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Abstract

The thermodynamic formulation and the traditional formulation of multicomponent transport

fluxes in high pressure fluids are discussed. The impact of high pressure transport models on mixing

layers, premixed plane flames and strained diffusion flames is then investigated. Multicomponent

fluxes in diffuse-interface transcritical diffusion flames are further addressed.

1 Introduction

Supercritical cryogenic combustion is often encountered in rocket engines. This has motivated modeling
and numerical simulation of supercritical mixing and combustion in laminar flows [1, 2, 3, 4, 5, 6, 7, 8]
and turbulent flows [9, 10, 11, 12] as well as model rocket combustor experiments [13, 14]. At such high-
pressure and low temperature conditions, however, multicomponent transport phenomena is highly
complex and nonidealities may influence the structure and dynamics of mixing zones as well as flames.
With such an incentive we review and discuss in this chapter high pressure multicomponent transport
models and their impact on the structure of mixing layers and supercritical flames.

The equations governing nonideal gas mixtures and the expression of multicomponent fluxes in terms
of chemical potential gradients and temperature gradients—the so called thermodynamic form—with
proper symmetry of the coefficients have first been derived in the framework of the thermodynamic
of irreversible processes by Meixner [15, 16] and Prigogine [17]. In such a framework, the fluxes
are obtained after expressing entropy production as a quadratic form, writting the fluxes as linear
expressions of the gradients, and using Onsager symmetry relations [18]. An elegant presentation of
this theory and of the historical developments is given in the book of de Groot and Mazur [19]. Similar
expressions had been written previously by Eckart [20] but only for ideal gas mixtures and without
symmetry properties of the transport coefficients.

Such equations governing dense gases have also been obtained from statistical mechanics. The
equations governing dense single gases have been obtained by Irwing and Kirkwood [21] and the
equations for dense gas mixtures by Bearman and Kirkwood [22] and Mori [23]. The transport fluxes
have been expressed in terms of averages over molecular distribution functions and the thermodynamic
form of transport fluxes has been rederived by Bearman and Kirkwood [22] and Mori [23].

The governing equations and the multicomponent fluxes have also been obtained by Keizer [24] from
statistical thermodynamics. Keizer has developed an extended statistical theory of nonequilibrium
processes which includes nonlinear effects and is applicable close to as well as far from equilibrium.
In this fluctuation dissipation theory, elementary molecular processes manifest themselves as random
changes in the extensive variables characterizing a system [24]. The importance of Keizer’s results in
statistical thermodynamics for high pressure combustion modeling has been emphasized in particular
by Bellan and coworkers [2, 10].

The kinetic theory of gases is well understood for dilute gas mixtures but the resulting equation
of state is that of perfect gases [25, 26, 27, 28, 29, 30]. A kinetic theory of dense gases has first been
given by Enskog for rigid spheres and extended by Thorne to binary mixtures [27, 28]. The advantage
of the rigid sphere model is that collisions are instantaneous so that the probability of simultaneous
multiple encounters is negligible. The principal transport mechanism in dense gases is then collisional
transfer at variance with dilute gases where it is molecular flow. It has been found, however, that the
results of the Enskog-Thorne theory—and of its straightforward extensions—are not compatible with
the thermodynamics of irreversible processes [31]. A modified form of Enskog equation has then been
introduced by Van Beijeren and Ernst [32] and the resulting dense fluid gas mixture kinetic theory [33]
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has been shown to be compatible with the thermodynamics of irreversible processes. The corresponding
Chapman-Enskog procedure has been performed by Kurochkin et al. [34]. More general theories of
dense gases are based on multiple velocity distribution functions and on the BBGKY hierarchy of
equations [27, 28]. Formal expressions have notably been derived for a single gas, assuming that the
two-particle distribution function is time-independent [28]. Nevertheless, to the authors’ knowledge, a
complete and fully satisfactory kinetic theory of dense polyatomic reactive gas mixtures is still missing.

The previously mentioned theories have yielded the conservation equations and the structure of
transport fluxes that are used in this work as well as compatibility with the second principle of ther-
modynamics. On the other hand, in the absence of a satisfactory kinetic theory of dense mixtures,
thermodynamics are typically built from accurate approximate state laws assuming a Gibbsian struc-
ture and compatibility with perfect gases at low density [1, 2, 3, 4, 5, 6, 35]. The thermodynamics used
in this work is based on the Soave-Redlich-Kwong cubic equation of state [36, 37, 38, 39, 40, 41, 42].
The corresponding chemical production rates are derived from statistical mechanics, statistical ther-
modynamics, or the kinetic theory of gases [43, 44, 24, 45]. An important consequence of such nonideal
thermodynamics is the presence of thermodynamic instabilities that may be of thermal, mechanical or
chemical type [5]. In the absence of a satisfactory kinetic theory of dense mixtures, the shear viscos-
ity and the thermal conductivity are also evaluated from high pressure correlations [46, 47]. Binary
diffusion coefficients are obtained from the kinetic theory of dense mixtures of hard spheres [33, 34],
allowing to take into account steric effects. The multicomponent diffusion coefficients are then obtained
as approximate pseudo inverses of the Stefan-Maxwell matrix [5].

The natural thermodynamic form of multicomponent diffusion and heat fluxes is obtained in terms of
chemical potential gradients and thus automatically involves nonideal effects in an implicit fashion [19,
24, 33, 5]. Such a thermodynamic form also naturally arises in the mathematical theory of high pressure
fluids [48] and is also useful in order to evaluate multicomponent fluxes in all pressure transcritical
flame models in the presence of mechanical thermodynamic stability limits. On the other hand, the
traditional form of transport fluxes may also be obtained by introducing the proper high pressure
coefficients as well as the species diffusion driving forces. Nonidealities are then made explicit in the
diffusion driving forces by developing the derivatives of chemical potentials with respect to mole or
mass fractions at constant temperature. Nonidealities in diffusion driving forces have been considered
in particular by Okong’o and Bellan [2], Oefelein [9], Bellan [10] and Giovangigli, Matuszewski, and
Dupoirieux [5]. Transport nonidealities are notably strong in cold zones of premixed flames and prevent
unrealistic diffusion from dense fresh reactants into flame fronts [5]. Nonideal diffusion also has a strong
influence on the structure of cold jets near chemical thermodynamic stability limits between two fluids
[6, 8]. Nonideal diffusion has also been considered with diffuse interface transcritical flames [7].

The high pressure fluid model and the multicomponent fluxes are detailed in Section 2 and the
structure of binary mixing layers is discussed in Section 3. The impact of high pressure transport
models on plane and strained flames is adressed in Sections 4 and 5. Finally the situation of transcritical
diffusion flames is investigated in Section 6.

2 Nonideal fluids

The equations governing high pressure fluids may be derived from the thermodynamics of irreversible
processes [15, 16, 17, 19], statistical thermodynamics [24], statistical mechanics [21, 22, 23], as well as
the kinetic theory of dense gases [33, 34].

2.1 Conservation equations

The equations expressing the conservation of species mass, momentum and energy in a dense fluid may
be written in the form

∂tρi +∇·(ρiv) +∇·Ji = miωi, i ∈ S, (1)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (2)

∂t
(
ρ(e + 1

2 |v|
2)
)
+∇·

(
ρ(e + 1

2 |v|
2)v + pv

)
+∇·

(
Je +Π·v

)
= 0, (3)

where ∂t denotes the time derivative operator, ∇ the spatial differential operator, ρi the mass density
of the ith species, Ji the diffusion flux of the ith species, mi the molar mass of the ith species, ωi

the molar production rate of the ith species, S = {1, . . . , n} the species indexing set, n the number of
species, ρ =

∑
i∈S

ρi the mass density, v the fluid velocity, p the pressure, I the identity tensor, Π
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the viscous tensor, e the energy per unit mass of the mixture, and Je the heat flux. It is assumed for
the sake of simplicity that there are no forces acting on the species.

These equations need to be completed by relations expressing the thermodynamic properties e and
p, the chemical production rates ωi, i ∈ S, and the multicomponent fluxes Ji, i ∈ S, Π and Je. One
may further define the pressure tensor P = pI + Π as well as the energy flux Q = Je + P·v. The
total momentum flux matrix is then ρv⊗v + P and the total energy vector flux ρv(e + 1

2 |v|
2) + Q.

These quantities P and Q will be convenient in order to denote transport fluxes for fluid models with
diffuse interfaces.

2.2 Thermodynamics

We will use in these notes the Soave-Redlich-Kwong equation of state [36, 37]

p =
∑

i∈S

yi

mi

RT

v − b
−

a

v(v + b)
, (4)

where R denotes the perfect gas constant, yi = ρi/ρ the mass fraction of the ith species, v = 1/ρ
the volume per unit mass, a the massic attractive parameter, and b the massic repulsive parameter.
The parameters of the SRK equation of state a(y, T ) and b(y) may be evaluated from the Van der
Waals mixing rules a =

∑
i,j∈S

yiyjαiαj and b =
∑

i∈S
yibi where y denotes the vector of species mass

fractions y = (y1, . . . , yn)
t. The pure-component parameters αi(T ) and bi are obtained from critical

point data or Lennard-Jones potential parameters [5]. The validity of this equation of state (4) and of
the mixing rules have been carefully studied by comparison with NIST data by Congiunti et al. [38]
and with results of Monte Carlo simulations by Colonna and Silva [39] and Cañas-Marín et al. [40, 41].
The SRK equation of state yields a good representation of dense to dilute fluids and still allows a fast
inversion by using Cardan’s formula.

With the pressure law (4) given, there exists a unique associated Gibbsian thermodynamics com-
patible at low densities with that of perfect gases [42, 35]. The corresponding specific energy e and
entropy s per unit mass are found in the form

e =
∑

i∈S

yi

(
esti +

∫ T

T st

cpgvi (θ) dθ
)
+

T∂Ta− a

b
log
(
1 +

b

v

)
, (5)

s =
∑

i∈S

yi

(
ssti +

∫ T

T st

cpgpi (θ)

θ
dθ
)
−
∑

i∈S

yi
R

mi
log
(

yiRT

mi(v − b)pst

)
+

∂Ta

b
log
(
1 +

b

v

)
, (6)

where esti is the formation energy of the ith species at the standard temperature T st, ssti the formation
entropy of the ith species at the standard temperature T st and standard pressure pst, cpgvi the perfect-
gas specific heat at constant volume of the ith species and cpgpi the perfect-gas specific heat at constant
pressure of the ith species. The enthalpy of the mixture h as well as the Gibbs function g per unit mass
may next be obtained from h = e + pv and g = e + pv − Ts respectively and for any thermodynamic
function ϕ ∈ {e, s, h, g} the corresponding species densities are obtained from ϕi = (∂yiϕ)p,T,yj 6=i

. We
will use in particular in the following the species enthalpies hi, i ∈ S, the species Gibbs functions gi,
i ∈ S, as well as the chemical potentials µi = migi/RT , i ∈ S,

The entropy of a stable isolated homogeneous system should be a concave function of its ther-
modynamic variables w = (v , y1, . . . , yn, e)

t. Whenever it is not the case, there exists an unstable
domain where the system loses its homogeneity and splits between two or more phases in order to
reach equilibrium. The Hessian matrix ∂2

wws must therefore be negative semi-definite with nullspace
N(∂2

wws) = Rw associated with homogeneity [35]. One may establish that thermodynamic stability
holds, that is, ∂2

wws ≤ 0 with N(∂2
wws) = Rw , if and only if the following properties hold

(∂T e)v,y > 0, (∂vp)T,y < 0, (∂2
yy
g)T,p ≥ 0, N

(
(∂2

yy
g)T,p

)
= Ry. (7)

The first condition (∂T e)v,y > 0 is the thermal stability condition that generally holds with the SRK
equation of state [35]. The second condition (∂vp)T,y < 0 is the mechanical stability condition associated
with liquid/vapor phase changes in single species fluids. The third and fourth conditions form the
chemical stability condition and state that the Hessian matrix of the Gibbs function per unit mass
G = (∂2

yy
g)T,p should be positive semi-definite with nullspace N

(
G) = Ry from homogeneity. The
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combined mechanical and chemical conditions are also equivalent to the property that the Hessian
matrix at constant volume (∂2

yy
g)T,v is positive definite [35].

In order to investigate the mathematical quality of a fluid model, it is notably required to derive a
balance equation for the entropy s and next to establish that entropy production is nonnegative. Using
Gibb’s relation TDs = De + pDv −

∑
k∈S

gkDyk where D denotes the total differential operator, and
the governing equations (1)–(3), the entropy governing equation is found in the form

∂t(ρs) +∇·(ρvs) +∇·

(
−
∑

i∈S

gi
T
Ji +

1

T
Je

)
= −

∑

i∈S

∇

(gi
T

)
·Ji +∇

( 1

T

)
·Je

−
Π : ∇v

T
−
∑

i∈S

gimiωi

T
. (8)

The expressions for chemical productions rates ωi, i ∈ S, diffusion fluxes Ji, i ∈ S, heat flux Je,
and viscous tensor Π, have thus to ensure that entropy production in the right hand side of (8) is
nonnegative.

2.3 Chemical production rates

An arbitrary complex reaction mechanism with nr reactions involving n species may be written sym-
bolically ∑

i∈S

νfijMi ⇄

∑

i∈S

νbijMi, j ∈ R, (9)

where νfij and νbij denote the forward and backward stoichiometric coefficients of the ith species in the
jth reaction, Mi the symbol of the ith species, and R = {1, . . . , nr} the chemical reaction indexing set.
Denoting by νbj = (νb1j , . . . , ν

b
nj)

t and νfj = (νf1j , . . . , ν
f
nj)

t the forward and backward reaction vectors,
the molar production rate vector ω = (ω1, . . . , ωn)

t is then given by

ω =
∑

j∈R

(νbj − νfj)τj , (10)

where τj denotes the rate of progress of the jth reaction. The proper form for the rate of progress τj
is deduced from statistical thermodynamics as well as the kinetic theory of gases [43, 44, 24, 45]

τj = Kj

(
exp〈νfj , µ〉 − exp〈νbj , µ〉

)
, (11)

where Kj > 0 denotes the symmetric reaction constant of the jth reaction, 〈a, b〉 the Euclidean product
between vectors a and b, µ = (µ1, . . . , µn)

t the vector of chemical potentials, µi = migi/RT , i ∈ S,
the species molar dimensionless chemical potentials, and gi, i ∈ S, the species Gibbs functions. These
rates (11) coincide with the ideal gas rates in the perfect gas limit and are compatible with traditional
nonidealities used to estimate equilibrium constants. These rates can further be written in the form of
the law of mass action by using the species affinities [5, 35].

Entropy production associated with chemistry may be written −
∑

i∈S
gimiωi/T = −R〈µ, ω〉 and

using the expression of the rates of progress (11) yields

−
∑

i∈S

gimiωi

T
= R

∑

j∈R

Kj

(
〈νfj , µ〉 − 〈νbj , µ〉

)(
exp〈νfj , µ〉 − exp〈νbj , µ〉

)
. (12)

Therefore, entropy production due to chemical reactions is a sum of nonnegative terms and only
vanishes at chemical equilibrium, i.e., when 〈νfj , µ〉 = 〈νbj , µ〉, for all reactions j ∈ R [45, 35]. This
expression of entropy production due to chemistry (12) may be also interpreted as a macroscopic analog
of Boltzmann H theorem involving only reactive collisions.

2.4 Thermodynamic form for transport fluxes

The heat and mass transport fluxes in a dense fluid mixture may be written in their natural thermo-
dynamic form [16, 17, 19, 22, 24, 33, 34]

Ji = −
∑

j∈S

Lij∇

(gj
T

)
− Lie∇

(
−

1

T

)
, i ∈ S, (13)

Je = −
∑

j∈S

Lej∇

(gj
T

)
− Lee∇

(
−

1

T

)
, (14)
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where Lij , i, j ∈ S ∪ {e}, are the mass and heat transport coefficients. The matrix L = (Lij)i,j∈S∪{e}

is symmetric positive semi-definite with nullspace N(L) = R U , where U =
(
1, · · · , 1, 0

)t
[24, 48]. This

thermodynamic form (13)(14) naturally arises from the thermodynamics of irreversible processes [19]
as well as from statistical thermodynamics [24]. This form of the transport fluxes also naturally arises
in the symmetrized form of the system of conservation laws (1)(3). Such symmetrized forms play a key
role in the mathematical analysis of multicomponent fluids [45, 48] and involve the entropic variable
[45, 48]

v =
(g1
T
, . . . ,

gn
T
,
−1

T

)t
= R

( µ1

m1
, . . . ,

µn

mn
,
−1

RT

)t
. (15)

Letting then for convenience J = (J1, . . . ,Jn,Je)
t and ∇v = (∇v1, . . . ,∇vn,∇ve)

t we may rewrite
(13)(14) in the form

J = −L∇v.

Entropy production associated with macroscopic gradients of concentrations and temperature in (8)
may then be written

−
∑

i∈S

∇

(gi
T

)
·Ji +∇

( 1

T

)
·Je =

∑

i,j∈S

Lij∇vi·∇vj ,

and is therefore nonnegative since the matrix L is symmetric positive semi-definite. The thermodynamic
form (13)(14) thus guarantee that entropy production due to molecular heat and mass transfer is
nonnegative. These relations (13)(14) will also be important in the modeling of diffuse interface
transcritical flames in order to avoid flux singularities at mechanical thermodynamic stability limits.

On the other hand, the viscous tensor Π may be written in the form [16, 17, 19, 22, 24, 33, 34]

Π = −v∇·v I − η
(
∇v +∇vt − 2

3∇·v I
)
, (16)

where v denotes the volume viscosity and η the shear viscosity. The entropy production due to viscous
effects in (8) may then be rewritten after some algebra

−
Π : ∇v

T
=

v

T
(∇·v)2 +

η

2T
|∇v +∇vt − 2

3 (∇·v)2I|2,

and is thus nonnegative since v ≥ 0 and η > 0.

2.5 Traditional form for transport fluxes

The multicomponent fluxes (13)(14) may be written in a more traditional form upon introducing the
species diffusion driving forces dj , j ∈ S, and the proper high pressure transport coefficients. The
species diffusion driving forces are defined by

dj = xj(∇µj)T = xj∇µj +
xjmjhj

RT 2
∇T, j ∈ S, (17)

where xj denotes the mole fraction of the jth species and (∇µj)T the gradient of the chemical potential
µj with the temperature T held constant and µj written as a function of temperature, pressure and
mole fractions µj(T, p, x1, . . . , xn) or equivalently with mass fractions µj(T, p, y1, . . . , yn). The diffusion
driving force may be written in particular

dj =
xjmjvj

RT
∇p+

∑

l∈S

Γjl∇xl, j ∈ S, (18)

where vj, j ∈ S, denote the species partial volume per unit mass of the jth species, Γjl the thermody-
namic coefficients Γjl = xj(∂xlµj)T,p,xk , j, l ∈ S, and the matrix Γ = (Γij)i,j∈S

reduces to the identity

matrix for ideal gases. High pressure coefficients may then be obtained from the modified matrix L̃
defined by L̃ = AtLA with

A =




−h1

In
...

−hn

0 · · · 0 1


 . (19)
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The coefficients of the matrix L̃ then directly yield the high pressure diffusion coefficients Dij , i, j ∈ S,
thermal diffusion coefficients θi, i ∈ S, and partial thermal conductivity λ̂ with the expressions

L̃ijR

ρyiyjm
= Dij , i, j ∈ S,

L̃ie

T
= ρyiθi, i ∈ S,

L̃ee

T 2
= λ̂, (20)

where m denotes the mean molecular weight of the mixture. Using these transport coefficients (20)
and the diffusion driving forces (17), the multicomponent fluxes (13)(14) are rewritten in the more
traditional form [25, 27, 28, 30, 45]

Ji = −
∑

j∈S

ρyiDijdj − ρyiθi∇ logT, i ∈ S, (21)

Je −
∑

i∈S

hiJi = −
ρRT

m

∑

j∈S

θjdj − λ̂∇T. (22)

Even if (21)(22) is formally similar to a traditional formulation at lower pressure, it involves here high
pressure transport coefficients. In addition, the traditional formulation (22) yields the reduced heat
flux Je−

∑
i∈S

hiJi in contrast with the thermodynamic form (14) that directly yields the full heat flux

Je. From the relations AU = U , L̃ = AtLA, and N(L) = RU , where U =
(
1, · · · , 1, 0

)t
, the matrix

L̃ is found to be symmetric positive semi-definite with nullspace N(L̃) = R U . As a consequence, the
diffusion matrix D = (Dij)i,j∈S is symmetric positive semi-definite with nullspace N(D) = R y where
y = (y1, . . . , yn)

t is the mass fraction vector, and the vector of Soret coefficients θ = (θ1, . . . , θn)
t is

such that 〈θ, y〉 = 0. Since Dy = 0 and 〈θ, y〉 = 0, the transport fluxes (21)(22) may also be rewritten
in terms of the linearly dependent diffusion driving forces d̃j = dj − yj

∑
l∈S

dl that sum up to zero.
In the low Mach number limit—where pressure gradients may be neglected—the diffusion driving

forces (17) may further be simplified as dj = xj(∇µj)T,p, j ∈ S, where (∇µj)T,p denotes the spatial
gradient of µj with T and p held constant. For perfect gases, after some algebra, using

∑
l∈S

xl = 1,
one may also recover the usual formula dpg

j = ∇xj , j ∈ S, for the diffusion driving forces [5].
An alternative form for mass and heat multicomponent fluxes—similar to that of dilute gases—is

also obtained by introducing the generalized thermal diffusion ratios χ = (χ1, . . . , χn)
t and the thermal

conductivity λ with [16, 34, 27]

θ = Dχ, 〈χ, u〉 = 0, λ = λ̂−
ρR

m
〈Dχ,χ〉, (23)

where u = (1, . . . , 1)t is the vector with units components. The transport linear system defining the
thermal diffusion ratios θ = Dχ with the constraint 〈χ, u〉 = 0 is easily shown to be well posed [30]
and the transport fluxes can then be written

Ji = −
∑

j∈S

ρyiDij

(
dj + χj∇ logT

)
, i ∈ S, (24)

Je −
∑

i∈S

hiJi =
∑

j∈S

RT

mj
χ̃jJj − λ∇T, (25)

where χ̃j is the rescaled thermal diffusion ratio of the jth species χ̃j = χj/xj. This formulation
has been used in these notes—except for diffuse interface models where the thermodynamic form is
mandatory—and is notably convenient for dilute gases since it is less expensive to evaluate λ and χ
than λ̂ and θ [30].

2.6 High pressure transport coefficients

In order to take into account the influence of density on transport coefficients, the thermal conductivity
λ and the shear viscosity η are evaluated as described by Chung et al. [46] and Ely and Hanley [47]. On
the other hand, the species diffusion matrix D is evaluated by solving Stefan-Maxwell type equations
derived from the kinetic theory of dense gases by Kurochkin, Makarenko, and Tirskii [34] as well as
from various experiments with liquid mixtures as comprehensively discussed by Taylor and Krishna
[49]. Another variant is to use Grad’s moments method as done by Harstad and Bellan [50]. However,
Grad’s moments method has been shown to be equivalent to the Chapman-Enskog method by Zhdanov
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in the framework of weakly ionized plasmas [51] and Harstad and Bellan have also obtained Stefan-
Maxwell type equations for high pressure diffusion coefficients [50].

The Stefan-Maxwell matrix ∆ = (∆ij)i,j∈S may be written

∆ii =
∑

j 6=i

xixj

Dij
, ∆ij = −

xixj

Dij
, i 6= j, (26)

where Dij , i, j ∈ S, i 6= j, are the species binary diffusion coefficients. Different expressions have
been proposed in the literature for evaluating high pressure binary diffusion coefficients Dij , i, j ∈
S, i 6= j, notably by Wakeham [52], Takahashi [53], Harstad and Bellan [54], and Leahy-Dios and
Firoozbadi [55]. The correlations of Takahashi have been used in particular by Ribert et al. [3], Pons
et al. [4], Oefelein [9], and Zong and Yang [11]. Note that models and/or experimental correlations
should clearly factorize the terms due to nonidealities [54, 55], to prevent the risk of including them
in the binary diffusion coefficients. In these notes, the binary diffusion coefficients have been obtained
from the kinetic theory of dense mixtures of hard spheres developped by Beijeren and Ernst [33] and
Kurochkin et al. [34] allowing to take into account steric effets in diffusive processes. These binary
diffusion coefficients are evaluated in the form Dij = Dpg

ij /Υij , i, j ∈ S, i 6= j, where Dpg

ij denotes the
perfect gas binary diffusion coefficient given by the kinetic theory of dilute gases and Υij is the factor

Υij = 1+
∑

k∈S

πnk
12

(
8(σ3

ik + σ3
jk)− 6(σ2

ik + σ2
jk)σij − 3(σ2

ik − σ2
jk)

2σ−1
ij + σ3

ij

)
,

where σij denotes the collision diameter for the species pair (i, j) and nk the number density of the
kth species.

The Stefan-Maxwell matrix ∆ is symmetric positive semi-definite with nullspace N(∆) = Ru where
u = (1, . . . , 1)t ∈ R

n and 2diag(∆) − ∆ is positive definite when n ≥ 3 [30, 45, 56, 57]. From the
kinetic theory of gases it is obtained that ∆D = In − y⊗u with the mass constraint Dy = 0. The
diffusion matrix D is shown to be the generalized inverse of ∆ with prescribed nullspace Ry and range
y
⊥ and for any α > 0 we have D = (∆ + αy⊗y)−1 − (1/α)u⊗u [30, 45, 56, 57]. Using the matrix D

is also equivalent to solving the Stefan-Maxwell equations for the diffusion velocities [30, 56]. In order
to accelerate the evaluation of the matrix D from the Stefan-Maxwell matrix, we have used the theory
of iterative algorithms for singular systems [30, 45, 56, 57, 58, 59, 60, 61]. Introducing the splitting
∆ = M −W where

M = diag
( ∆11

1− y1
, . . . ,

∆nn

1− yn

)
, (27)

and letting T = M−1W and P = In − u⊗y, the following asymptotic expansion is shown to be
convergent [30, 45, 56, 57]

D =
∑

0≤j<∞

(PT )jPM−1P t. (28)

Considering the first term PM−1P t, the matrix M−1 corresponds to a generalization to high pressure
of the Hirschfelder-Curtiss approximation and the projector P to the addition of a species independent
mass conservation corrector [56, 60]. The next approximation of D with two terms is more interesting
since it is much more accurate and still yields n2 coefficients within O(n2) operations [61, 56, 57].
Harstad and Bellan have checked in particular that this two term approximation is accurate for high
pressures [50]. Even the highly accurate three term approximation is interesting from a computational
point of view since—thanks to symmetry—it is still approximately half the cost of a direct method
using Cholesky algorithm with n backsolves. These iterative algorithms have generally been found to
be effective for fast and accurate evaluation of multicomponent diffusion matrices as well as transport
coefficients [56, 57, 58, 59].

Finally, in order to evaluate the thermal diffusion ratios χi, i ∈ S, we have generally used the
limiting dilute gas value for χi, i ∈ S. The main idea is that thermal diffusion will mainly influence
the part of the flame which is sufficiently warm. Note that high pressure effects are still taken into
account in the corresponding thermal diffusion coefficients θ = Dχ through the matrix D which involves
high pressure diffusion coefficients.

2.7 Numerical considerations

The equations governing flame structures or mixing layers are discretized by using finite differences and
solved on adaptive grids with the aid of Newton’s method [62, 63]. Pseudo unsteady iterations may
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be used to bring an initial guess into the convergence domain of steady Newton’s iteration. The grids
are iteratively refined by adding discretization points wherever the solution gradients are too roughly
represented.

Once a flame structure is obtained, it may be used as a starting point to compute solutions branches
depending on a parameter. Branches are computed by means of continuation techniques [64] using
global rezone adaptative griding that generates smooth grids. The solution branches are locally repa-
rameterized by the most sensitive solution component hence allowing the computation of turning points
and insuring that the solution is changing smoothly.

The evaluation of fluid properties such as chemical production rate, thermodynamic properties and
transport coefficient is obtained with high pressure adapted versions of highly optimized thermochem-
istry and transport routines [65, 66, 67, 68].

When using the traditional form for diffusion velocities, it is also preferable to avoid double sums
over the species arising from Ji = −

∑
j∈S

ρyiDijdj and the expansion in dj of the derivatives of the
chemical potentials (∇µj)T or (∇µj)T,p in terms of the species mole fraction gradients, keeping in
mind that µj depend on all species for nonideal fluids. To this aim, the potential µj is decomposed in
the form µj = log xj + µsm

j where the smooth part µsm
j may be evaluated explicitly. In the low Mach

regime the diffusion driving force is then evaluated in the compact form

dj = xj(∇µj)T,p = ∇xj + xj(∇µsm
j )T,p,

where the perfect gas contribution ∇xj is associated with the singular part log xj of µj .

3 Binary mixing layers

The impact of nonidealities on the structure of binary mixing layers in the neighborhood of chemical
thermodynamic stability limit is investigated [8].

3.1 Binary diffusion matrices and fluxes

For a binary mixture with S = { 1, 2 }, the Stefan-Maxwell matrix (26) reduces to

∆ =
x1x2

D12

(
1 −1
−1 1

)
, (29)

where D12 is the binary diffusion coefficient of the mixture pair. In this simplified situation, the mass
constraint Dy = 0 yields y1D11+y2D12 = 0 and y1D21+y2D22 = 0, and since D12 = D21 by symmetry,
all coefficients may be expressed in terms of D12. From the Stefan-Maxwell relation ∆D = I2 − y⊗u,
it is obtained after a little algebra that D12 = −D12

m1m2

m2 . The multicomponent diffusion matrix is
thus in the form

D = D12
m1m2

m2

(
y2

y1
−1

−1 y1

y2

)
, (30)

and it is easily checked that D is positive semi-definite with nullspace Ry where y = (y1, y2)
t.

On the other hand, the Hessian matrix G = (∂2
yy
g)T,p of Gibbs function, where the derivations

are performed with respect to mass fractions y while T and p are fixed, is closely associated with
chemical thermodynamic stability as detailed in Section 2.2. The coefficients of the Hessian matrix
G = (Gjl)j,l∈S

are Gjl = (∂2
ylyj

g)T,p = (∂
yl
gj)T,p, j, l ∈ S and since the Gibbs function per unit mass

g is 1-homogeneous in terms of y—when T and p are constant—the derivatives gi, i ∈ S, with respect
to mass fractions are 0-homogeneous. From the Euler relation, the hessian matrix G is therefore such
that G y = 0 so that G11y1 + G12y2 = 0 and G21y1 + G22y2 = 0. Introducing the mass based coefficient

γ = −G12
m1m2

mRT
= −(∂y1µ2)T,p

m1

m
= −(∂y2µ1)T,p

m2

m
, (31)

we may write G in the form

G =
mRT

m1m2
γ

(
y2

y1
−1

−1 y1

y2

)
. (32)

It is then easily established that G ≥ 0 is equivalent to γ ≥ 0 and N
(

G
)
= Ry is equivalent to γ 6= 0

using that 〈Gz, z〉 = γmRT/m1m2y1y2 where z = (1,−1)t. Therefore thermodynamic stability holds
if and only if γ > 0 and a direct calculation yields that γ = 1 for perfect gases.
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We only consider in the following a low Mach fluid and the expression of the diffusion driving fluxes
reduces to dj = xj(∇µj)T,p, j ∈ S. We will also neglect the Soret and Dufour effects since the mixing
layers considered in this chapter only involve mild temperature gradients. The diffusion driving forces
may thus be written dj = xj(∇µj)T,p =

∑
l∈S

yjm
RT Gjl∇yl, j ∈ S, and the fluxes then read

Ji = −
∑

j,k∈S

ρm

RT
yiyjDijGjk∇yk, i ∈ S.

In our binary case it yields for the first species

J1 = −ρy1D11
my1

RT

(
G11∇y1 + G12∇y2

)
− ρy1D12

my2

RT

(
G21∇y1 + G22∇y2

)
. (33)

Using then y1 + y2 = 1, ∇y1 = −∇y2, as well as the simplified expressions (30)(32) for D and G it is
found that

J1 = −ρD12γy1

{
y2

y1
y1

(
y2

y1
+ 1
)
− y2

(
−1−

y1

y2

)}
∇y1,

and finally—after some algebra—that

J1 = −ργD12∇y1. (34)

This remarkably simple expression exactly reduces the matrix diffusion process involving the multi-
component diffusion matrix D as well as the Hessian matrix G to a simple diagonal diffusion model
provided that the fluxes are expressed in terms of mass fraction gradients and the coefficient γ is a
mass based coefficient. In such a binary situation, the quantity that is thermodynamically conjugated
to y1 is µ1 − µ2 keeping in mind that the relation ∇y1 = −∇y2 has been used. Similar expressions
have also been presented in terms of molar based quantities [69, 70, 71, 72].

The expression (34) further shows how diffusion processes vanish at the chemical stability limit
γ = 0. When γ is negative, there is then a spinodal decomposition between the two equilibrium states
characterized by the bitangent condition. In this situation γ < 0, higher order derivative terms from
the second gradient theory of diffuse interfaces are required in order to stabilize mathematically the
governing equations and in order to simulate numerically unmixing processes. When thermodynamic
stability is lost, both hyperbolicity and parabolicity are indeed lost in the system of partial differential
equations.
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Figure 1: Coefficient γ in a mixing layer at p = 100 atm; T± = 160; T± = 122 K

3.2 Simplified self-similar mixing layer equations

We consider a steady, low-Mach, self-similar mixing layer between two species. The mixing layer is
developing in the positive x direction starting from x = 0 where x and y denote the longitudinal and
transverse coordinates with x = (x, y, z)t. The longitudinal and transverse velocity components are
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Figure 2: Hydrogen mole fraction in a mixing layer at p = 100 atm; T± = 122 with nonideal
diffusion; T± = 122 with ideal diffusion; T± = 160 with nonideal diffusion; T± = 160 with
ideal diffusion

denoted by u and v, respectively, so that v = (u, v, 0)t. The new simplified coordinates ξ and ζ used
in this work are defined by [8]

ξ = x, ζ = y/x1/2, (35)

and the auxiliary pseudo velocity w reads

w =
√
ξv − 1

2ζu. (36)

These coordinates (35) appear to be much simpler than traditional boundary layer type coordinates.
For a self similar layer, the dependent unknowns u, w, T , y1 then only depend on t and ζ whereas v
also depends on ξ from (36).

The resulting steady self-similar layer equations are then in the form [8]

∂ζ(ρw) +
1
2ρu = 0, (37)

∂ζ p̃ = 0, (38)

ρw∂ζu− ∂ζ(η∂ζu) = 0, (39)

ρw∂ζy1 − ∂ζ
(
ρD12γ∂ζy1

)
= 0, (40)

ρw∂ζh− ∂ζ

(
λ∂ζT + ρ(h1 − h2)γD12∂ζy1

)
= 0, (41)

where p̃ denotes the perturbed pressure and u, w, ρ, y1, h and T only depend on ζ. The pressure has
been decomposed as usual in the form p = p+ p̃ where p denotes the ambient pressure that is constant
in space and p̃ the fluid dynamic perturbation with the ratio p̃/p of the order of the square of the Mach
number [45]. Further assuming that the limiting longitudinal velocities u(±∞) are independent of x,
it is found that ∂ξ p̃ = 0 and combining with (38) we obtain ∇p̃ = 0 so that p̃ = 0 from boundary
conditions and the pressure is constant p = p.

The computational domain is typically taken in the form [l−ζ , l
+
ζ ] and the boundary conditions are

in the form
u(l−ζ ) = u−, T (l−ζ ) = T−, y1(l

−
ζ ) = 1,

u(l+ζ ) = u+, T (l+ζ ) = T+, y1(l
+
ζ ) = 0,

and Ting boundary condition for the transverse velocity reads [73, 74]

ρ−u−v− + ρ+u+v+ = 0.
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Figure 3: Phase diagram with mixing layer trajectories at p = 100 atm, T± = 160 K and T± = 122 K;
nonideal diffusion; ideal diffusion.

3.3 Thermodynamic stability of H2-N2 mixtures

Thermodynamic stability of fresh reactants is of fundamental importance for mixing layers as well
as premixed cryogenic flames. An exhaustive study of thermodynamic stability for ternary mixtures
H2-O2-N2 has been performed at various pressures using the thermodynamics built from the SRK
equation of state [5, 35]. Similar results have been obtained at various pressures as long as they are
above the critical pressures of H2, O2, and N2. In order to investigate the corresponding stability
domain, we have located the points where the first eigenvalue of the matrix (∂2

yy
g)T,v is changing of

sign by inspecting the zero values of its determinant. To this aim, we have used nonlinear solvers and
continuation methods in order to generate the whole stability domain. The boundary of the stability
domain are in general chemical stability limits that coincide with the mechanical stability limits in the
asymptotic situation of pure fluids.

Verschoyle [75] and Eubanks [76] have investigated binary mixtures of H2 and N2 at high pressure
and low temperature. A first important experimental result is that binary mixtures of H2 and N2 may
not be thermodynamically stable at sufficiently high pressure and low temperature. In these situations,
a mixture of H2 and N2 splits between a hydrogen-rich gaseous-like phase and a hydrogen-poor liquid-
like phase [75, 76]. Detailed comparisons have been conducted between experimental results and
numerical simulations of equilibrium states using the SRK equation of state [5, 35]. These simulations
indicate that the instabilities are of chemical type and very good agreement has been obtained with
experimental results [5].

3.4 Impact of nonideal transport

A cryogenic supercritical mixing layer between H2 and N2 is investigated and the species indexing set
S = {H2,N2 } is used for convenience. Hydrogen is injected on the left side yH2− = 1, at temperature
either T− = 160 K or T− = 122 K with longitudinal velocity u− = 1 cm/sec, and the pressure is
uniform at p = 100 atm. Nitrogen is on the right side yH2+ = 0, at either temperature T+ = 160 K
or T+ = 122 K with longitudinal velocity u+ = 1 cm/sec. Taking into account the governing equation
for u and the boundary conditions u± = 1 cm/sec, the longitudinal velocity is found to be constant
u = 1 cm/sec. The domain in the transformed coordinate ζ is typically given by [−0.28, 0.28].

For the temperature T± = 160 K at both ends the fluid stays away from the chemical stability limit
whereas with the colder temperature T± = 122 K the fluid comes close to the chemical thermodynamic
stability limit. This can be seen on Figure 1 where the thermodynamic coefficients γ in the mixing layer
is presented. For the larger temperature T± = 160 K the coefficient γ significantly deviates from unity
but still remains away from zero with a minimum value around γ ≈ 0.714, whereas for T± = 122 K
the coefficient γ comes very close to the chemical thermodynamic stability limit with a minimum value
around γ ≈ 3.5 10−3.

In Figure 2 are presented the hydrogen mole fraction xH2
(ζ) as a function of ζ for both the ideal
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(γ = 1) and nonideal (γ = −m1m2G12/mRT ) diffusion models and in the two situations T± = 160 K
and T± = 122 K. When T± = 160 K, the ideal and nonideal diffusion mole fraction profiles are
essentially similar. On the contrary, when T± = 122 K, it can be seen that the impact of nonidealities
is dramatic. The nonideal diffusion mole fraction profile is much stiffer than the ideal diffusion one
near chemical thermodynamic stability limit where the thermodynamic factor γ vanishes. The sharp
gradient of the mole fraction is due to the local quasi immiscibility of the two fluids. The limiting
structure is then that of a contact discontinuity or equivalently that of a nonmixing layer [8]. An
important consequence is the considerable decrease of mixing processes in such systems and the ideal
diffusion model with γ = 1 is unable to properly describe the relevant physics of diffusion.

The trajectories in the phase space (xH2
, T ) corresponding to both boundary temperatures T± =

160 K and T± = 122 K are further presented in Figure 3. In this phase diagram, the isocontours
γ = 0.00, γ = 0.25, γ = 0.50, and γ = 0.75, of the thermodynamic parameter γ are also presented.
The forbidden zone γ < 0, where the binary mixture is thermodynamically unstable, is also presented
in grey color. It has already been observed that only nonideal diffusion fluxes properly represents the
physics of diffusion near thermodynamic stability. However, it is also observed on Figure 3 that, with
ideal diffusion fluxes, the forbidden unstable zone is crossed without even noticing it when T± = 122 K.
In particular, non-physical mixing states between the species are reached by this model. On the
contrary, with the nonideal model, all trajectories remain in the physically admissible stable zone.

4 Freely propagating premixed flames

The impact of high pressure multicomponent transport models on the structure of freely propagating
cryogenic supercritical flames is investigated [5].

4.1 Planar flame equations

We investigate freely propagating planar flames and denote by x the coordinate normal to the combus-
tion wave where x = (x, y, z)t. The velocity vector reads v = (u, 0, 0)t and the dependent unknowns
have the structure

T = T (t, x), ρ = ρ(t, x), yi = yi(t, x),

u = u(t, x), p̃ = p̃(t, x).

In the low Mach number regime, the momentum equation uncouples and would only be needed in
order to evaluate the pressure corrector p̃. For a steady flame, the resulting conservation equations for
species mass and energy are found in the form

m y
′
i + J ′

i = miωi, i ∈ S, (42)

mh′ + J ′
e = 0, (43)

where the superscript ′ denotes the derivation with respect to the flame normal coordinate x and
m = ρu is the mass flow rate, Ji the normal diffusion flux of the ith species, and Je the normal heat
flux. The diffusion flux of the ith species Ji = (Ji, 0, 0)

t, i ∈ S, and the heat flux Je = (Je, 0, 0)
t

reduce to their normal components. The flow rate m is constant from the total mass conservation
equation (ρu)′ = 0 and is a nonlinear eigenvalue of the problem.

The boundary conditions at the origin are naturally written in the form [77, 78]

m
(
yi(0)− y

fr
i

)
+ Ji(0) = 0, i ∈ S, (44)

m
(
h(0)− hfr

)
+ Je(0) = 0, (45)

where the superscript fr refers to the fresh mixture. The downstream boundary conditions are in the
form

y
′
i(+∞) = 0, i ∈ S, T ′(+∞) = 0, (46)

and the translational invariance of the model is removed by imposing a given temperature T fx at a
given arbitrary point xfx of [0,∞)

T (xfx)− T fx = 0, (47)
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Figure 4: Mass density ρ and mole fractions of major species in a freely propagating H2-Air stoichio-
metric flame structure at p = 100 atm and T fr = 100 K.
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Figure 5: Temperature T and mole fractions of minor species freely propagating H2-Air stoichiometric
flame structure at p = 100 atm and T fr = 100 K.

where T denotes the absolute temperature. These boundary and internal conditions (44)–(47) have
first been used by Sermange [77] for xfx 6= 0 whereas xfx = 0 was first chosen in reference [78]. The
relations expressing the thermodynamic properties and chemical production rates have been discussed
in Section 2 as well as the transport fluxes Ji, i ∈ S, and Je.

4.2 A stoichiometric H2-Air flame

We first discuss the structure of a typical premixed supercritical hydrogen/air flame. The reaction
mechanism for hydrogen combustion is that developped by Warnatz [79, 80, 81]. Such complex chem-
istry flames depend on many kinetic parameters and a sensitivity analysis is notably presented in the
book of Warnatz, Mass and Dibble [81]. The impact of nonidealities in multicomponent transport
models—usually not taken into account—is performed in the next section. All flames are anchored by
the condition T (xfx) = T fx at xfx = 1 cm with T fx = 500 K. To the authors’ knowledge, there are no
available experimental data on supercritical plane flames.

We consider a H2-Air flame with φ = 1 and T fr = 100 K where φ denotes the equivalence ratio.
Figure 4 presents the mass density ρ and the major species mole fractions xi, i ∈ S, as function
of the flame normal coordinate x and Figure 5 presents the temperature T and the minor species
mole fractions. This flame is transcritical with respect to temperature—and remains supercritical with
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Figure 6: Impact of transport nonidealities in a freely propagating H2-Air stoichiometric flame at
p = 100 atm and T fr = 100 K; nonideal diffusion; ideal diffusion.
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respect to pressure—so that so that the density ρ ranges from liquid-like values in the cold zone to
gas-like values in the hot zone. Since the pressure is of p = 100 atm, the resulting flame front is much
thinner than for atmospheric pressure flames. The flame front is roughly 40 µm wide and presents
large temperature and density gradients due to the low fresh gas temperature T fr = 100 K and to the
combustion heat release. The mass flow rate is found to be m = 0.981 g cm−2 s−1 and the flame speed
of uad = 1.866 cm s−1.

In H2-Air flames, the hydroperoxyl radical HO2 is generally formed early in the flame front by
the three body reaction H + O2 +M −→ HO2 +M until it is dominated by the bimolecular reaction
H + O2 −→ OH + O at sufficiently high temperatures. The HO2 radical is then rapidly consumed
through its reactions with the active radicals H and OH. In high pressure flames, however, the reaction
H+O2 +M −→ HO2 +M dominates H+O2 −→ OH+O over a larger temperature domain since the
crossing temperature is around 1400 K at atmospheric pressure but around 2100 K at p = 100 atm.
As a result, high pressure H2-Air flames exhibit high concentrations of the HO2 radical and large
concentrations of the H2O2 radical are subsequently obtained mainly through the reactions HO2 +
HO2 −→ H2O2 +O2 and H2O+HO2 −→ H2O2 +OH.
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Figure 8: Impact of high pressure correctors of binary diffusion coefficients in a freely propagating H2-
Air stoichiometric flame at p = 100 atm and T fr = 100 K; nonideal diffusion; ideal diffusion.

4.3 Impact of transport models

The influence of transport nonidealities is investigated and we denote by dj the driving force of the
jth species in the normal direction dj = (dj , 0, 0)

t. We first compare the flame structure of Section 4.2
obtained with dj = xj(µj)

′
T,p with the flame structure computed with dj = x

′
j as for ideal diffusion.

The corresponding density ρ and mole fractions of major species xi, i ∈ S, profiles are presented in
Figure 6 as function of the flame normal coordinate x. We can see at once on Figure 6 that the full
transport model prevents the migration of light cold H2 toward the flame front. The same behavior is
also observed for the heavier molecules O2 and N2 and this is a main effect of nonidealities in premixed
flames. This hindering of mass diffusion in the dense part of the flame leads to steeper gradients for
hydrogen in the flame front and the mixture loses this impermeability only by warming.

To gain more insight into diffusive processes, we present in Figure 7 the contributions to the overall
diffusion force dj of the ideal part x

′
j and of the nonideal part xj(µ

sm
j )′T for the H2 species as well as

the Soret term χj(logT )
′. The nonideal contribution xj(µ

sm
j )′T is strongly bound to density gradients

and is negligible out of a narrow domain located early in the flame front. Neither the mole fraction
gradient x

′
j nor the Soret term χj(logT )

′ are confined in this high density region as can be seen in
Figure 7. The main effect of the nonideal parts of the diffusion forces is mainly to hinder mass diffusion
between the denser liquid-like region and the flame front. The impact of transport nonidealities may
therefore become stronger when temperature and density profiles stiffen.

We finally compare in Figure 8, the flame structure obtained with the dilute gas binary diffusion
coefficients Dpg

ij with the flame structure of Section 4.2 computed with the high pressure binary diffusion
coefficients Dij = Dpg

ij /Υij . The density ρ and the mole fractions xi, i ∈ S, of some radical species
profiles are presented as function of the flame normal coordinate x. It can be seen that for the species
H2O, HO2, and H2O2 the influence of such high pressure corrections to binary diffusion coefficient
takes place in a narrow zone between the dense fluid region and the flame front. The other species are
mostly absent from this zone and are essentially not modified.

5 Strained flames

The impact of transport nonidealities on the structure of a high pressure strained diffusion flame is
investigated [6].

5.1 Strained flame equations

Self-similar solutions of multicomponent fluid equations in the small Mach number limit notably include
stagnation point flows. Such strained flows are of fundamental importance for understanding the effect
of strain due to turbulence on flame fronts [3, 4, 6]. The spatial coordinates are denoted by x = (x, y, z)t

where x is the transverse coordinate, y the flame normal coordinate, and the components of the velocity
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vector are denoted by v = (u, v, 0)t. The Mach number is assumed to be small and the pressure is
decomposed in the form p = p + p̃ where p is the ambient pressure constant in space and p̃ the fluid
dynamic perturbation with the ratio p̃/p of the order of the square of the Mach number. The solution
is assumed to have the following self-similar structure [45]

T = T (t, y), ρ = ρ(t, y), yi = yi(t, y),

u = x ũ(t, y), v = v(t, y), p̃ = − 1
2Jx

2 + p̂(t, y),

where J is a reduced pressure gradient. It is then obtained from the expression of multicomponent
transport fluxes that they are in the normal direction Ji = (0,Ji, 0)

t, i ∈ S, and Je = (0,Je, 0)
t

where Ji(t, y), i ∈ S, and Je(t, y) denote the normal flux components. Substituting these expressions
in the governing equations in the small Mach number limit, the normal momentum equation is found
to uncouple from the others whereas the tangential momentum equation has all its terms proportional
to x. The resulting steady equations then form a boundary value problem only involving the normal
coordinate y

ρũ+ ∂y(ρv) = 0, (48)

ρv∂yyi + ∂yJi = miωi, i ∈ S, (49)

ρũ2 + ρv∂yũ− J + ∂y(η∂y ũ) = 0, (50)

ρv∂yh+ ∂yJe = 0. (51)

Such equations are also valid for axisymmetric flows with a factor 2 in front of ρũ in (48). The
relations expressing the thermodynamic properties and chemical production rates have been discussed
in Section 2 as well as the transport fluxes Ji, i ∈ S, and Je.

The boundary conditions are typically in the form

T (−∞) = T−, T (+∞) = T+, (52)

yi(−∞) = yi−, yi(+∞) = yi+, (53)

ũ(−∞) = α
√

ρ+/ρ−, ũ(+∞) = α, (54)

where the superscript + is associated with the liquid like fluid coming from the positive side on the
right, the superscript− to the gas like fluid coming from the negative side on the left. The imposed
strain rate α is related to the pressure gradient with the relation

α = (J/ρ+)
1/2, (55)

and the stagnation plane is located for convenience at the origin with

v(0) = 0. (56)

5.2 A strained H2-O2 diffusion flame

We investigate a H2-O2 strained diffusion flame and the reaction mechanism of O’Conaire et al. [82]
has been used in the calculations. A detailed sensitivity analysis with respect to reaction constants as
well as binary diffusion coefficients for strained flames has been presented by Holley at al. [83]. In the
oxygen stream we have T+ = 100 K and yO2+ = 1, in the hydrogen stream T− = 300 K and yH2− = 1,
the ambient pressure is p = 100 atm and the strain rate is α = 10000 s−1. Figure 9 presents the density
and the major species mole fractions as function of the normal coordinate y whereas Figure 10 presents
the temperature and the minor species mole fractions. An important feature of this flame structure is
the large densities encountered in the oxygen injection for positive y. This density is indeed as high
as 1.12 g·cm−3 close to the density of liquid oxygen and very rapidly decreases to gas-like values for
decreasing y. These large variations are due to the fact that the flame is supercritical with respect to
pressure but transcritical with respect to temperature.

The whole flame structure is around 50 µm wide and on the O2 side, there is an early formation of
the metastable H2O2 radical through reactions first forming HO2. Due to the low diffusivity of light
radicals in the liquid-like oxygen stream, there is also an important shift of light radicals toward the
hydrogen side, especially atomic hydrogen. The temperature profile is bell shaped and the maximal
temperature Tmax = 3747 K is reached in the vicinity of y = 19.6µm, the crossing position of the fuel
and oxydant mole fraction where xH2

= xO2
= 0.078.
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Figure 9: Mass density ρ and mole fractions of major species in a counterflow H2-O2 diffusion flame,
with T+ = 100 K, yO2+ = 1, T− = 300 K, yH2− = 1, α = 10000 s−1, and p = 100 atm.
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Figure 10: Temperature T and mole fraction of minor species in a counterflow H2-O2 diffusion flame,
with T+ = 100 K, yO2+ = 1, T− = 300 K, yH2− = 1, α = 10000 s−1, and p = 100 atm.

5.3 Impact of nonideal transport

We present in Figure 11 the ideal diffusion driving force ∂yxO2
of the O2 species as well as the full

diffusion driving force dO2
that includes the nonideal part and the Soret contribution as function of the

normal coordinate y and the same quantities are also presented for the H2O species. The nonideal part
of the diffusion force xO2

(∂yµ
sm
O2

)T plays here an anti-diffusion effect in a very narrow sheet around the
high density gradient zone. Its influence is then to prevent diffusion of O2 molecules from the dense
core to the flame. This hindering of diffusion in condensed like regions has already been observed in
the premixed planar situation.

The influence of nonidealities is thus mainly to reduce the diffusivity of H2O inside the dense O2

core and to prevent that of oxygen in the mixture. On the contrary, with the ideal model, diffusion
is artificially increased and the oxygen mole fraction is smoothed. This smoothing can be shown in
Figure 12 where the cold zone has been enlarged. The oxygen mole fraction profile then presents a
kind of bump in this steep density gradient region, bump that can be obliterated by neglecting the
nonideal diffusion. Taking into account the thermal diffusion does not modify this conclusion as its
own influence is mainly located inside the flame and not in the pseudo-interface region.

Therefore, for such a strain diffusion flame with pure oxygen on the cold side, using the ideal
diffusion driving forces does not essentially change the flame structure and the radicals profile. The
nonideal transport influence on the O2 pseudo-vaporizing mass transfer rate is weak compared to
thermal effects. The multi-species flame sheet is separated from the pure species dense O2 core by this
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Figure 12: Density ρ and oxygen mole fraction in a counterflow H2-O2 diffusion flame, with T+ = 100 K,
yO2+ = 1, T− = 300 K, yH2− = 1, α = 10000 s−1, p = 100 atm; nonideal diffusion; ideal diffusion.

thermally controlled pseudo-vaporizing front, justifying subgrid models based on pseudo-vaporizing
interface consideration [84].

6 Transcritical diffusion flames

We investigate multicomponent transport fluxes in a nonideal dense reactive fluid model with diffuse
interfaces of Van der Waals/Korteweg/Cahn-Hilliard type [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
72]. The model is valid at all pressures and may be used to investigate the ignition phase in rocket
engines as well as the combustion of liquid oxygen droplets [97, 98, 99, 100, 101, 103]. Such a model
may be used in particular to investigate flames that are transcritical with respect to pressure [7].

6.1 A Van der Waals/Korteweg/Cahn-Hilliard fluid

Diffuse interface models describe the continuous change of fluid properties across liquid/gas interfaces
in subcritical conditions. Such diffuse interface models may be derived from the second gradient theory
of Van der Waals, Korteweg, Cahn and Hilliard [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 103, 72]. Statistical mechanics of systems that are highly inhomogeneous has also led
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to mean field theories of liquid/gas interfaces and to direct links between capillary phenomena and
intermolecular forces as established by Rowlinson and Widom [90]. Second gradient diffuse interface
models have been successfully used to describe near critical points [90], the dynamics of contact line [91]
as well as complex liquid/gas interfaces with topological changes [92, 93, 94] and are compatible with
the limiting free boundary problem when the interface thickness goes to zero [92].

The free energy per unit volume in the second gradient theory is typically in the form

F = F0 +
∑

i,j∈S

κij∇ρi·∇ρj , (57)

where S = {1, . . . , n} denotes the species indexing set, n the number of species, F0 the bulk free
energy, ρi the partial density of the ith species, ∇ the usual differential operator and κij , i, j ∈ S,
the capillary coefficients. The superscript 0 is used to denote standard bulk phase thermodynamic
properties that do not involve gradients. The free energy F0 only depends on the partial densities
ρ1, . . . , ρn and the absolute temperature T whereas the gradient squared term

∑
i,j∈S

κij∇ρi·∇ρj in
F represents the excess free energy of the interfacial region. This gradient term may be interpreted
from attractive long range molecular interactions and the capillary coefficients κij related to the pair
correlation function [90]. From the expression of the free energy (57) and the classical thermodynamic
relation DF0 = −S0

DT +
∑

i∈S
g0iDρi, assuming that the capillarity coefficients κij , i, j ∈ S, are

constant for the sake of simplicity, the differential of the free energy is found in the form

DF = −S0
DT +

∑

i∈S

g0iDρi +
∑

i∈S

φi·D∇ρi, (58)

where S0 denotes the bulk entropy per unit volume, g0i the bulk Gibbs function of the ith species per
unit mass, and the vectors φi, i ∈ S, are given by

φi =
∑

j∈S

(κij + κji)∇ρj , i ∈ S. (59)

Using the thermodynamic relations ∂TF = −S and ∂ρi
F = gi, i ∈ S, where S denotes the entropy per

unit volume and gi the Gibbs function per unit mass of the ith species, the identity (58) implies that
S = S0 and gi = g0i . The Gibbs function and enthalpy per unit volume are thus given by their standard
value G = G0 and H = H0 whereas the energy per unit volume is given by E = E0+

∑
i,j∈S

κij∇ρi·∇ρj
and the pressure by p = p0 −

∑
i,j∈S

κij∇ρi·∇ρj .
When the interface thickness goes to zero, the diffuse interface model yields the traditional limiting

free boundary problem with surface tension [92]. In particular, surface tension—that is meaningful only
at the macroscopic limit—may be derived from the capillary coefficients and the state law [72]. These
relations may be used in practice in order to obtain physical values for the capillary coefficients κij ,
i, i ∈ S, that are generally temperature dependent, by using the state law and fitting surface tension
experimental data [96]. Such coefficients are typically in the form of an exponential of a polynomial in
log(1−T/T c), where T c is a critical temperature and are thus only defined in the subcritical domain [96].
The capillary coefficient κ for oxygen at is of the order of κ = 2.5 10−7 g−1cm7s−2 at temperature
100 K [96, 102] and the resulting diffuse interfaces are then very thin, typically of the order of a few
nanometers [90, 101, 100]. The diffuse interface model allows to faithfully reproduce the structure of
such interfaces using numerical grids with nanometer characteristic lengths [101, 100].

Although such detailed simulations can be obtained with the diffuse interface model, we want to
obtain in this paper computationally feasible numerical flame models taking into account the limitation
on grid resolution. In this situation, one is forced to use larger values of the capillary coefficients leading
to artificially thickened interfaces and to larger values of surface tension. This implicitly assumes that
there is a scale separation so that interface thickening and the corresponding larger numerical surface
tension do not significantly modify the flame under investigation. In addition, our aim is to extend the
diffuse interface model to supercritical conditions in order to encompass all pressures. We thus have
to extend the domain of definition of capillary coefficients with finite values for all pressures and, in
practice, we have used constant values for capillary parameters. In the subcritical domain, the resulting
diffuse interface model then allows the computation of a continuous liquid/gas interface whereas in the
supercritical domain the model may ease the numerical solution of sharp pseudo vaporizing transition
layers. The Cahn-Hilliard derivation of the extra gradient energy term (57) as well as its link with
attractive long range molecular interactions further indicates that there is also a capillary coefficients
κ in the supercritical domain.
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The governing equation in a Van der Waals/Korteweg fluid associated with the free energy (57) are
in the form

∂tρi +∇·(ρiv) +∇·Ji = miωi, i ∈ S, (60)

∂t(ρv) +∇·(ρv⊗v) +∇·P = 0, (61)

∂t
(
ρ(e + 1

2 |v|
2)
)
+∇·

(
ρv(e + 1

2 |v|
2)
)
+∇·Q = 0, (62)

where P denotes the pressure tensor and Q denotes the energy flux using similar notation as for
ordinary fluids. In order to derive proper expressions for the diffusion fluxes Ji, i ∈ S, the pressure
tensor P and the energy flux Q, one may then use a method similar to that of the thermodynamics
of irreversible processes [19, 92, 94, 72]. Using the general form of the free energy, it is found that the
pressure tensor and the total heat flux are in the form

P = pI +
∑

i∈S

(∇ρi⊗φi − ρi∇·φiI) +Π, (63)

Q = −
∑

i∈S

φi(miωi −∇·Ji − ρi∇·v) +Je +P·v, (64)

where Π is the viscous tensor and Je the dissipative heat flux. The dissipative transport fluxes Π ,
Ji, i ∈ S, and Je are also found in the form

Π =− v∇·v I − η
(
∇v +∇vt − 2

3∇·v I
)
, (65)

Ji =−
∑

j∈S

Lij∇

(g0j
T

−
∇·φj

T

)
− Lie∇

(−1

T

)
, (66)

Je =−
∑

i∈S

Lei∇

(g0i
T

−
∇·φi

T

)
− Lee∇

(−1

T

)
, (67)

where v denotes the volume viscosity, η the shear viscosity, Lij , i, j ∈ S∪{e}, the mass and heat trans-
port coefficients. The matrix of mass and heat transport coefficients L defined by L = (Lij)i,j∈S∪{e}

is symmetric positive semi-definite with nullspace spanned by the vector (1, . . . , 1, 0)t as for ordinary
fluids [19]. The fluxes Ji, i ∈ S, and Je are obtained here in their thermodynamic form. In the pres-
sure tensor P , the component P − p0I −Π represents the reversible part associated with interstitial
work. In the diffusion fluxes, the extra terms ∇·φj , j ∈ S, involving the vetors φi notably lead to
Cahn-Hilliard type equations.

6.2 A simplified Van der Waals/Korteweg fluid

We introduce in this section a simplified model obtained by assuming that all capillary coefficients are
equal κij = 1

2κ, i, j ∈ S. This model is well justified when there are large density gradients at the
interface and the interface composition is essentially frozen so that the total mass ρ density may be
used as an interface parameter [7]. In this situation the free energy is in the form

F = F0 + 1
2κ|∇ρ|2, (68)

where F0 denotes the bulk free energy and κ the common value of the capillary coefficients, and we
also have φ1 = · · · = φn = κ∇ρ. The pressure p and the energy per unit volume are then given
p = p0 − κ|∇ρ|2 and E = E0 + 1

2κ|∇ρ|2. Taking into account the simplified expression (68), as well as
natural mass constraints, the resulting pressure tensor P and energy flux Q are found in the form

P = pI + κ∇ρ⊗∇ρ− κρ∆ρI +Π, (69)

Q = κρ∇·v∇ρ+Je +P·v, (70)

whereas the multicomponent fluxes Ji, i ∈ S, and Je are unchanged. Indeed the vector of extra
gradient terms in the generalized diffusion driving forces

(
∇

(
∇·φ1

T

)
, . . . ,∇

(
∇·φn

T

)
, 0

)t

=
∇·(κ∇ρ)

T
U ,
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is in then in the nullspace N(L) = R U of the matrix L with U = (1, . . . , 1, 0)t. In the pressure
tensor P the new contributions are −κρ∆ρI, the Korteweg tensor κ∇ρ⊗∇ρ and the pressure p also
differs from p0. These extra terms associated with capillary phenomena do not produce entropy and
are associated with interstitial work which is a reversible process. The heat flux Q−P·v also contain
a supplementary term κρ∇·v∇ρ induced by capillarity. When the capillary coefficient vanish, the
standard fluid pressure tensor is recovered as well as the standard energy flux.
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Figure 13: Hydrogen partial enthalpies in supercritical H2-O2 diffusion flames, with T− = 100 K,
yO2− = 1, T+ = 300 K, yH2+ = 1, α = 1000 s−1 and pressures p∞ = 51, 70, 90 atm.
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Figure 14: Temperature T and species mole fractions in a diffuse interface H2-O2 diffusion flame at
p∞ = 60 bars with T− = 100 K, yO2− = 1, T+ = 300 K, yH2+ = 1, α = 1000 s−1

6.3 Singularities in transport fluxes

The dissipative fluxes Ji, i ∈ S, and Je are evaluated in their thermodynamic form. To this aim, it is
necessary to evaluate the mass and heat transport coefficient matrix L of size n+1 that can be written
in the form [5, 48]

L =

(
D Dh

(Dh)t λT 2 + 〈Dh , h〉

)
, (71)

where D = (Dij)i,j∈S and h = (h1, . . . , hn)
t are given by

Dij = ρyiyj
m

R
Dij , hi = hi +RT

χ̃i

mi
. (72)

21



T

X
ir

a
d

0.02 0.01 0 0.01

0

500

1000

1500

2000

2500

3000

3500

4000

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

T

H

OH

O

HO2

H2O2

H2O(liq)

y (cm)

Figure 15: Temperature T and species mole fractions in a diffuse interface H2-O2 diffusion flame at
p∞ = 45 bars with T− = 100 K, yO2− = 1, T+ = 300 K, yH2+ = 1, α = 1000 s−1

For an all pressure flame model, however, some care must be taken, in order to evaluate the species
specific enthalpies hi = (∂

yi
h)T,p0,yl , i ∈ S, appearing in (72) in the presence of mechanical critical

points where (∂ρp
0)T,yl

= 0. We indeed have the identity

hk = (∂ykh)T,p0,yl
= (∂ykh)T,ρ,yl

− (∂ρh)T,yl

(∂
yk
p0)T,ρ,yl

(∂ρp
0)T,yl

, (73)

so that at a mechanical thermodynamic unstable point where (∂ρp
0)T,yl

= 0 the species specific en-
thalpies hk, k ∈ S, are exploding and thus also some components of the matrix L. This is an
expected behavior since various singularities in the transport coefficients may also arise at critical
points [104, 105]. In order to illustrate this behavior, Figure 13 presents the H2 enthalpy as function
of the normal coordinate y in a O2-H2 strained diffusion flames with an ambient pressure of 51, 70
and 90 bars. Since the minimum value of the derivative (∂ρp

0)T,yl
is gradually decreasing towards zero

near the pseudo vaporizing zone, when the ambient pressure is decreased towards the oxygen critical
pressure pc = 50.43 bar, the corresponding specific enthalpy of hydrogen hH2

(y) is gradually exploding.
Note incidentally that, in constrast, the species Gibbs functions always remain smooth since (∂ρg)T,yl

is proportional to (∂ρp
0)T,yl

.
It is therefore necessary to control the size of the vector h making use of the fact that in the cold part

of an oxygen/hydrogen diffusion flame there is mainly oxygen. To this aim, the derivative (∂
yk
p0)T,ρ,yl

is rewritten in the form
(∂

yk
p0)T,ρ,yl

=
ρm

mk
(∂ρp

0)T,yl
+Rk, (74)

where the residual Rk is given by

Rk =
{ RT

(v − b)2
+

ma

v(v + b)2

}∑

j∈S

yj

( bk
mj

−
bj
mk

)
+

2ma

v(v + b)

∑

j,l∈S

yjylαl

( αj

mk
−

αk

mj

)
.

The interest of this formulation (74) is that Rk vanishes for the pure species state yk = 1 and yl = 0,
l ∈ S, l 6= k. The species enthalpies in (71)(72) are then written in the modified form h̃k, k ∈ S, with

h̃k = (∂ykh)T,ρ,yl
−

ρm

mk
(∂ρh)T,yl

−
Rk

f
(
(∂ρp

0)T,yl

) (∂ρh)T,yl
,

where f is a smooth approximation of the function f(x) = max(m, x) for a positive constant m > 0

which depends on the mixture upon consideration. These modified enthalpies are such that h̃k = hk

away from the vaporizing zone as well as when the kth species is the only present and remains always
bounded. For a H2-O2 diffusion flame, the points where the matrix L is effectively modified only
concern zones of the flames where there is essentially only oxygen and where temperature is also nearly
constant so that the stabilization of the matrix L does not significantly modify the physics involved.
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For similar reasons we did not include in the model the complex behavior of transport coefficients near
critical points.

In addition, with the traditional form of dissipative fluxes (21)(22) involving the diffusion driving
forces (18), various singularities arise at mechanical thermodynamic stability limits. Indeed, since
pressure is held constant in the partial derivations of the coefficients in (18), the species volume per
unit mass vj , j ∈ S, the thermodynamic coefficients Γij , i, j ∈ S, are exploding when ∂ρp

0 = 0 like the
species enthalpies per unit mass hj, j ∈ S. Therefore, the traditional formulation of transport fluxes
(21)–(22) is not recommended and the thermodynamical formulation (13)(14) is mandatory.

6.4 A strained low-Mach diffuse-interface flame model

Proceeding as for classical fluids in the low Mach number limit [45] we expand the bulk thermodynamic
pressure as p0 = p0 + p̃0 with p0 denoting the zeroth order bulk pressure and p̃0 the fluid dynamic
perturbation. Bulk thermodynamic properties may thus be evaluated at the zeroth order pressure
p0. The zeroth order pressure tensor then reads P = p0I − 1

2κ|∇ρ|2I + κ∇ρ⊗∇ρ − κρ∆ρI and
the momentum equation yields that ∇·P = 0. Assuming now that the interface is planar with all
quantities only depending spatially on a normal coordinate y, the normal component of the zeroth
order momentum equation reads

p∞ = p0 + 1
2κ(∂yρ)

2 − κρ∂2
yρ, (75)

where p∞ denotes the constant pressure in the bulk phases far from the interface. and the resulting
zeroth order pressure tensor is in the form P =

(
p∞−κ(∂yρ)

2
)(
I−ey⊗ey

)
+p∞ey⊗ey where ey denotes

the unit vector normal to the interface, so that normal to the interface the effective pressure is constant
equal to p∞ whereas there are attractive forces tangential to the interface and the corresponding energy∫∞

−∞ κ(∂yρ)
2 dy is interpreted as surface tension [93, 94].

For a self similar structure analogous to that used in the previous section, the steady equation are
found in the form

ρũ+ ∂y(ρv) = 0, (76)

ρv∂yyi + ∂yJi = miωi, i ∈ S, (77)

ρũ2 + ρv∂yũ− J + ∂y(η∂yũ) = 0, (78)

ρv∂yh− v∂yp
0 + ∂y

(
κρ(ũ+ ∂yv) ∂yρ

)
+ ∂yJe = 0, (79)

with similar boundary conditions (52)(53) at both ends ±∞ and the normal velocity is centered at the
origin (56).

6.5 Transcritical O2-H2 flames

The numerical simulations concern high pressure O2-H2 diffusion flames where O2 is injected at 100 K.
A detailed analysis of the thermodynamic stability of O2-H2O mixtures has first been conducted in
order to understand O2 vaporizing interfaces in the presence of H2O. Numerical simulations indeed
show that in O2/H2 diffusion flames mainly H2O is diffusing from the flame front towards the incoming
cold oxygen. The other species either disappear in the flame front or are too unstable to survive the
cold temperature near the O2 vaporizing or pseudo-vaporizing interface. There is an exception for the
species H2O2 which is metastable but which is only present in trace amount near oxygen vaporizing
interfaces and has not been considered for the benefit of simplicity.

Following the classification of Van Konynenburg and R.L. Scott [106, 107], the liquid/vapor binary
phase diagram for O2-H2O is of type III and very good agreement has been obtained between numerical
simulations using the SRK equation of state and experimental measurements of Japas and Frank [108,
7]. The O2-H2O stability diagram shows that it is necessary to take into account the condensation
of water below a pressure of about eighty bar. The species of the new phase to be added is thus
H2O(l)—assuming that the local pressure remains below the critical pressure of water 220.6 bar—and
the vaporization/condensation reaction is in the form

H2O ⇄ H2O(l),

where we have neglected trace amounts of diluted species in H2O(l). Water in then present in two
different phases, i.e., as a liquid as well as a species of the gas-like phase. Such droplets have notably
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been observed experimentally by Powell using liquid nitrogen [109]. In a flame structure, the liquid
water is due to the condensation of water coming from the flame front by diffusion that cannot enter
further into liquid oxygen since these fluids are largely immiscible at low temperature. These droplets
are only present near the interface and their size has been discussed by Lafon et al. [103]. The droplets
are sufficiently small in such a way that they follow the fluid local temperature and velocity [103]. The
liquid water governing equation is in the form

∂tρn+1 +∇·(ρn+1v) = mn+1ωn+1, (80)

where n+ 1 is the H2O(l) species index. The source term is modeled according to statistical mechan-
ics [43, 44, 24] and approximated in the form

ωn+1 ≃ K⋆

(
g0H2O − g0H2O(l)

)
, (81)

since the interface zone is nearly isotherm and with K⋆ = K′
⋆yH2O(j) where K′

⋆ is a constant and j
is the gaseous phase when condensation dominates whereas j is the liquid phase when vaporization
dominates. Such a simplified model of the liquid water dispersed phase has already been used by Lafon
at al. [103] when investigating water condensation around isolated Lox droplets.

We present typical steady state O2-H2 diffusion flame structures in the subcritical and supercritical
domains. These flames are obtained by flowing pure liquid like oxygen towards pure gaseous like
hydrogen. We consider a subcritical pressure of p∞ = 45 bar and a supercritical pressure of p∞ =
60 bar—with respect to the oxygen critical pressure of pc = 50.43 bar. The temperature in the O2

cold stream is T− = 100 K and in the H2 hot stream T+ = 300 K. In all simulations, we have used a
reaction mechanism of Ó Conaire et al. and a value of κ = 10−2 g−1cm7s−2 of the capillary parameter
and K′

⋆ = 10−2 mol s cm−5 of the vaporization/condensation reaction parameter.
Figure 14 and Figure 15 present the temperature T and species mole fractions xi, i ∈ S, as

functions of the normal coordinate y in the diffusion flame structure at p∞ = 60 bar and p∞ = 45 bar
respectively. The temperature curve is bell-shaped as typical of diffusion flames. Since the pressures are
either p∞ = 60 bar or p∞ = 45 bar the flame structures are much thinner than at atmospheric pressure
and the role of of the HO2 and H2O2 radicals is typical of high pressure flames hydrogen flames. The
species mole fractions profiles xi(y), i ∈ S, presented in Figure 14 and Figure 15 also include liquid
water that is localized near the (pseudo-)vaporization interface. In this pseudo-vaporization zones,
when the pressure is subcritical, the local thermodynamic pressure p0 essentially follows an isotherm
path of the SRK equation of state [7]. Finally, the diffuse interface transcritical flame model is able to
smoothly transition from subcritical to supercritical conditions.

7 Conclusion

The impact of high pressure multicomponent transport models on the structure of supercritical flames
has been investigated. Nonidealities have been shown to be important in cold zones of mixing layers
and flames especially near thermodynamic stability. The thermodynamic form of transport fluxes
has also been found mandatory for all pressure models in the presence of mechanical stability limits.
Finally, a complete satisfactory kinetic theory of mixtures of dense gases is still missing and accurate
high pressure correlations for Soret coefficients as well as volume viscosities would also be welcome.
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