Journée des Doctorants du CMAP

7 mars 2007

 

Vous trouverez sur cette page les transparents des exposés.


9h15-9h40
Carlos JEREZ

Modélisation tridimensionnelle
de transducteurs SAW d'ouverture finie

(résumé)

13h30-13h55
Guoshen YU

Audio Denoising by Time-Frequency Block Thresholding

(résumé)

9h40-10h05
Anaël DOSSEVI

Reconstruction des réseaux fonctionnels à partir d'enregistrements en magnéto- et électro-encéphalographie

(résumé)

13h55-14h20
Élisabeth OTTENWAELTER

Schémas numériques de résolution de l'équation de Hamilton-Jacobi-Bellman de la commande optimale stochastique

(résumé)

10h05-10h30
Gloria FACCANONI

Étude d'un modèle fin de changement de phase liquide-vapeur

(résumé)

14h20-14h45
Seth DWORKIN

Application of a Modified Vorticity-Velocity Formulation to Steady and Unsteady Laminar Diffusion Flames

(résumé)

10h45-11h10
Arash FAHIM

Backward Stochastic Differential Equations of Second Order and Application to Probabilistic Numerical Solution for Fully Nonlinear PDE

(résumé)

14h55-15h20
Gilles-Edouard ESPINOSA

Gestion de portefeuille dans un modèle
avec taxes

(résumé)

11h10-11h35
Céline LABART

Error expansion for the discretisation of Backward Stochastic Differential Equation

(résumé)

15h20-15h45
Audrey HERMANT

Conditions d'optimalité du second-ordre pour les problèmes de commande optimale avec contraintes sur l'état. Application au tir

(résumé)

11h35-12h00
Mohamed M'RAD

Portfolio optimization with discretionary stopping

(résumé)

Cette journée a été organisée par Audrey Hermant et Mohamed M'rad.


Résumés des exposés (format pdf ici)


Modélisation tridimensionnelle de transducteurs SAW d'ouverture finie

Carlos Jerez

Les transducteurs à ondes acoustiques de surface ou SAW (Surface Acoustic Waves) sont largement utilisés par l'industrie des télécommunications pour des applications comme le retard et filtrage des signaux à fréquences intermédiaires dans les systèmes de communication. La nécessité de miniaturiser les dispositifs a mis en évidence certains mécanismes de pertes, en particulier, les phénomènes associés à la nature tridimensionnelle des transducteurs.

Suivant les modèles précédents, on développe un schéma hybride employant des éléments de frontière de natures differentes pour définir les conditions d'excitation sur la surface et la masse des électrodes. La physique du substrat semi-infini est décrite par la fonction Green obtenue à l'interface avec le vide dans lequel les électrodes sont placées. L'obtention de la fonction Green a besoin d'un traitement extrêmement délicat à cause des singularités données soit par les ondes de surface soit par le comportement à l'infini soit encore par le comportement électrostatique.
(haut de page)

Reconstruction des réseaux fonctionnels à partir d'enregistrements
en magnéto- et électro-encéphalographie


Anaël Dossevi

Depuis quelques années, l'une des hypothèses expliquant l'interaction entre des aires distantes du cerveau est le couplage temporel des signaux qu'elles émettent. Ce couplage peut notamment être traduit par une synchronie de phase ou une corrélation des signaux. Le principal problème pour déterminer ces réseaux de sources corrélées (appelés réseaux fonctionnels distribués) est le grand nombre de sources distribuées à la surface du cortex (entre 10000 et 50000) qui mène à devoir évaluer des dizaines de millions de paires de sources. Après avoir décrit les modèles d'activité électrique du cerveau ainsi que le problème direct et inverse en électro- et magnéto-encéphalographie, nous montrerons une méthode basée sur une décomposition en valeurs singulières des signaux permettant de déterminer les principaux réseaux. Nous exposerons ensuite les résultats obtenus aussi bien sur des données simulées que sur des données réelles.
(haut de page)

Étude d'un modèle fin de changement de phase liquide-vapeur

Gloria Faccanoni

La connaissance des mécanismes de base de l'ébullition est à ce jour encore insuffisante pour expliquer des phénomènes comme la crise d'ébullition. Afin d'ameliorer cette connaissance, la simulation numérique directe apparaît comme un outil d'investigation prometteur. En vue de réaliser des simulations numériques de la dynamique de l'ébullition, on présente le développement, l'analyse et les premières résolutions numériques des équations d'un modèle de type "interface diffuse" pour les écoulements liquide-vapeur avec changement de phase. Le système d'équations aux dérivées partielles correspond aux équations d'Euler, la loi de pression est définie pour toute densité positive et inclut une zone lineaire pour les densités associées à la phase de mélange. Ce système peut être obtenu comme limite d'un système bifluide avec termes sources lorsque le temps caractéristique de la transition de phase tends vers zéro. On présentera le comportement de ce processus de relaxation, l'étude du système limite ainsi que des tests numériques.
(haut de page)

Backward Stochastic Differential Equations of Second Order
and Application to Probabilistic Numerical Solution for Fully Nonlinear PDE


Arash Fahim

In this lecture, I try to explain the ideas of creating a MonteCarlo method for PDEs which are fully nonlinear parabolic. This method for semilinear and quasilinear PDEs are vastly considered. For fully nonlinear parabolic PDEs the starting point was [1]. There the system of backward stochastic differential equation called 2BSDE is introduced to be the correct way to do MonteCarlo. The problem remains is the well-posedness of 2BSDE. We have just a uniqueness result. The existence result is an open problem which refuses usual methods of proof the existence up to now. But as a numerical method we can discretize the 2BSDE to find a method of approximating the solution of corresponding PDE. The numerical simulations shows convergence in some important examples. The result of [2] is used to proof the convergence under some reasonable conditions.

Références :
[1] P. Cheridito, H.M. Soner, N. Touzi, N. Victoir; ``Second Order Backward Stochastic Differential Equations and Fully Non-Linear Parabolic PDEs'', to appear.
[2] G. Barle, P.E. Souganidis, ``Convergence of Approximation Schemes for Fully NonLinear Second Ordre Equation'', Asymptotic Anal., 4, pp. 271--283, 1991.
(haut de page)

Error expansion for the discretisation of Backward Stochastic Differential Equation

Céline Labart

We study the error induced by the time discretization of a decoupled forward-backward stochastic differential equations $(X,Y,Z)$. The forward component $X$ is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme $X^N$ with $N$ time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors $(Y^N-Y,Z^N-Z)$ measured in the strong $L_p$-sense ($p \geq 1$) are of order $N^{-1/2}$ (this generalizes the results by Zhang(04)). Secondly, an error expansion is derived: surprisingly, the first term is proportional to $X^N-X$ while residual terms are of order $N^{-1}$.
(haut de page)

Portfolio optimization with discretionary stopping

Mohamed M'rad

Depuis quelques années, le cadre classique de gestion de portefeuille est de considérer un agent qui reçoit un capital initial déterministe $x$ qu'il doit investir dans le marché financier dans le but de maximiser l'utilité espérée de sa richesse et à une maturité finale préfixée $T$. Le problème posé consiste à résoudre:

esssup_{\pi \in \mathcal{A}(x)} \mathbf{E}(U(X^{x,\pi}_{T})/\mathbf{F_t}),

Une des questions qu'on peut se poser est la suivante: Et si l'agent décide de lui même quand est ce qu'il s'arrete? Dans notre étude on considère alors une variante du premier problème classique; l'agent est libre de s'arrêter avant ou à la maturité $T$ afin de maximiser l'utilité espérée de sa richesse au temps d'arrêt associé $\tau$. L'exemple le plus élémentaire est celui des options américaines; options pouvant être exercées à tout instant $t\in [0,T]$.
Ainsi, le problème posé est celui de résoudre une équation du type suivant

esssup_{t \leq \tau \leq T} esssup_{\pi \in \mathcal{A}(x)} \mathbf{E}(U(X^{x,\pi}_{\tau(x,\pi)})/\mathbf{F_t}),

où $U$ est la fonction d'utilité.
L'objectif est alors d'étudier ce problème de deux points de vue; théorique et numérique.
(haut de page)

Audio Denoising by Time-Frequency Block Thresholding

Guoshen Yu

Conventional diagonal thresholding is unsuitable for audio signal denoising because it produces musical noise. We present a time-frequency block thresholding for audio denoising which produces hardly any musical noise and improves the SNR of estimation results relatively to the start-of-the-art methods such as the Ephraim and Malah estimation. A block thresholding groups time-frequency signal coefficients in blocks and then attenuates coefficients in each block. This block grouping regularizes estimations and contributes to the elimination of the musical noise. The block size can also be adapted to the signal properties by minimizing a SURE estimator of the block thresholding risk. For audio signals it reduces distortion such as ''pre-echo'' artifacts.
(haut de page)

Schémas numériques de résolution de l'équation de Hamilton-Jacobi-Bellman
de la commande optimale stochastique


Élisabeth Ottenwaelter

Cet exposé analyse l'implémentation de méthode de différences finies généralisées pour l'équation HJB du contrôle stochastique, introduite par F. Bonnans et H. Zidani dans [1]. La décomposition de la matrice de covariance nécessite la résolution en chaque point de la grille (et pour chaque commande) d'un programme linéaire.

Nous montrons que, pour les problèmes bidimensionnels, ce programme linéaire peut se résoudre en $O(p)$ opérations, où $p$ est la taille du stencil $\mathcal{S}$. La méthode est basée sur un cheminement dans l'arbre de Stern-Brocot, et sur le remplissage associé de l'ensemble des matrices semidéfinies positives de taille deux. Elle est implémentée, en langage C, sur deux exemples, l'un sans contrôle et l'autre avec, dans le cas d'un schéma explicite.

L'utilisation d'un schéma explicite nécessite que le pas de temps soit de l'ordre du carré du pas d'espace. Un schéma implicite autorise un plus grand pas de temps, mais demande à chaque pas de temps l'inversion d'une matrice de grande taille. Etant donné que l'opérateur d'évolution s'écrit comme une somme d'opérateurs de diffusion de rang un, dont les directions sont données par le stencil, une alternative naturelle est d'utiliser une méthode de splitting de l'opérateur, ce qui conduit à résoudre $|\mathcal{S}|$ systèmes linéaires tridiagonaux à chaque pas de temps.

Références :
[1] J.F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numerical Analysis, 41:1008--1021, 2003.
(haut de page)

Application of a Modified Vorticity-Velocity Formulation
to Steady and Unsteady Laminar Diffusion Flames


Seth Dworkin

We investigate the structure of a periodically forced, axisymmetric laminar methane-air diffusion flame in which a cylindrical fuel jet is surrounded by a coflowing oxidizer jet. The computational model solves the full set of time-dependent, elliptic, partial differential conservation equations for mass, momentum, species and energy with the momentum equations posed in a modified vorticity-velocity form. This set of coupled, nonlinear PDEs is discretized using finite differences and solved using a damped, modified Newton's method. At each adaptively chosen timestep the linear Newton equations are solved using Bi-CGSTAB with a block Gauss-Seidel preconditioner. We include a detailed description of the fluid dynamic-thermochemical structure of the flame at a 20 Hz forcing frequency for a 30% sinusoidal velocity perturbation. Comparisons of experimentally-determined and calculated temperature, CO and CO2 mole fraction profiles provide verification of the accuracy of the model.
(haut de page)

Gestion de portefeuille dans un modèle avec taxes

Gilles-Edouard Espinosa

But. Cette étude s'intéresse à la gestion d'un portefeuille dans un modèle de marché financier avec taxes. Reprenant les idées introduites dans [1] Modeling continuous-time financial markets with capital gains taxes (par I. Ben Tahar, H.M. Soner et N. Touzi) dans le cadre d'un seul actif risqué suivant le modèle de Black-Scholes et d'une fonction d'utilité particulière (à savoir $\frac{x^p}{p}$, $p\in]0,1[$), on cherche à obtenir dans un cadre plus général un développement limité au premier ordre de la fonction valeur lorsque le taux d'intérêt et les taxes tendent vers 0.

Portefeuille et stratégies. Brièvement, le marché comporte un actif non risqué évoluant au taux d'intérêt $r>0$ constant et $n$ actifs risqués dont la dynamique est donnée par : $dP_t=diag(P_t)[b(P_t)dt+\sigma(P_t)dW_t]$ (horizon infini).
On reprend le modèle de taxes et de coûts de transaction de [1], à savoir :
  • coûts de transaction : $(1-\mu_i)P_t^i$ à la vente et $(1+\lambda_i)P_t^i$ à l'achat
  • taxes : $\alpha(1-\mu_i)(P_t^i-B_t^i)$ où $B_t^i$ est le prix de référence, défini comme moyenne des actifs $i$ détenus en $t$, pondérés par le prix auquel ils ont été achetés (en plus de la quantité)
On suppose qu'un agent peut répartir son argent entre son compte en banque ($X_t$), les différents actifs risqués ($Y_t$)$\in\r^n$ et sa consommation ($C_t$).
Etant donnée une fonction d'utilité $U:\r_+\rightarrow\r_+$, vérifiant certaines conditions classiques, on définit alors : $J_\infty(s,\nu)=\e[\int_0^\infty{e^{-\beta t}U(C_t)dt}]$ et la fonction valeur : $V_\infty(s)=\sup_{\nu\in\mathfrak{A}(s)} {J_\infty(s,\nu)}$.
(haut de page)

Conditions d'optimalité du second-ordre pour les problèmes de commande optimale
avec contraintes sur l'état. Application au tir


Audrey Hermant

Dans cet exposé, on s'intéresse au problème de commande optimale (déterministe) d'une équation différentielle ordinaire. Ces problèmes interviennent dans de nombreuses applications (optimisation de trajectoire, biologie, économie...). La difficulté ici provient de la présence de contraintes sur l'état. Nous donnons d'abord des résultats de régularité des solutions et multiplicateurs, qui viennent compléter ceux de [1,2]. Nous présentons ensuite une théorie des conditions d'optimalité du second-ordre ``sans saut'' entre la condition nécessaire et la condition suffisante (no-gap). Ces résultats sont utiles pour l'étude d'algorithmes numériques adaptés à ces problèmes. Parmi eux, l'algorithme de tir, basé sur la résolution d'un problème aux deux-bouts, permet, une fois qu'il est correctement initialisé, d'obtenir la solution avec une très grande précision et une faible complexité. Nous donnons une condition nécessaire et suffisante pour que cet algorithme soit bien posé lorsqu'il y a des contraintes sur l'état (c'est-à-dire que le Jacobien de la fonction de tir est inversible).

Références :
[1] D.H. Jacobson, M.M. Lele, and J.L. Speyer. New necessary conditions of optimality for control problems with state-variable inequality contraints. J. of Mathematical Analysis and Applications , 35:255--284, 1971.
[2] H. Maurer. On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrum 41, Universität Münster, 1979.
(haut de page)