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Abstract

In this paper, we study the nonemptiness and the shape of the exercise region of American
options written on several assets. Our contribution is threefold. First, we state an analytic
theorem which characterizes the nonemptiness of the exercise region. Second, we study a
particular class of payoff functions for which we explicitly identify the shape and the asymp-
totic behavior near maturity of the associated exercise region. Finally, we present additional
results which complement the Broadie and Detemple results concerning the valuation of
various types of American options on several assets.

Introduction

The study of American options written on several assets, also called Rainbow options by prac-
titioners, is doubly motivated. On the one hand, many contracts that are traded in financial
markets involve such options (index options or exchange options). On the other hand, American
Rainbow options contribute to enlarge the derivatives supply on the Over the Counter market.
From a theoretical point of view, Bensoussan [3] and Karatzas [10] established the connections
between American options and optimal stopping and the variational inequalities techniques of
Bensoussan-Lions [2] were applied to American option pricing by Jaillet-Lamberton-Lapeyre [9].
However, we had to wait until the paper of Broadie and Detemple (1996) [4] appeared to realize
how important it is to identify the exercise region (i.e the set of coincidence between the option’s
value and its intrinsic value) in order to have a better understanding of these contracts.

In the last few years, there has been much progress in the study of the exercise region of Amer-
ican options written on a single asset (see Kim [13], Jacka [8], Barles et al. [1] and Myneni
[17]). However, our perception of the structure of the exercise region in the multidimensional
case remains vague and conjectures based on the knowledge of the one dimensional case turn
out to be false (see [4]). The most striking examples are given by the call on the maximum or



the minimum of two assets.

Hence, our goal is to clarify the results concerning the exercise region of American Rainbow
options. In the first section, we state a very general analytic theorem which characterizes the
nonemptiness of the exercise region thanks to the differential operator associated to the diffusion
model. In the second section, we study a particular class of payoff functions that are traded in
financial markets. For this class, we define the notion of critical surface for which we can extend
some results proved for the free boundary in the one dimensional case. Finally, we present ad-
ditional results which complement the Broadie and Detemple results concerning the valuation
of various types of American options on several assets.

In order to make our results more readable, we list below the various types of options that are
treated in the paper with references to the relevant statements:

- American call on the minimum of two assets (see section 2.2)

- American spread option and index option (see section 3)

- American call on the maximum and American put on the minimum of two assets, finite and
perpetual case (section 4).

1 American options on several assets

1.1 The model

We consider American options written on n underlying assets. In the multidimensional Black-
Scholes setting, the logarithm of the stock prices satisfies the following stochastic differential
equation
(1) dXZ:(T_‘Si_§z:1‘7ij)dt+z:lgijdwt i=1,...,n
Jj= j=

where, under the so-called risk neutral probability measure which will be denoted by P, W =
{Wy = (WL ., W), F,,0 <t < T} is a standard n-dimensional Brownian motion. We denote
by (Fi)o<i<r the augmented filtration of F}V = o(Ws; s < t). The nonnegative constant r is the
interest rate, the nonnegative constant ¢; is the dividend rate of the asset 1.
We assume that the matrix ¥ = (0y;)1<i,j<n is invertible.
The value of an American option with date of maturity T, defined by an adapted continuous
process (h(t))o<t<r satisfying E( sup h(t)) < oo, where h(t) is the payoff of the option when

0<t<T

exercise occurs at time ¢, is given by:

(2) V, = e"less sup E(e”""h(7) | F)
€Ty
where 7; r is the set of all F;-stopping times with values in the interval [t,T]. Recall that the
discounted value of an American option e "'V is the Snell envelope of the discounted payoff
process, namely the smallest supermartingale which dominates e "'h(t). We refer to Karatzas
[10], [11] and Myneni [17] for the basics of the modern theory of American option. We will
restrict our study to payoff processes given by h(t) = ¢(X;) where v is a continuous nonnegative
function satisfying the following assumption:
(H1) 3IM >0 VYo eR" (z) + > |+ | < MMl
o O



where || . || denotes the Euclidean norm in R™.
We define for 0 < s <t < T and x = (r1,...,2,) € R",

s 1 n n . )
(3) (XD =i+ (r =0 = 5 D og)(t = 8) + Do (W] — W),
j=1 i=1

Note that (X;**); is a continuous version of the flow of equation (1). Due to the Markovian
properties of the model, it is well-known that the process V; is given by a function C(t, X})
where

Clta) = sup E(eg(X07))

T€To, Tt

= BT H(X0)

where 7% = inf{u € [0, —t] | C(t +u, X0%) = p(X0*)}.
Recall that 7* is the smallest optimal stopping time (cf [10]). We deduce easily the following
properties of the value function C.
i) C(t,x) > () on [0,T[xR™.
ii) Ve € R, C(T,z) = ¢(x).

)
iii) Vo € R", C(.,x) is nonincreasing.
)

iv) C is continuous on [0,7] x R".

1.2 Exercise region

We introduce the following set:
€ ={(t,x) € [0,T[xR" | C(t,x) = ¥(x)}.

Clearly, it is never optimal to exercise prior to maturity out of £ where the payoff due to the
option’s sale is greater than the one due to the exercise. Moreover, the smallest optimal stopping
times 7* satisfies

T =inf{u>0 | (t+u,Xy) €E}N(T —1).

Definition 1.1 The coincidence set £ is called the exercise region of the American option.

Define the t-sections for every ¢ € [0, T] by
SE={xeR" | C(t,x) =1(x)}.

Clearly, we have & = | J{t} x &.
t<T

Proposition 1.1 Assume v is a nonzero function.

i) € is closed in [0, T[x R™.



ii) The family (E)o<t<T 15 nondecreasing.
iii) Yt € [0,T] & C O ={z € R" | ¢(x) > 0}.

Proof:
i) C and ¢ are continuous, we have £ = (C —)~1(0).
ii) Let s < t and = € &, we have

C(t,z) < C(s,x)

Thus, C(t,z) = ¢¥(x).
iii) Using the definition, we have

V(t,z) € [0, T[xR" C(t,z) > E(e " T Dyp(X%").

Since the volatility matrix X is invertible, the support of the distribution of X%ft is R™. There-

fore, X%ft hits every nonempty open subset with positive probability and in particular O, so
that
V(t,x) € [0,T[xR", C(t,x) > 0.

If x € & then C(t,z) = (z) > 0 thusz € O. o

1.3 Variational inequalities and American options

We recall in this section the results implicitly shown in Jaillet-Lamberton-Lapeyre [9] because
they will be useful hereafter to characterize the exercise region.
Introduce the operator A defined by

1 & O*F = 1 oF
F=_ e 5 == 2\ _pF
A B ijzl Qjj 85618% + Zz::l('r 7 9 j}:la'zj)axi r

where the matrix A = (a;j)1<4,j<n equals X*X.

Proposition 1.2 Under assumption (H1), the price function C' satisfies.

aaf + AC < 0 in the sense of distributions in the open set 0, T[xR"™.
oC :
5 + AC =0 in the open set {(t,z) €]0,T[xR™ | C > 1}.

2 Characterization of the early optimal exercise

2.1 General results

The purpose of this section is to prove a theorem which gives an analytic criterion for the
nonemptiness of the exercise region. This criterion is easy to apply to a usual payoff function,
in particular we recover the Merton’s well-known result which states that the exercise region of
the American call on one nondividend-paying asset is empty. Before stating the main theorem,
we establish a preliminary result.



Proposition 2.1 We have the following inequalities in the sense of distributions.

1) If a t-section & has a nonempty interior then Ay < 0 in the open set U Et.
t<T

2) Ay > 0 in the open set <U€t> .

t<T

Proof:
o o
1) Assume there exists t € [0, 7] such that & is nonempty. In the open set |¢,T[x & , we have

C =1 and aaf + AC < 0 therefore A1) < 0 on c‘i.

2) Let Ep = Ué’t and A = £%. In the open set |0,T[xA,C > 1 and therefore %f +AC =0
t<T

oC
thanks to proposition 1.2. As the function C(.,z) is nonincreasing, the distribution B is a
negative measure and thus
AC >0 on]0,T[xA.

For a fixed time ¢, we define the distribution AC(t,.) on A by
VO € C(A) < AC(t,.),0 >= / C(t,2) A™0(x) de.
A

where the operator A* is defined by

- 1 & oF 1 & 0’F
P = — — — = 222 4 iy —rF
A ;(T ! 2 ;U”)Bl‘i * 2 ijz:l i 8951690] "

and C°(A) denotes the set of C* function with compact support in A. The distribution AC(¢,.)
is positive on A for every t € [0, T]. Since C is continuous, as ¢ tends to 7', < AC(t,.),0 > tends
to < AC(T,.),0 >=< Ay,0 > for every 6 € C°(A) by the dominated convergence theorem.
Hence, Ay > 0.0

We are now in a position to state a theorem which characterizes the nonemptiness of the exercise
region. We will need the following lemma:

Lemma 2.1 If Ay > 0 (resp = 0) on R" then the process (e "'(X;)) is a submartingale
(resp. martingale).

Proof of the lemma: We only show the case A1) > 0, since the case Ay = 0 is a straightforward
application of Ito’s lemma. When, Ay > 0, the only difficulty comes from the possible lack of
regularity of .

Introduce a mollifier sequence (p;)jen:

- pj € C(R"™) and p; > 0 for every j.

- suppp; C B(0, %) where B(0, %) stands for the ball of radius % centred on 0.

- pj(z)de = 1.
R™



pj = pj * 1 is a C>° function which converges to ¢ uniformly on every compact subset of R".
Moreover, Aw; = p; * A1 is a positive function on R".
Indeed, for every ¢ € C2°(R™), we have since A has constant coefficients

< Ay, ¢ >

< Ay, pj* ¢ > where gj(x) = pj(—x)
0.

v

Ito’s formula yields for £ > s

B 1 £) = T+ B ([l 7)
> (X,

The righthand side tends to e "1 (X) when j tends to +oc. It remains to justify the convergence
of the lefthand side. We have

(| < [ p (=)l dy.
1
S WL ey

< MIMOXD),

We apply the dominated convergence theorem to conclude.
We are now in a position to state the main result.

Theorem 2.1 The exercise region is empty if and only if Ay is a nonzero positive measure on
R™.

Proof:

a)necessary condition.

If the exercise region is empty, then we have Ay > 0 according to proposition 2.1.

Assume A1) = 0 on R", then for every x € R" the process (e‘”¢(Xf’x)> is a martingale thanks
to lemma 2.1. Therefore, using the definition of the Snell envelope and the optional sampling
theorem, we have C(t,x) = ¢ (x) for every (t,x) € [0,7] x R", which contradicts the emptyness
of £.

b)sufficient condition.

Assume A is a nonzero positive measure on R" and & # () for some ¢ € [0, 7.

Let x € &, we have

C(tyx) =¢(x) > E (e_”w(Xg’x)) for every 7 € Ty 1—¢.
On the other hand, using lemma 2.1 and the optional sampling theorem we obtain
Y(x) < E (e*’"Tl/J(XS’xD for every 7 € Ty 17—
therefore, the process e "%4)(X%%) is a martingale. Using the characterization of the Snell
envelope as the minimal supermartingale which dominates the reward process, we have for

every u € [0,T —t],
e C (u, XO0%) = e (X07) a.s.



Thus, using the continuity of C(u,.) and v, we have C(u,y) = ¢ (y) on ]0,T — t[x R". Thanks
to proposition 2.1, A1) < 0 on R™ hence A = 0 on R", which is a contradiction.e

Remark 2.1 A referee wonder whether this theorem may be generalized to the case where r is
a deterministic function of time. I am afraid not without supplementary assumption because the

distribution a5 may fail to be negative.

Theorem 2.1 supplies a nice corollary for bounded payoff function.

Corollary 2.1 Assume r > 0.
The exercise region of an American option written on a bounded payoff ¢ is nonempty.

Proof: According to lemma 2.1, if the exercise region is empty then the process e~ ") (X)) is
a submartingale for every = € R™. Hence,

VzeR" (z) < Be " Tp(X0") <|| 9 [loo e

therefore, || ¥ [|oo<|| % ||oo €7, which is a contradiction.e

Remark 2.2 This corollary is of interest if ¢ does not reach its bounds. Otherwise, we have,
for every zg such that ¢(zo) = ¥ ||, ¥(x0) = C(t, z0).

Remark 2.3 As a referee pointed out, the American digital option defined by the indicator
function of Borel set with nonzero Lebesque measure, say 14, provides a nice example. By
applying the previous remark, it is straightforward to show that the exercise region of the digital
option coincides with A.

Remark 2.4 We recover the Merton’s result on the exercise region of a call option on one
nondividend-paying asset. Indeed, an easy computation yields
o’ K?

Ay = TK1{6x>K} + TalOgK

where 0 stands for the Dirac measure. It is clear that Ay is a nonzero positive measure on
R™.

We characterized the nonemptiness of the exercise region thanks to the distribution Ay on R™.
We would like a local characterization (i.e does the distribution A% on some open subset U of
R"™ inform us on the early exercise on U?). Under some regularity conditions, we state a local
version of theorem 2.1.

Proposition 2.2 Assume that the distribution Ay is a positive measure on a connected open
subset U of R™, that 1) is a C* function on an open subset V of U and Ay (x) > 0 for allz € V.
Then for every (t,x) €]0,T[xU, C(t,z) > (x).



Proof: Let 1; = pj *1 where (p;)jen is a mollifier sequence.
Let x € U and U; an open connected subset of U containing x such that V c U; Cc U; C U.
For j large enough, we have Aiy; > 0 on U;. Indeed, for every ¢ € C2°(Uy), we have

= <Aw,ﬁj*¢>.

We know that supp(g; * ¢) C suppg; + supp¢ C suppp; + Uy C U for j great enough.
We introduce the following stopping time,

7 =inf{t > 0; X} ¢ U, }

Applying Ito’s formula to the process e~ "'1); (X?’m) , we have

E —r(nA(T-t) AXOJ — . E AT —rs A AXO,:E d
e Ui y)| = B [T AR (X ds

TIN
nAT-) —rs 0,z
> ¢j(x)+E/0 e AP (X )I(XS,ZGV) ds.

where the last inequality follows from Av; > 0 on Uj.
As j tends to +00., A1; converges uniformly to Ay on V. Therefore, we have

Ctz) > E[e_r(n/\(T_t)z/J(XB{i(T—t))}

T1/\(T7t)
> Y(z)+E / e—”Aw(ngx)l(Xo,wev) ds
O S

It remains to check that P(3s < 71 A (T —t); X%* € V) > 0. As the matrix ¥ is invertible,
the support of the distribution of the process (XW;)i<q is Co([0,T]; R™) and therefore, applying
Girsanov’s theorem, the support of the distribution of XS * is the set of all continuous functions
from [0,7] with values in R" starting at x.

2.2 Application: American call on the minimum of two assets

In this subsection, we highlight the exercise region of American call written on the minimum
of two nondividend-paying assets. Therefore, we have n = 2,§; = do = 0. Define the payoff by
Ym(x) = (min(e™, e"?) — K)and denote by C,, the value function of this American call. Our
knowledge of the one dimensional case made us think that it is not optimal to exercise a call
written on nondividend-paying assets prior maturity. Yet, we obtain the following nonintuitive
result:

Proposition 2.3 The exercise region of Cp, is nonempty and its t-sections are carried by the
line {xg = x1}.



Proof: A simple computation yields

Ay, = —%(an —2a12 + a22)(€)?0 + rK 1y, 24,
where o is the Lebesgue measure on the line {z1 = z2}. We note that A, is not a positive
measure on R? but satisfies A, > 0 out of the bisecting line. Theorem 2.1 and proposition 2.2
allow us to conclude. e
We end this application by a more precise description of the t-sections &,,(t) of the exercise
region of the American call on the minimum of two assets.

Proposition 2.4 There erists a nonincreasing continuous function b : [0,T[— R satisfying
tlin%b(t) = log K such that

Em(t) = {(x,2) € R? | x € [b(t), +oo[}.

Proof: The convexity of the function x — Cy,(t,x,z) yields immediately that the t-sections
are intervals. In order to show that &, (t) is of the form stated in the proposition, it suffices to
check that &,,(0) is an unbounded interval of the line {z3 = x;}, since the family (&, (¢))o<t<T
is nondecreasing, which is equivalent by changing the date of maturity to prove that &,(¢€) is an
unbounded interval for every e > 0.

Suppose there exists € > 0 and a date T such that

Em(e) = {(y,y) € R* | y € [m(e), s(e)]}.
Choose x > s(e) and note
7= inf{t > 0] Cul(t, (XO9)1, (X)) = min(e®e 1, X2y _ K7,
We have,

0,z 0,z
Cnl00) = B[ uine™ " ) - k).

2 2
7i1 1%,
p)

S 6$E (min(M;;, M,z;)) Where Mtz — eaithl+Ui2Wt2—
( ) - E(M}I* - MTQ;)Jr)

= < (1 — E(M;; - TQ:;)+)
(1 —-F {(Ml* - MQ;)Jrl{T;;:T}D since M;; = M% sur {7* < T}.

Te T,

We will show that E [(MTI; - ME;)_A'_].{T;:T}} is uniformly bounded below for x large enough.
We introduce a continuous function f : [0,7] —]0, +oo[? such that f(0) = (1,1) and
fL(t) > f2(t) for every t €]0,T].

Let § €]0, 1[. By continuity of f, there exists n €]0, ¢ such that

Vte[0,n] || f(t)—(1,1) ||< & and Vt € [, T] f1(t) — f2(t) > a, with a > 0.



Set As = { sup | M;— f(t) ||< A G} Since the matrix ¥ is invertible, we have P(As) > 0 for
every & > 66[002 As, we have

vie [ T) M =M > ) - ) -2 | M- £Q) > 5
For t € [0, 7], we have

| e®.M; — (e, e”) || e (| My = f@) | + 11 £(8) = (L, 1) )

25€e”.

Now, we choose z large enough to have 2de” < e* — s(€). Then, on As, 7 =T and M;z* > MTQI
Thus,

Ty T,

E [(Ml* — M2;)+1T;:T] >

Thus, Cp,(0,z,2) < e®(1 —g(d)) < e® — K for e® great enough, which yields a contradiction.
At this stage, we have proved that for every ¢, we have

Em(t) = {(z,x) € R* | x € [b(t), +oo[}.

It remains to check that b is a continuous function satisfying tlirr%b(t) = log K. These two

assertions are involving the same ideas. We only show the second one.

Clearly, b is a nonincreasing function bounded below by log K since ¢ (log K, log K') = 0 . Hence,
b admits a limit as ¢ — T which will be denoted by b(T"). Assume b(T") > log K.

In the open set |0, T[xU where U = {(z,y) € R? | logK < z < b(T) and = — % <y <
T+ logZK}, we have C}, > 1., and thus proceeding analogously to the proposition 2.1 Ay, > 0

on U. But the explicit formula of A, given by the proposition 2.3 yields a contradiction.e

3 A particular class of payoffs

Before going further, we review some well-known results for the critical stock-price of an Amer-
ican call written on a single dividend-paying asset. Let b : t — b(t) be the exercise boundary for
such a call. It is well-known that b is continuous, decreasing in time (see Kim [13], Jacka[8]) and

even smooth on [0, T (see Friedman [6]). Moreover, Kim showed that thn% b(t) = max (I, &),

Our goal is to derive some similar results for the immediate exercise boundary of particular
American Rainbow options.

Throughout this section, we denote logz = (logxy,...,logx,) and for any function defined on
R, we define ¢(z) = ¢(log x) for x €]0,+o0["

Now, we focus on the exercise region as subset of 0, T"[x]0, 4+o00[".

Hence, define

€ = {(t,z) €0, T[]0, 00o["; C(x) = ()}

10



and its t-sections
& = {w €)0,00["; (t,2) € £}

Now we introduce the class B of payoffs ¢ defined on R™ by 9 (z (ZO‘Z > for
+
(o1,...,ap) € R" and K >0

Remark 3.1 7- We suppose that there exists at least an integer i such that c; > 0 in order to
have a nonzero payoff. Moreover, we assume that o; # 0 for every integer i.

2-Clearly, the function x — ¥ (logx) is convez.

3-The class B provides many examples of contracts that are traded in financial markets like index
options, spread options (see the introductory part of [4]).

3.1 Nonemptiness of the exercise region and first properties

We introduce the operator A in the following way:

A(x) = (AY)(log z).
" 8F
i _ 1
Note that AF = Qijz:laiszxj o ax] + ; 0z rF
Theorem 2.1 and proposition 2.2 have a new formulation for the operator A. We have
1) & =0 if and only if At (x) is a nonzero positive measure on |0, +oo[™.
2) If there is a connected open subset U of |0, co[™ such that Ay (z) > 0 on U and if ¢(z) is a
C? function on an open subset V of U with At (x) > 0 on V then

V(t,z) € [0,T[xU, C(t,logz) > (logz).

For ¢ belonging to B, we remark that 1&(:{;) is a B2 function on the open set

O = {z €]0, o[ Zalml>K}

n

Moreover, A@Z(x) =rK — 251041%' for € O. Then, we have the following characterization
i=1

theorem:

Theorem 3.1 The exercise region of an American option written on payoff belonging to B is
empty if and only if for every integer i, 6;a; < 0.

Proof: Assume £ = (). According to the theorem 2.1, /le;(x) is a positive measure on |0, +oo[”
and in particular on O. Now, Ay (z) = rK —> ", d;c;;x; on O, which implies d;a; < 0 for every
i.

On the other hand, the condition d;c;; < 0 for every i implies At(z) > 0 on O and A (z) >
0 on a subset of O. According to proposition 2.2, O C & for every t. Proposition 1.1 allows us
to conclude.eo

11



Remark 3.2 This theorem supplies a very simple characterization of the nonemptiness of the
exercise region and allows us to give some examples of options for which early exercise occurs.

Examples
1) American spread call is defined by the payoff function

¢($1,$2) = (1'2 — T — K)+

According to the previous results, if the asset two does not pay dividends, early exercise is never
optimal.

2) American option on the Standard and Poor 100 index are options on the arithmetic average
of the values of 100 assets. It may be modeled by

i=1 P " i=1

where p; is the number of shares of asset i. Exercise prior to maturity is optimal if and only if
at least one of the assets making up the index pays dividends.

Remark 3.3 1- We focus on exercise regions of American calls because the exercise region of

an American put is never empty (see corollary 2.1).

2- Howewver, the next properties of exercise region of American options written on payoffs be-

longing to B may be proved in the same way for American puts written on payoffs ¢ such that
n

Y(x) = (K - Zaiemi>
i=1

+

3.2 Topological features of the t-sections &,
In this section, we assume that ¢ € B and there is one integer ¢ such that d;a; > 0.
Proposition 3.1 The t-sections & satisfy the following assertions.

i) Vt € [0,T[ & is a closed convex subset of |0, 4o0o[™.

it) Vt € [0, T &, has a nonempty interior .

Proof: Assertion i) follows from Broadie-Detemple [4]. For assertion ii), we first show that & is
nonempty. It suffices to check that f:'n # () for every n > 0. Indeed, the section & for an option
with maturity T coincides with the section fjn of an option with maturity 17"+ 7.

Suppose there exists some 1 > 0 such that &, is empty. Introduce the stopping time:

75 =inf{t > 0;C(t, X,%7) = (X, *2")}

The assumption &, = () implies 7, > 7 a.s. But, according to the optimal stopping theory, we
have,

2

* = —5; =15 o2 " oy J
C(0,logz) = E|e ™= <Zail‘i€(T bi=3 Ljm AL JWT%‘)—K>
=1 +

12



< ElZam( TR L T 1
i€l
< Zaixie_‘sm.
el

where I = {i € (1,...,n);a; > 0}.
As there exists ig € I such that ¢;, > 0, it suffices to fix (z1,...,%iy—1, Tig+1,---,Tn) and let
x5, tend to + oo to obtain

C(0,logx) < (Zazxz - )
+

which is a contradiction.
Now, we prove that the t-sections have nonempty interior. Introduce the following notation

oM = (T1y ey T, ATy Tt 1y - -+, Ty)
Let z € &. We have, see [4] for details,
i) 2M e & foriel, for A\ > 1
i) M e & fori ¢ I, for A €]0,1]
Hence, & contains the open set H]xl, +oo[><H]0, ;.
i€l i¢l
3.3 Regularity of the t-sections

In this section, we define the t-sections by

& ={xe0,00" | C(t,z) =(x)}.

Now, the t-sections are closed set of [0, co[".
The family (&)o<t<r is nondecreasing according to proposition 1.1. For payoff functions be-

longing to B, we shall prove the following regularity property of the family (5}), which can be
viewed as an analogue of the continuity in time of the free boundary in one dimension.

Proposition 3.2 The family (ét)ogth satisfies
1) & = ﬂé‘u for every t .

u>t

2) & = Ugs for every t .

s<t

Proof: 1) Let z € ﬂgu, we have
u>t

0 < C(tlogz)—y(logz)
= C(t,logz) — C(u,logz) for every u > t.

13



Using the continuity of C', we let u tend to t to conclude that x belongs to .
The converse inclusion is straightforward.

2) We have Ués C &;. Assume this inclusion is strict and set

s<t
- (77
s<t

we have ® N & # (). Since, &, is a closed convex set with nonempty interior for every t, we have

& = &,. Then, we deduce that ®N &, is nonempty. Indeed, if z € ® N &, then there exists some
p > 0 such that B(z, p) C ® and B(z, p)N £ 0.

Hence, in the open set |0, t[x (®N &), C(s,z) > 1 (z) and thus proceeding analogously as in the
proof of proposition 1.2, we deduce

AC(u,.)>0on ®NE, .

But, AC(u,.) = Ay < 0 in this open set. Therefore, A = 0 on ®N &,. But for 1) € B, we have
n

Afp(z) = rK — Z&iaixi on O and thus cannot be identically zero in a nonempty open set. o

=1

Remark 3.4 The assumption ¥ € B was used in the proof of the second assertion only.

We end this section by the study of the asymptotic behavior of the exercise region near the
date of maturity. Before stating the main theorem, we show preliminary results concerning the
optimal exercise of American options written on payoffs belonging to B.

3.4 Behavior of the exercise region near maturity

The purpose of this section is to identify the exercise region near maturity. For payoff functions
belonging to B, we state the following theorem which characterizes the shape of the exercise
region near maturity and can be viewed as the multidimensional version of Kim’s result.

Theorem 3.2 Assume there is some integer i such that 6;a; > 0. We have
~ n n
U & = {m €]0, +oo[™ | Zaixi —K>0andrK — Z&iaixi < O} )
t<T i=1 i=1
Before proceeding further in the proof of this theorem, we establish some preliminary results.

n
In the open set O = {z € (]0, +-00[)" | Zaim > K}, we point out the vector which belongs to
i=1

n
the affine hyperplan H = {z € (]0, +oo[)" | rK — Zéiaixi = 0}.

i=1
We shall prove that the t-sections do not intersect H. The proof requires the following proba-
bilistic lemma.

14



Lemma 3.1 Let W = (W},...., W) be a standard n-dimensional (F;)-Brownian motion.
Let 0 be a positive number, U an open subset of R™ containing the origin and g a C? function
on [0,0] x U with bounded first and second derivatives satisfying:

- 9(0;0) =0
- grad g(0;0) # 0.

Then, there exists a stopping time T in Ty g satisfying T < 1y where 7y = inf{t > 0| W} ¢ U}
such that E/ g(s; Wy) ds > 0.
0

grad g(0;0)
lgrad g(0;0) ||
We construct an orthonormal basis (u, ..., u,) and we note B; = (B}, ..., B?) the coordinates
of W in this new basis. (B)¢>0 is still a standard n-dimensional (F;)-Brownian motion (see
12])
We fix 3 positive real numbers a, b, A such that max(a,b) < A.
Introduce the following stopping times:

Proof: Let u; =

Tab = inf{s > 0‘ B; ¢ [—CL, b]}

N

T)\:inf{SZOI (
J

) <Bz>2) > ).

2

Finally, we suppose that A is such that
n
{(z1,...,2n) | 21 € [~a,b and D (z;)* < A} C U.
=2

Applying Taylor’s formula,

Ta,b ANTANO TabN\Ta b0 - ag
E/ g(s; W) ds = E/ (grad g(0;0).Ws + %(0; 0)s + R(s; WS)) ds
0 0

hence

2 [T ey ds= B [T (lerad 0(0:0) 1B+ 29(0:0s + B(s: W) ) d
s waas =8 [ (lgad g0:0) 1B+ 20005 + R(s:7,)) ds.

But the assumptions on g imply for s < 7y

| B W) |<C sip |47 (2] | (s2+ 11 W [1?).
X

)

For s < 7,5 ATAAB , we have || W ||2< 2A? and using the fact that 7 has the same distribution
as A7y (scaling property of Brownian motion), we have

Ta’b/\T)\/\e
E/ | R(s;W,) | ds < C(N + \YE(n).
0

15



On the other hand,

Taﬂb/\TA/\e ag 9 4
E/ (005 | ds < CE(7)? < CXE(m).
0

When A tends to 0, we have
Ta,b/\T)\/\e — Ta,b/\T)\/\e
e[ o(s:WW.) ds =[grad 9(0:0) || B [ B! ds+O(\")
0 0
but applying the Ito’s formula, we have
Ta,b 2 2
E/ Blds=ZE(B! )= Zab(b—a)
0 3 a,b 3

therefore
Ta,b/\T)\/\G 1 2 Ta,b 1
E/ B; ds = gab(b —a)—FE B; ds.
0

Tayb/\T)\/\e
Then, we choose a = agA\'T€ and b = bgA\'T¢ with € > 0

Ta,b
E / B ds

ATANO < )\H_emax(ao,bO)E(Ta,bl{Ta,bZn/\e})
a,b/\TA

< A3 max(ag, bo) E(Tagby L x2+26r, (2200}

where, the second inequality follows from the scaling property of Brownian motion. Since
Tagby = f{t > 0| B} ¢ [—ao,bo]} is integrable, E(Taobo1{)\2+267a0502()\2ﬁ),\9}) converges to 0
when A tends to 0 by dominated convergence.

Hence,

Tayb/\T)\/\e _
E/o g(s; W) ds =||grad g(0;0) || X3T3¢agby (b — ag) + o(A33).

It suffices to choose by > ap and A small enough to conclude that 7 = 7,5 A 7y A 8 satisfies the
desired property.e

Proposition 3.3 For (t,z) in the open set [0, T[x(H N O), we have

C(t,x) > ().

Proof: We set S; = eXt for every t
Let 7, = inf{t > 0; 57" ¢ O}.
For x € HN O, we have for every 7 < 7, A (T — 1),

C(t,x) > E(e(s20))

T n n n j
= (z) + E/ e (rK = 5iaixie(T_6i_% 2= OB 2 oW g
0 i=1

= () + E/OTg(s; W) ds.
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where g(s;y) = e "(rK — 3.1 150413;16 —Oi=g Y oSt 1%%)

0
9(0;0) = 0 since z € HN O and 8g (0;0) = 377y 0ij6ja5z5 # 0 for at least one integer i.

Otherwise, as the matrix X is 1nvert1ble the vector with components d;a;z; would equal zero,
which yields a contradiction since z € H.
Applying lemma 3.1, there exists a stopping time 7% € 7y 7—; A 7, such that

E/ )ds >0

which proves the desired inequality. e
Now, we are in a position to prove theorem 3.2.
Proof of theorem 3.2: Set

n n
A= {1: €]0, +oo[" | Zaiazi — K >0and rK — Zél-ozimi < 0} )
i=1 =1

We first show the inclusion U E C Al
t<T
Let x € U E‘t,
t<T
According to the proposition 1.1 iii), ¢¥(logz) = > 1" a;x; — K > 0.

In the open set O we have Ay (x) = rK — 37 ;. )
It follows from proposition 2.2 that Ay (z) < 0. Moreover, if Ay(x) =0, z € O N H and then

x ¢ U & according to proposition 3.3. Hence, z € A. To show the converse inclusion, we use
t<T
the following elementary result of convex analysis (see Webster [21]).

Lemma 3.2 Let K be a convex subset of R™ with nonempty interior. We have KC K.

Let z € A. As A is open, there is a ball B(z, p) within A and thus rK — >°7; d;a;z; < 0 on

this ball. According to proposition 2.1, B(z, p) C U . Therefore, x belongs to the interior of
t<T

U & But, K = U & is convex as an increasing union of convex sets. We conclude thanks to

t<T t<T
lemma 3.2. e

3.5 Application: American spread option

We consider an American spread option which is a contingent claim on two underlying assets
(S}, S?) that has the payoff upon exercise 1(St, S?) = (Sf — S? — K)..
Let Cs(t, S}, S?) denote the value of the spread option at time t with

Colt,1,00) = sup B [e77(S27 = Sh7 — K), |

T€To, 17—t

where SI'* = ze S DU ALD DY A . We note that
i) Cs(., 21, 72) is nonincreasing in time for every (z1,z2) €]0, co[2.

17



ii) Cs(t,.) is nonincreasing (resp nondecreasing) in x; (resp in xg ) for every t.
In the open set {(z1,x2) €]0,00[? | zo — 21 — K > 0} 1 is a C? function and Aw(zy,z0) =
01z, — 0o + K.
The condition ds > 0 is necessary and sufficient to ensure the nonemptiness of the exercise
region, according to theorem 3.1.
Assume this condition holds. We then define the critical surface of the American option on
spread by:

b3(t,x1) = inf{xe > x1 + K | Cs(t,z1,22) = 9 — 21 — K }.

At a fixed time ¢ , we have
&= | b5(t, 21), +ool.

z1>0

We deduce from the previous section the following proposition:
Proposition 3.4 The critical surface satisfies

1) b3(.,z1) is continuous on [0,T[ for every x;.

2) bi(t,.) is convex on ]0,+00l.

3) }i_)rgﬂbﬁ(t,xﬂ = max(x; + K, %xl + %)

Proof: 1) The regularity of the t-sections implies the continuity of the critical surface b5(.,z1)
on [0, T for every x;.

2)The convexity of & implies that of b3(t,.).

3) tli_}rr% b5(t, x1) = max(z1 + K, g—;xl + %) follows from the asymptotic behavior of the t-sections

near maturity. e

4 American options on the maximum, minimum of two assets

We consider now American options written on convex payoff functions which do not belong to
B but that are of interest in practice: the American call on the maximum of two assets and the
American put on the minimum of two assets.

2 2
(o (o
Hereafter, we denote p; =1 — §; — L — 2

Let ¥y (x1, w2) = (max(x1,x2) — K)4+ and ¥, (21, z2) = (K —min(x1, x2))+. The value function
of the associated American option is given by

Cu(t,z1,22) = sup Ee_TT(max(Sivwl’SZ,wg) ~K)y

T€To, 7t
and

P(t,x1,22) = sup E (e*rT(K — min(S;’m,Sf’“))Jr) .

T€To, 71t
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4.1 Nonconvexity of the exercise region

This two options offer a nice example of options written on a convex payoff function with t-
sections that are not convex set (see Broadie and Detemple [4]).

The next proposition will complement a result of Broadie and Detemple. Before going further,
we recall a useful elementary lemma.

Lemma 4.1 Let g, h be two integrable random variable such that
1- E(g)=E(h)=0

2-P(g#h)>0

Then E(max(g,h)) > 0.

Proposition 4.1 For every fixed t, there is an open cone I' containing the bissecting line with
aperture depending on t such that for every (x1,x2) belonging to T' we have:

Cr(t, 1, 22) > max(z1, x2) — K

and
P, (t,x1,22) > K — min(z1, x2).

Proof: We only show the proposition for the call at ¢t = 0.
Vt >0 Cp(0,2,2) > Ee " (max (me“1t+gllwtl+"12wt2, xe“2t+"2’1wtl+"2’2wf) —K);.
For t close enough to 0, we have
Cy(0,z,2) > xE (1 + max(oLthl + 01 2WE, 001 W+ 02,2Wt2) + f(t, WY, WtQ)) - K
with

f(t, Y1, yg) — max (eu1t+011y1+012y27 eu2t+02,1y1+02,2y2)

— 1 —max(o1,1y1 + 01292, 02,1Y1 + 02,2Y2)-

But, W} has the same distribution as v/tW} hence

O (0,2, 2) > 2E(1 + Vimax(oy 191 + 01292, 02101 + 022g2) + f(t, W, WE)) — K.

where g1, g2 are Standalgd normal random variables.
Using, |e¥V — 1 —y |< %e‘w
with y = max(uit + aLthl + 01,2Wt2, pot + o Wi+ 0’272Wt2) , we obtain

2
FEWEWH| < %e\yl + |y — max(o1, 1 W) + 01 2W7, 021 W) + 022 W7)|
2
Yyl
< el t.
=5 el +r

Hence,
E|f(ta Wt17 Wt2)‘ S Ct
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Set for i=1,2 h; = 0191 + 0;292- We have
Cu(0,2,2) >z — K + 2Vt (E(max(hy, ha)) + o(1))

Using lemma 4.1, we may choose t such that o(1) > —3 E(max(hq, ho)).
Hence,
y:

t
Cpm(0,z,2) > — K + %E(max(hl, ha)).

Set a(t) = YEE(max(hy, ha)).

for every > 0 and h €]0, a(t)]

Cu(0,(1+h)z,z) > (1+h)x — K et Cpr(0,z,(L+h)x) > (1+h)z—K. e

Using the notation of Broadie and Detemple [4], we define for a fixed time ¢ in [0, T'[ the following
subsets:

gti,M — gtM N{z; = max(z1,z2)}

where EM = {(z1,22) | Cas(t, 21, 72) = max(z1,v2) — K} According to proposition 4.1, we have
M = g g2M | n the open set {(z1,22) € (]0,400[)2/z1 > max(zs, K)}, we have

A~1/}M(£E1,l’2) =rK — §121.

According to theorem 3.1, we have Sf’M = () if and only if 4; = 0. Moreover, Broadie and
Detemple proved that SZ’M (i = 1,2) are closed convex subsets with nonempty interiors, hence
we may state the next proposition which identify the shape of £ near maturity.

Proposition 4.2 We have

U &M = {(@1,22) €0, 400 | 21 > max(zy, K) and 1K — §iz1 < 0}
t<T

Proof: It suffices to proceed analogously from theorem 3.2.e

Similar results can be derived for the exercise region of the American put on the minimum of two
assets. Define " = {(z1,x2) | Pn(t,z1,22) = K —min(z1,x2)}. According to corollary 2.1 and
proposition 4.1, we know that &£ is nonempty for every ¢ and &" = €t1’m U 53 " where Eti A
EM N {x; = min(z1,29)}. We may identify the shape of £ ™ near maturity.

Proposition 4.3 We have

U &™ = {(z1,22) €]0, 400 | 21 < min(z2, K) and 5121 —rK < 0}
t<T

4.2 Perpetual American call on the maximum of two assets

This section is devoted to the study of the asymptotic behavior of the t-sections for large values
of underlying assets. We are now interested in the perpetual case because the results that we
present carry over the case of option with finite maturity. Let

Cyi(x1,m9) = sup EefrT(max(S}_@% 572_,962) ~K),
7€70,00
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be the value function of the perpetual American call on the maximum of two assets.
As usual, define the exercise region by

Enr = {(z1,x2) E]O,OO[Q/C]?;(.Tl,xQ) = max(z1,72) — K}

and A
Ey = {(z1,22) € Epr | x5 = max(zy,x2) — K}

The inequality Cas(t, z1,22) < C37 (21, z2) and the proposition 4.2 implies
Ev=EL,UE.

We are looking for a condition that ensures the nonemptiness of £, .

Proposition 4.4 &}, is nonempty if and only if §; > 0.

Proof: If £, # () then &} is nonempty. According to theorem 3.1, we have §; > 0. To establish
the converse assertion, we assume ¢; > 0 and introduce the value function of a perpetual
American call on the asset 1 and the one of the perpetual exchange option.

_ 1 2
C*(x1,K,r,61) = sup E (e Tz et T TouWr oW K)+) i
Te%,oo

and

_ 1 2 1 2
C(x1,x2,K,r,01) = sup E (e (et TTouWr oWy ZE2€“2T+U21WT+022W7) .
7€70,00

When §; > 0, there is a critical stock-price s;(K) > K such that
Vo, > s1(K) C®(x1,K,r,01) =21 — K.
Moreover, we can define
B* =inf{s >0 |Vx; > fxs C(r1,22,K,7,01) = 21 — T2}.
Remark 4.1 Gerber and Shiu have shown that §* is finite when §; > 0.

Note the inequality,

(max(z,y) - K)+ = ((y— )++5U—K)+
< (;y 2r) 4 + = ( —2K)+x>+
< 1w —2x>++§< ~2K) 4w

Hence,
1 1
C]?/[o(.%'l,xg) < icgo(l‘l,ng,K, T, (51,(52) + 5C°°(:n1,2K, T, (51) —+ X9

We choose z9 > 51(2K) and x1 > 2(3*x5 to obtain

Cii(x1, 2) = max(xy, z2) — K.
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Remark 4.2 We refer to Gerber and Shiu [7] for a detailed study of the perpetual exchange
option.

Proceeding analogously from the proposition 3.1, we can define the perpetual critical surface
b*(z2) = inf{z1 > x2 | C3f(z1,22) =21 — K}.

Since Cfy is convex, we deduce immediately the convexity of b*(.). This convexity implies the
b*(z2)
2

existence of lim
Lo —00

that this limit is finite.

in 0, oo]. Propositions 4.1 and 4.4 supply the next corollary which states

Corollary 4.1

LA CE)) €1, 24"]

T2—00  I9

where 3% is given in the proof of the proposition 4.4 .

Remark 4.3 If we suppose in addition that 02 > 0 then we can improve the previous corollary
as it is shown in the next proposition.

Proposition 4.5 Assume min(dy,02) > 0. Then,

Proof: Using the inequality,
(max(z,y) = K)+ < (y —a)+ + (x — K)4

we obtain
Cﬁ(fclvﬂb) S Ceoo(xl)x2aK7 T, 61)62) + Coo(x2aK7 T, 62)

As dy > 0, there is sy such that C*°(zg, K, 7,02) = 29 — K for every xa > s9. It suffices to choose
T9 > s9 and x1 > (¥ to obtain

Ci(xy,z2) =21 — K.

This implies b*(xg) < F*xq for every xzo > s9. @

4.3 Perpetual American put on the minimum of two assets

We end this section by a more precise description of the structure of the exercise region of the
perpetual American put on the minimum of two assets. The value function of such an option is
given by

P>X(x1,22) = sup E (e_rT(K — min(Si’zl,Sf’“)M) .
7€70,00

Note that PS° is nonincreasing in x; and z2. Define

Em = {(x1,12) € (]0,400[)? | PX(21,22) = K — min(z1, z2)}.
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We deduce from in proposition 4.1
Em = EL UE? where £ = &, N {x; = min(z1, 22)}.

According to corollary 2.1, we know that &, is nonempty. The next proposition informs us on
some topological features of TIE},.

Proposition 4.6

i) (z1,22) € EL Rightarrow (x1, \zs) € &} for every A > 1
i) (1, 12) € EL, Rightarrow (\x1,x2) € £, for every X €]0,1].

Similar results hold for E2,.

Proof: We refer to proposition 2.3 of [4] for a detailed proof. e
Define the critical surface of £, by

bi(z2) = sup{z1 €]0,z2[; (z1,22) € Em}-

with the convention sup () = 0. According to the previous proposition, the function by is nonde-
creasing. Moreover, the convexity of P3° implies the concavity of b;. We wonder whether b; is
positive for every xo 7 The next proposition gives an answer.

Proposition 4.7 If § > 0 then bi(z) > 0 for every > 0.

Proof: Let P be the value function of the perpetual put on the asset i.
We have

K —min(SH*1, §2%2) < K — §%%2 4 (§2%2 — §Lo1) | for every stopping times 7

Hence,
Pﬁf(:cl,xg) < PQOO + Cgo(l'l,xQ).
There is a real number % such that for every xo < 23, we have P2 = K — x5.

*
Choose z1 < % < % where 3* has been previously defined

PT%O(J‘},JQ) =K — xX1.

thus, b1(z2) > 0 for every xzo < . Proposition 4.6 i) allows us to conclude.e
We are interested in the asymptotic behavior of the critical surface.

Define the critical stock-price of the perpetual put on the asset i by

x; =sup{z; >0, P°(z;) = K — x;}.
We have the following proposition which gives the asymptotic behavior of the critical surface.

Proposition 4.8 We have lim by(xs) = 7.
To—+00
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The inequality lirgrl by (22) < x} is immediate thanks to PP < P2°(x1,x3).
To—T00

Indeed, take xo > 1 > 7, we have
P (1, 32) Pre(z:)
K — il

= K — min(z,z2).

vV Vv

Thus, 131(:1:2) <z for every x1 > ]
Hence,
Em C {(z1,22) €)0, 400 | 21 < a7}

In the same manner, we can prove that
E2  {(z1,2) €]0, 400} | 2o < z3).

To show the converse inequality, we need two lemmas.
(n)

Let (mén))nzo a sequence satisfying lim, .o x5 ' = +o0o. We define the sequence (7,)neny of
stopping times by setting

(4) = inf{t > 0; (2 52y € g}
By the optimal stopping theory,

P (af,ad") = E (ew(K — min(571, 53:‘”5”)))+) .
Lemma 4.2

lim (Pg(ai,af”) — B (e ™ (K - $570)1)) =0

n—-4-o00

Proof of the lemma: for every n € N, we have

00 (% n —TT L] —TT 1z] 271(71)
i) - B (e - 5| 2 B (st - s,
—rr s ol 2,x(n)
< sup E(e (S-S5 )4
T7€7T0,00

= O(a},25").

Gerber and Shiu [7] have explicitly computed the function © and it can be checked using their

formula that lim ©(zq,2z2) = 0 for every x;. o
To—+00

Remark 4.4 Proceeding analogously from the previous proposition, we can prove for every xy

lim PX(x1,2z2) = PPo(x1).
xo—+00

In particular, we have for x1 < zj

lim P>*(z1,29) = K — x1.
o (1, x2) 1
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Lemma 4.3 The sequence (Tp)nen converges to 0 in probability .

Proof of the lemma: Thanks to lemma 4.2, we deduce from remark 4.4 that

lim FE (e_TT”(K - Si,’lxih) =K —zj.

n—-4oo

But,
E(e—m(K—sifT)+) < E(e—’“TnP{’O(Siﬁ))

Tn *
= K-1j +E/ e*T“(élSi’xl —rK)l 1.
0

{8y ' <a7}

where for the second equality, we used the generalized Ito’s formula (see Krylov [14]). But,

rK
according to theorem 3.2 we have z7 < 5 and thus
1

Tn * ™
E / e (015, — 1K) du < (127 —rK)E / LB, ps<oy ds <0
0 0 B

1,x*
{5, T <at}

where By = 011 VVS1 + 012W52 is a nonstandard one-dimensional Brownian motion and
i
We obtain,
Tn
lim E/O 1{B5+M3§0} dS = 0.

n—-+00

We end the proof thanks to the following deterministic result, the proof of which is left to the
reader.

Lemma 4.4 Let f : RY — R be a continuous function satisfying the condition :
For every e > 0 there is t €]0, €] such that f(t) > 0.

tn
Then every sequence (tn)nen such that/ 1{1(s)>0y dsRightarrow0 converges to 0.
0

We are in a position to prove proposition 4.8.
Proof of proposition 4.8:

We know that the limit exists and is smaller than 7 .
Assume lim bi(z3) < o} and let € < 2f — lim bi(x). Fix M > 2% and let (xén))n>0 a
Tro—+00 To——+00 =

(n)

. . . n
sequence satisfying lim, .o 5

4.
Choose n large enough so that xén) > M and introduce the following stopping times,

= +o00 and (7,)n>0 the sequence of stopping times defined by

(n)
TJ(\j)m = inf{t > 0; Sf’xZ < M}, for M > x5
and 7V = inf{t > 0; Stl’f{ < x] — €}

Using the inclusion

E}n C {(z1,z2) €]0, —I—oo[2 | x1 < a] —eor xg < x5}
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we have

(2)

To > Tap A 1) for every n.
Obviously, lim 7'](\/2[)’" = 400 so that lim T](\?’n A 7'5(1) = 7'6(1) and thus lim 7, > 7'5(1) which
n—-4o0o n—-4o0o n—-4oo

contradicts the lemma 4.3.
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