Monte-Carlo Methods and Stochastic Processes From Linear to Non-Linear

EMMANUEL GOBET

ECOLE POLYTECHNIQUE - UNIVERSITY PARIS-SACLAY CMAP, PALAISEAU CEDEX, FRANCE

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper Version Date: 20160509

International Standard Book Number-13: 978-1-4987-4622-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

INTRODUCTION: BRIEF OVERVIEW OF MONTE- CARLO METHODS	1
A LITTLE HISTORY: FROM THE BUFFON NEEDLE TO NEUTRON TRANSPORT	3
THREE TYPICAL PROBLEMS IN RANDOM SIMULATION	10
▷ PROBLEM 1 – NUMERICAL INTEGRATION: QUADRATURE, MONTE-CARLO AND QUASI MONTE-CARLO METHODS	10
▷ PROBLEM 2 – SIMULATION OF COMPLEX DISTRIBUTIONS: METROPOLIS-HASTINGS ALGORITHM, GIBBS SAMPLER	18
PROBLEM 3 – STOCHASTIC OPTIMIZATION: SIMULATED ANNEALING AND THE ROBBINS- MONRO ALGORITHM	23
PART A: TOOLBOX FOR STOCHASTIC SIMULATION	29
CHAPTER 1 • Generating random variables	31
1.1 PSEUDORANDOM NUMBER GENERATOR1.2 GENERATION OF ONE-DIMENSIONAL RANDOM VARIABLES	31 32

viii \blacksquare Contents

	1.2.1	Inversion method	32	
	1.2.2	Gaussian variables	36	
1.3	ACCE	PTANCE-REJECTION METHODS	37	
	1.3.1	Generation of conditional distribution	37	
	1.3.2	Generation of (non-conditional) distributions		
		by the acceptance-rejection method	38	
	1.3.3	Ratio-of-uniforms method	40	
1.4		R TECHNIQUES FOR GENERATING		
	A RA	NDOM VECTO	42	
	1.4.1	The Gaussian vector	43	
	1.4.2	Modeling of dependence using copulas	44	
1.5	EXER	CISES	47	
Снарт	ER 2∎	Convergences and error estimates	49	
2.1	LAW (OF LARGE NUMBERS	49	
2.2	CENTRAL LIMIT THEOREM AND			
	CONS	SEQUENCES	52	
	2.2.1	Central limit theorem in dimension 1 and beyond	52	
	2.2.2	Asymptotic confidence regions and intervals	54	
	2.2.3	Application to the evaluation of a function of $\mathbb{E}(X)$	56	
	2.2.4	Applications in the evaluation of sensitivity of		
		expectations	61	
2.3	OTHE	R ASYMPTOTIC CONTROLS	65	
	2.3.1	Berry-Essen bounds and Edgeworth expansions	65	
	2.3.2	Law of iterated logarithm	66	
	2.3.3	"Almost sure" central limit theorem	66	
2.4	NON-A	ASYMPTOTIC ESTIMATES	67	
	2.4.1	About exponential inequalities	67	
	2.4.2	Concentration inequalities in the case of		
		bounded random variables	69	
	2.4.3	Uniform concentration inequalities	70	

		Contents	∎ ix
	2.4.4	Concentration inequalities in the case of Gaussian noise	77
2.5	EXER	CISES	85
Chapt	ER 3•	Variance reduction	89
3.1	ANTIT	THETIC SAMPLING	89
3.2	COND	ITIONING AND STRATIFICATION	92
	3.2.1	Conditioning technique	92
	3.2.2	Stratification technique	92
3.3	CONT	ROL VARIATES	94
	3.3.1	Concept	94
	3.3.2	Optimal choice	95
3.4	IMPO	RTANCE SAMPLING	97
	3.4.1	Changes of probability measure: basic notions and applications to Monte-Carlo methods	97
	3.4.2	Changes of probability measure by affine transformations	103
	3.4.3	Change of probability measure by Esscher transform	107
	3.4.4	Adaptive methods	110
3.5	EXER	CISES	112

PART B: SIMULATION OF LINEAR PROCESSES 115

Chapter 4	Stochastic differential equations and	l Feynman-
	Kac formulas	117
4.1 BROW	VNIAN MOTION	119
4.1.1	A brief history	119
4.1.2	Definition	119
4.1.3	Simulation	124
4.1.4	Heat equation	128

$\mathbf{x}~\blacksquare~\mathrm{Contents}$

	4.1.5	Quadratic variation	131
4.2	STOC	HASTIC INTEGRAL AND ITÔ FORMULA	132
	4.2.1	Filtration and stopping times	133
	4.2.2	Stochastic integral and its properties	134
	4.2.3	Itô process and Itô formula	137
4.3	STOC	HASTIC DIFFERENTIAL EQUATIONS	138
	4.3.1	Definition, existence, uniqueness	138
	4.3.2	Flow property and Markov property	139
	4.3.3	Examples	139
4.4		ABILISTIC REPRESENTATIONS OF	
		TIAL DIFFERENTIAL EQUATIONS:	1 10
		NMAN-KAC FORMULAS	142
	4.4.1	Infinitesimal generator	142
	4.4.2	Linear parabolic partial differential equation with Cauchy condition	144
	4.4.3	Linear elliptic partial differential equation	148
	4.4.4	Linear parabolic partial differential equation with Cauchy-Dirichlet condition	149
	4.4.5	Linear elliptic partial differential equation with Dirichlet condition	153
4.5	PROB	BABILISTIC FORMULAS FOR THE	
	GRA	DIENTS	153
	4.5.1	Pathwise differentiation method	154
	4.5.2	Likelihood method	155
4.6	EXER	CISES	156
Chapti	ER 5∎	Euler scheme for stochastic differential	
_		equations	163
5.1	DEFII	NITION AND SIMULATION	164
	5.1.1	Definition as an Itô process, quadratic moments	164
	5.1.2	Simulation	166

Contents \blacksquare xi

			expectation: discretization error and statistical	
			error	168
			NG CONVERGENCE	170
5	.3 W	EAK	CONVERGENCE	173
	5.	.3.1	Convergence at order 1	173
	5	.3.2	Extensions	176
5	.4 SI	MUL	ATION OF STOPPED PROCESSES	178
	5	.4.1	Discrete approximation of exit time	179
	5	.4.2	Brownian bridge method	181
	5	.4.3	Boundary shifting method	184
5	.5 E2	XER	CISES	186
Сна	PTER	6•	Statistical error in the simulation of stochastic	C
			differential equations	191
6			PTOTIC ANALYSIS: NUMBER OF	
			LATIONS AND TIME STEP	191
6		-	ASYMPTOTIC ANALYSIS OF THE	104
			ISTICAL ERROR IN THE EULER SCHEME	194
			I-LEVEL METHOD	197
6	-		ASED SIMULATION USING A RANDOMIZED	202
6	.5 VA	ARIA	NCE REDUCTION METHODS	206
	6	.5.1	Control variates	206
	6	.5.2	Importance sampling	207
6	.6 E2	XER	CISES	208
PAR	T C:	SIM	IULATION OF NON-LINEAR	
	P	PRO	CESSES	211
Сна	PTER	7 •]	Backward stochastic differential equations	213

5.1.3 Application to computation of diffusion

xii \blacksquare Contents

7.1	7.1 EXAMPLES		
	7.1.1	Examples coming from reaction-diffusion	
		equations	214
	7.1.2	Examples coming from stochastic modeling	217
7.2	FEYN	MAN-KAC FORMULAS	221
	7.2.1	A general result	221
	7.2.2	Toy model	224
7.3		DISCRETIZATION AND DYNAMIC	
	PROC	GRAMMING EQUATION	227
	7.3.1	Discretization of the problem	227
	7.3.2	Error analysis	228
7.4	OTHE	R DYNAMIC PROGRAMMING EQUATIONS	231
7.5		HER PROBABILISTIC REPRESENTATION	
		BRANCHING PROCESSES	233
7.6	EXER	CISES	236
Chapt	ER 8.	Simulation by empirical regression	241
8.1	THE I	DIFFICULTIES OF A NAIVE APPROACH	241
8.2	APPR	OXIMATION OF CONDITIONAL	
	EXPE	CTATIONS BY LEAST SQUARES METHODS	244
	8.2.1	Empirical regression	245
	8.2.2	SVD method	246
	8.2.3	Example of approximation space: the local polynomials	249
	8.2.4	Error estimations, robust with respect to the	
	0.2.1	model	250
	8.2.5	Adjustment of the parameters in the case of lo-	
		cal polynomials	252
	8.2.6	Proof of the error estimations	254
8.3		ICATION TO THE RESOLUTION OF THE	
		AMIC PROGRAMMING EQUATION BY	~~~
		RICAL REGRESSION	257
	8.3.1	Learning sample and approximation space	257

Contents \blacksquare xiii

	8.3.2	Calculation of the empirical regression functions	258
	8.3.3	Equation of the error propagation	260
	8.3.4	Optimal adjustment of the convergence	
		parameters in the case of local polynomials	266
8.4	EXERC	CISES	267
Снарт	er 9∎I	nteracting particles and non-linear equations	3
	i	n the McKean sense	273
9.1	HEURI	STICS	273
	9.1.1	Macroscopic scale versus microscopic scale	273
	9.1.2	Examples and applications	275
9.2	EXISTI	ENCE AND UNIQUENESS OF NON-LINEAR	
	DIFFU	USIONS	278
9.3		ERGENCE OF THE SYSTEM OF	
		ACTING DIFFUSIONS, PROPAGATION OF	070
	СНАО	S AND SIMULATION	279
APPEN	dix A • I	Reminders and complementary results	285
A.1	ABOU	T CONVERGENCES	285
	A.1.1	Convergence a.s., in probability and in L_1	285
	A.1.2	Convergence in distribution	286
A.2	SEVER	RAL USEFUL INEQUALITIES	287
	A.2.1	Inequalities for moments	287
	A.2.2	Inequalities in the deviation probabilities	290
Bibliogr	aphy		293
Index			307