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GEOMETRIC CONVERGENCE FOR
FUNCTIONALS OF MARKOV PROCESSES
USING SEQUENTIAL CONTROL VARIATES.

EMMANUEL GOBET AND SYLVAIN MAIRE

ABSTRACT. Using a sequential control variates algorithm, we compute Monte
Carlo approximations of solutions of linear partial differential equations con-
nected to linear Markov processes by the Feynman-Kac formula. It includes
diffusion processes with or without absorbing/reflecting boundary and jump
processes. We prove that the bias and the variance decrease geometrically with
the number of steps of our algorithm. Numerical examples show the efficiency
of the method on elliptic and parabolic problems.

1. INTRODUCTION

We are concerned with the numerical evaluation of E(¥ (X, : s > t)|X; = z),
where (X;); is a Markov process (with linear dynamics) and where ¥ belongs to
a class of functionals related to Feynman-Kac representations. These issues arise
for example in physics in the computations of the solution of diffusion equations
(see [CDL*89]), or in finance in the pricing of European options (see [DG95] and
references therein). Monte Carlo methods are usually used to evaluate these expec-
tations for high-dimensional problems or when the functionals are complex. They
give a rather poor approximation because of a slow convergence as o/ VM, M being
the number of simulations and o2 the relative variance. A better accuracy can nev-
ertheless be reached by using relevant variance-reduction tools like for instance the
control variates method or importance sampling [Hal70][New94]. One of the most
performing tools is the sequential Monte Carlo approach which consists in using it-
eratively these variance-reduction ideas [Hal62][Hal70][Boo89]. Using respectively
importance sampling and control variates, this approach has been recently devel-
oped in [BCP0O0] for Markov chains and in [Mai03] for the numerical integration of
multivariate smooth functions. We have introduced in [GMO03] a sequential Monte
Carlo method to solve the Poisson equation with Dirichlet boundary conditions
over square domains. This method was based on Feynman-Kac computations of
pointwise solutions combined with a global approximation on Tchebychef polyno-
mials [BM97]. Pointwise solutions were computed using walk-on-spheres (WOS)
simulations of stopped Brownian motion, which induces a simulation error due to
the absorption layer thickness. We have nevertheless observed a geometric reduc-
tion of both the simulation error and the variance with the number of steps of
the algorithm. The global error was comparable to standard deteministic spectral
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methods [BM97] while avoiding the resolution of a linear system. Our goal here is
twofold:

e to extend the scope of the approach to general Markov processes connected
to linear elliptic and parabolic Dirichlet problems;

e to analyze mathematically the phenomenon of geometric convergence for
both the bias and the variance.

This will be achieved for general discretization schemes for the stochastic pro-
cesses and also for general global approximations of the solution (not only using
Tchebychef polynomials). We also emphasize two major improvements compared
to [BCP00] where analogous geometric convergences are proved for Markov chains.
First we incorporate in our analysis the influence of the discretization error on the
underlying process. Second we allow the global solution not to be in the right
approximation space.

In Section 2, we make a complete study of the algorithm on elliptic problems
with general boundary conditions. At each step of the algorithm, the Monte Carlo
computation of E(¥(X, : s > 0)|Xo = z) at some points z in the domain is
required. Then, we build a global approximation using the values at these points.
This approximation is used as a control variate at the next step and so on. If the
discretization step is small enough, we first prove that the error on the mean value
of the global solution reduces geometrically up to a limit directly linked to the
approximation error of the exact solution. If furthermore the number of drawings
at each step is large enough, we also prove that the variance of the solution reduces
geometrically. The proofs of convergence mainly rely on independence properties
of the different simulations, on the connection with a linear partial differential
equation (PDE) and on the linearity of the functionals w.r.t. the data. This
means that the algorithm can be used for Brownian stochastic differential equations
(SDEs) with or without absorbing/reflecting boundary, or for Lévy-driven SDEs.
The last two sections describe the practical implementation of the algorithm. We
first make a discussion on the discretization schemes and on the approximation
problems. We then give numerical examples on elliptic and parabolic problems
after having precisely studied the speed of convergence of the algorithm on the
relative approximation bases. The numerical results confirm the efficiency of the
method and the phenomenon of geometric convergence on both the bias and the
variance.

2. STATEMENT OF THE PROBLEM

2.1. Elliptic problems. Before giving a general formulation, we prefer listing
relevant examples. The Markov process underlying to our study is denoted by
X (z) = [X¢(z)}s>0 and its initial value z belongs to a domain D C R?. The func-
tionals ¥(X(z) : t > 0) := ¥(f, g, X (x)) are related to Feynman-Kac formulas and
represented by two continuous functions f and g, respectively defined on D and its
boundary dD. We especially consider

Ex. 1: Brownian SDEs [RY94]: X; =z + [ b(X,)ds + [} o(X,)dW;, where W is
a Brownian motion. Set Z; = e~ fo: C(X )dr and r=inf{t >0:X; ¢ D}:
we can take U(f, g, X(z)) = g(X =i Z ds (pr0v1ded that T <
+00 a.s.). If D = R?¢, we may con51der \Il(f,g, = — 37 F(Xs)Zsds

(9 = 0) (see [Fre85]).
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Ex. 2: SDEs with reflection on é)D in the non- tangential direction «y [Fre85]: X; =
z + [ b(X,)dr + [ o(X,)dW, + [ 7(X,)dA,, where X, takes values in
D and where the so- called local time (At)t is increasing only when X is
on dD. Set Zy=eJo c(XT)‘“"’IOS AMXr)dAr: we can take ¥(f,g,X(z)) =
[ P (Xa) Zads — [2° 9(X.) ZedAs.

Ex. 3: Lévy- drlven SDEs (see [BL84, GM92)): X; = a+ [y b(X,)dr+ [} o(X,)dW,

+ fo Jsr Y (X, 2)pu(dr,dz), where p is a martingale normalized Po1ss0n
measure on RP, with Lévy measure m(dz). We can take ¥(f,g, X (z)) =
— [y f(Xs)Zsds (g9 = 0) where 7 and Z are defined as in the Brownian
case. Note that reflections could be included [BL84]. Similar situations
also occur with transport equations [CDL189].

The processes above are well defined under, for example, Lipschitz assumptions on
their coefficients. For the first two cases, the relative infinitesimal generator is given
by Lo¢ = Ele bi(2)0y, ¢ + %2?21[00*($)]i,j3§,-,w5¢- For the last one, jumps are
taken into account by an extra integral kernel. Thus, the associated infinitesimal
generator is defined by Lod(y) + [3 [0 [6(y +2) — d(y) — 2 - Vqﬁ(y)l‘z‘sl}M(y,dz)
(here the measure M (y,-) is defined by M (y, A) = m{z : Y(y,2) € A}). The key
point is that these operators are linear. The goal of this section is to describe how
to evaluate efficiently the quantity

(2.1) u(z) = E(¥(f,9, X (z))).
We assume

(H1) The process X, the domain D and the data (f, g) are such that ¥(f, g, X (z))
is a linear map w.r.t. the data (f, g) and that Var(¥(f,g, X (z))) < +00.

This assumption is natural in view of the previous examples. Usually, it imposes
restrictions on the domain, on the sign of ¢ arising in Z... See Proposition 4.1
for explicit conditions about absorbed Brownian SDEs. We now assume that u
solves an elliptic PDE with appropriate boundary conditions, using the connection
between Markov processes and PDEs.

(H2) The process X, the domain D and the data (f,g) are such that u is a
classic! solution of

(2.2) { Au=f in D,

Bu=g on 0D,

where A and B are second order linear operators.

The domain may be bounded or unbounded in some cases, the diffusion processes
may be elliptic or hypo-elliptic ... We refer the reader to [Fri75, BL84, Fre85]
for details and references. For the first example, we have Au = Lou — cu and
Bu = u (Dirichlet boundary condition), for the second example Bu = V u.y — Au
(Neumann boundary condition)... Second order operators B arise with Ventcel’s
boundary conditions corresponding to processes having a diffusion part on 0D (see
[Cat92]). These different boundary conditions can also be mixed.

IThe regularity of u depends on the type of the boundary condition.
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2.2. Parabolic problems. The extension to problems with a terminal time T
is straightforward. Formally, it is achieved by considering the time-space process
(t, Xt)¢ in the domain ]0,T[xD. Then the operator A has to replaced by d; + A.
In that case, we can take D = R¢ (this is the so-called Cauchy problem). The
coefficients of X and the domain D may also be time-dependent [BL84, Lie96].
The reader can check that the following algorithm and its convergence proof are
derived in the same way.

3. STUDY OF THE ALGORITHM

3.1. Description. We now describe our algorithm, which computes iterative ap-
proximations (un)n>0 of the global solution u. These approximations rely on the
computations of E[¥(f, 3, X (x))] (for data f and § possibly different from f and
g) at some points (2;)1<i<N-

Initialization. We begin with ug = 0.

Tteration n, step 1. Assume that an approximated solution u,,_; of class C2(D) is

built at stage n—1 and that the representation u,, 1 (z) = E(¥[Auy,_1,Bu,_1, X (2)])
holds (which simply means that u,_; solves (2.2) with f = Au,_; and g = Bu,_1).

The idea is to compute a correction ¥y, = u — u,—1 on this approximation. Using

(2.1), we have

(3.1) yn(x) = E(¥[f — Aup_1,9 — Bup_1, X (2)]).

In the above equation, the expectation is relative to the law of X and not to the
law of u,,_; which can be random. We intend to compute a Monte Carlo approx-
imation of y,(x;). For this, we replace the simulations of the random variable
U[f — Aup_1,9 — Bup_1, X (x;)] by ¥[f — Aup_1,9 — Buy_1, X2 (2;)] using a suit-
able discretization procedure X (z;) for the stochastic process X (z;). For the
moment, we prefer keeping quite abstract notations concerning the discretization
scheme, since mild assumptions are required (see assumption (H4) below). We just
mention that A usually represents the discretization parameter which tends to 0
(for instance, for the WOS procedure [Sab91], A is the space step; for the Euler pro-
cedure [CPS98, Gob01], A is the time step). Consequently, y,(x;) is approximated
by

M
1
(3.2) Un(Ti) = i mZZI U[f — Aup—1,9 — Bup_1, XA’"’m(m,-)]

using M independent simulations of the paths X2™™(z;). They are also generated
independently of everything else. In fact, the independence of simulations at differ-
ent points is not crucial to ensure the convergence of the algorithm. Nevertheless,
we think that dependent drawings slow down the convergence of the method and
are less adapted to parallel computations.

Iteration n, step 2. In order to build a global approximation y, based on the
values (g, (x;)):, we use a linear approximation [CHQZ88, BM97]. The linear ap-
proximation of a function w(-) at some points (z;); can always be written

N

(3.3) Pw(x) =Y w(w;)C;(x)

Jj=1
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for some functions (C;);. In addition we assume a stability property:
(3.4) P[Pw] =Pw for any function w.

If we use an interpolation, the functions (C;); simply verify C;(z;) = d;;. This
is for example the case of interpolation in dimension 1 on Lagrange polynomials
Li(z) = % This approximation can also come from a problem of fitting

an approximation model Zszl agpr on some basis functions (pg)x to the values
(w(=;));. This leads to a discrete least-square problem [Bj696], using the norm
associated to the discrete inner product < w,v >,= Zjvzl wiv(z;)u(z;) for some
positive weights (p;);, which consists in the minimization of the squared norm
Il Zszl appr — wl|2. The optimal coefficients (ax); are hence solution of a linear
system Aa = b with Aix =< @i, 0k >4, b, =< w, @ >, - As a = A7'b, we get
ap = Zfil ALl Ejvzl wior(z;)w(z;) and we are still in a linear form of type (3.3)
in letting

K N
Ci(w) =5 > > Ayt onl(w)on(x)-
k=1 i=1
If the (y)r are moreover orthonormal with respect to < -,- >,, we simply have
Ci(x) = p; Zszl i (z;)pr(x). A slightly different situation is the computation of
the projection of the function w on orthonormal polynomials (7,), with respect
to the inner product < u,v >,= f[a,b] v(x)u(z)v(x)dr where v is a positive weight

function on the interval D = [a,b]. We have w(z) ~ lecvzo o Ti(z) with ap =
< w, T} >, and the points (z;); are used to build quadrature formulas to compute
accurately the coefficients (ayg)r. These points are usually chosen as the zeros of
Twny41 which makes the quadrature formula exact for all polynomials of degree <
2N + 1. Note that in this case, this approximation is equal to the interpolation
at the same points. Another possibility is the Gauss-Lobatto formulas where the
boundaries of the interval are chosen as quadrature points. In higher dimensions,
the approximations are built using tensor products. In any case the approximations
are still linear and they will be described in detail in Section 4. Note that the
stability property (3.4) holds for all of these approximations. Once one of the
above approximations has been chosen we just write

N
(3.5) Up = Un—1 + PYn = up—1 + Zgn(xj)cj

j=1
and we can proceed to the next iteration. We assume furthermore in the sequel
that

(H3) The functions (C;j)i1<;j<n are of class C*(D). Furthermore, for any z € D
we have Var(¥(AC;, BC;, X (x))) < +00 and
(36) B(B(AC;, BC;, X (2)) = C;(2).
In other words, C; (formally) solves (2.2) with data f = AC; and g = BC;.

Hence, Pw € C?(D) for any function w. In particular, u,, is of class C?(D) for any
n and satisfies the representation u,(z) = E(¥[Aup, Bun, X (2)]), which makes our
algorithm valid. Note also that the stability property (3.4) written for u,, gives

(3.7) Pun =un for any n > 0.
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3.2. Convergence results. Our goal is now to estimate the convergence of

(3.8) My = sup |E(up(z;) —u(z;))|, vn:= sup Var(u,(z;)).
1<i<N 1<i<N

It is possible to derive other measures of the error, like + 25\;1 |E(un(z;) —u(z;))],
without major differences. However in this work, rather than finding the optimal
way to measure the error, we prefer focusing on the phenomenon of geometric
convergence. We need to introduce some extra notations regarding the scheme
XA For a deterministic smooth function § we set

e(d, A, z) = E(U[Ag, Bj, X2 (2)]) — E([Ag, Bg, X (2)]),
V(g,A,z) = Var(¥[Ag, Bg, X*(z))).

We state mild assumptions on the discretization scheme X2, which allows great
generality on the procedures that can be used.

(H4) 1) The map (f,3) = ¥(f,§, X2 (x)) is linear.
2) The discretization errors [e(C;, A, z;)]1<i,j<n converge to 0 as A — 0.
3) The variances [V (u, A, z;)]; and [V (Ci, A, ;)] are finite.
4) The latter are uniformly bounded for A close to 0:
lim supa_,o V(Ck, A, z;) < oo for any ¢ and k.

The first assumption is natural since the initial map (f,3) — ¥(f,§, X (z)) is
linear. The second one is minimal since it requires only the weak convergence of
the discretization scheme for the C?(D)-functions (Cy)x. The last two ones are also
very natural since they are satisfied for X (see (H1-H3)). A practical verification
of (H4) will be given in Section 4.1. It easily follows from statement 3) that
V(u —Pu,A,x;) < +oo for any 7. This justifies the finiteness of the terms which
appear in Theorem 3.2.
We first state a convergence result for the bias.

Theorem 3.1. Assume (H1-H2-H3-H4). Then, for any n > 1, one has

(3.9) My, < Pm Mp_1 + 1215N [[Pu — u](z;) + Ple(u — Pu, A, -)](z;)].

where pm = SUp; <<y [Ejvzl [Ple(Cs, A, )](wi)|]. For A small enough, one has
pm < 1. Thus, the convergence of (my,)y is geometric at rate py,, up to a threshold
equal to

(3.10) lim supm,, < sup |[Pu—u](z;) + Ple(u — Pu, A, -)](z;)]-
n — Pm 1<i<N

The upper limit for the bias strongly depends on the quality of the approxima-
tion of u by the operator P. Note that if u is in the right approximation space
(Pu = u), the first term in the r.h.s. of (3.10) cancels and the bias m,, converges
geometrically to 0. In other words, even if the simulations are biased because of A,
the bias vanishes at the limit. This is a surprising and very interesting phenome-
non. However, unlike the direct Monte Carlo procedure, there is no guarantee that
lima g lim sup,, m,, = 0, except in the case of the interpolation operator P (i.e.
Pu(z;) = u(x;) for any x;). We now state the convergence of the variance (vy,)y,-
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Theorem 3.2. Assume (H1-H2-H3-H4) and set

N N
C(AN) =2 sup D C@)[ Y \/V(Cr Az ]’
1<i<N 5T P

N
po= sup (3 [Ple(Ci, A, )](@:)])” + %_

1<i<KN
1S j=1

Then, for any n > 1, one has

(3.11) v, < pyun_ 1+—{2 sup 202 z;)V(u —Pu, A, z;) + C(A,N)m?2_,}.
1<i<N £

For A small enough and M large enough, one has p, < 1. Thus, the convergence
of (vn)n is geometric at rate p,, up to a threshold equal to

{2 sup ZC2 z;)V(u —Pu, A, ;)

lim sup v,, <
n 1-po)M 1<i<N

(3.12) + C(A,N)limsupm?, }.

Note that when p, < 1, p,,, < 1, so that the geometric convergence holds simulta-
neously for the bias and for the variance. As for the bias, if Pu = u, lim sup,, m,, = 0
and thus lim sup,, v, = 0: the variance v,, converges geometrically to 0, provided
that 1/A and M are large enough.

3.3. Proofs of convergence. To make the distinction between what is simulated
before stage n and at stage n, we define the usual conditional expectations and
variances

and Var" (V) = E"(Y?) — [E""'(Y)]?. Note that the construction of the
algorithm yields that the discretized processes [X ™™ (z;)],n.i.n are independent.

3.3.1. Proof of Theorem 3.1. (3.10) is a straightforward consequence of (3.9). Be-
fore proving (3.9), we transform the expression of u, (x;) for a fixed z;. Using (3.5),

(3.2) and the PDE solved by u, we get un (i) = tn_1(i)+ 7z E;VZI Z%:l U[A(u—
Un-1),B(u =y 1), X2>™™(z;)]C;(z;). In view of (3.7), note that

N
(3.13) U—Up_1 =u—Pu+ Z(u—un_l)(xk)Ck
k=1

and that U[A(u — up—1), B(u — up_1), X>™™(z;)] equals

N
U[A(u — Pu), Bu — Pu), X2 ™(z;)] + D (4 — un_1)(wx) C[ACk, BCk, X ™™ (;)],
k=1
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because of the linearity of ¥[(-, -),X A(z)] under (H4). Thus, we obtain

N
i (@3) = 1 () % > [m[A w = Pu), B(u — Pu), X5 (z))]
j=1m=1
N
(3.14) + Z(u — p—1) (k) C[ACk, BCk, X ™™ ()] Cj ().

k=1

e Computation of E"!(u,(z;)). As [X2™™(z;)]m,; is independent of u,_;, we
readily get

N
E" Y (un(2:)) =un_1(z;) + Z E (U[A(u — Pu), B(u — Pu), X2(z;)]) Cj (=)
N " N
(3.15) + ) (u—un_1)(@r) > E (C[ACk, BCk, X*(x)]) Cj ().
k=1 j=1

Note that
a) using (2.1) and (3.6), we have E(¥[A(u — Pu),B(u — Pu), X?(z;)]) =
e(u — Pu, A, z;) + (u — Pu)(z;).
b) using (3.6), we have E (¥[AC, BCk, X2 (z;)]) = e(Cr, A, z;) + Ci(z;).
c) owing to (3.4), we have Z;VZI Cr(z;)Cj(x;) = Cr(z;).
Plugging these identities in (3.15), it readily follows that

N
E" Y (un (7)) = tn_1(z;) + Z [e(u —Pu, A, z;) + (u— Pu)(xj)]Cj (z;)
j=1
N N
+Z U—Up_1) [Ck(mz)+Ze(Ck,A z;)Cj(zi)]
k=1 j=1
N
(3.16) =Pu(z;) + Ple(u — Pu, A,-)](x;) + Z(u — up—1)(zk)Ple(Ck, A, )](i),
k=1

simplifications at the last line arising from the equality (3.4).
e Computation of E(u,(z;)). Taking the expectation in (3.16) we obtain

E(un(2;) — u(z;)) = Pu(z;) — u(z;) + Ple(u — Pu, A, -)](z;)
N

+ Y B((u—un 1) (zk))Ple(Cr, A, )] ()
k=1

It remains to take absolute values and the supremum over ¢ on both sides to com-
plete the proof of (3.9). O

3.3.2. Proof of Theorem 3.2. Note that the inequality p, < 1 holds for A small
enough and M large enough. Indeed, under (H4) C(A,N) remains uniformly
bounded w.r.t. A close to 0. We only prove (3.11). Taking some fixed z;, we have

(3.17) Var(uy,(z;)) = Var [E"‘l(un(x,))] + E[Var"fl(un(ﬂﬁz'))]-
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e Computation of Var[E"~!(u,(z;))]. In view of (3.16), we have

Var[E" 1('“% IL'Z Var Zun 1 :1:_1 CJaA )]( )]

(3.18) < vai Z [Ple(Cs, A, ))(:)])*

i=1

where we have used the standard inequality

Var Zaj J Z aJ1a12COV(YJl’Y12)

J1,J2=1
N N 2
(3.19) < S Tl gy Var()Varv) = | 3 loslyVar(h)|
J1,J2=1 j=1

for any real numbers («;); and any square integrable real random variables (Y;);.
e Computation of Var™ ' (u,(z;)). We invoke the independence of [XA’"’m(xi)]m,i
and wu,_1 in (3.14) to derive

N 2 .
_ Z Cj;;’) Var® ! [\D[A(u — Pu), B(u — Pu) XA('Z'J )]

j=1

N
+ ) (= un1) (k) ULAC, Bck,XA(mj)]]

N CZ - >
SZ J [\/Vu—PquJ +Z|u_un 1] (zx) V(C’”A’xj)] ’

j=1

using (3.19) at the last inequality. Applying the inequality E(ag + Eszl apYy)? <
203 +2( Y r, |o¢k|\/E(Yk2))2 which can be proved as (3.19), we get
N C2

E(Var™ !(un(z;:))) < 2 sup Z — Pu, A, z;)
1<i<N ]

N
+ 1SSE£NE((U — Un—1)*(z)) [; VV(Ch, A, zj) 1”}

Combine this estimate with (3.18) and (3.17), use sup; <<y E((u — un_1)*(21)) <
vn—1 +m2_;, and take the supremum over i to complete the proof of (3.11). O

4. INFLUENCE OF PARAMETERS OF THE ALGORITHM

We mainly focus on the first example of Brownian SDEs with a Dirichlet bound-
ary condition. We first give a set of explicit assumptions implying (H1-H2) and
(3.6) in this case.

(H2’) i) The functions b and o are Lipschitz continuous on D and oo*(z) > €oly
uniformly w.r.t. £ € D (eg > 0).
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ii) D is a bounded domain and each point of its boundary 0D satisfies
the exterior cone condition: for any x € 0D, there exists a finite right
circular cone K, with vertex z, such that XN D = {z}.

iii) The function g is continuous on 8D, f and ¢ > 0 are uniformly Holder
continuous in D (with exponent « €]0, 1]).

Proposition 4.1. Under (H2’), (H1) and (H2) are fulfilled. Furthermore, if C;
is of class C?(D), (H3) holds.

Proof. The variance in (H1) is finite. Indeed, on the one hand the functions g and
f are bounded and ¢ is non negative. On the other hand, we have E,(7) < +o00
(which automatically induces exponential moments for 7, see [Fre85] Section 3.3).

The proof of (H2) is somewhat classic except that D is not smooth here. We
just recall the two main steps. First, the existence of a solution to (2.2) follows from
the remark after Theorem 6.13 in [GT83], noting that under (H2”) every point of
the boundary has a barrier (see Problem 6.3 in [GT83]). Second, Theorem 2.1 from
Section 2.2 in [Fre85] states that the solution is given by (2.1). This is achieved by
applying It6’s formula to u and using some careful localization procedures because
derivatives of u explode near the boundary (see also Appendix B). (H3) is proved
analogously. a

4.1. Verification of assumption (H4). We propose to check it when we use the
so-called discrete Euler scheme [Gob00], which is the simplest procedure that can
be used for general stopped diffusions. An alternative is the WOS scheme, which
is especially efficient when we are dealing with the Brownian motion (see [HMGO03]
and references therein). Some refinements to the discrete Euler scheme are also
possible, using Brownian bridge simulations [Bal95, Gob00, Gob01].

For a given time step A and discretization times t; = kA, the Euler scheme is
defined by X = z and XtA,chl = X5 = (X2 (trg1 — te) + o(XE) Wiy, — W),
which can be written in continuous time as

t t
(4.1) XA =z+ /0 b(X 51s))ds + /0 (X)) dWs.

Here, ¢(s) = tr for tx < s < tg+1. The approximated exit time is defined by
& = inf{t, > 0 : X2 ¢ D}. Thus, to approximate ¥(f,g,X(z)), we simply
propose

(42) U(f,9, X2 (@) = g(X2) 225 - / F(X3 )25 ds, 22 = ¢ JF oXBeae,
0

Here, g is evaluated at X TAA which is not a priori on 8D: hence, in (4.2) g has to
understood as a bounded continuous function on the whole space. In view of (4.2),
(H4)-1) is clearly fulfilled. To verify 2-3-4) of (H4), our main tool is the following
theorem, which is original in this context of elliptic problems and whose proof is
postponed to Appendix A.

Theorem 4.1. Assume (H2’). Then, the following assertions hold.

a) For any p > 1, sup E;(7P) + lim sup sup Ew([TA]’”) < 00.
zeD A—0 zeD
b) lim 72 =7 in L, for any p > 1.
A—0

¢) lim XTAA = X, in probability.
A—0
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TONAT
d) For any bounded continuous -y, lim sup/ [v(Xs) — 7(X¢A(s))|ds =01n
A—=0 Jo
L, for any p > 1.

Since [W[Au, u, X3(@)]| = |¥[f,u, X2 (@)]] < C(1+72) and [$[ACk, Cy, X2 (2)]] <
C(k)(1 + 72), we easily get that (H4)-3) and (H4)-4) are fulfilled in view of a).
It remains to prove that e(Cy,A,z) = E(¥[ACk,Cx, X2 (z)] — U[ACk,Cy, X (z)])
converges to 0 when A — 0, for any C of class C?(D). Using c), we get the
convergence of Cx(X%.) to Cr(X;) in probability, thus in Ly since Cj is bounded.
Since exp(-) is 1—Lipschitz on R~ and c(+) is non-negative, we have |Z5, — Z,| <

A
| foT X5 (u) Ydu— fo du| which converges to 0 in Ly, using b) and d). For the

A
convergencein Ly of [ f ¢(s) (s)ds to [, f(Xs)Zsds, the previous arguments
apply and this completes the verification of (H4)- 2)

4.2. Impact of the approximation operator. The discretization parameter A
has to be chosen small enough to ensure the geometric convergence of the bias.
This convergence depends on the approximation operator as we must have p,, < 1.
As it is mainly described by the sensitivity of regular functions to the discretization
error, it actually depends very little on the approximation operator. The geometric
convergence of the variance (described by the condition p, < 1) depends a lot
more on the choice of the approximation, but in the same way concerning the
discretization parameter. In order to study this convergence, we can hence focus
on the case A = 0. In this ideal case, we have

cO.N) |
vy < Up—1 i —1215\[26 z;)V (u — Pu,0,z;)

N N 2
C(O,N) =2 C3(x; V(Cr,0,z;
(0,N) 12?51)1\/; J(w)<kz_:1\/ (Cr w;))

The quantities V(u — Pu,0,2;) and V(Cg,0,2;) can be computed as

with

V(u—Pu,0,z,) =E,, [/ 22|V (u — Pu)ol? (Xs)ds] ,
0

V(Ckaoax,]) :Ezj [/ Zs2 |V;L-Ck0'|2 (Xs)d3:|
0

using Lemma B.1 given in Appendix B. The first term enables to control the final
error and the second one the speed of convergence of the algorithm. They both
depend only on the gradient of the basis functions and not on the second derivatives
of these functions. It is quite difficult to make a general discussion on the optimal
choice of the approximation in a general domain. We prefer focusing on polynomial
interpolations on square domains and give explicit computations of the convergence
parameters in this case. The process X remains general.

4.3. Gauss-Tchebychef interpolation on ]—1, 1[¢. The Tchebychef polynomials
Tn(x) = cos(narccos(z)) are the orthogonal polynomials on | — 1,1[ with respect

to the inner product < P,Q >,= fil P(2)Q(z)w(z)dr where w(z) = \/117? We
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have [|Ty||2, = 7 and ||T,||2 = § if n > 1. In dimension one, the interpolation

polynomial Py (u) of the function u at the Tchebychef abscissae

2k+lf
N+12

xk:cos( ), k=0,1..N,
is given by [Bj696]
N

Prn(u) = Z anTh,
n=0

with
- N
= w(zg)Tn(xk).
TRE D 2 oo
This interpolation is optimal with respect to the sup norm. The control of v and
of its derivative is given in the following theorem (see [CHQZS88] p.298).

Qn

Theorem 4.2. Denote by H,' the w-weighted Sobolev space with regularity m €
N*. Then cy,co > 0 such that Yu € H', we have

w

lu = Pn()llw < e N"™[Jullam, |lu—Pn(u)

lyy < 2N [lull g -

The Tchebychef interpolation of a function u : D =] — 1,1[% R is built using
the same process than in dimension one. The interpolation polynomial Py (u) at
the N? points of a tensored Tchebychef grid and evaluated at z = (zy,--- , z4) is

N

PN(U)(’Z) = z Oy, nalng (zl) Ty, (zd)

N1, ng=1

where the oy, ... n, are defined by

d N
e
QOnyyeing = | I (”Tnz 121)(N + 1)) E u(xmu" : 7$md)Tn1 (-Z'm1) o 'Tnd(xmd)'

=1 mi, e ,mg=1

The quality of this interpolation is exactly the same than in Theorem 4.2. In
dimension one, the basis functions C, write

™

N
Cr(z) = nZ:;J an(xk)Tn(x).

As T, (z) = % and becau;s.e I\TnllszJrl)T"(mk) < x%g, we have
|VCr(z)]? < [EﬁZONLH\/ﬁwz]z =&, < lfm. Using Z? < 1, the occupa-

tion time formula [RY94] and Lemma 4.3 (which is proved in Appendix C), we
finally have V(Cx,0,2;) < |1, [VaCi(y)[?Eq, (LY (X))dy < CN2.

Lemma 4.3. For D =] — 1,1[ and under (H2), we have E;(LY¥(X)) < C(1 — |y|)
uniformly in x € D.

As furthermore Ci(z;) = 6x,;, we have

N N
C(0,N) =2 sup (3 \/V(Cs,0,25)* <2(3_VCON)* = O(N*).
k=0 k=0

0<j<N 1=
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This means that we need to take M = O(N*) to ensure the geometric convergence.
Using the same tools, we can also prove that if u € H},

V(u-Pa(w,0,2) <C [ 9= Pa(@) 1)y < Cllu—Pr(wlfy, = ON=27+)

and so that the final error on the solution is a O(N~™). We now go back to the inter-
polation on the multidimensional Tchebychef grid. In this case, the basis functions
simply write Cg,,... k, (1, -+ ,2q) = Ciy(21) -+ -Cr, (zq). As |Vka1,... kg ($)|2 <
C YL, |VaChi(2:)]?, we deduce immediately that V(Cy,,... x,,0,2) = O(N?) and
that C(0, N) = O(N2*2d). The error estimates, using the order m of regularity
of u, are the same in dimension d than in dimension one. As the convergence is
geometric and the solution is computed at N¢ points with a source term consti-
tuted of N¢ terms, the complexity of the algorithm is essentially C'(0, N)N2¢. The
upper bound on C(0, N) may not be tight. We shall especially see that in all the
numerical experiments C'(0, N) is a lot smaller than N2*2? and we should also keep
in mind that the spectral methods are used for very smooth solutions so that NV
is usually small. As a comparison, the usual spectral method requires to solve a
linear system of size N¢ which involves a complexity of a O(N3?) using a direct
method and of N2? at each step of an iterative method. The resolution induces
moreover an additional error on the solution due to the condition number of the
matrix which can grow very quickly with N [BM97]. This can also make the speed
of convergence of the iterative method quite slow. A big advantage of our method
is that it keeps all the advantages of the Monte Carlo method in terms of parallel
computing. One can for example use one processor for each of the N¢ points of the
grid.

4.4. Gauss-Lobatto-Tchebychef Interpolation. To reach a slightly better ac-
curacy, one can also use the Gauss-Lobatto points [BM97]

_kw), k=0,1.N,

Yr = cos

where the boundaries of the interval are taken as interpolation points. The co-
efficients (8,) of the interpolation polynomial Qn(u) = Ef:o BnTy, satisfy the
relation B,||Ty||% = f On(u)(x)Ty(x)w(x)dx. For n < N, the integral equals
j{,(u( DT (= 1)+u(1)T W 4 Zk L u(yr)To(yx)) using the relative quadrature for-
mula, which i 1s exact on polynomials of degree smaller than 2N — 1. This gives the
values of 3, for n < N. Moreover, as T,,(1) = 1, we have Sy = u(1) — Zﬁ:}l -
Hence, the basis functions write

N—
T TN T TN)
Cn=T — = -/
N “Z NI Z 2N||T B

andif j #0,N

G- Z Nz @ = 1)

As for the Gauss-Tchebychef case, the d-dimensional extension on tensored domains
is obtained by setting C, ... k. (%1, -+ ,2q) = Ck, (z1) - - - Ci,(z4). This interpolation
enables a better control of the derivative of u than the previous one as we can see
in the following theorem [BM97] (valid in any dimension).
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Theorem 4.4. Vm € N*, J¢1,co > 0 such that Vu € H™, we have

w
lu = On(Wllw < el N lullzg,  llu— Qn(ull,, < 2N |lullgy -

g

Using the previous tools, one can easily prove that C(0, N) = O(N2*+2?) and
V(u—Pu,0,z;) = O(N—2m%2) g0 that the final error on the solution is a O(N~™~1)
which is compared to a O(N~™) for the previous interpolation.

5. NUMERICAL RESULTS

The aim of this numerical part is not to give the optimal way to solve a general
problem using our algorithm. We just study various classic situations to illustrate
the convergence and the accuracy of our algorithm. Different approximations and
discretization schemes are tested to confirm our theoretical estimates and the great
efficiency and generality of our approach.

5.1. Poisson equation in dimension one. Our first example is the numerical
resolution of the Poisson equation in dimension one using a Monte Carlo scheme
with no discretization error [GMO03] and Tchebychef interpolations on either the
(zk)r or the (yx)r. The solution of this Poisson equation

1w .

g¢ = fin]-1,1]
with boundary conditions u(—1) = a,u(1) = bis u(z) = aP,(W,, = —1) + b(1 —
P.(Wr, = —1)) — Eo(fy” f(Ws)ds). As Po(W,, = —1) = 152 the contribution
of the boundary conditions to the solution can be easily simulated. To achieve the
contribution of the source term with no discretization error, we use the representa-

tion B, (f, " f(Ws)ds) = (1—2?)E(f(Y,)) where the density of the random variable

Y, is %ngrg + =L l<r<t-
We study the example f(z) = (z + 2)exp(z)/2,a = —1,b = e, so that the
solution of this equation is u(z) = z exp(

x). We give in the following table the error
(

e(j) = sup |u(zx) —u (zp)]
0<k<N

as a function of the number j of steps and of the number M of sample values to
compute the pointwise approximation at the z. Even if our algorithm is based on
independent random drawings, we have observed in [GMO03] that one could use low-
discrepancy sequences to speed up the convergence of the algorithm. We hence use
here a version of the algorithm based on Halton sequences, which is twice faster than
the Monte Carlo version. The accuracy of the crude Quasi-Monte Carlo method
with M sample values is given by e(0). L is the number of steps until convergence
for a given value of M. All the CPU times are less than one second.
N| M|L e(0) e(5) e(L)
5|8 [16][2x1071[2x 1072 5x 10~*
71200[30[1x101[9x10 3] 4x10°°
101800 | 45| 9x1072]2x 1073 |8 x 1010

M has to be chosen large enough with respect to N to make the algorithm
converge but is significantly smaller than N*. The error at convergence e(L) corre-
sponds exactly to the interpolation error of the interpolation polynomial Py (u) of
the exact solution at the Tchebychef abscissae. We now study the same example
using the Gauss-Lobatto-Tchebychef interpolation.
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N M[L] e e(5) e(L)
5] 40 |10[4x107'|[1x103|7x10*
7 1100]26[2x10"1[2x10"2|2x%x10°°
10[400 351 x10T|{1x1072][2x10"°

We can see that we can take twice less drawings to achieve the same final accuracy
for similar number of steps. This means that the geometric convergence is twice
faster using this kind of interpolation, maybe because there is no error on the
correction at the two boundary points. We do not notice any major difference on
the final error as we could have expected.

5.2. The bidimensional case. We consider the Poisson equation on the square
domain D =]—1, 1[* with Dirichlet boundary conditions. We use an interpolation at
the bidimensional Tchebychef grid, two types of discretization schemes and Monte
Carlo simulations. The first one is the modified WOS method [HMG03, GMO03]
which can take into account the source term f. This walk goes from a sphere to
another until the motion reaches the e-absorption layer. The second one is based on
the continuous Euler scheme with parameter At [Gob01]. We study the equation
+Au = 1(42°+3) exp(2? +y) with Dirichlet boundary conditions chosen so that the
solution of this equation is u(x,y) = exp(z? + y). We begin with the WOS scheme
taking respectively €; = 1072 and 5 = 1073 for the absorption layer thickness and
use the same notations than in the previous examples.

N M L 61(0) €1 (L) CPU €9 (0) €9 (L) CPU
6 200 11| 024 |1 x1073] 14 | 018 [1x1073| 2.4

8 [400]13] 0.17 |[8x10°] 6.7 | 014 | 7x 10" | 10.5
10800 |17 ] 0.13 [3x107%| 28 | 0.14 [4x 1076 | 44

We observe a geometric convergence on both the bias and the variance up to the
interpolation error of the exact solution. We do not notice any difference on the
final accuracy for the two values £; and ¢5. CPU times are of course smaller for &,
and also about eight times smaller than in [GMO03] by using a recursive computation
of the Tchebychef polynomials instead of their trigonometric expression. We now
use the corrected Euler scheme with discretization parameters A¢; = 0.005 and
Aty = 0.002.

N M L €1 (0) €1 (L) CPU L € (0) €9 (L) CPU
6|30 |10 07 [3x1073| 14 [12] 0.6 |2x1073 4
8 [100[40] 037 [2x107%] 28 [10] 038 |1 x10"*]| 16
10 1200 | 10| 0.4 5 27 |50] 0.3 [3x107°| 300

We still observe a geometric convergence on both the bias and the variance
except in the case At; = 0.005 and N = 10 because the discretization parameter is
not small enough (see the condition p, < 1). Nevertheless, we do not achieve the
same accuracy at the limit. A bias due to the discretization scheme still remains.
When At decreases this bias decreases and the convergence is faster. Using the
naive Euler scheme on the same example, the bias at the limit was twice bigger and
the convergence twice slower. We can take M a lot smaller than using the WOS
method to achieve the convergence.

5.3. Parabolic problem. We consider a regular Up and Out Call option with
maturity T = 1, corresponding to the domain D =]0,2[ (actually, 0 is a natural
boundary) and the Cauchy-Dirichlet boundary condition g(t,z) = (z — 1) ift =1



16 EMMANUEL GOBET AND SyrvaiN MAIRE

and g(t,z) = 1if z = 2. The dynamics is given by X; = zexp(cW; — 30°t). The
quantity u(0,z) = E,((X; —1)4) gives the risk-neutral price of the option at time
0, when the interest rate equals 0. The solution u can be computed by a closed
formula [Zha97]. The derivatives of u have singularities around (t,z) = (1,1).
Thus, the solution is less smooth than in previous examples and the numerical
results below show that the benefit of our method is less important in that case.
For the interpolation procedure, we propose a piecewise linear interpolation w.r.t.
the time variable and a Tchebychef interpolation w.r.t. the space variable. The
interpolation times are (t; = iT'/(K —1))o<i<k and the N +1 Tchebychef points at
each interpolation time are the (z,) or (y,) (on the interval [0, 2] instead of [—1, 1]).
Notations relative to the errors remain the same. We first compare the accuracy
of the Gauss-Tchebychef (GT) and Gauss-Lobatto-Tchebychef (GLT) interpola-
tions, in the case K = 5, N = 5. The simulation of X can be exactly performed at
discretization times (kAt), from which we can derive a naive approximation of 7.
Here, we take At = 0.05 and M = 10 simulated paths. All the CPU times are less
than one second.
K|N|M| At | L e(0) e(1) e(L)
GT | 5]5[10][0.05]4[1.32x1071[7.92x1072|3.88 x 1072
GLT | 5|5 [10[0.05]4[1.72x10 1| 47x10°% [ 1.44x 10?2

The GLT interpolation converges faster and the relative final error is slightly
smaller. Note also that from the first iteration, the accuracy of our method com-
pared to a crude Monte Carlo method is improved by a factor 3.6 using the GLT
interpolation: this accuracy could be achieved using 13 times more crude Monte
Carlo simulations. To diminish the bias, we now use Brownian bridge corrections to
simulate the exit event. To have another evidence of the better convergence of the
GLT interpolation, we increase the value of N to 15: the contraction constant p,
should increase and may become larger than 1. This is confirmed by the following
result where for the GLT interpolation, the convergence still holds but not for the
GT interpolation.

K|N|M| At | L e(0) e(1) e(L)

GT | 5[15[10][0.01] - [1.98x 1071 [5.64x101[27for L=15
GLT | 5 |15]10|0.01|10{213x107'|124x10"!| 5.65x 103

In view of this nice behavior, the next experiments are done using Gauss-Lobatto-
Tchebychef interpolation. The figure below illustrates the geometric convergence
till the interpolation error. It has been obtained with K = 10, N = 20, M = 20 and
At = 0.001. The optimal choice of (K, N) will be analyzed in a future research.

6. CONCLUSION

We have developed and studied a sequential Monte Carlo method for the numer-
ical solution of linear partial differential equations. This method provides a regular
global approximation of this solution by combining pointwise approximations via
the Feynman-Kac formula and a linear approximation on some basis functions. As
the pointwise approximations are computed by means of a Monte Carlo method,
statistical and discretization errors occur. We have proved the geometric reduction
of these two kinds of errors up to a limit linked to the linear approximation. Numer-
ical experiments on simple diffusion equations using various discretization schemes
and different kind of approximations have confirmed this geometric convergence
and the efficiency of our method. Further numerical examples should be developed
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FIGURE 1. On the left, error e(j) w.r.t. the number of iterations.
On the right, the same in logarithmic scales.

on more complex domains, in higher dimensions or for less regular solutions. In
higher dimensions, one needs to diminish the dimensional effect by making a good
choice of the basis functions [Mai03]. For more complex domains or less regular
solutions, new versions of the algorithm based on finite elements approximations or
domain decomposition methods can certainly be developed. In all those situations,
our algorithm could at least be a variance reduction tool by computing a rather
poor approximation on few basis functions. As a final remark, we think that our
method could replace advantageously usual deterministic methods in many situa-
tions, especially if it is used in a parallel version.
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APPENDIX A. PROOF OF THEOREM 4.1

Statement a). Since D is bounded, it is sufficient to prove the result when D =
Dpg = [-R, R]¢ for an arbitrary R. We proceed in several steps.

Step 1: 72 has exponential moments, not necessarily uniformly bounded in A. If
we use the Markov property at time (¢ )y for the Euler scheme, we get the rough es-
timate P(72 > mA) < [sup,ep Pz(X4 € D)]™. Under (H2’), sup,.p P (X4 €
D) < 1 and thus, 72 has exponential moments. The point is to prove that they
are uniformly bounded w.r.t. A, which is not clear from the computations above.

Step 2: the first moment sup, ¢ p E;(72) is uniformly bounded w.r.t. A close to 0.
We adapt the arguments from [Fre85], where it is proved that sup,cp E(7) < oo.
Take x € D and set 1 = (1,...,1)*; the ellipticity assumption combined with It&’s
formula applied to e*1-® (for A large enough such that —\|b|od + %)\2€0d > 1) gives

A

-
Ew(ekl.XfA) > M +E, / e’\l'XsAds
0

A

(A1) > eM? 4 min M [EZ(TA) - Ez(/ 1xa¢pg,,ds)|.
0

- zEDR11



GEOMETRIC CONVERGENCE USING SEQUENTIAL CONTROL VARIATES 19

On the one hand, we have

o0
A
Ew(e’\l'X-rAA) < sup 6’\1'Z+2Ew [1tk<TDle QDR_HG)\LX%‘H]
ZEDR+1 —o tht1
Standard large deviations estimates (see Lemma 4.1. in [Gob00]) give

A
E(e)‘l'XiHl 1xa gppF) < C(M)e=¢/A for some constants ¢ > 0 and C(\)
tht1

uniform w.r.t. A <1 and X2 € Dg. For A small enough such that C(\)e™¢/4 <
tmin.ep,,, e’?, we obtain

A 1
E,(e**2)< sup eM*+E,(r2) = min M2
zEDR41 3 2EDR41

A
On the other hand, from Fubini’s theorem, we have E,( fOT 1xag¢pg,,ds)
= [JP.(#(s) < 72X2 ¢ Dpgyi)ds. The previous arguments give

A
E.(f; 1xa¢pgy.ds) < 15 Palo(s) < T8)Ce~¢/A < LE,72 for A small enough.
Plugging all theses estimates into (A.1), we get

sup e)\l.z > e/\l.z +EE(TA) 1 min e/\l.z
2€DR+1 3 2€Dp41

uniformly in £ € D, for A small enough. This proves our assertion.

Step 3: the p-th moment sup,p E;([72]?) (p > 1) is uniformly bounded w.r.t.
A close to 0. This is a standard consequence of sup,¢p E;(72) and of the Markov
property at times (kA). We refer to Section 3.3 in [Fre85] for a proof in the diffu-
sion case, which can be adapted to the discrete Euler scheme in a straightforward
way. Statement a) is proved.

Statement b). In view of the uniform integrability conditions a), it is enough to
prove that 7 converges in probability to 7, which follows from the weak conver-
gence of (72,7) to (7,7) (stable convergence). Thus, we aim at showing that for
any si,S2, we have

(A.2) AlimoPm(TA < 51,7 < 89) =Py (7 < 81,7 < 89).
—

We introduce the signed distance to 0D, defined by F(z) = d(z,0D) if z € D and
F(z) = —d(z,0D) if z ¢ D. Without additional regularity on D, F is at least a
Lipschitz continuous function. Note that {7 < 81} = {inf;<s, F(X d%(t)) < 0} and
{r < s1} = {infi<,, F(X;) < 0}. From the a.s. uniform convergence of (X¢A(t))t
to (X¢)¢ on [0, s1] (see [Gob00] for instance), we have lima_,oinf;<,, F(Xd)A(t)) =
inf;<,;, F(X¢) a.s. Thus, (A.2) holds true if 0 = P(inf;<,, F(X;) = 0), which writes
using the strong Markov property

(A.3) 0=E(1,<s,Px,(Vt < 51 —7: X; € D)) + P(r = 51).

In fact, for any r > 0 and = € 8D, under (H2’) we have P,(Vt <r: X; € D) <
P,(X, € D) <1 (in [Gob00], see inequality (68) and the comments before Remark
5.1). Thus, by the Blumenthal Zero-One law, the probability P, (Vt < r : X; € D)
must be equal to 0. Hence, (A.3) is reduced to P(7 = s1) = 0. This equality is
true except for the countable number of points of discontinuity of s; — P(7 < s1),
which is enough to derive (A.2) for any s;.
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Statements ¢) and d). Both statements easily follow from the a.s. uniform con-
vergence of X2 to X on compact sets, from the uniform integrability in a) and
from the convergence b).

APPENDIX B. A TECHNICAL LEMMA

Lemma B.1. Assume (H2’) and that 4 is the C°(D) N C2%(D)-solution of Lot —

cu = f in D and G = g on 0D, where f and § are bounded continuous functions.
Then

V(a,0,z) = E, [/ Z2 Vi o*(X,)ds| < +oo.
0

Proof. The technical difficulty comes from the fact that & may have derivatives
exploding near the boundary. To circumvent this problem, set D, = {z € D :
d(z,0D) > €} for € > 0 and denote by 7. the associated exit time. By standard
interior estimates [GT83], 4 has a bounded gradient in D.. Furthermore, it is
straightforward to see that 7. T 7 a.s. as € | 0. An application of It6’s formula
gives

W(X.) 20, + / " Zy(=Li + i) (X,)ds = i(z) + / " Z, [Vais o](X,)dW,.
0 0

Owing to the localization in D, it is easy to see that E, [ [[* Z2 |V,i o[*(X,)ds] <
00. Hence, by the isometry property, we obtain

Te

E$[/0 " 22 |V o' (X,)ds] = Var, [(X,,) Z, +/0 Zy(—Li + cit) (X,)ds].

Take the limit when € goes to 0: the l.h.s. converges using the monotone conver-
gence theorem and the r.h.s. using the dominated convergence theorem. The limit
writes E,[ [ Z2 |V, i of*(X,)ds] = V (4,0, ), which is our statement. O

APPENDIX C. PROOF OF LEMMA 4.3

We can assume y > 0. Tanaka’s formula [RY94] yields

SEALY() = BaCX, =)t — (=)~ Bal [ B(X)Lx.,09)
0

Hence, we get E,(LY(X)) < C uniformly in z, y. Using the occupation time formula
in the equality above and the previous uniform estimate, we obtain +E,(L¥(X)) <

(1-y)+ nyl E,(Lz2(X))dz < C(1—y). If y < 0, same arguments apply. O
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