Application de la convergence en probabilité à l'inversion de la transformée de Laplace

Etant une fonction $g: \mathbb{R}^+ \mapsto \mathbb{R}^+$ intégrable, on définit sa transformée de Laplace par

$$\hat{g}(t) := \int_0^{+\infty} e^{-tx} g(x) dx;$$

l'objectif de retrouver numérique g à partir de \hat{g} .

Une application en modélisation aléatoire : on modélise les pluies cumulées, sur une période et sur une région données, par la variable aléatoire

$$S = \sum_{i=1}^{N} X_i \tag{1}$$

οù

- N décrit le nombre (aléatoire) de pluies,
- $-(X_i)_{i\geq 1}$ sont des variables i.i.d., la *i*-ème modélisant le volume d'eau de la *i*-ème pluie,
- il y a indépendance entre N et les X_i .

De tels modèles sont courants dans de multiples applications, pour modéliser par exemple les pertes en assurances, la taille d'une population...

Supposons maintenant que la loi de X_i a une densité et que $\mathbb{P}(N \geq 1) = 1$. Alors il n'est pas difficile de montrer que S a une densité, que nous notons g. L'intégrale

$$\int_0^{+\infty} e^{-tx} g(x) dx = \mathbb{E}(e^{-tS}) = \hat{g}(t)$$

correspond à la transformée de Laplace de g. En fait, une particularité du modèle (1) est de disposer d'une expression semi-explicite de la transformée de Laplace \hat{g} : en utilisant l'indépendance de N et des X_i , nous obtenons

$$\mathbb{E}(e^{-tS}) = \sum_{i \ge 1} \mathbb{P}(N=i) [\mathbb{E}(e^{-tX_1})]^i. \tag{2}$$

Inversion de la transformée de Laplace : pour une synthèse sur le sujet, nous renvoyons le lecteur à Abate-Whitt (1992). Ici, nous présentons deux méthodes, qui se justifient à l'aide de la convergence en probabilité. On suppose que g est continu et borné.

1. Formule de Post et Widder : g est calculé à partir des dérivées de \hat{g} . Précisément, on a

$$\lim_{n \to +\infty} \frac{(-1)^{n-1} (\theta n)^n}{\Gamma(n)} \hat{g}^{(n-1)}(\theta n) = g(\theta^{-1}), \quad \theta > 0.$$
 (3)

PREUVE. Soit X_n la v.a. de loi $\Gamma(n,\theta)$ de densité $f_{X_n}(y) = \frac{\theta^n y^{n-1} e^{-\theta y}}{\Gamma(n)} \mathbf{1}_{y\geq 0}$. On sait que X_n peut se décomposer à l'aide de v.a. $(E_i)_{i\geq 1}$ indépendantes de loi exponentielle $\text{Exp}(\theta)$:

$$X_n = \sum_{i=1}^n E_i.$$

Ainsi, on déduit

$$\mathbb{E}(X_n/n) = \mathbb{E}(E_1) = \theta^{-1}, \quad \text{Var}(X_n/n) = \text{Var}(E_1)/n,$$

démontrant ainsi que $\mathbb{E}|X_n/n - \theta^{-1}|^2 \to 0$, c'est-à-dire que X_n/n converge en moyenne quadratique vers θ^{-1} , et par conséquent en probabilité.

Comme g est continu, $g(X_n/n)$ converge aussi en probabilité vers $g(\theta^{-1})$. La convergence a aussi lieu dans L_1 car g est bornée, d'où

$$\mathbb{E}(g(X_n/n)) \to g(\theta^{-1}). \tag{4}$$

Enfin, on note que $(-1)^n \hat{g}^{(n)}(t) = \int_0^{+\infty} x^n e^{-tx} g(x) dx$ et

$$\mathbb{E}(g(X_n/n)) = \int_0^{+\infty} \frac{\theta^n y^{n-1} e^{-\theta y}}{\Gamma(n)} g(\frac{y}{n}) dy = \frac{(-1)^{n-1} (\theta n)^n}{\Gamma(n)} \hat{g}^{(n-1)}(\theta n). \qquad \Box$$

2. Formule de GAVER ET STEHFEST : g est calculé à l'aide des valeurs ponctuelles de \hat{g} . On a

$$\lim_{n \to +\infty} \frac{\theta(2n)!}{(n-1)!n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \hat{g}((k+n)\theta) = g(\ln(2)/\theta), \quad \theta > 0.$$
 (5)

PREUVE. Dans l'esprit, la preuve est similaire, mais cette fois en considérant d'autres variables aléatoires pour X_n , précisément la v.a. de loi Beta(n, n+1), de densité $f_{X_n}(y) = \frac{(2n)!}{(n-1)!n!} y^{n-1} (1-y)^n \mathbf{1}_{y \in]0,1[}$. Par le calcul (assez calculatoire!), on peut montrer

$$\mathbb{E}(X_n) = \frac{n}{2n+1} \to \frac{1}{2}, \quad Var(X_n) = \frac{n}{2(2n+1)^2} \to 0,$$

ce qui, comme pour la preuve précédente, implique que X_n/n converge vers $\frac{1}{2}$ en moyenne quadratique, et donc en probabilité. Il en découle

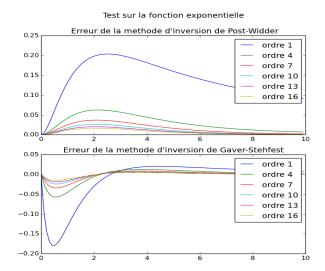
$$\mathbb{E}(g(-\ln(X_n)/\theta)) \to g(\ln(2)/\theta).$$

Enfin la loi de $-\ln(X_n)/\theta$ a pour densité $f_{-\ln(X_n)/\theta}(x) = \theta e^{-\theta x} f_{X_n}(e^{-\theta x}) = \theta \frac{(2n)!}{(n-1)!n!} e^{-\theta x n} (1-e^{-\theta x})^n \mathbf{1}_{x>0}$ (appliquer la formule de changement de variable); ainsi, en écrivant $\mathbb{E}(g(-\ln(X_n)/\theta))$ avec cette densité et en développant $(1-e^{-\theta x})^n$, on obtient

$$\mathbb{E}(g(-\ln(X_n)/\theta)) = \frac{\theta(2n)!}{(n-1)!n!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \hat{g}((k+n)\theta).$$

Mise en œuvre numérique.

Dans un 1er test, on prend $g(x) = e^{-x}$ (associé à N=1 et X_i de loi exponentielle de paramètre 1), pour lequel $\hat{g}(t)=1/(1+t)$. Sur les graphes ci-contre, on trace les erreurs sur g par la méthode de Post-Widder et Gaver-Stehfest pour différentes valeurs de n. On observe bien une convergence vers 0 des erreurs quand $n \to +\infty$. Le code Python est disponible sur la page web de l'auteur.



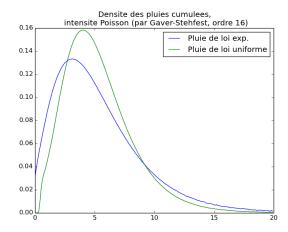
Prenons maintenant un cas plus réalise où N a la loi de Poisson de paramètre $\lambda=5$, conditionnée à être supérieure à 1 :

$$\mathbb{P}(N=k) = e^{-\lambda} \frac{\lambda^k}{k!} / (1 - e^{-\lambda}), \quad k \in \mathbb{N}^*.$$

Pour la loi de chaque pluie X_i , on prend

- soit une distribution exponentielle de paramètre 1, pour laquelle $\mathbb{E}(e^{-tX_1}) = 1/(1+t)$,
- soit une distribution uniforme sur [1/2, 3/2], pour laquelle $\mathbb{E}(e^{-tX_1}) = e^{-t/2} e^{-3t/2}$.

On remarque que dans ces deux modèles, la moyenne de pluie est la même (égale à 1), et on peut déduire que S a la même espérance dans les deux modèles. Le graphe ci-dessous montre la densité de S calculée par l'algorithme de Gaver-Stehfest : on observe que malgré une espérance identique, la distribution dépend fortement de l'hypothèse sur la pluie : la distribution est plus étalée pour des pluies de loi exponentielle car le support est tout \mathbb{R}^+ . Une des conséquences est que pour quantifier le risque de pluies extrêmes, le choix de modèle et l'identification de ses paramètres est une question très importante.



RÉFÉRENCE : J. Abate et W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems 10, pp.5–87, 1992.