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Abstract

In this paper, we study the nonemptiness and the shape of the exercise region of American
options written on several assets. Our contribution is threefold. First, we state an analytic
theorem which characterizes the nonemptiness of the exercise region. Second, we study a
particular class of payoff functions for which we explicitly identify the shape and the asymp-
totic behavior near maturity of the associated exercise region. Finally, we present additional
results which complement the Broadie and Detemple results concerning the valuation of
various types of American options on several assets.

Introduction

The study of American options written on several assets, also called Rainbow options by prac-
titioners, is doubly motivated. On the one hand, many contracts that are traded in financial
markets involve such options (index options or exchange options). On the other hand, American
Rainbow options contribute to enlarge the derivatives supply on the Over the Counter market.
From a theoretical point of view, Bensoussan [3] and Karatzas [10] established the connections
between American options and optimal stopping and the variational inequalities techniques of
Bensoussan-Lions [2] were applied to American option pricing by Jaillet-Lamberton-Lapeyre [9].
However, we had to wait until the paper of Broadie and Detemple (1996) [4] appeared to realize
how important it is to identify the exercise region (i.e the set of coincidence between the option’s
value and its intrinsic value) in order to have a better understanding of these contracts.
In the last few years, there has been much progress in the study of the exercise region of Amer-
ican options written on a single asset (see Kim [13], Jacka [8], Barles et al. [1] and Myneni
[17]). However, our perception of the structure of the exercise region in the multidimensional
case remains vague and conjectures based on the knowledge of the one dimensional case turn
out to be false (see [4]). The most striking examples are given by the call on the maximum or
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the minimum of two assets.
Hence, our goal is to clarify the results concerning the exercise region of American Rainbow
options. In the first section, we state a very general analytic theorem which characterizes the
nonemptiness of the exercise region thanks to the differential operator associated to the diffusion
model. In the second section, we study a particular class of payoff functions that are traded in
financial markets. For this class, we define the notion of critical surface for which we can extend
some results proved for the free boundary in the one dimensional case. Finally, we present ad-
ditional results which complement the Broadie and Detemple results concerning the valuation
of various types of American options on several assets.
In order to make our results more readable, we list below the various types of options that are
treated in the paper with references to the relevant statements:
- American call on the minimum of two assets (see section 2.2)
- American spread option and index option (see section 3)
- American call on the maximum and American put on the minimum of two assets, finite and
perpetual case (section 4).

1 American options on several assets

1.1 The model

We consider American options written on n underlying assets. In the multidimensional Black-
Scholes setting, the logarithm of the stock prices satisfies the following stochastic differential
equation

dXi
t = (r − δi −

1
2

n∑
j=1

σ2
ij)dt+

n∑
j=1

σijdW
j
t i = 1, . . . , n(1)

where, under the so-called risk neutral probability measure which will be denoted by P , W =
{Wt = (W 1

t , ..,W
n
t ),Ft, 0 ≤ t ≤ T} is a standard n-dimensional Brownian motion. We denote

by (Ft)0≤t≤T the augmented filtration of FW
t = σ(Ws; s ≤ t). The nonnegative constant r is the

interest rate, the nonnegative constant δi is the dividend rate of the asset i.
We assume that the matrix Σ = (σij)1≤i,j≤n is invertible.
The value of an American option with date of maturity T, defined by an adapted continuous
process (h(t))0≤t≤T satisfying E( sup

0≤t≤T
h(t)) < ∞, where h(t) is the payoff of the option when

exercise occurs at time t, is given by:

Vt = ertess sup
τ∈Tt,T

E(e−rτh(τ) | Ft)(2)

where Tt,T is the set of all Ft-stopping times with values in the interval [t, T ]. Recall that the
discounted value of an American option e−rtVt is the Snell envelope of the discounted payoff
process, namely the smallest supermartingale which dominates e−rth(t). We refer to Karatzas
[10], [11] and Myneni [17] for the basics of the modern theory of American option. We will
restrict our study to payoff processes given by h(t) = ψ(Xt) where ψ is a continuous nonnegative
function satisfying the following assumption:

(H1) ∃M ≥ 0 ∀x ∈ Rn ψ(x) +
n∑

i=1

| ∂ψ
∂xi

| ≤MeM‖x‖
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where ‖ . ‖ denotes the Euclidean norm in Rn.
We define for 0 ≤ s ≤ t ≤ T and x = (x1, . . . , xn) ∈ Rn,

(Xs,x
t )i = xi + (r − δi −

1
2

n∑
j=1

σ2
ij)(t− s) +

n∑
j=1

σij(W
j
t −W j

s ).(3)

Note that (Xs,x
t )i is a continuous version of the flow of equation (1). Due to the Markovian

properties of the model, it is well-known that the process Vt is given by a function C(t,Xt)
where

C(t, x) = sup
τ∈T0,T−t

E(e−rτψ(X0,x
τ ))

= E(e−rτ∗ψ(X0,x
τ∗ ))

where τ∗ = inf{u ∈ [0, T − t] | C(t+ u,X0,x
u ) = ψ(X0,x

u )}.
Recall that τ∗ is the smallest optimal stopping time (cf [10]). We deduce easily the following
properties of the value function C.

i) C(t, x) ≥ ψ(x) on [0, T [×Rn.

ii) ∀x ∈ Rn , C(T, x) = ψ(x).

iii) ∀x ∈ Rn , C(., x) is nonincreasing.

iv) C is continuous on [0, T ]×Rn.

1.2 Exercise region

We introduce the following set:

E = {(t, x) ∈ [0, T [×Rn | C(t, x) = ψ(x)}.

Clearly, it is never optimal to exercise prior to maturity out of E where the payoff due to the
option’s sale is greater than the one due to the exercise. Moreover, the smallest optimal stopping
times τ∗ satisfies

τ∗ = inf{u ≥ 0 | (t+ u,Xu) ∈ E} ∧ (T − t).

Definition 1.1 The coincidence set E is called the exercise region of the American option.

Define the t-sections for every t ∈ [0, T [ by

Et = {x ∈ Rn | C(t, x) = ψ(x)}.

Clearly, we have E =
⋃
t<T

{t} × Et.

Proposition 1.1 Assume ψ is a nonzero function.

i) E is closed in [0, T [×Rn.
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ii) The family (Et)0≤t≤T is nondecreasing.

iii) ∀t ∈ [0, T [ Et ⊂ O = {x ∈ Rn | ψ(x) > 0}.

Proof:
i) C and ψ are continuous, we have E = (C − ψ)−1(0).
ii) Let s < t and x ∈ Es, we have

C(t, x) ≤ C(s, x)

= ψ(x).

Thus, C(t, x) = ψ(x).
iii) Using the definition, we have

∀(t, x) ∈ [0, T [×Rn C(t, x) ≥E(e−r(T−t)ψ(X0,x
T−t)).

Since the volatility matrix Σ is invertible, the support of the distribution of X0,x
T−t is Rn. There-

fore, X0,x
T−t hits every nonempty open subset with positive probability and in particular O, so

that
∀(t, x) ∈ [0, T [×Rn, C(t, x) > 0.

If x ∈ Et then C(t, x) = ψ(x) > 0 thus x ∈ O. •

1.3 Variational inequalities and American options

We recall in this section the results implicitly shown in Jaillet-Lamberton-Lapeyre [9] because
they will be useful hereafter to characterize the exercise region.
Introduce the operator A defined by

AF =
1
2

n∑
i,j=1

aij
∂2F

∂xi∂xj
+

n∑
i=1

(r − δi −
1
2

n∑
j=1

σ2
ij)
∂F

∂xi
− rF

where the matrix A = (aij)1≤i,j≤n equals Σ∗Σ.

Proposition 1.2 Under assumption (H1), the price function C satisfies.
∂C

∂t
+AC ≤ 0 in the sense of distributions in the open set ]0, T [×Rn.

∂C

∂t
+AC = 0 in the open set {(t, x) ∈]0, T [×Rn | C > ψ}.

2 Characterization of the early optimal exercise

2.1 General results

The purpose of this section is to prove a theorem which gives an analytic criterion for the
nonemptiness of the exercise region. This criterion is easy to apply to a usual payoff function,
in particular we recover the Merton’s well-known result which states that the exercise region of
the American call on one nondividend-paying asset is empty. Before stating the main theorem,
we establish a preliminary result.
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Proposition 2.1 We have the following inequalities in the sense of distributions.

1) If a t-section Et has a nonempty interior then Aψ ≤ 0 in the open set
⋃
t<T

◦
E t.

2) Aψ ≥ 0 in the open set

(⋃
t<T

Et

)c

.

Proof:
1) Assume there exists t ∈ [0, T [ such that

◦
Et is nonempty. In the open set ]t, T [×

◦
Et , we have

C = ψ and
∂C

∂t
+AC ≤ 0 therefore Aψ ≤ 0 on

◦
Et.

2) Let ET =
⋃
t<T

Et and Λ = Ec
T . In the open set ]0, T [×Λ, C > ψ and therefore

∂C

∂t
+AC = 0

thanks to proposition 1.2. As the function C(., x) is nonincreasing, the distribution
∂C

∂t
is a

negative measure and thus
AC ≥ 0 on ]0, T [×Λ.

For a fixed time t, we define the distribution AC(t, .) on Λ by

∀θ ∈ C∞c (Λ) < AC(t, .), θ >=
∫
Λ
C(t, x)A∗θ(x) dx.

where the operator A∗ is defined by

A∗F = −
n∑

i=1

(r − δi −
1
2

n∑
j=1

σ2
ij)
∂F

∂xi
+

1
2

n∑
i,j=1

aij
∂2F

∂xi∂xj
− rF.

and C∞c (Λ) denotes the set of C∞ function with compact support in Λ. The distribution AC(t, .)
is positive on Λ for every t ∈ [0, T [. Since C is continuous, as t tends to T , < AC(t, .), θ > tends
to < AC(T, .), θ >=< Aψ, θ > for every θ ∈ C∞c (Λ) by the dominated convergence theorem.
Hence, Aψ ≥ 0.•
We are now in a position to state a theorem which characterizes the nonemptiness of the exercise
region. We will need the following lemma:

Lemma 2.1 If Aψ ≥ 0 (resp = 0) on Rn then the process
(
e−rtψ(Xt)

)
is a submartingale

(resp. martingale).

Proof of the lemma: We only show the caseAψ ≥ 0, since the caseAψ = 0 is a straightforward
application of Ito’s lemma. When, Aψ ≥ 0, the only difficulty comes from the possible lack of
regularity of ψ.
Introduce a mollifier sequence (ρj)j∈N :

- ρj ∈ C∞c (Rn) and ρj ≥ 0 for every j.

- suppρj ⊂ B(0, 1
j ) where B(0, 1

j ) stands for the ball of radius 1
j centred on 0.

-
∫

Rn
ρj(x) dx = 1.
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ψj = ρj ∗ ψ is a C∞ function which converges to ψ uniformly on every compact subset of Rn.
Moreover, Aψj = ρj ∗ Aψ is a positive function on Rn.
Indeed, for every φ ∈ C∞c (Rn), we have since A has constant coefficients

< Aψj , φ > = < Aψ, ρ̌j ∗ φ > where ρ̌j(x) = ρj(−x)
≥ 0.

Ito’s formula yields for t ≥ s

E
(
e−rtψj(Xt) | Fs

)
= e−rsψj(Xs) + E

(∫ t

s
e−ruAψj(Xu) du | Fs

)
≥ e−rsψj(Xs).

The righthand side tends to e−rsψ(Xs) when j tends to +∞. It remains to justify the convergence
of the lefthand side. We have

|e−rtψj(Xt)| ≤
∫

Rn
ρj(y)|ψ(Xt − y)| dy.

≤ M

∫
B(0, 1

j
)
ρj(y)e

M(|Xt|+ 1
j
)
dy.

≤ M ′eM(|Xt|).

We apply the dominated convergence theorem to conclude. •
We are now in a position to state the main result.

Theorem 2.1 The exercise region is empty if and only if Aψ is a nonzero positive measure on
Rn.

Proof:
a)necessary condition.
If the exercise region is empty, then we have Aψ ≥ 0 according to proposition 2.1.
Assume Aψ = 0 on Rn, then for every x ∈ Rn the process

(
e−rtψ(X0,x

t )
)

is a martingale thanks
to lemma 2.1. Therefore, using the definition of the Snell envelope and the optional sampling
theorem, we have C(t, x) = ψ(x) for every (t, x) ∈ [0, T ]×Rn, which contradicts the emptyness
of E .
b)sufficient condition.
Assume Aψ is a nonzero positive measure on Rn and Et 6= ∅ for some t ∈ [0, T [.
Let x ∈ Et, we have

C(t, x) = ψ(x) ≥ E
(
e−rτψ(X0,x

τ )
)

for every τ ∈ T0,T−t.

On the other hand, using lemma 2.1 and the optional sampling theorem we obtain

ψ(x) ≤ E
(
e−rτψ(X0,x

τ )
)

for every τ ∈ T0,T−t

therefore, the process e−ruψ(X0,x
u ) is a martingale. Using the characterization of the Snell

envelope as the minimal supermartingale which dominates the reward process, we have for
every u ∈ [0, T − t],

e−ruC(u,X0,x
u ) = e−ruψ(X0,x

u ) a.s.
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Thus, using the continuity of C(u, .) and ψ, we have C(u, y) = ψ(y) on ]0, T − t[×Rn. Thanks
to proposition 2.1, Aψ ≤ 0 on Rn hence Aψ = 0 on Rn, which is a contradiction.•

Remark 2.1 A referee wonder whether this theorem may be generalized to the case where r is
a deterministic function of time. I am afraid not without supplementary assumption because the

distribution
∂C

∂t
may fail to be negative.

Theorem 2.1 supplies a nice corollary for bounded payoff function.

Corollary 2.1 Assume r > 0.
The exercise region of an American option written on a bounded payoff ψ is nonempty.

Proof: According to lemma 2.1, if the exercise region is empty then the process e−rtψ(X0,x
t ) is

a submartingale for every x ∈ Rn. Hence,

∀x ∈ Rn ψ(x) ≤ Ee−rTψ(X0,x
T ) ≤‖ ψ ‖∞ e−rT

therefore, ‖ ψ ‖∞≤‖ ψ ‖∞ e−rT , which is a contradiction.•

Remark 2.2 This corollary is of interest if ψ does not reach its bounds. Otherwise, we have,
for every x0 such that ψ(x0) =‖ ψ ‖∞, ψ(x0) = C(t, x0).

Remark 2.3 As a referee pointed out, the American digital option defined by the indicator
function of Borel set with nonzero Lebesgue measure, say 1A, provides a nice example. By
applying the previous remark, it is straightforward to show that the exercise region of the digital
option coincides with A.

Remark 2.4 We recover the Merton’s result on the exercise region of a call option on one
nondividend-paying asset. Indeed, an easy computation yields

Aψ = rK1{ex>K} +
σ2K2

2
δlog K

where δK stands for the Dirac measure. It is clear that Aψ is a nonzero positive measure on
Rn.

We characterized the nonemptiness of the exercise region thanks to the distribution Aψ onRn.

We would like a local characterization (i.e does the distribution Aψ on some open subset U of
Rn inform us on the early exercise on U?). Under some regularity conditions, we state a local
version of theorem 2.1.

Proposition 2.2 Assume that the distribution Aψ is a positive measure on a connected open
subset U of Rn, that ψ is a C2 function on an open subset V of U and Aψ(x) > 0 for all x ∈ V.
Then for every (t, x) ∈]0, T [×U, C(t, x) > ψ(x).
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Proof: Let ψj = ρj ∗ ψ where (ρj)j∈N is a mollifier sequence.
Let x ∈ U and U1 an open connected subset of U containing x such that V ⊂ U1 ⊂ U1 ⊂ U .
For j large enough, we have Aψj ≥ 0 on U1. Indeed, for every φ ∈ C∞c (U1), we have

< Aψj , φ > = < ρj ∗ Aψ, φ >
= < Aψ, ρ̌j ∗ φ > .

We know that supp(ρ̌j ∗ φ) ⊂ suppρ̌j + suppφ ⊂ suppρ̌j + U1 ⊂ U for j great enough.
We introduce the following stopping time,

τ1 = inf{t ≥ 0;Xx
t /∈ U1}

Applying Ito’s formula to the process e−rtψj(X
0,x
t ) , we have

E
[
e−r(τ1∧(T−t)ψj(X

0,x
τ1∧(T−t))

]
= ψj(x) + E

∫ τ1∧(T−t)

0
e−rsAψj(X0,x

s ) ds

≥ ψj(x) + E

∫ τ1∧(T−t)

0
e−rsAψj(X0,x

s )1
(X0,x

s ∈V )
ds.

where the last inequality follows from Aψj ≥ 0 on U1.
As j tends to +∞., Aψj converges uniformly to Aψ on V. Therefore, we have

C(t, x) ≥ E
[
e−r(τ1∧(T−t)ψ(X0,x

τ1∧(T−t))
]

≥ ψ(x) + E

∫ τ1∧(T−t)

0
e−rsAψ(X0,x

s )1
(X0,x

s ∈V )
ds

> ψ(x).

It remains to check that P (∃s ≤ τ1 ∧ (T − t);X0,x
s ∈ V ) > 0. As the matrix Σ is invertible,

the support of the distribution of the process (ΣWt)t≤0 is C0([0, T ];Rn) and therefore, applying
Girsanov’s theorem, the support of the distribution of X0,x

t is the set of all continuous functions
from [0, T ] with values in Rn starting at x. •

2.2 Application: American call on the minimum of two assets

In this subsection, we highlight the exercise region of American call written on the minimum
of two nondividend-paying assets. Therefore, we have n = 2, δ1 = δ2 = 0. Define the payoff by
ψm(x) = (min(ex1 , ex2)−K)+and denote by Cm the value function of this American call. Our
knowledge of the one dimensional case made us think that it is not optimal to exercise a call
written on nondividend-paying assets prior maturity. Yet, we obtain the following nonintuitive
result:

Proposition 2.3 The exercise region of Cm is nonempty and its t-sections are carried by the
line {x2 = x1}.
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Proof: A simple computation yields

Aψm = −1
2
(a11 − 2a12 + a22)(ex1)2σ + rK1x1 6=x2 .

where σ is the Lebesgue measure on the line {x1 = x2}. We note that Aψm is not a positive
measure onR2 but satisfies Aψm > 0 out of the bisecting line. Theorem 2.1 and proposition 2.2
allow us to conclude. •
We end this application by a more precise description of the t-sections Em(t) of the exercise
region of the American call on the minimum of two assets.

Proposition 2.4 There exists a nonincreasing continuous function b : [0, T [→ R+ satisfying
lim
t→T

b(t) = logK such that

Em(t) = {(x, x) ∈ R2 | x ∈ [b(t),+∞[}.

Proof: The convexity of the function x → Cm(t, x, x) yields immediately that the t-sections
are intervals. In order to show that Em(t) is of the form stated in the proposition, it suffices to
check that Em(0) is an unbounded interval of the line {x2 = x1}, since the family (Em(t))0≤t<T

is nondecreasing, which is equivalent by changing the date of maturity to prove that Em(ε) is an
unbounded interval for every ε > 0.
Suppose there exists ε > 0 and a date T such that

Em(ε) = {(y, y) ∈ R2 | y ∈ [m(ε), s(ε)]}.

Choose x > s(ε) and note

τ∗x = inf{t ≥ 0 | Cm(t, (X0,x
t )1, (X

0,x
t )2) = min(e(X

0,x
t )1 , e(X

0,x
t )2)−K}.

We have,

Cm(0, x, x) = E

[
e−rτ∗x (min(e

(X0,x

τ∗x
)1
, e

(X0,x

τ∗x
)2)−K)+

]
≤ exE

(
min(M1

τ∗x
,M2

τ∗x
)
)

where M i
t = eσi1W 1

t +σi2W 2
t −

σ2
i1

+σ2
i2

2
t

= ex
(
E(M1

τ∗x
)− E(M1

τ∗x
−M2

τ∗x
)+
)

= ex
(
1− E(M1

τ∗x
−M2

τ∗x
)+
)

= ex
(
1− E

[
(M1

τ∗x
−M2

τ∗x
)+1{τ∗x=T}

])
since M1

τ∗x
= M2

τ∗x
sur {τ∗x < T}.

We will show that E
[
(M1

τ∗x
−M2

τ∗x
)+1{τ∗x=T}

]
is uniformly bounded below for x large enough.

We introduce a continuous function f : [0, T ] →]0,+∞[2 such that f(0) = (1, 1) and
f1(t) > f2(t) for every t ∈]0, T ].
Let δ ∈]0, 1

2 [. By continuity of f , there exists η ∈]0, ε[ such that

∀t ∈ [0, η] ‖ f(t)− (1, 1) ‖< δ and ∀t ∈ [η, T ] f1(t)− f2(t) > α, with α > 0.
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Set Aδ = { sup
t∈[0,T ]

‖Mt− f(t) ‖< δ ∧ α
4 }. Since the matrix Σ is invertible, we have P (Aδ) > 0 for

every δ > 0. On Aδ, we have

∀t ∈ [η, T ] M1
t −M2

t > f1(t)− f2(t)− 2 ‖Mt − f(t) ‖> α

2
.

For t ∈ [0, η], we have

‖ ex.Mt − (ex, ex) ‖ ≤ ex (‖Mt − f(t) ‖ + ‖ f(t)− (1, 1) ‖)
≤ 2δex.

Now, we choose x large enough to have 2δex < ex−s(ε). Then, on Aδ, τ
∗
x = T and M1

τ∗x
> M2

τ∗x
.

Thus,

E
[
(M1

τ∗x
−M2

τ∗x
)+1τ∗x=T

]
≥ E

[
(M1

τ∗x
−M2

τ∗x
)+1Aδ

]
= E

[
(M1

T −M2
T )+1Aδ

]
= g(δ) > 0.

Thus, Cm(0, x, x) ≤ ex(1− g(δ)) < ex −K for ex great enough, which yields a contradiction.
At this stage, we have proved that for every t, we have

Em(t) = {(x, x) ∈ R2 | x ∈ [b(t),+∞[}.

It remains to check that b is a continuous function satisfying lim
t→T

b(t) = logK. These two

assertions are involving the same ideas. We only show the second one.
Clearly, b is a nonincreasing function bounded below by logK since ψ(logK, logK) = 0 . Hence,
b admits a limit as t→ T which will be denoted by b(T ). Assume b(T ) > logK.
In the open set ]0, T [×U where U = {(x, y) ∈ R2 | logK < x < b(T ) and x − log K

2 < y <

x+ log K
2 }, we have Cm > ψm and thus proceeding analogously to the proposition 2.1 Aψm ≥ 0

on U. But the explicit formula of Aψm given by the proposition 2.3 yields a contradiction.•

3 A particular class of payoffs

Before going further, we review some well-known results for the critical stock-price of an Amer-
ican call written on a single dividend-paying asset. Let b : t→ b(t) be the exercise boundary for
such a call. It is well-known that b is continuous, decreasing in time (see Kim [13], Jacka[8]) and
even smooth on [0, T [ (see Friedman [6]). Moreover, Kim showed that lim

t→T
b(t) = max(K, rK

δ ).

Our goal is to derive some similar results for the immediate exercise boundary of particular
American Rainbow options.
Throughout this section, we denote log x = (log x1, . . . , log xn) and for any function defined on
Rn, we define φ̃(x) = φ(log x) for x ∈]0,+∞[n

Now, we focus on the exercise region as subset of ]0, T [×]0,+∞[n.
Hence, define

Ẽ = {(t, x) ∈]0, T [×]0,∞[n; C̃(x) = ψ̃(x)}
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and its t-sections
Ẽt = {x ∈]0,∞[n; (t, x) ∈ Ẽ}

Now we introduce the class B of payoffs ψ defined on Rn by ψ(x) =

(
n∑

i=1

αie
xi −K

)
+

for

(α1, . . . , αn) ∈ Rn and K > 0

Remark 3.1 1- We suppose that there exists at least an integer i such that αi > 0 in order to
have a nonzero payoff. Moreover, we assume that αi 6= 0 for every integer i.
2-Clearly, the function x→ ψ(log x) is convex.
3-The class B provides many examples of contracts that are traded in financial markets like index
options, spread options (see the introductory part of [4]).

3.1 Nonemptiness of the exercise region and first properties

We introduce the operator Ã in the following way:

Ãψ̃(x) = (Aψ)(log x).

Note that ÃF = 1
2

n∑
i,j=1

aijxixj
∂2F

∂xi∂xj
+

n∑
i=1

(r − δi)xi
∂F

∂xi
− rF

Theorem 2.1 and proposition 2.2 have a new formulation for the operator Ã. We have
1) Ẽ = ∅ if and only if Ãψ̃(x) is a nonzero positive measure on ]0,+∞[n.
2) If there is a connected open subset U of ]0,∞[n such that Ãψ̃(x) ≥ 0 on U and if ψ̃(x) is a
C2 function on an open subset V of U with Ãψ̃(x) > 0 on V then

∀(t, x) ∈ [0, T [×U, C(t, log x) > ψ(log x).

For ψ belonging to B, we remark that ψ̃(x) is a B2 function on the open set

Õ = {x ∈]0,∞[n;
n∑

i=1

αixi > K}.

Moreover, Ãψ̃(x) = rK −
n∑

i=1

δiαixi for x ∈ Õ. Then, we have the following characterization

theorem:

Theorem 3.1 The exercise region of an American option written on payoff belonging to B is
empty if and only if for every integer i, δiαi ≤ 0.

Proof: Assume Ẽ = ∅. According to the theorem 2.1, Ãψ̃(x) is a positive measure on ]0,+∞[n

and in particular on Õ. Now, Ãψ̃(x) = rK−
∑n

i=1 δiαixi on Õ, which implies δiαi ≤ 0 for every
i.
On the other hand, the condition δiαi ≤ 0 for every i implies Ãψ̃(x) ≥ 0 on Õ and Ãψ̃(x) >
0 on a subset of Õ. According to proposition 2.2, Õ ⊂ Ec

t for every t. Proposition 1.1 allows us
to conclude.•
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Remark 3.2 This theorem supplies a very simple characterization of the nonemptiness of the
exercise region and allows us to give some examples of options for which early exercise occurs.

Examples
1) American spread call is defined by the payoff function

ψ̃(x1, x2) = (x2 − x1 −K)+.

According to the previous results, if the asset two does not pay dividends, early exercise is never
optimal.
2) American option on the Standard and Poor 100 index are options on the arithmetic average
of the values of 100 assets. It may be modeled by

ψ̃(x) =

(
n∑

i=1

pi

p
xi −K

)
+

with p =
n∑

i=1

pi

where pi is the number of shares of asset i. Exercise prior to maturity is optimal if and only if
at least one of the assets making up the index pays dividends.

Remark 3.3 1- We focus on exercise regions of American calls because the exercise region of
an American put is never empty (see corollary 2.1).
2- However, the next properties of exercise region of American options written on payoffs be-
longing to B may be proved in the same way for American puts written on payoffs ψ such that

ψ(x) =

(
K −

n∑
i=1

αie
xi

)
+

.

3.2 Topological features of the t-sections Ẽt

In this section, we assume that ψ ∈ B and there is one integer i such that δiαi > 0.

Proposition 3.1 The t-sections Ẽt satisfy the following assertions.

i) ∀t ∈ [0, T [ Ẽt is a closed convex subset of ]0,+∞[n.

ii) ∀t ∈ [0, T [ Ẽt has a nonempty interior .

Proof: Assertion i) follows from Broadie-Detemple [4]. For assertion ii), we first show that Ẽ0 is
nonempty. It suffices to check that Ẽη 6= ∅ for every η > 0. Indeed, the section Ẽ0 for an option
with maturity T coincides with the section Ẽη of an option with maturity T + η.
Suppose there exists some η > 0 such that Eη is empty. Introduce the stopping time:

τ∗x = inf{t ≥ 0;C(t,X log x
t ) = ψ(X log x

t )}

The assumption Eη = ∅ implies τ∗x ≥ η a.s. But, according to the optimal stopping theory, we
have,

C(0, log x) = E

e−rτ∗x

(
n∑

i=1

αixie
(r−δi− 1

2

∑n

j=1
σ2

ij)τ
∗
x+
∑n

j=1
σijW j

τ∗x
) −K

)
+


12



≤ E

[∑
i∈I

αixie
(−δi− 1

2

∑n

j=1
σ2

ij)τ
∗
x+
∑n

j=1
σijW j

τ∗x
)

]
≤

∑
i∈I

αixie
−δiη.

where I = {i ∈ (1, . . . , n);αi > 0}.
As there exists i0 ∈ I such that δi0 > 0, it suffices to fix (x1, . . . , xi0−1, xi0+1, . . . , xn) and let
xi0 tend to +∞ to obtain

C(0, log x) <

(
n∑

i=1

αixi −K

)
+

which is a contradiction.
Now, we prove that the t-sections have nonempty interior. Introduce the following notation

xλ,i = (x1, . . . , xi−1, λxi, xi+1, . . . , xn)

Let x ∈ Ẽt. We have, see [4] for details,

i) xλ,i ∈ Ẽt for i ∈ I, for λ > 1

ii) xλ,i ∈ Ẽt for i /∈ I, for λ ∈]0, 1[

Hence, Ẽt contains the open set
∏
i∈I

]xi,+∞[×
∏
i/∈I

]0, xi[.

3.3 Regularity of the t-sections

In this section, we define the t-sections by

Ẽt = {x ∈ [0,∞[n | C̃(t, x) = ψ̃(x)}.

Now, the t-sections are closed set of [0,∞[n.
The family (Ẽt)0≤t≤T is nondecreasing according to proposition 1.1. For payoff functions be-
longing to B, we shall prove the following regularity property of the family

(
Ẽt

)
, which can be

viewed as an analogue of the continuity in time of the free boundary in one dimension.

Proposition 3.2 The family (Ẽt)0≤t≤T satisfies

1) Ẽt =
⋂
u>t

Ẽu for every t .

2) Ẽt =
⋃
s<t

Ẽs for every t .

Proof: 1) Let x ∈
⋂
u>t

Ẽu, we have

0 ≤ C(t, log x)− ψ(log x)

= C(t, log x)− C(u, log x) for every u > t.

13



Using the continuity of C, we let u tend to t to conclude that x belongs to Ẽt.
The converse inclusion is straightforward.
2) We have

⋃
s<t

Ẽs ⊂ Ẽt. Assume this inclusion is strict and set

Φ =

(⋃
s<t

Ẽs

)c

we have Φ∩ Ẽt 6= ∅. Since, Ẽt is a closed convex set with nonempty interior for every t, we have

Ẽt =
◦
Ẽt. Then, we deduce that Φ∩

◦
Ẽ t is nonempty. Indeed, if x ∈ Φ ∩ Ẽt then there exists some

ρ > 0 such that B(x, ρ) ⊂ Φ and B(x, ρ)∩
◦
Ẽ t 6= ∅.

Hence, in the open set ]0, t[×(Φ∩
◦
Ẽ t), C̃(s, x) > ˜ψ(x) and thus proceeding analogously as in the

proof of proposition 1.2, we deduce

ÃC̃(u, .) ≥ 0 on Φ∩
◦
Ẽu .

But, ÃC̃(u, .) = Ãψ̃ ≤ 0 in this open set. Therefore, Ãψ̃ = 0 on Φ∩
◦
Ẽu. But for ψ ∈ B, we have

Ãψ̃(x) = rK −
n∑

i=1

δiαixi on Õ and thus cannot be identically zero in a nonempty open set. •

Remark 3.4 The assumption ψ ∈ B was used in the proof of the second assertion only.

We end this section by the study of the asymptotic behavior of the exercise region near the
date of maturity. Before stating the main theorem, we show preliminary results concerning the
optimal exercise of American options written on payoffs belonging to B.

3.4 Behavior of the exercise region near maturity

The purpose of this section is to identify the exercise region near maturity. For payoff functions
belonging to B, we state the following theorem which characterizes the shape of the exercise
region near maturity and can be viewed as the multidimensional version of Kim’s result.

Theorem 3.2 Assume there is some integer i such that δiαi > 0. We have

⋃
t<T

Ẽt =

{
x ∈]0,+∞[n |

n∑
i=1

αixi −K > 0 and rK −
n∑

i=1

δiαixi < 0

}
.

Before proceeding further in the proof of this theorem, we establish some preliminary results.

In the open set Õ = {x ∈ (]0,+∞[)n |
n∑

i=1

αixi > K}, we point out the vector which belongs to

the affine hyperplan H = {x ∈ (]0,+∞[)n | rK −
n∑

i=1

δiαixi = 0}.

We shall prove that the t-sections do not intersect H. The proof requires the following proba-
bilistic lemma.

14



Lemma 3.1 Let W = (W 1
t , . . . ,W

n
t ) be a standard n-dimensional (Ft)-Brownian motion.

Let θ be a positive number, U an open subset of Rn containing the origin and g a C2 function
on [0, θ]× U with bounded first and second derivatives satisfying:

- g(0; 0) = 0

-
−→
grad g(0; 0) 6= 0.

Then, there exists a stopping time τ in T0,θ satisfying τ ≤ τU where τU = inf{t ≥ 0 | Wt /∈ U}
such that E

∫ τ

0
g(s;Ws) ds > 0.

Proof: Let u1 =

−→
grad g(0; 0)

‖
−→

grad g(0; 0) ‖
.

We construct an orthonormal basis (u1, . . . , un) and we note Bt = (B1
t , . . . , B

n
t ) the coordinates

of W in this new basis. (Bt)t≥0 is still a standard n-dimensional (Ft)-Brownian motion (see
[12]).
We fix 3 positive real numbers a, b, λ such that max(a, b) < λ.
Introduce the following stopping times:

τa,b = inf{s ≥ 0| B1
s /∈ [−a, b]}

τλ = inf{s ≥ 0|

 n∑
j=2

(Bj
t )

2

 1
2

> λ}.

Finally, we suppose that λ is such that

{(x1, . . . , xn) | x1 ∈ [−a, b] and
n∑

j=2

(xj)2 ≤ λ} ⊂ U.

Applying Taylor’s formula,

E

∫ τa,b∧τλ∧θ

0
g(s;Ws) ds = E

∫ τab∧τa,b∧θ

0

( −→
grad g(0; 0).Ws +

∂g

∂s
(0; 0)s+R(s;Ws)

)
ds

hence

E

∫ τa,b∧τλ∧θ

0
g(s;Ws) ds = E

∫ τa,b∧τλ∧θ

0

(
‖
−→

grad g(0; 0) ‖ .B1
s +

∂g

∂s
(0; 0)s+R(s;Ws)

)
ds.

But the assumptions on g imply for s ≤ τU

| R(s;Ws) |≤ C sup
[0,θ]×U

‖ g”(t, x) ‖
(
s2+ ‖Ws ‖2

)
.

For s ≤ τa,b∧ τλ∧ θ , we have ‖Ws ‖2≤ 2λ2 and using the fact that τλ has the same distribution
as λ2τ1 (scaling property of Brownian motion), we have

E

∫ τa,b∧τλ∧θ

0
| R(s;Ws) | ds ≤ C(λ6 + λ4)E(τ1).

15



On the other hand,

E

∫ τa,b∧τλ∧θ

0
| ∂g
∂s

(0; 0)s | ds ≤ CE(τλ)2 ≤ Cλ4E(τ1).

When λ tends to 0, we have

E

∫ τa,b∧τλ∧θ

0
g(s;Ws) ds =‖

−→
grad g(0; 0) ‖ E

∫ τa,b∧τλ∧θ

0
B1

s ds+O(λ4)

but applying the Ito’s formula, we have

E

∫ τa,b

0
B1

s ds =
2
3
E(B1

τa,b
)3 =

2
3
ab(b− a)

therefore

E

∫ τa,b∧τλ∧θ

0
B1

s ds =
2
3
ab(b− a)− E

∫ τa,b

τa,b∧τλ∧θ
B1

s ds.

Then, we choose a = a0λ
1+ε and b = b0λ

1+ε with ε > 0∣∣∣∣∣E
∫ τa,b

τa,b∧τλ∧θ
B1

s ds

∣∣∣∣∣ ≤ λ1+ε max(a0, b0)E(τa,b1{τa,b≥τλ∧θ})

≤ λ3+3ε max(a0, b0)E(τa0b01{λ2+2ετa0b0
≥(λ2τ1)∧θ})

where, the second inequality follows from the scaling property of Brownian motion. Since
τa0b0 = inf{t ≥ 0| B1

t /∈ [−a0, b0]} is integrable, E(τa0b01{λ2+2ετa0b0
≥(λ2τ1)∧θ}) converges to 0

when λ tends to 0 by dominated convergence.
Hence,

E

∫ τa,b∧τλ∧θ

0
g(s;Ws) ds =‖

−→
grad g(0; 0) ‖ λ3+3εa0b0(b0 − a0) + o(λ3+3ε).

It suffices to choose b0 > a0 and λ small enough to conclude that τ = τa,b ∧ τλ ∧ θ satisfies the
desired property.•

Proposition 3.3 For (t, x) in the open set [0, T [×(H ∩ Õ), we have

C̃(t, x) > ψ̃(x).

Proof: We set St = eXt for every t
Let τo = inf{t ≥ 0;S0,x

t /∈ Õ}.
For x ∈ H ∩ Õ, we have for every τ ≤ τo ∧ (T − t),

C̃(t, x) ≥ E
(
e−rτ ψ̃(S0,x

τ )
)

= ψ̃(x) + E

∫ τ

0
e−rs(rK −

n∑
i=1

δiαixie
(r−δi− 1

2

∑n

j=1
σ2

ij)s+
∑n

j=1
σijW j

s )
ds

= ψ̃(x) + E

∫ τ

0
g(s;Ws) ds.
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where g(s; y) = e−rs(rK −
∑n

i=1 δiαixie
(r−δi− 1

2

∑n

j=1
σ2

ij)s+
∑n

j=1
σijyj)).

g(0; 0) = 0 since x ∈ H ∩ Õ and
∂g

∂xi
(0; 0) =

∑n
j=1 σijδjαjxj 6= 0 for at least one integer i.

Otherwise, as the matrix Σ is invertible, the vector with components δjαjxj would equal zero,
which yields a contradiction since x ∈ H.
Applying lemma 3.1, there exists a stopping time τ∗ ∈ T0,T−t ∧ τo such that

E

∫ τ∗

0
g(s;Ws) ds > 0

which proves the desired inequality. •
Now, we are in a position to prove theorem 3.2.
Proof of theorem 3.2: Set

∆ =

{
x ∈]0,+∞[n |

n∑
i=1

αixi −K > 0 and rK −
n∑

i=1

δiαixi < 0

}
.

We first show the inclusion
⋃
t<T

Ẽt ⊂ ∆.

Let x ∈
⋃
t<T

Ẽt.

According to the proposition 1.1 iii), ψ(log x) =
∑n

i=1 αixi −K > 0.
In the open set Õ we have Ãψ̃(x) = rK −

∑n
i=1 δiαixi.

It follows from proposition 2.2 that Ãψ̃(x) ≤ 0. Moreover, if Ãψ̃(x) = 0, x ∈ Õ ∩H and then
x /∈

⋃
t<T

Ẽt according to proposition 3.3. Hence, x ∈ ∆. To show the converse inclusion, we use

the following elementary result of convex analysis (see Webster [21]).

Lemma 3.2 Let K be a convex subset of Rn with nonempty interior. We have
◦
K⊂ K.

Let x ∈ ∆. As ∆ is open, there is a ball B(x, ρ) within ∆ and thus rK −
∑n

i=1 δiαixi < 0 on
this ball. According to proposition 2.1, B(x, ρ) ⊂

⋃
t<T

Ẽt. Therefore, x belongs to the interior of⋃
t<T

Ẽt. But, K =
⋃
t<T

Ẽt is convex as an increasing union of convex sets. We conclude thanks to

lemma 3.2. •

3.5 Application: American spread option

We consider an American spread option which is a contingent claim on two underlying assets
(S1

t , S
2
t ) that has the payoff upon exercise ψ̃(S1

t , S
2
t ) = (S1

t − S2
t −K)+.

Let Cs(t, S1
t , S

2
t ) denote the value of the spread option at time t with

Cs(t, x1, x2) = sup
τ∈T0,T−t

E
[
e−rτ (S2,x2

τ − S1,x1
τ −K)+

]

where Si,x
t = xe

(r−δi− 1
2

∑2

j=1
σ2

ij)t+
∑2

j=1
σijW j

t . We note that
i) Cs(., x1, x2) is nonincreasing in time for every (x1, x2) ∈]0,∞[2.
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ii) Cs(t, .) is nonincreasing (resp nondecreasing) in x1 (resp in x2 ) for every t.
In the open set {(x1, x2) ∈]0,∞[2 | x2 − x1 −K > 0} ψ̃ is a C2 function and Ãψ̃(x1, x2) =
δ1x1 − δ2x2 + rK.
The condition δ2 > 0 is necessary and sufficient to ensure the nonemptiness of the exercise
region, according to theorem 3.1.
Assume this condition holds. We then define the critical surface of the American option on
spread by:

b∗2(t, x1) = inf{x2 > x1 +K | Cs(t, x1, x2) = x2 − x1 −K}.

At a fixed time t , we have
Ẽt =

⋃
x1>0

[b∗2(t, x1),+∞[.

We deduce from the previous section the following proposition:

Proposition 3.4 The critical surface satisfies

1) b∗2(., x1) is continuous on [0, T [ for every x1.

2) b∗2(t, .) is convex on ]0,+∞[.

3) lim
t→T

b∗2(t, x1) = max(x1 +K, δ1
δ2
x1 + rK

δ2
).

Proof: 1) The regularity of the t-sections implies the continuity of the critical surface b∗2(., x1)
on [0, T [ for every x1.
2)The convexity of Ẽt implies that of b∗2(t, .).
3) lim

t→T
b∗2(t, x1) = max(x1 +K, δ1

δ2
x1 + rK

δ2
) follows from the asymptotic behavior of the t-sections

near maturity. •

4 American options on the maximum, minimum of two assets

We consider now American options written on convex payoff functions which do not belong to
B but that are of interest in practice: the American call on the maximum of two assets and the
American put on the minimum of two assets.
Hereafter, we denote µi = r − δi −

σ2
i1
2 − σ2

i2
2 .

Let ψM (x1, x2) = (max(x1, x2)−K)+ and ψm(x1, x2) = (K−min(x1, x2))+. The value function
of the associated American option is given by

CM (t, x1, x2) = sup
τ∈T0,T−t

Ee−rτ (max(S1,x1
τ , S2,x2

τ )−K)+

and
Pm(t, x1, x2) = sup

τ∈T0,T−t

E
(
e−rτ (K −min(S1,x1

τ , S2,x2
τ ))+

)
.
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4.1 Nonconvexity of the exercise region

This two options offer a nice example of options written on a convex payoff function with t-
sections that are not convex set (see Broadie and Detemple [4]).
The next proposition will complement a result of Broadie and Detemple. Before going further,
we recall a useful elementary lemma.

Lemma 4.1 Let g, h be two integrable random variable such that
1- E(g) = E(h) = 0
2- P (g 6= h) > 0
Then E(max(g, h)) > 0.

Proposition 4.1 For every fixed t, there is an open cone Γ containing the bissecting line with
aperture depending on t such that for every (x1, x2) belonging to Γ we have:

CM (t, x1, x2) > max(x1, x2)−K

and
Pm(t, x1, x2) > K −min(x1, x2).

Proof: We only show the proposition for the call at t = 0.

∀t ≥ 0 CM (0, x, x) ≥ Ee−rt(max
(
xeµ1t+σ11W 1

t +σ12W 2
t , xeµ2t+σ2,1W 1

t +σ2,2W 2
t

)
−K)+.

For t close enough to 0, we have

CM (0, x, x) ≥ xE
(
1 + max(σ1,1W

1
t + σ1,2W

2
t , σ21W

1
t + σ2,2W

2
t ) + f(t,W 1

t ,W
2
t )
)
−K

with

f(t, y1, y2) = max
(
eµ1t+σ11y1+σ12y2 , eµ2t+σ2,1y1+σ2,2y2

)
− 1−max(σ1,1y1 + σ1,2y2, σ2,1y1 + σ2,2y2).

But, W i
t has the same distribution as

√
tW i

1 hence

CM (0, x, x) ≥ xE(1 +
√
tmax(σ1,1g1 + σ1,2g2, σ21g1 + σ22g2) + f(t,W 1

t ,W
2
t ))−K.

where g1, g2 are standard normal random variables.
Using, | ey − 1− y |≤ y2

2 e
|y|

with y = max(µ1t+ σ1,1W
1
t + σ1,2W

2
t , µ2t+ σ21W

1
t + σ2,2W

2
t ) , we obtain

|f(t,W 1
t ,W

2
t )| ≤ y2

2
e|y| + |y −max(σ1,1W

1
t + σ1,2W

2
t , σ2,1W

1
t + σ2,2W

2
t )|

≤ y2

2
e|y| + rt.

Hence,
E|f(t,W 1

t ,W
2
t )| ≤ Ct
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Set for i=1,2 hi = σi,1g1 + σi,2g2. We have

CM (0, x, x) ≥ x−K + x
√
t (E(max(h1, h2)) + o(1))

Using lemma 4.1, we may choose t such that o(1) > −1
2E(max(h1, h2)).

Hence,

CM (0, x, x) > x−K +
x
√
t

2
E(max(h1, h2)).

Set α(t) =
√

t
2 E(max(h1, h2)).

for every x > 0 and h ∈]0, α(t)[
CM (0, (1 + h)x, x) > (1 + h)x−K et CM (0, x, (1 + h)x) > (1 + h)x−K. •
Using the notation of Broadie and Detemple [4], we define for a fixed time t in [0, T [ the following
subsets:

E i,M
t = EM

t ∩ {xi = max(x1, x2)}

where EM
t = {(x1, x2) | CM (t, x1, x2) = max(x1, x2)−K} According to proposition 4.1, we have

EM
t = E1,M

t ∪ E2,M
t . In the open set {(x1, x2) ∈ (]0,+∞[)2/x1 > max(x2,K)}, we have

ÃψM (x1, x2) = rK − δ1x1.

According to theorem 3.1, we have E i,M
t = ∅ if and only if δi = 0. Moreover, Broadie and

Detemple proved that E i,M
t (i = 1, 2) are closed convex subsets with nonempty interiors, hence

we may state the next proposition which identify the shape of E i
t near maturity.

Proposition 4.2 We have⋃
t<T

E1,M
t = {(x1, x2) ∈]0,+∞[2 | x1 > max(x2,K) and rK − δ1x1 < 0}

Proof: It suffices to proceed analogously from theorem 3.2.•
Similar results can be derived for the exercise region of the American put on the minimum of two
assets. Define Em

t = {(x1, x2) | Pm(t, x1, x2) = K−min(x1, x2)}. According to corollary 2.1 and
proposition 4.1, we know that Em

t is nonempty for every t and Em
t = E1,m

t ∪ E2,m
t where E i,m

t =
Em

t ∩ {xi = min(x1, x2)}. We may identify the shape of E i,m
t near maturity.

Proposition 4.3 We have⋃
t<T

E1,m
t = {(x1, x2) ∈]0,+∞[2 | x1 < min(x2,K) and δ1x1 − rK < 0}.

4.2 Perpetual American call on the maximum of two assets

This section is devoted to the study of the asymptotic behavior of the t-sections for large values
of underlying assets. We are now interested in the perpetual case because the results that we
present carry over the case of option with finite maturity. Let

C∞
M (x1, x2) = sup

τ∈T0,∞

Ee−rτ (max(S1,x1
τ , S2,x2

τ )−K)+
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be the value function of the perpetual American call on the maximum of two assets.
As usual, define the exercise region by

EM = {(x1, x2) ∈]0,∞[2/C∞
M (x1, x2) = max(x1, x2)−K}

and
E i

M = {(x1, x2) ∈ EM | xi = max(x1, x2)−K} .

The inequality CM (t, x1, x2) ≤ C∞
M (x1, x2) and the proposition 4.2 implies

EM = E1
M ∪ E2

M .

We are looking for a condition that ensures the nonemptiness of E i
M .

Proposition 4.4 E i
M is nonempty if and only if δi > 0 .

Proof: If E i
M 6= ∅ then E i

t is nonempty. According to theorem 3.1, we have δi > 0. To establish
the converse assertion, we assume δ1 > 0 and introduce the value function of a perpetual
American call on the asset 1 and the one of the perpetual exchange option.

C∞(x1,K, r, δ1) = sup
τ∈T0,∞

E
(
e−rτ (x1e

µ1τ+σ11W 1
τ +σ12W 2

τ −K)+
)
.

and

C∞
e (x1, x2,K, r, δ1) = sup

τ∈T0,∞

E
(
e−rτ (x1e

µ1τ+σ11W 1
τ +σ12W 2

τ − x2e
µ2τ+σ21W 1

τ +σ22W 2
τ

)
.

When δ1 > 0, there is a critical stock-price s1(K) > K such that

∀x1 ≥ s1(K) C∞(x1,K, r, δ1) = x1 −K.

Moreover, we can define

β∗ = inf{β ≥ 0 | ∀x1 ≥ βx2 C∞
e (x1, x2,K, r, δ1) = x1 − x2}.

Remark 4.1 Gerber and Shiu have shown that β∗ is finite when δ1 > 0.

Note the inequality,

(max(x, y)−K)+ = ((y − x)+ + x−K)+

≤
(

1
2
(y − 2x)+ +

1
2
(y − 2K) + x

)
+

≤ 1
2
(y − 2x)+ +

1
2
(y − 2K)+ + x.

Hence,

C∞
M (x1, x2) ≤

1
2
C∞

e (x1, 2x2,K, r, δ1, δ2) +
1
2
C∞(x1, 2K, r, δ1) + x2

We choose x2 ≥ s1(2K) and x1 ≥ 2β∗x2 to obtain

C∞
M (x1, x2) = max(x1, x2)−K.

•
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Remark 4.2 We refer to Gerber and Shiu [7] for a detailed study of the perpetual exchange
option.

Proceeding analogously from the proposition 3.1, we can define the perpetual critical surface

b∗(x2) = inf{x1 > x2 | C∞
M (x1, x2) = x1 −K} .

Since C∞
M is convex, we deduce immediately the convexity of b∗(.). This convexity implies the

existence of lim
x2→∞

b∗(x2)
x2

in ]0,∞]. Propositions 4.1 and 4.4 supply the next corollary which states

that this limit is finite.

Corollary 4.1

lim
x2→∞

b∗(x2)
x2

∈]1, 2β∗]

where β∗ is given in the proof of the proposition 4.4 .

Remark 4.3 If we suppose in addition that δ2 > 0 then we can improve the previous corollary
as it is shown in the next proposition.

Proposition 4.5 Assume min(δ1, δ2) > 0. Then,

lim
x2→∞

b∗(x2)
x2

∈]1, β∗] .

Proof: Using the inequality,

(max(x, y)−K)+ ≤ (y − x)+ + (x−K)+

we obtain
C∞

M (x1, x2) ≤ C∞
e (x1, x2,K, r, δ1, δ2) + C∞(x2,K, r, δ2).

As δ2 > 0, there is s2 such that C∞(x2,K, r, δ2) = x2−K for every x2 ≥ s2. It suffices to choose
x2 ≥ s2 and x1 ≥ β∗x2 to obtain

C∞
M (x1, x2) = x1 −K .

This implies b∗(x2) ≤ β∗x2 for every x2 ≥ s2. •

4.3 Perpetual American put on the minimum of two assets

We end this section by a more precise description of the structure of the exercise region of the
perpetual American put on the minimum of two assets. The value function of such an option is
given by

P∞m (x1, x2) = sup
τ∈T0,∞

E
(
e−rτ (K −min(S1,x1

τ , S2,x2
τ ))+

)
.

Note that P∞m is nonincreasing in x1 and x2. Define

Em = {(x1, x2) ∈ (]0,+∞[)2 | P∞m (x1, x2) = K −min(x1, x2)}.
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We deduce from in proposition 4.1

Em = E1
m ∪ E2

m where E i
m = Em ∩ {xi = min(x1, x2)}.

According to corollary 2.1, we know that Em is nonempty. The next proposition informs us on
some topological features of ΠE1

m.

Proposition 4.6

i) (x1, x2) ∈ E1
m Rightarrow (x1, λx2) ∈ E1

m for every λ ≥ 1

ii) (x1, x2) ∈ E1
m Rightarrow (λx1, x2) ∈ E1

m for every λ ∈]0, 1[.

Similar results hold for E2
m.

Proof: We refer to proposition 2.3 of [4] for a detailed proof. •
Define the critical surface of E1

m by

b̂1(x2) = sup{x1 ∈]0, x2[; (x1, x2) ∈ Em}.

with the convention sup ∅ = 0. According to the previous proposition, the function b̂1 is nonde-
creasing. Moreover, the convexity of P∞m implies the concavity of b̂1. We wonder whether b̂1 is
positive for every x2 ? The next proposition gives an answer.

Proposition 4.7 If δ2 > 0 then b̂1(x) > 0 for every x > 0.

Proof: Let P∞i be the value function of the perpetual put on the asset i.
We have

K −min(S1,x1
τ , S2,x2

τ ) ≤ K − S2,x2
τ + (S2,x2

τ − S1,x1
τ )+ for every stopping times τ

Hence,
P∞m (x1, x2) ≤ P∞2 + C∞

e (x1, x2).

There is a real number x∗2 such that for every x2 ≤ x∗2, we have P 2
m = K − x2.

Choose x1 ≤
x2

β∗
≤ x∗2
β∗

where β∗ has been previously defined

P∞m (x1, x2) = K − x1.
thus, b̂1(x2) > 0 for every x2 ≤ x∗2. Proposition 4.6 i) allows us to conclude.•
We are interested in the asymptotic behavior of the critical surface.
Define the critical stock-price of the perpetual put on the asset i by

x∗i = sup {xi > 0, P∞i (xi) = K − xi}.

We have the following proposition which gives the asymptotic behavior of the critical surface.

Proposition 4.8 We have lim
x2→+∞

b̂1(x2) = x∗1.
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The inequality lim
x2→+∞

b̂1(x2) ≤ x∗1 is immediate thanks to P∞1 ≤ P∞m (x1, x2).

Indeed, take x2 > x1 > x∗1, we have

P∞m (x1, x2) > P∞1 (x1)

> K − x1

= K −min(x1, x2).

Thus, b̂1(x2) < x1 for every x1 > x∗1
Hence,

E1
m ⊂ {(x1, x2) ∈]0,+∞[2 | x1 ≤ x∗1}.

In the same manner, we can prove that

E2
m ⊂ {(x1, x2) ∈]0,+∞[2 | x2 ≤ x∗2}.

To show the converse inequality, we need two lemmas.
Let (x(n)

2 )n≥0 a sequence satisfying limn→∞ x
(n)
2 = +∞. We define the sequence (τn)n∈N of

stopping times by setting

τn = inf{t ≥ 0; (S1,x∗1
t , S

2,x
(n)
2

t ) ∈ Em}.(4)

By the optimal stopping theory,

P∞m (x∗1, x
(n)
2 ) = E

(
e−rτn(K −min(S1,x∗1

τn , S
2,x

(n)
2

τn ))+
)
.

Lemma 4.2

lim
n→+∞

(
P∞m (x∗1, x

(n)
2 )− E

(
e−rτn(K − S

1,x∗1
τn )+

))
= 0

Proof of the lemma: for every n ∈ N , we have∣∣∣P∞m (x∗1, x
(n)
2 )− E

(
e−rτn(K − S

1,x∗1
τn )+

)∣∣∣ ≤ E

(
e−rτn(S1,x∗1

τn − S
2,x

(n)
2

τn ))+
)

≤ sup
τ∈T0,∞

E

(
e−rτ (S1,x∗1

τ − S
2,x

(n)
2

τ ))+
)

= Θ(x∗1, x
(n)
2 ).

Gerber and Shiu [7] have explicitly computed the function Θ and it can be checked using their
formula that lim

x2→+∞
Θ(x1, x2) = 0 for every x1. •

Remark 4.4 Proceeding analogously from the previous proposition, we can prove for every x1

lim
x2→+∞

P∞m (x1, x2) = P∞1 (x1).

In particular, we have for x1 ≤ x∗1

lim
x2→+∞

P∞m (x1, x2) = K − x1.
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Lemma 4.3 The sequence (τn)n∈N converges to 0 in probability .

Proof of the lemma: Thanks to lemma 4.2, we deduce from remark 4.4 that

lim
n→+∞

E
(
e−rτn(K − S

1,x∗1
τn )+

)
= K − x∗1.

But,

E
(
e−rτn(K − S

1,x∗1
τn )+

)
≤ E

(
e−rτnP∞1 (S1,x∗1

τn )
)

= K − x∗1 + E

∫ τn

0
e−ru(δ1S

1,x∗1
u − rK)1

{S
1,x∗

1
u ≤x∗1}

du.

where for the second equality, we used the generalized Ito’s formula (see Krylov [14]). But,

according to theorem 3.2 we have x∗1 <
rK

δ1
and thus

E

∫ τn

0
e−ru(δ1S

1,x∗1
u − rK)1

{S
1,x∗

1
u ≤x∗1}

du ≤ (δ1x∗1 − rK)E
∫ τn

0
1{Bs+µs≤0} ds < 0

where Bs = σ11W
1
s + σ12W

2
s is a nonstandard one-dimensional Brownian motion and

µ = r − σ2
11
2 − σ2

12
2 .

We obtain,

lim
n→+∞

E

∫ τn

0
1{Bs+µs≤0} ds = 0.

We end the proof thanks to the following deterministic result, the proof of which is left to the
reader.

Lemma 4.4 Let f : R+ → R be a continuous function satisfying the condition :
For every ε > 0 there is t ∈]0, ε[ such that f(t) > 0.

Then every sequence (tn)n∈N such that
∫ tn

0
1{f(s)>0} dsRightarrow0 converges to 0.

We are in a position to prove proposition 4.8.
Proof of proposition 4.8:
We know that the limit exists and is smaller than x∗1 .
Assume lim

x2→+∞
b̂1(x2) < x∗1 and let ε < x∗1 − lim

x2→+∞
b̂1(x2). Fix M > x∗2 and let (x(n)

2 )n≥0 a

sequence satisfying limn→∞ x
(n)
2 = +∞ and (τn)n≥0 the sequence of stopping times defined by

4.
Choose n large enough so that x(n)

2 > M and introduce the following stopping times,

τ
(2),n
M = inf{t ≥ 0;S2,x

(n)
2

t ≤M}, for M > x∗2

and τ (1)
ε = inf{t ≥ 0;S1,x∗1

t ≤ x∗1 − ε}.

Using the inclusion

E1
m ⊂ {(x1, x2) ∈]0,+∞[2 | x1 ≤ x∗1 − ε or x2 ≤ x∗2}
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we have
τn > τ

(2),n
M ∧ τ (1)

ε for every n.

Obviously, lim
n→+∞

τ
(2),n
M = +∞ so that lim

n→+∞
τ

(2),n
M ∧ τ (1)

ε = τ
(1)
ε and thus lim

n→+∞
τn ≥ τ

(1)
ε which

contradicts the lemma 4.3.
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