents no serious difficulties.

To obtain more concise analytic expressions, it is convenient to define ak =
1 + k(1 − 2κ) and bk = −1 + 2k in such a way that

γ[k] =
1

T ak−1ρbk

(
|∂kρ|2
ρ2

+
|∂kv|2
T

+ cv
|∂kT |2
T 2

)
.
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In order to obtain a balance equation for γ[k] for smooth solutions we form its time
differential ∂tγ

[k]

∂tγ
[k] +

(
(ak − 1)|∂kρ|2
T akρbk+2

+
ak|∂kv|2
T ak+1ρbk

+
cv(ak + 1)|∂kT |2

T ak+2ρbk

)
∂tT

+
(

(bk + 2)|∂kρ|2
T ak−1ρbk+3

+
bk|∂kv|2
T akρbk+1

+
cvbk|∂kT |2
T ak+1ρbk+1

)
∂tρ− 2cv

∑
|α|=k

k!
α!
∂αT∂α∂tT

T ak+1ρbk

− 2
∑
|α|=k

k!
α!

∂αρ∂α∂tρ

T ak−1ρbk+2
− 2

∑
1≤i≤n

|α|=k

k!
α!
∂αvi∂

α∂tvi

T akρbk
= 0, (A.1)

and we use the governing equations in order to express ∂tT , ∂tρ and ∂tv in terms
of spatial gradients

∂tρ = −ρ∂x·v − v·∂xρ, (A.2)

∂tvi =
1
ρ

∑
1≤j≤n

∂j

(
η∂jvi + η∂ivj +

(
κ− 2

n
η

)
∂x·vδij

)
− 1
ρ
∂i(ρT ) − v·∂xvi,

(A.3)

∂tT =
1
ρcv

∑
1≤j≤n

∂j(λ∂jT ) +
η

2ρcv
|d|2 +

κ

ρcv
(∂x·v)2 −

T

cv
∂x·v − v·∂xT.

(A.4)

We denote respectively by T T , T ρ, T ∂T , T ∂ρ and T ∂v, the five sums appearing in
the governing equation for ∂tγ

[k], keeping in mind that the time derivative terms
∂tρ, ∂tv and ∂tT have been replaced by their expressions (A.2)–(A.4). We first
examine separately higher order derivative contributions associated with each sum
T T , T ρ, T ∂T , T ∂ρ and T ∂v. The lower order derivative terms of convective origin
are examined altogether at the end.

The term in T T associated with |∂kρ|2λ∆T , which is not of the admissible
form, is isolated in Σ

[k]
γ whereas all terms associated with |∂kρ|2|∂xT |2, |∂kρ|2|d|2,

and |∂kρ|2|∂x·v|2 are of the admissible form, that is, in the form∑
σνµφ

cσνµφT
σ−κ∂σ

TφΠ(k+1)
ν Π(k+1)

µ ,

where cσνµφ are constants and the products Π(k+1)
ν and Π(k+1)

µ are defined by

Π(k+1)
ν = ghk+1

∏
1≤|α|≤k+1

(
∂αρ

ρ

)να
(
∂αv√
T

)ν′
α
(
∂αT

T

)ν′′
α

.

The sums are over φ ∈ {λ, η, κ}, 0 ≤ σ ≤ k, ν = (να, ν
′
α, ν

′′
α)1≤|α|≤k+1, µ =

(µα, µ
′
α, µ

′′
α)1≤|α|≤k+1, να, ν

′
α, ν

′′
α, µα, µ

′
α, µ

′′
α ∈ N, α ∈ N

n, and µ and ν must be
such that

∑
1≤|α|≤k+1 |α|(να +ν′α +ν′′α) = k+1,

∑
1≤|α|≤k+1(µα +µ′

α +µ′′
α) = k+1,∑

|α|=k+1(να + µα) = 0,
∑

|α|=k+1(ν
′
α + ν′′α + µ′

α + µ′′
α) ≤ 1, so that there is no



December 26, 2008 8:46 WSPC/103-M3AS 00336

Higher Order Entropies for Compressible Fluid Models 117

derivative of order k + 1 of density and at most one derivative of order k + 1 of
temperature or velocity components in the product Π(k+1)

ν Π(k+1)
µ . In particular,

one of the terms Π(k+1)
ν or Π(k+1)

µ is always split between two or more derivative
factors.

Similarly, all terms of T T in the form |∂kT |2|d|2, |∂kT |2|∂x·v|2 |∂kv|2|d|2 and
|∂kv|2|∂x·v|2 are of the admissible form. On the other hand, the terms associated
with |∂kT |2∂x·(λ∂xT ) and |∂kv|2∂x·(λ∂xT ) are integrated by parts. They yield flux
contributions and source terms in the form

−
∑

1≤l≤n

∂l

(
(ak + 1)|∂kT |2
T 2+akρbk

+
ak|∂kv|2
cvT 1+akρbk

)
λ∂lT,

which are easily rewritten as sums of terms like cσνµT
σ−κ∂σ

TλΠ(k+1)
ν Π(k+1)

µ with at
most one derivative of (k + 1)th order. All other contributions from T T as well as
all contributions from T ρ and T ∂ρ are of lower order type.

We now consider the term T ∂T with each contribution at a time. The most
important contribution in T ∂T is that associated with

−2cv
∑

1≤l≤n

|α|=k

k!
α!

∂αT

T ak+1ρbk
∂α

(
1
ρcv

∂l(λ∂lT )
)
.

We then write

1
ρ
∂l(λ∂lT ) = ∂l

(
1
ρ
λ∂lT

)
+
λ∂lT∂lρ

ρ2

and the contributions associated with ∂l(λ∂lT/ρcv) are integrated by parts. This
yields source terms in the form

+ 2
∑

1≤l≤n

|α|=k

k!
α!
∂l

(
∂αT

T 1+akρbk

)
∂α

(
λ∂lT

ρ

)
.

After expanding the derivatives, using the differential identities of Sec. 4.1, the
above sum can be written as

2
∑

1≤l≤n

|α|=k

k!
α!

(
∂α∂lT

T 1+akρbk
− (1 + ak)

∂αT∂lT

T 2+akρbk
− bk

∂αT∂lρ

T 1+akρ1+bk

)

× 1
ρ

λ∂α∂lT +
∑
α̃νµ

cαα̃νµT
σ∂σ

Tλ
∏
β

(
∂βT

T

)νβ ∏
β

(
∂βρ

ρ

)µβ

∂α−α̃∂lT

 ,



December 26, 2008 8:46 WSPC/103-M3AS 00336

118 V. Giovangigli

where the summations and products extend over 1 ≤ l ≤ n, |α| = k, 0 ≤ α̃ ≤ α,
α̃ �= 0, 1 ≤ σ ≤ |α̃|,

∑
β β(νβ + µβ) = α̃, 1 ≤ |β| ≤ |α̃|, and

∑
β νβ = σ. We can

now extract for π[k]
γ the term in the form λ(∂α∂lT )2 which can be written as

2
∑

1≤l≤n

|α|=k

k!
α!

(∂α∂lT )2

T 1+akρbk
= 2

∑
|α|=k+1

(k + 1)!
α!

(∂αT )2

T 1+akρbk
,

thanks to the properties of multinomial coefficients.14,60 All other terms are of
admissible form for Σ

[k]
γ , i.e. in the form cσνµT

σ−κ∂σ
TλΠ(k+1)

ν Π(k+1)
µ with at most

one derivative of (k+1)th order since
∑

β |β|νβ+1+|α−α̃| = k+1. More specifically,
we can factorize T−ak in the first factors, T 1+κ in the parenthesis, and all the terms
involving derivatives of ∂σ

Tλ are multiplied and divided by T σ thanks to
∑

β νβ = σ.
The contributions associated with λ∂lT∂lρ/ρ

2 are integrated by parts thanks
to a decomposition in the form α = α̃ + eiα where |α̃| = k − 1, as well as the
contributions in T ∂T associated with η|d|2 + κ(∂x·v)2, and only yield admissible
source terms. More specifically, we decompose each multi-index α with |α| = k

into α = α̃ + eiα where |α̃| = k − 1, iα is chosen arbitrarily with αiα �= 0, and
e1, . . . , en denotes the canonical basis of N

n, so that we have ∂α = ∂α̃∂iα . We can
then integrate these terms by parts and obtain sources in the form

∑
1≤i,j≤n

|α|=k

∂iα

(
∂αT

T 1+akρbk

)
∂α̃(ηd2

ij).

Upon expanding the derivatives with the help of the differential identities estab-
lished the Sec. 4.1, all these terms are of admissible form for Σ

[k]
γ .

We now consider the sum T ∂v and its most important contribution is that
corresponding to ∂α∂x·(ηd+ κ∂x·vI) which reads

−2
∑

1≤i,l≤n

|α|=k

k!
α!

∂αvi

T akρbk
∂α

(
1
ρ
∂l

(
η∂lvi + η∂ivl +

(
κ− 2

n
η

)
∂x·vδil

))
,

where δil is the Kronecker symbol. We first consider the contribution associated
with η∂lvi using the identity

1
ρ
∂l(η∂lvi) = ∂l

(
1
ρ
η∂lvi

)
+
∂lρ∂ivl

ρ2

and focus on the contributions of the terms ∂l(η∂lvi/ρ). The contributions associ-
ated with ∂lρ∂ivl are of admissible form for Σ

[k]
γ after one integration by parts using

α = α̃ + eiα and the corresponding details are omitted. After integration by parts
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we obtain sources in the form

2
∑

1≤i,l≤n

|α|=k

k!
α!
∂l

(
∂αvi

T akρbk

)
∂α

(
η∂lvi

ρ

)
.

Expanding the derivatives, the sum is rewritten∑
1≤i,l≤n

|α|=k

k!
α!

(
∂α∂lvi

T akρbk
− ak

∂αvi∂lT

T ak+1ρbk
− bk

∂αvi∂lρ

T ak+1ρbk+1

)

× 1
ρ

η∂α∂lvi +
∑
α̃νµ

cαα̃νµT
σ∂σ

T η
∏
β

(
∂βT

T

)νβ ∏
β

(
∂βρ

ρ

)µβ

∂α−α̃∂lvi

 ,

where the summations and products extend over 1 ≤ i, l ≤ n, |α| = k, 0 ≤ α̃ ≤ α,
α̃ �= 0, 1 ≤ σ ≤ |α̃|,

∑
β β(νβ + µβ) = α̃, 1 ≤ |β| ≤ |α̃|, and

∑
β νβ = σ. We can

extract the term in the form η(∂α∂lvi)2 for π[k]
γ which is rewritten as

2
∑

1≤i,l≤n

|α|=k

k!
α!

(∂α∂lvi)2

T akρbk
= 2

∑
1≤i≤n

|α|=k+1

(k + 1)!
α!

(∂αvi)2

T akρbk
,

thanks to the properties of multinomial coefficients. All the other terms are of
admissible form for Σ

[k]
γ , that is, in the form cσνµT

σ−κ∂σ
T ηΠ

(k+1)
ν Π(k+1)

µ with at
most one derivative of (k + 1)th order.

The contributions associated with η∂ivl is treated in an analogous way with the
identity

∂l(η∂ivl) = ∂T η∂lT∂ivl + ∂i(η∂lvl) − ∂T η∂iT∂lvi,

and yields a source term for π[k]
γ in the form

2η
∑

1≤l≤n

|α|=k

k!
α!

(∂α∂lvl)2

T akρbk
.

Finally, the terms (κ − 2
nη)∂x·vδil can be treated in a similar way and yields a

source term for π[k]
γ in the form

2
(
κ− 2

n
η

) ∑
1≤l≤n

|α|=k

k!
α!

(∂α∂lvl)2

T akρbk
,

as well as contributions of the admissible form.
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Lower order convective terms first yield the contributions

−
(

(ak − 1)|∂kρ|2
T akρbk+2

+
ak|∂kv|2
T ak+1ρbk

+
cv(ak + 1)|∂kT |2

T ak+2ρbk

)
v·∂xT

−
(

(bk + 2)|∂kρ|2
T ak−1ρbk+3

+
bk|∂kv|2
T akρbk+1

+
cvbk|∂kT |2
T ak+1ρbk+1

)
v·∂xρ

+ 2cv
∑
|α|=k

k!
α!
∂αT∂α(v·∂xT )
T ak+1ρbk

+ 2
∑
|α|=k

k!
α!
∂αρ∂α(v·∂xρ)
T ak−1ρbk+2

− 2
∑

1≤i≤n

|α|=k

k!
α!
∂αvi∂

α(v·∂xvi)
T akρbk

,

and all terms proportional to v are easily recast in the form v·∂xγ
[k], so that the

only remaining contributions are the sources

2cv
∑
|α|=k

1≤l≤n

∑
0≤β≤α

1≤|β|

cαβ
k!
α!

∂αT

T ak+1ρbk
∂βvl∂

(α−β)∂lT

2
∑
|α|=k

1≤l≤n

∑
0≤β≤α

1≤|β|

cαβ
k!
α!

∂αρ

T ak−1ρbk+2
∂βvl∂

(α−β)∂lρ

2
∑
|α|=k

1≤i,l≤n

∑
0≤β≤α

1≤|β|

cαβ
k!
α!

∂αvi

T akρbk
∂βvl∂

(α−β)∂lρ

which are easily rewritten in the form cνµΠ(k)
ν Π(k+1)

µ .
The remaining first-order terms are then in the form

−
(

(ak − 1)|∂kρ|2
T akρbk+2

+
ak|∂kv|2
T ak+1ρbk

+
cv(ak + 1)|∂kT |2

T ak+2ρbk

)
T∂x·v
cv

−
(

(bk + 2)|∂kρ|2
T ak−1ρbk+3

+
bk|∂kv|2
T akρbk+1

+
cvbk|∂kT |2
T ak+1ρbk+1

)
ρ∂x·v

+ 2
∑
|α|=k

k!
α!

∂αT

T ak+1ρbk
∂α(T∂x·v) + 2

∑
|α|=k

k!
α!

∂αρ

T ak−1ρbk+2
∂α(ρ∂x·v)

+ 2
∑

1≤i≤n

|α|=k

k!
α!

∂αvi

T akρbk
∂α

(
T
∂iρ

ρ
+ ∂iT

)
.

The first two sums are easily recast in the admissible form cνµΠ(k)
ν Π(k+1)

µ . In the
last three sums, it is then important to separate admissible terms form unsplit ones,
that is, to separate terms with three or more derivatives — which are then of the
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admissible form — from quadratic terms. The third and fourth terms yield the
special source terms

+ 2
∂kT∂k(∂x·v)
T akρbk

+ 2
∂kρ∂k(∂x·v)
T ak−1ρbk+1

. (A.5)

In the last sum, the contributions associated with ∂iT are integrated by parts and
yield admissible terms plus the special term

− 2
∂kT∂k(∂x·v)
T akρbk

,

which compensates with the first term of (A.5). Finally, the special contributions
associated with T∂iρ/ρ = T∂i log ρ are integrated by parts and yields the source
term

−2
∂kρ∂k(∂x·v)
T ak−1ρbk+1

,

which compensate with the second term of (A.5). This compensation of quadratic
terms involving hyperbolic variables are the consequence of the symmetric structure
of the system of partial differential equations.

Let now (ρ, v, T ) be a smooth solution of the compressible Navier–Stokes equa-
tions (3.1)–(3.5) with regularity (3.6)–(3.7), and assume that T ≥ Tmin and that
ρ ≥ ρmin. The preceding derivation of the γ[k] balance equation can then be justified
for 0 ≤ k ≤ l by using mollifiers and classical properties of commutators.42,43,63

Moreover, from classical interpolation inequalities the following lemmas ensure
that ϕ[k]

γ , π[k]
γ , Σ

[k]
γ , ω[k]

γ ∈ L1((0, t̄),W l−k,1).

Lemma A.1. Let i ≥ 1, αj , 1 ≤ j ≤ i, be multi-indices such that |αj | ≥ 1,
1 ≤ j ≤ i, and let k =

∑
1≤j≤i |αj |. Let u1, . . . , ui, be such that there exist constants

uj,∞ with uj −uj,∞ ∈ Wm,2(Rn)∩C0
0 (Rn) and assume that 1 ≤ k ≤ m. There exists

a constant c = c(m,n) only depending on (m,n), such that∥∥∥∥∥∥
∏

1≤j≤i

∂αj

uj

∥∥∥∥∥∥
W m−k,2

≤ c‖u− u∞‖i−1
L∞ (‖∂ku‖L2 + · · · + ‖∂mu‖L2), (A.6)

where

‖u − u∞‖L∞ =
∑

1≤j≤i

‖uj − uj,∞‖L∞ ,

‖∂mu‖2
L2 =

∑
1≤j≤i

‖∂muj‖2
L2 ,

and the derivatives of
∏

1≤j≤i ∂
αj

uj can be evaluated by using Leibniz’ formula.

Lemma A.2. Let i ≥ 2, αj , 1 ≤ j ≤ i, be multi-indices such that |αj | ≥ 1,
1 ≤ j ≤ i, and let k =

∑
1≤j≤i |αj |. Let u1, . . . , ui, be such that there exist constants
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uj,∞ with uj − uj,∞ ∈ Wm,2(Rn) ∩ C1
0(Rn) and assume that 2 ≤ k ≤ m+ 1. There

exists a constant c = c(m,n) only depending on (m,n), such that∥∥∥∥∥ ∏
1≤j≤i

∂αj

uj

∥∥∥∥∥
W m+1−k,2

≤ c(‖u−u∞‖L∞ +‖∂xu‖L∞)i−1(‖∂1u‖L2 + · · · + ‖∂mu‖L2),

(A.7)

where

‖∂xu‖L∞ =
∑

1≤j≤i

‖∂xuj‖L∞ ,

and the derivatives of
∏

1≤j≤i ∂
αj

uj can be evaluated by using Leibniz’ formula.

These lemmas can be established by using classical interpolation inequalities63

or by using Theorems 4.7 and 4.8 with a weight unity.

Lemma A.3. Let m ≥ 0, and a, b ∈ Wm,2(Rn). Then ab ∈ Wm,1 and there exists
a constant c(m,n) only depending on (m,n) such that

‖ab‖W m,1 ≤ c‖a‖W m,2‖b‖W m,2 , (A.8)

and the derivatives of ab can be evaluated by using Leibniz’ formula.

This lemma is a direct consequence of Hölder inequality.
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Math. France 90 (1962) 487–497.
58. A. Novotny and I. Straskraba, Introduction to the Mathematical Theory of Compress-

ible Flows (Oxford Univ. Press 2004).
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