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We investigate the impact of nonideal diffusion on the structure of supercritical cryogenic
binary mixing layers. This situation is typical of liquid fuel injection in high-pressure
rocket engines. Nonideal diffusion has a dramatic impact in the neighborhood of chemical
thermodynamic stability limits where the components become quasi-immiscible and
ultimately form a nonmixing layer. Numerical simulations are performed for mixing layers
of H2 and N2 at a pressure of 100 atm and temperature around 120–150 K near chemical
thermodynamic stability limits.
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I. INTRODUCTION

The injection of reactants in cryogenic combustion engines is often performed at supercritical
pressure [1,2]. Experimental studies have been devoted to such high-pressure injection phenomena in
reactive [1,2] and nonreactive [3] situations and numerical simulations of laminar [4–9] and turbulent
supercritical flames [10–12] have been conducted. At such cryogenic conditions, however, nonideal
effects may strongly influence fuel mixing properties at injection or inside locally extinguished fuel
pockets. With such motivations, we investigate in this work the impact of nonideal diffusion on
supercritical mixing layers of H2 and N2.

Dense fluid models are generally based on thermodynamics of irreversible processes [13–18],
statistical mechanics [19–21], statistical thermodynamics [22], or the kinetic theory of dense
gases [23–25]. The fluid model used in this work combines a real gas thermodynamics based
on the cubic Soave-Redlich-Kwong equation of state [26–33] with nonideal transport fluxes [7].
The Soave-Redlich-Kwong (SRK) equation of state is widely used for the modeling of transcritical
flows and yields a good representation of dense to dilute fluids [5,7].

The corresponding thermodynamics is obtained by further using the compatibility with perfect
gases at low densities [28]. An important consequence of such nonideal thermodynamics is the
presence of thermodynamic instabilities that may be of thermal, mechanical, or chemical type
[7].

The entropy of a stable isolated homogeneous system should indeed be a concave function of its
thermodynamic variables. Whenever it is not the case, the system loses its homogeneity and splits
between two or more phases in order to reach equilibrium. The stability condition associated with
the entropy Hessian matrix may be decomposed into thermal, mechanical, and chemical stability
conditions [28]. The thermal stability condition is generally guaranteed by the SRK equation of
state [28] and the mechanical condition is associated with liquid-vapor instability for single species
fluids. The chemical stability condition states that the Hessian matrix of the Gibbs function at
constant pressure and temperature should be positive semidefinite with null space given by the
homogeneity condition [9,28]. Analysis of thermodynamic stability conducted for supercritical
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flames has further shown that as pressure is reduced, chemical instabilities generally appear before
mechanical instabilities [9] and this has motivated the choice of such chemical instabilities in order
to investigate mixing layers.

Equilibrium mixtures of H2 and N2 at high pressure and low temperature have been investigated
experimentally by Verschoyle [34] and Eubanks [35]. In such situations, a mixture of H2 and N2

may split between a hydrogen-rich gaseouslike phase and a hydrogen-poor liquidlike phase [34,35].
Detailed comparisons have been conducted between experimental results and numerical simulations
of equilibrium states using the SRK equation of state [7,28]. These simulations have confirmed that
such instabilities are of chemical type and very good agreement has been obtained with experimental
results [7]; this has motivated us to focus on mixtures of H2 and N2.

Molecular transport fluxes for dense fluid are naturally expressed in terms of gradients of chemical
potentials [7,18,22,24]. Such nonideal fluxes ensure the positivity of entropy production associated
with transport [7]. Nonideality in diffusion driving forces have already been considered by Okong’o
and Bellan [4], Oefelein [10], Bellan [11], and Giovangigli et al. [7]. Transport nonidealities are
notably strong in cold zones of premixed flames and prevent unrealistic diffusion from dense fresh
reactants into flame fronts [7]. Nonideal diffusion also has a strong influence on the structure of
counterflow cold jets near chemical thermodynamic stability limits between two fluids [8]. There is
a need, however, for investigating the impact of nonideal diffusion on the structure of mixing layers
typical of fuel rocket injection.

The exact multicomponent matrix solution of Stefan-Maxwell-like equations is expressed in
terms of the mixture binary diffusion coefficient D12 and the thermodynamic matrix associated with
nonideality is also expressed in terms of a single thermodynamic coefficient γ . This coefficient γ is
unity for ideal gases and vanishes at chemical thermodynamic stability limit. Exact matrix diffusion
processes for nonideal binary mixtures are shown to coincide with the Fick diagonal-type diffusion
model provided it is written with a mass-based thermodynamic coefficient γ and in term of mass
fraction gradients.

Mixing layers between cryogenic H2 and N2 at supercritical pressure are studied numerically.
Nonidealities in diffusion driving forces have a dramatic influence near thermodynamical instability.
The quasinonmiscibility of H2 and N2 for high pressure and low temperature results in stiff mole
fraction gradients inside the mixing layer and the appearance of a quasi-interface in contrast with the
mild gradients of the erroneous ideal transport solution. Using ideal diffusion models further leads
to mixing layer structures in which some unstable, and thus unphysical, thermodynamical states
appear in the computational domain.

II. NONIDEAL MIXING LAYER

The equations governing steady self-similar nonideal mixing layers are presented.

A. Governing equations

We consider a binary mixing layer developing in the positive x direction starting from x = 0,
where x and y denote the longitudinal and transverse coordinates. Using the simplified coordinates
ξ = x and ζ = y/x1/2, the equations governing steady self-similar binary mixing layers are in the
form

∂ζ (ρw) + 1
2ρu = 0, (1)

ρw∂ζu − ∂ζ (η∂ζu) = 0, (2)

ρw∂ζ y1 − ∂ζ (ργD12∂ζ y1) = 0, (3)

ρw∂ζh − ∂ζ [λ∂ζT + ρ(h1 − h2)γD12∂ζ y1] = 0, (4)
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where ρ denotes the mass density, u is the longitudinal velocity, w = √
ξ v − 1

2ζu is the auxiliary
velocity, v is the transverse velocity, η is the shear viscosity, y1 is the mass fraction of the first species,
γ is the mass-based thermodynamic coefficient, D12 is the binary diffusion coefficient between the
species pair, h is the enthalpy of the mixture, λ is the thermal conductivity, and h1 and h2 are the
species enthalpies. The transverse mass flux −ργD12∂ζ y1 arises from the expression of the species
diffusion flux

J 1 = −ργD12∇y1, (5)

derived from nonideal Stefan-Maxwell relations in Appendix A, and the thermodynamic coefficient
is discussed in Sec. II C. The thermal conductivity λ and the shear viscosity η are evaluated as
described by Chung et al. [36] and Ely and Hanley [37] and the binary diffusion coefficient D12 is
obtained from the kinetic theory of dense mixtures of hard spheres developed by Van Beijeren and
Ernst [24] and Kurochkin et al. [25]. This binary diffusion coefficient reads D12 = DPG

12 /ϒ12, where
DPG

12 is the dilute gas binary diffusion coefficient [38–43] and

ϒ12 = 1 +
∑

k∈{1,2}

πnk

12

[
8
(
σ 3

1k + σ 3
2k

) − 6
(
σ 2

1k + σ 2
2k

)
σ12 − 3

(
σ 2

1k − σ 2
2k

)2
σ−1

12 + σ 3
12

]
,

where σij denotes the collision diameter for the species pair (i,j ) and nk the number density of the
kth species.

The computational domain is typically taken in the form [L−
ζ ,L+

ζ ], with the boundary conditions
in the form

u(L−
ζ ) = u−, T (L−

ζ ) = T−, y1(L−
ζ ) = 1,

u(L+
ζ ) = u+, T (L+

ζ ) = T+, y1(L+
ζ ) = 0,

and the Ting boundary condition for the transverse velocity reads [44,45]

ρ−u−v− + ρ+u+v+ = 0.

The low-Mach-number approximation has been used inEqs. (1)–(4) and the pressure decomposed
in the form p = p + p̃, where p denotes the ambient pressure constant in space and p̃ the fluid
mechanical perturbation with p̃/p of the order of the square of the Mach number [38]. Since the
limiting longitudinal velocities u(±∞) are independent of x, we have ∂ξ p̃ = 0 and combining with
the transverse momentum equation ∂ζ p̃ = 0, it is found that ∇p̃ = 0, so

p̃ = 0 with a suitable boundary condition and the pressure is constant p = p.

B. Nonideal thermodynamics

The Soave-Redlich-Kwong equation of state [26,27] may be written

p =
∑
i∈S

yi

mi

RT

v − b
− a

v (v + b)
, (6)

where p denotes the pressure, S the species indexing set, R the perfect gas constant, yi the mass
fraction of the ith species, v = 1/ρ the volume per unit mass, a the massic attractive parameter, and
b the massic repulsive parameter. The mass fraction of the ith species may be written yi = ρi/ρ

and the vector of species mass fractions is denoted by y = (y1, . . . ,yn)t . The parameters of the SRK
equation of state a(y1, . . . ,yn,T ) and b(y1, . . . ,yn) are evaluated from the van der Waals mixing
rules a = ∑

i,j∈S yiyjαiαj and b = ∑
i∈S yibi . The pure-component parameters αi(T ) and bi are

obtained from critical point data [7]. The validity of this equation of state (6) and of the mixing rules
have been carefully studied by comparison with NIST data by Congiunti et al. [29] and with the
results of Monte Carlo simulations by Colonna and Silva [30] and Cañas-Marı́n et al. [31,32]. This
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cubic equation of state yields a good representation of dense to dilute fluids and still allows a fast
inversion by using Cardan’s formula.

With the pressure law (6) given, there exists a unique associated Gibbsian thermodynamics
compatible at low densities with that of perfect gases [28,33]. For the Soave-Redlich-Kwong equation
of state it is possible to evaluate analytically the corresponding mixture thermodynamic functions.
In particular, the enthalpy h and the Gibbs function g per unit mass are found in the form

h =
∑
i∈S

yi

(
hst

i +
∫ T

T st
cPG

pi (θ )dθ

)
+ T ∂T a − a

b
ln

(
1 + b

v

)
+

∑
i∈S

yi

mi

RT b

v − b
− a

v + b
, (7)

g =
∑
i∈S

yi

(
hst

i +
∫ T

T st
cPG

pi (θ )dθ − T sst
i − T

∫ T

T st

cPG
pi (θ )

θ
dθ

)
+

∑
i∈S

yi

RT

mi

ln

(
yiRT

mi(v − b)pst

)

+
∑
i∈S

yi

mi

RT b

v − b
− a

b
ln

(
1 + b

v

)
− a

v + b
, (8)

where hst
i is the standard formation enthalpy of the ith species per unit mass at the standard

temperature T st, sst
i is the formation entropy of the ith species per unit mass at the standard

temperature T st and standard pressure pst, and cPG
pi is the perfect-gas specific heat at constant

pressure of the ith species.

C. Chemical thermodynamic stability

The entropy of a stable isolated homogeneous system should be a concave function of its
thermodynamic variables w = (v,y1, . . . ,yn,e)t . Whenever it is not the case, the system loses its
homogeneity and splits between two or more phases in order to reach equilibrium. The Hessian
matrix ∂2

w ws must therefore be negative semi-definite with null space N (∂2
w ws) = Rw associated

with homogeneity [38]. One may establish that thermodynamic stability holds if and only if the
following properties hold:

(∂T e)v,y > 0, (∂vp)T ,y < 0,
(
∂2

yyg
)
T ,p

� 0, N
[(

∂2
yyg

)
T ,p

] = Ry. (9)

The first condition (∂T e)v,y > 0 is the thermal stability condition that generally holds with the SRK
equation of state [28]. The second condition (∂vp)T ,y < 0 is the mechanical stability condition
associated with liquid-vapor phase changes in single-species fluids. The third condition is the
chemical stability condition and states that the Hessian matrix of the Gibbs function per unit
mass G = (∂2

yyg)T ,p should be positive semidefinite with null space given by N (G) = Ry from
homogeneity. The two last conditions, mechanical and chemical, are equivalent to the combined
property that the matrix (∂2

yyg)T ,v is positive definite [28]. Analysis of thermodynamic stability in
the supercritical flame has shown that, as pressure is reduced, chemical instabilities always appear
before mechanical instabilities [9]. Moreover, in unstable zones, there generally exists a unique
positive eigenvalue of the Hessian matrix of entropy [9]. Mechanical stability limits also introduce
numerous singularities in the coefficients of the governing equations [9].

Since the Gibbs function per unit mass g is 1-homogeneous in terms of y, when T and p are
constant, the derivatives gi , i ∈ S, with respect to mass fractions are 0-homogeneous, so G11y1 +
G12y2 = 0 and G21y1 + G22y2 = 0 from the Euler relation. Introducing the mass-based coefficient

γ = −G12

m1m2

mRT
= −(

∂y1μ2
)
T ,p

m1

m
= −(

∂y2μ1
)
T ,p

m2

m
, (10)

we may then rewrite G in the form

G = mRT

m1m2
γ

(
y2

y1
−1

−1 y1

y2

)
. (11)
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FIG. 1. Modified Gibbs function and coefficient γ as a function of the hydrogen mole fraction in a H2-N2

mixture at pressure p = 95.2 atm and temperature T = 83.15 K:—, modified Gibbs function; - · -, coefficient γ ;
- - -, bitangent; �, chemical stability limits; �, numerical simulation of equilibrium points; and ♦, experimental
measurements of equilibrium points.

It is then easily established that G � 0 is equivalent to γ � 0 and N (G ) = Ry is equivalent to γ �= 0
using that 〈G z,z〉 = γmRT/m1m2y1y2, where z = (1, −1)t . Therefore, thermodynamic stability
holds if and only if γ > 0 and a direct calculation yields that γ = 1 for perfect gases. When γ

is negative, there is a spinodal decomposition between the two equilibrium states characterized
by the bitangent condition. In this situation γ < 0, higher-order derivative terms from the second
gradient theory of diffuse interfaces are required in order to stabilize mathematically the governing
equations [9] and in order to simulate numerically unmixing processes. Moreover, from (5) it is clear
that the diffusion processes vanishes at the chemical stability limit γ = 0.

Verschoyle [34] and Eubanks [35] have established experimentally that binary mixtures of H2

and N2 are not thermodynamically stable at sufficiently high pressure and low temperature. In
these situations, a mixture of H2 and N2 splits between a hydrogen-rich gaseouslike phase and a
hydrogen-poor liquidlike phase [7,28,34,35]. Among the experimental measurements presented by
Eubanks [35], the situation where p = 95.2 atm and T = 83.15 K is considered. Figure 1 presents
the corresponding modified Gibbs function ĝ = 10−8g + 470.00yH2 + 66.05 and the factor γ as a
function of the hydrogen mass fraction yH2 . The modified Gibbs function ĝ has been selected in
order to emphasize the loss of convexity and in order to show the points where stability is lost on
the horizontal axis.

Figure 1 illustrates that the mixture is no longer stable at these conditions, as shown by the
loss of convexity between the point indicated by the triangle symbol. These points correspond to
the inflection points of the Gibbs function g and of the modified Gibbs function ĝ. These points
also coincide with the points where the factor γ vanishes, in agreement with the theory. We have
also indicated with square symbols the equilibrium solutions calculated with the SRK equation of
state [7]. These equilibrium points are such that there exists a bitangent line to the yH2 → ĝ(yH2 )
curve. The experimental measurements of equilibrium points by Eubanks [35] are also presented
with diamonds and the agreement between theory and experiment is very good, keeping in mind
that there are no adjustable parameters.
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FIG. 2. Hydrogen mole fraction in a mixing layer at p = 100 atm and T± = 160 K:—, nonideal diffusion;
- - -, ideal diffusion.

III. NUMERICAL SIMULATIONS

Binary mixing layers of H2 and N2 near thermodynamic stability limits are simulated numerically.

A. Numerical considerations

The set of equations is discretized by using finite differences and solved on self-adaptive grids
with Newton’s method [46,47]. Pseudounsteady iterations may also be used used to provide an
inaccurate initial guess in the convergence domain of the steady Newton iteration. The grid is
iteratively refined by adding discretization points wherever the solution gradients are too roughly
represented. The evaluation of fluid properties such as chemical production rate, thermodynamic
properties, and transport coefficient is obtained with high-pressure adapted versions of highly
optimized thermochemistry and transport routines [48–51].

B. Structure of the mixing layer

A mixing layer between H2 and N2 is investigated in a configuration far from chemical
thermodynamic stability limit. The species indexing set S = {H2,N2} is also used for convenience.
Hydrogen is injected on the left side y1− = yH2− = 1, at temperature T− = 160 K, and longitudinal
velocity u− = 1 cm/s, and the pressure is uniform at p = 100 atm. Nitrogen is on the right
side y1+ = yH2+ = 0, at temperature T+ = 160 K, and longitudinal velocity u+ = 1 cm/s. Taking
into account the governing equation for u and the boundary conditions u− = u+ = 1 cm/s, the
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FIG. 3. Temperature in a mixing layer at p = 100 atm and T± = 160 K:—, nonideal diffusion; - - -, ideal
diffusion.
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FIG. 4. Coefficient γ in a mixing layer at p = 100 atm and T± = 160 K.

longitudinal velocity is found to be constant u = 1 cm/s. The domain in the transformed coordinate
ζ is typically given by [−0.28,0.28] and Fig. 2 presents the hydrogen mole fraction x1(ζ ) = xH2 (ζ )
as a function of the self-similar transverse coordinate ζ .

The ideal diffusion mole fraction profile is the dashed curve and the nonideal one is the solid
curve. We can see that, at such temperatures, the impact of nonidealities, although measurable,
remains unessential. Figure 3 presents the temperature profiles as a function of ζ and we can see
the influence of nonidealities in the temperature variations arising through the dependence of partial
enthalpies h1 and h2 on the species mass fractions and on density. The corresponding coefficient γ

is presented in Fig. 4 and this coefficient significantly deviates from unity but still remains away
from zero with a minimum value around γ ≈ 0.714.

C. Impact of nonideal transport

A mixing layer between H2 and N2 near the chemical thermodynamic stability limit is investigated
in this section. The geometry is similar to that of the previous section with the hydrogen on the
left y1− = yH2− = 1, injected at temperature T− = 122 K, with u− = 1 cm/s, and the pressure
is uniform at p = p = 100 atm. The boundary conditions on the nitrogen side on the right are
y1+ = yH2+ = 0, with T+ = 122 K and u+ = 1 cm/s. The main difference from the situation of
Sec. III B is the colder temperature T± = 122 K at both ends that will result in the mixture near
the chemical thermodynamic stability limit. This can be seen in Fig. 5, where the coefficient γ

comes very close to zero near the chemical thermodynamic stability limit. This coefficient now
has a minimum value around γ ≈ 3.5 × 10−3, much lower than the previous minimum value of γ

obtained with temperature T± = 160 K.
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FIG. 5. Coefficient γ in a mixing layer at p = 100 atm and T± = 122 K.

084001-7



GAILLARD, GIOVANGIGLI, AND MATUSZEWSKI

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

 

x H
2

ζ

FIG. 6. Hydrogen mole fraction in a mixing layer at p = 100 atm and T± = 122 K:—, nonideal diffusion;
- - -, ideal diffusion.

Figure 6 presents the hydrogen mole fraction xH2 as a function of ζ for both the ideal and nonideal
models. The ideal diffusion mole fraction is the dashed curve and the nonideal one is the solid curve.
We can see that, at such temperatures, the impact of nonidealities is dramatic. The nonideal diffusion
mole fraction profile is much stiffer than the ideal diffusion one near the chemical thermodynamic
stability limit where the thermodynamic factor γ vanishes. The sharp gradient of the mole fraction
is due to the local quasi-immiscibility of the two fluids. The limiting structure is then that of a
contact discontinuity or, equivalently, that of a nonmixing layer. An important consequence is the
considerable decrease of mixing processes in such systems and the ideal model is unable to properly
describe the relevant physics of diffusion. Figure 7 represents the temperature profiles as a function
of ζ with again an important influence of nonideal diffusion.

The trajectories in the phase space (xH2 ,T ) corresponding to the three limiting boundary
temperatures T± = 160, 140, and 122 K are finally presented in Fig. 8. In this phase diagram,
the isocontours γ = 0.00, 0.25, 0.50, and 0.75 of the parameter γ are also presented, as well as the
forbidden zone γ < 0, where the binary mixture is thermodynamically unstable, which is represented
by the gray region. It has already been observed that only nonideal diffusion fluxes properly represent
the physics of diffusion near thermodynamic stability. However, it is also observed in Fig. 8 that,
with ideal diffusion fluxes, the forbidden unstable zone is crossed without even noticing it when
T± = 122 K. In contrast, with the nonideal model, all trajectories remain in the physically admissible
stable zone.

When the temperature is further decreased, thermodynamic stability is lost and two separate
phases appear. It is then necessary to use a a second gradient model of Cahn-Hilliard or van
de Waals–Korteweg type in order to avoid a discontinuous representation of the fluid. In the
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FIG. 7. Temperature in a mixing layer at p = 100 atm and T± = 122 K:—, nonideal diffusion; - - -, ideal
diffusion.
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FIG. 8. Phase diagram with mixing layer trajectories at p = 100 atm and T± = 160, 140, and 122 K, and γ

isocontours;—, nonideal diffusion; - - -, ideal diffusion;—, γ isocontours. The thermodynamic unstable zone
γ < 0 is in gray.

unstable thermodynamic zone, indeed, both the hyperbolicity and parabolicity of the system of
partial differential equations are lost. The square of the sound velocity may be negative, as well
as entropy production due to diffusion, and the single fluid model without extra stabilizing effects
cannot be used anymore.

The inconsistent model where a nonideal thermodynamic is used with ideal diffusion fluxes
may also lead to numerical problems. Generally speaking, since hyperbolicity is lost in the
unstable thermodynamic region, it may lead to a number of difficulties when solving the Riemann
problem [52]. These difficulties are not encountered in this work because of the simpler structure of
the mixing layers. For lower pressures, mechanical stability is also lost and such instabilities may
also lead to numerical difficulties.

IV. CONCLUSION

Nonideal binary diffusion fluxes have been analyzed and the influence of thermodynamics were
shown to arise through a single coefficient mass-based γ multiplying the binary diffusion coefficient
D12. The influence of thermodynamics on the structure of mixing layers of H2 and N2 near chemical
thermodynamic stability limits has been shown to be essential. Moreover, ideal diffusion models do
not even realize the presence of unphysical thermodynamically unstable points.

APPENDIX A: TRANSPORT FLUXES

Neglecting thermal diffusion effects, the species diffusion fluxes J i , i ∈ S, and the heat flux J e

are in the form

J i = −
∑
j∈S

ρyiDij dj , i ∈ S (A1)

J e = −λ∇T +
∑
i∈S

hiJ i , (A2)

where dj denotes the diffusion driving force of the j th species; Dij , i,i ∈ S, are the multicomponent
diffusion coefficients; and λ is the thermal conductivity gase [7,39–42]. Soret and Dufour effects
generally have a moderate influence [7] and the mixing layers considered in this work only involve
mild temperature gradients. The species diffusion driving forces read dj = xj (∇μj )T , where xj is
the mole fraction of the j th species and (∇μj )T is the gradient of the chemical potential μj with the
temperature held constant. In the low-Mach-number limit the diffusion driving forces may further
be simplified as dj = xj (∇μj )T ,p = ∑

l∈S

yj m

RT
Gj l∇yl , j ∈ S, where Gj l = (∂2

yj yl
g)T ,p.
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The kinetic theories of mixtures of dilute gases [38–42] and of dense gases [25] show that the
multicomponent diffusion matrix D may be obtained from the Stefan-Maxwell matrix � by solving
�D = I − y⊗u with the mass constraints Dy = 0. For a binary mixture, the Stefan-Maxwell matrix
reduces to

� = x1x2

D12

(
1 −1

−1 1

)
(A3)

and using y1D11 + y2D12 = 0, y1D21 + y2D22 = 0, D12 = D21, and �D = I − y⊗u, it is obtained
that D12 = −D12m1m2/m2, so

D = D12
m1m2

m2

(
y2

y1
−1

−1 y1

y2

)
; (A4)

it is easily checked that D is positive semidefinite with null space Ry. From (A1), (A4), and (11)
and using y1 + y2 = 1 and ∇y1 = −∇y2, it is found that

J 1 = −ρD12γ y1

{
y2

y1
y1

(
y2

y1
+ 1

)
− y2

(
−1 − y1

y2

)}
∇y1

and finally, after some algebra, that (5) holds.

APPENDIX B: SIMPLIFIED LAYER EQUATIONS

Two-dimensional boundary layer equations are first derived in the low-Mach-number regime
by assuming that the transverse derivatives are more significant than longitudinal derivatives. The
resulting dissimilar mixing layer governing equations are found in the form

∂x(ρu) + ∂y(ρv) = 0, (B1)

ρu∂xu + ρv∂yu = −∂xp̃ + ∂y(η∂yu), (B2)

∂yp̃ = 0, (B3)

ρu∂xy1 + ρv∂yy1 = ∂y(ρD12γ ∂yy1), (B4)

ρu∂xh + ρv∂yh = ∂y[λ∂yT + ρD12γ (h1 − h2)∂yy1]. (B5)

In order to obtain the equations governing self-similar mixing layers, we introduce the simplified
variables

τ = t, ξ = x, ζ = y/x1/2, (B6)

which are much simpler than traditional boundary-layer-type variables. Then, for any smooth
function φ(t,x,y), setting φ̂(τ,ξ,ζ ) = φ(t,x,y), the following differential relations hold:

∂tφ = ∂τ φ̂, ∂xφ = ∂ξ φ̂ − ζ

2ξ
∂ζ φ̂, ∂yφ = ξ−1/2∂ζ φ̂, (B7)

∂τ φ̂ = ∂tφ, ∂ξ φ̂ = ∂xφ + y

2x
∂yφ, ∂ζ φ̂ = x1/2∂yφ, (B8)

and the governing equations (1)–(4) are obtained after some algebra by further using ∂ξ = 0 due to
self-similarity and ∂τ = 0 since the flow is steady.
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