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a b s t r a c t

This paper is devoted to a numerical implementation of the Francfort–Marigo model of
damage evolution in brittle materials. This quasi-static model is based, at each time step,
on the minimization of a total energy which is the sum of an elastic energy and a Grif-
fith-type dissipated energy. Such a minimization is carried over all geometric mixtures
of the two, healthy and damaged, elastic phases, respecting an irreversibility constraint.
Numerically, we consider a situation where two well-separated phases coexist, and model
their interface by a level set function that is transported according to the shape derivative
of the minimized total energy. In the context of interface variations (Hadamard method)
and using a steepest descent algorithm, we compute local minimizers of this quasi-static
damage model. Initially, the damaged zone is nucleated by using the so-called topological
derivative. We show that, when the damaged phase is very weak, our numerical method is
able to predict crack propagation, including kinking and branching. Several numerical
examples in 2d and 3d are discussed.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Fracture mechanics is a field of paramount importance which is the subject of intense research efforts, see [21,24,43]
and reference therein. While many works address the issue of microscopic modelling of fractures and the coupling of some
defect atomistic models with macroscopic elasto-plastic models, we focus on purely macroscopic models in the framework
of continuum mechanics. Roughly speaking such continuum models can be classified in two main categories. On the one
hand, there are models of crack growth and propagation which assume that the crack is a (d � 1)-dimensional hypersur-
face in dimension d (a curve in the plane, and a surface in the three-dimensional space). On the other hand, one can con-
sider models of damage where there is a competition between the initial healthy elastic phase and another damaged
elastic phase. The transition from healthy to damaged can be smooth (i.e., there is a continuous damage variable which
measures to what extent, or local proportion, the material is damaged) or sharp (i.e., there is an interface between a fully
healthy and fully damaged zones). The Francfort–Marigo model [32] of quasi-static damage evolution for brittle materials
pertains to the latter category and it is the purpose of this work to propose a numerical implementation of such a model.
One of our main conclusion is that, although the Francfort–Marigo model is a damage model, it is able to describe crack
propagation, when the damaged phase is very weak, and it gives quite similar results to those obtained in [20,21]. This is
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not so much a surprise (although not a proof, of course) since the numerical approach in these papers is based on a C-
convergence approximation (à la Ambrosio-Tortorelli) which amounts to replace the original fracture model by a damage
model.

Section 2 gives a complete description of the Francfort–Marigo damage model that we briefly summarize now. A smooth
body X � Rd (d = 2, 3) is filled with two elastic phases: the undamaged or ‘‘healthy’’ phase, and the damaged one which is
much weaker. The damaged zone is X0 �X, with characteristic function v(x), and the healthy zone is the remaining region
X1 = XnX0. The behavior of such a mixture is assumed to be linearly elastic with a perfect interface (i.e., natural transmission
conditions take place at the interface). Starting from an initial configuration of damaged and healthy phases mixture vinit(x)
and for a given set of loads, the new damaged configuration vopt(x) is obtained by minimizing a total energy
JðvÞ ¼ JelastðvÞ þ j
Z

X
vdV ; ð1:1Þ
which is the sum of the elastic energy and a Griffith-like bulk energy for the creation of the damaged region (where j > 0 is a
material parameter representing the energy density released at the onset of damage), under an irreversibility constraint
which forbids an initially damaged zone to become healthy anew, i.e.,
vðxÞP vinitðxÞ:
A quasi-static damage evolution model is then obtained by a time discretization of the force loading and by applying the
previous constrained minimization at each time step.

For numerical purposes we represent the interface R between the damaged and healthy regions, X0 and X1, respectively,
by a level set function. The level set method for front propagation, as introduced by Osher and Sethian [50], is well-known to
be very convenient for this purpose, including the possibility of topology changes. Here, we take advantage of another fea-
ture of the level set method, namely the local character of front displacement. In other words, we do not seek global min-
imizers of (1.1) but rather local minimizers obtained from the initial configuration vinit by transporting it using the level set
method. Although global minimization is the ultimate goal in many optimization problems (like, for example, shape optimi-
zation [3,5]), it turns out to be an undesirable feature in the present problem of damage evolution. Indeed, as explained in
[20], global minimization is mechanically not sound for a quasi-static evolution problem where meta-stable states should be
preferred to globally stable states attained by crossing a high energy barrier.

In the context of the level set method, at each time step, the new damage configuration vopt is obtained from the initial-
ization vinit by solving a transport Hamilton–Jacobi equation with a normal velocity which is minus the shape derivative of
the total energy (1.1). Section 3 is devoted to the computation of such a shape derivative, following Hadamard method of
geometric optimization (see e.g. [3,38,46,59]). Remark that this computation is not standard (and indeed new in the elastic-
ity context, to the best of our knowledge) since it is an interface between two materials, rather than a boundary, which is
moved and since the full strain and stress tensors are not continuous through the interface. Note however that, for contin-
uous fields, the derivation with respect to the shape of an interface is already known, see e.g. [53,60]. The numerical algo-
rithm for the level set method is by now standard and is briefly recalled in Section 6.

One of the inconveniences of the level set method, as well as of most numerical methods for crack propagation, is its
inability to nucleate damage and start a front evolution if there is no initial interface. Therefore, we use another ingredient
to initialize our computations when no initial damaged zone is prescribed. Namely, we use the notion of topological deriv-
ative as introduced in [30,34,58], and applied to the case of elastic inclusions in [8,9,17] for inverse problems, and to cracks in
[61]. The topological derivative aims at determining whether it is worth or not nucleating an infinitesimal damage inclusion
in the healthy zone X1. This information is complementary to that obtained by shape variation since, on the one hand, the
shape derivative cannot nucleate new inclusions and, on the other hand, once an inclusion is created, only the shape deriv-
ative can expand it further on. The notion of topological derivative will be detailed in Section 4.

The resulting numerical algorithm is somehow similar to previous algorithms in structural optimization [5,62]. When the
damaged phase is much weaker than the healthy phase (say, with a 10�3 ratio between the Young moduli) and for a suitably
chosen Griffith energy release parameter j (which scales like the inverse of the mesh size Dx), our numerical results are very
similar to those of [20] which were obtained for a fracture model. Therefore we claim that our numerical implementation of
the Francfort–Marigo damage model is able to simulate crack propagation. Numerical experiments, including a study of con-
vergence under mesh refinement, are performed in Section 6. We believe our approach is simpler and computationally less
intensive than other classical methods for crack propagation [1,13,16,36,37,47,48]. Let us emphasize that level-set methods
have already been used in fracture mechanics [18,36,37], usually in conjunction with the extended finite element method
[44]. However, one novelty of our work is that we use a single level-set function instead of two for parametrizing the crack
and that the weak damage phase avoids the use of discontinuous finite elements. After completion of this work we learned
that similar ideas were independently introduced in [14,42]. A different approach, called eigen deformation, was recently
proposed in [56]: it uses two fields, like in [20], and relies on a scaling resembling ours (see (2.11) below). Eventually Sec-
tion 7 draw some conclusions on our numerical experiments which yield comparable but different results from those ob-
tained by the back-tracking algorithm for global minimization proposed in [19,21]. Our results, including some
computations in 2d, were announced in [6].
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2. The Francfort–Marigo model of damage

2.1. Description of the model

This section gives a comprehensive description of the Francfort–Marigo model [32] of quasi-static damage evolution for
brittle materials. In a smooth domain X � Rd this damage model is stated as a macroscopic phase transition problem be-
tween a damaged phase occupying a subset X0 �X and an healthy phase in the remaining region X1 = XnX0. To simplify
the presentation, in a first step we consider a static problem starting from a healthy configuration (namely, without any irre-
versibility constraint). The characteristic function of X0 is denoted by v(x). The healthy and damaged phases are both as-
sumed to be linear, isotropic and homogeneous, so we work in a linearized elasticity framework and the Lamé tensor of
elasticity in X is
Av ¼ A1ð1� vÞ þ A0v;

where 0 < A0 < A1 are the Lamé tensors of isotropic elasticity in the damaged and healthy regions, respectively, defined by
A0;1 ¼ 2l0;1I4 þ k0;1I2 � I2;
where I2 and I4 denote the identity 2nd and 4th order tensors, respectively.
The boundary of the body is made of two parts, @X = CD [ CN, where a Dirichlet boundary condition uD is imposed on CD

and a Neumann boundary condition g is imposed on CN. We assume that uD 2 H1ðX; RdÞ, g 2 L2ð@X; RdÞ and we consider also
a body force f 2 L2ðX; RdÞ. (Slightly stronger regularity assumptions on the data f, g, uD will be made in the sequel.) We de-
note by n the unit normal vector on @X. We introduce the affine space of kinematically admissible displacement fields
V ¼ fu 2 H1ðX; RdÞ such that u ¼ uD on CDg:

As usual, the strain and stress tensors associated to a displacement u write as
eðuÞ ¼ 1
2
ðruþrT uÞ; rðuÞ ¼ AveðuÞ: ð2:1Þ
The elasticity system reads as
�divðAveðuvÞÞ ¼ f in X;

uv ¼ uD on CD;

AveðuvÞn ¼ g on CN:

8><
>: ð2:2Þ
It is well-known that (2.2) can be restated as a minimum potential energy principle, that is, the displacement field uv 2 V
minimizes in V the energy functional
PvðuÞ ¼
Z

X

1
2

AveðuÞ � eðuÞ � f � u
� �

dV �
Z

CN

g � udS;
i.e.,
PvðuvÞ ¼min
u2V

PvðuÞ:
The Francfort–Marigo model amounts to minimize jointly over u and v a total energy which is the sum of the elastic poten-
tial energy and of a Griffith-type energy (accounting for the creation of the damaged region), writing as
J ðu;vÞ ¼ PvðuÞ þ j
Z

X
vdV ; ð2:3Þ
where j is a positive material parameter which represents the release of elastic energy due to the decrease of rigidity at the
onset of damage and can be interpreted as a density of dissipated energy of the damaged region. We call j the Griffith energy
release parameter. In other words, the Francfort–Marigo model is based on the minimization over v 2 L1(X;{0,1}) of
JðvÞ ¼ J ðuv;vÞ ¼min
u2V

J ðu;vÞ: ð2:4Þ
Instead of writing (2.4), we can first minimize in v and later in u (since (2.3) is doubly minimized, the order of minimization
does not matter). Since v(x) takes only the values 0 and 1, the minimization is easy, provided that we know uv (which is of
course never the case). Indeed, minimizing (2.4) is equivalent to the following local minimization at each point x 2X
min
v2f0;1g

1
2

AveðuvÞ � eðuvÞ þ jv
� �

ðxÞ;
providing a transition criterion from the healthy to the damaged phase as soon as the release of elastic energy is larger than
the threshold j. More precisely, a point x is damaged if and only if
1
2

A1eðuvÞ � eðuvÞðxÞ �
1
2

A0eðuvÞ � eðuvÞðxÞP j: ð2:5Þ
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After minimization in v we obtain a non-linear non-convex functional to be minimized in V
EðuÞ ¼ 1
2

Z
X

min A1eðuÞ � eðuÞ;A0eðuÞ � eðuÞ þ 2j
� �

dV �
Z

X
f � udV �

Z
CN

g � udS: ð2:6Þ
In truth the Francfort–Marigo model is quasi-static which means that we consider a sequence of minimization problems
of the above type, with an additional thermodynamic irreversibility constraint. The time is discretized by an increasing se-
quence (ti)iP1, with t1 = 0 and ti < ti + 1. At each time ti the loads are denoted by fi and gi, the imposed boundary displacement
is uD, i, the affine space of kinematically admissible displacement fields is Vi, the characteristic function of the damaged phase
is vi and the corresponding displacement is uvi

, solution of (2.2) with loads fi and gi and Dirichlet boundary condition uD, i.
The initial damaged zone is given and characterized by v0.

The model is irreversible which means that a material point x 2X which is damaged at a previous time must remain dam-
aged at a later time ti, i.e.,
viðxÞP vi�1ðxÞ: ð2:7Þ

Therefore, introducing J i and Ji, which are defined as (2.3) and (2.4) with the loads at time ti, the Francfort–Marigo model is a
sequence, indexed by i P 1, of minimization problems
inf
v2L1ðX;f0;1gÞ; vPvi�1

JiðvÞ ¼ inf
u2Vi ;v2L1ðX;f0;1gÞ;vPvi�1

J iðu;vÞ; ð2:8Þ
with minimizers vi and uvi
(if any).

2.2. Mathematical properties of the model

The Francfort and Marigo model is ill-posed, namely, there does not exist any minimizer of (2.8) in most cases. This can
easily be seen because (2.8) is equivalent to the minimization of the non-linear elastic energy (2.6) which is not convex, nei-
ther quasi-convex. Actually, one of the main purposes of the seminal paper [32] of Francfort and Marigo was to relax the
minimization problem (2.8) and show the existence of suitably generalized solutions. The relaxation of (2.8) amounts to
introduce composite materials, obtained by a fine mixing of the two phases, as competitors in the minimization of the total
energy. Such composite materials include the limits, in the sense of homogenization, of minimizing sequences of (2.8): they
are characterized by a phase volume fraction in the range [0,1_] and a homogenized elasticity tensor which is the output of
the microstructure at given volume fractions. It turns out that optimal microstructures are found in the class of sequential
laminates. For further details we refer to [32] for the first time step and to [31] for the following time steps (where the irre-
versibility constraint plays a crucial role). This relaxed approach has been used for numerical computations of damage evo-
lution in [4].

One drawback of the Francfort–Marigo approach is that it relies on global minimization, i.e., at each time step ti the func-
tional J iðu;vÞ is globally minimized with respect to both variables u and v. There is no true mechanical motivation for insist-
ing on global minimization with respect to v. Because of global minimization, damage might occur at time step ti in a region
far away from the initially damaged zone at the previous time step ti�1, whereas, in most circumstances, it seems more nat-
ural from a physical viewpoint to have expansion of the previously damaged area. Therefore, in a quasi-static regime which
may favor metastability effects, it seems reasonable to prefer local minimization (with respect to v) instead of global min-
imization. In the context of fracture mechanics it was proved in [48] that criticality solutions of the Griffith model are dif-
ferent from the energy globally minimizing solutions proposed by Francfort and Marigo.

Unfortunately, for a scalar-valued version of our damage model (antiplane elasticity), it was recently proved in [35] that
local minima are actually global ones (both in the original setting of characteristic functions or in the relaxed setting of com-
posite materials, locality being evaluated in the L1(X)-norm). However this last result of [35] does not prevent the possibility
of a different framework in which local minimizers would not be global ones (see, for example, the notion of e-stable min-
imizer in [41]). In the present paper we propose such a framework based on the notion of front propagation in the original
case of a macroscopic distribution of healthy and damaged phases (i.e., not considering composite materials). Instead of rep-
resenting a damaged zone by a characteristic function v 2 L1(X;{0,1}) we rather introduce the interface R between the
healthy and the damaged regions. Admissible variations of this interface are obtained in the framework of Hadamard method
of shape variations [3,38,46,52,59] (see Section 3 below). More precisely, the minimization in (2.8) is restricted to configu-
rations which are obtained by a Lipschitz diffeomorphism from a reference or an initial configuration. This is a severe restric-
tion of the space of admissible designs since, for example, all configurations share the same topology as the reference one. As
a consequence there cannot be nucleation of new damaged zones away from the initial one. This leaves open the possibility
of the existence of local, but not global, minimizers. We shall not prove anything rigorously on this issue but our numerical
simulations indicate that they do indeed exist. Let us remark that the chosen numerical approach by level sets allows for
topology changes by breaking a damage region in two parts, but never by creating a new damage region.

On the other hand, working in the framework of Hadamard method of front representation does not help at all concerning
the existence of (local or global) minimizers. Once again we are speechless on this issue. Of course, one simple remedy is to
add a surface energy in the minimized total energy
J regðu;vÞ ¼ PvðuÞ þ j
Z

X
vdV þ j0 TVðvÞ; ð2:9Þ
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with the total variation norm defined by
TVðvÞ ¼ sup
/2C1ðX;RdÞ
j/j61 in X

Z
X
vdiv/dV :
When v is the characteristic function of a smooth subset X0, the number TV(v) is also the perimeter of X0. A possible jus-
tification of this new term in (2.9) is to consider a Griffith surface energy on top of the previous Griffith bulk energy. We call
‘‘regularized’’ the energy in (2.9) since it is well-known to admit minimizers v in the class L1(X;{0,1}) [12]. In truth, if we
mention this additive surface energy, this is because the unavoidable numerical diffusion of our computational algorithm has
precisely the effect of adding such a surface energy. For our numerical tests, we shall not rely on (2.9) and rather we use the
standard energy (2.3).

2.3. Goal of the present study

The goal of this paper is to propose and test the following numerical method for the damage model of Francfort and Mar-
igo. At each time step ti the minimization (2.8) is performed by Hadamard method of shape sensitivity. In other words, we
compute the shape derivative of the objective function Ji with respect to the interface between the healthy and damaged
phases and, applying a steepest descent algorithm, we move this interface in (minus) the direction of the shape gradient.
The minimization of Ji is stopped when the shape gradient is (approximately) zero, i.e., at a stationary point (a local mini-
mizer in numerical practice) of the objective function. We use a level set approach to characterize the interface between
the healthy and damaged phases. As is well known, it allows for large deformations of the interface with possibly topology
changes. After convergence at time ti, we pass to the next discrete time ti+1 by changing the loads and we start a new min-
imization of Ji+1, taking into account the irreversibility constraint (2.7). We iterate until a final time tifinal

which we choose
when the structure is almost entirely damaged.

We propose two possible ways of initializing our computations. Either we start from an initial damaged zone v0 at time
t1 = 0, or, in case the initial structure is not damaged at all, we nucleate a small damaged zone by using the notion of topo-
logical derivative. This nucleation step takes place before we start the first minimization of J1. In particular, the resulting ini-
tial damaged zone is usually not a local minimizer of the total energy (2.3). We are thus able to predict damage propagation
without prescribing any initial crack as is commonly done in engineering practice.

Although the considered model has been designed in the framework of damage mechanics, it turns out to be able to
accurately describe crack propagation in some specific regimes. More precisely, when the damaged phase is very weak
(its rigidity A0 is negligible) and the energy release rate is large enough, the results of our numerical computations are
cracks rather than damaged sub-domains. In other words, the damaged zone is a thin hypersurface with a thickness of a
few mesh cells concentrating along a curve in 2d or a surface in 3d. However, our model, based on the minimization of
(2.3), has no intrinsic lengthscale as opposed to other fracture models where there is a competition between bulk (elastic)
energy and surface (crack extension) energy [21]. Therefore we must introduce some characteristic lengthscale in our model
if we want to support our claim that it is able to predict crack propagation. We do this at a numerical level by requiring that
our fracture results are convergent under mesh refinement, a necessary condition for any reasonable numerical algorithm.
To obtain such a convergence we scale the Griffith bulk energy release parameter j like 1/Dx, where Dx is the mesh size
which is refined. More precisely, we introduce a characteristic lengthscale ‘ and we define a new material parameter c
which can be thought of as a Griffith surface energy release parameter (or fracture toughness in the language of fracture
mechanics)
c ¼ j‘: ð2:10Þ
Then, instead of minimizing (2.3), we minimize (assuming, for simplicity, that there are only bulk forces)
J Dxðu;vÞ ¼
Z

X

1
2

AveðuÞ � eðuÞ � f � u
� �

dV þ c
Dx

Z
X
vdV ; ð2:11Þ
where c/Dx has the same physical units than j. Although (2.11) has been written in a continuous framework, we are actually
interested in its discretized version for a mesh of size Dx obtained, for example, with piecewise affine continuous Lagrange
finite elements for u and piecewise constant finite elements for v. In other words, rather than (2.11) we consider
J DxðuDx;vDxÞ ¼
Z

X

1
2

AveðuDxÞ � eðuDxÞ � f � uDx

� �
dV þ c

Dx

Z
X
vDx dV ; ð2:12Þ
where the minimization carries over the fields uDx and vDx belonging to the above finite element spaces (of finite dimension,
linked to the mesh size Dx). When Dx goes to zero, we expect that, for a minimizing sequence vDx, the last term of (2.11)
converges to a surface energy
lim
Dx!0

c
Dx

Z
X
vDx dV ¼ c

Z
C

dS;
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where C is the crack curve in 2d or surface in 3d. The numerical examples of Section 6 show that it is indeed the case: the
damage zone concentrates around a surface C with a thickness of a few cells Dx. We believe that the discrete scaled energies
(2.12) converges, in some sense to be made precise, as Dx and A0 go to zero, to the fracture model
min
u;C

Z
XnC

1
2

A1eðuÞ � eðuÞ � f � u
� �

dV þ c
Z

C
dS; ð2:13Þ
where the displacement field u may be discontinuous through the crack C. We are not able to prove such a result which
would first require to order the speed of convergence of Dx and A0 to zero. Remark however that similar results of conver-
gence of a sequence of discrete energies to a continuous limit energy have already been obtained, e.g. in the context of image
segmentation for discrete Mumford–Shah energies [27] or for spin systems [23]. A natural candidate for the type of conver-
gence of (2.12) to (2.13) would be of course C-convergence. However, since our numerical approach relies on some type of
local minimizers, whereas C-convergence only deals with global minimizers, one should pertain to a variant of C-conver-
gence for ‘‘local minimizers’’ (a notion to be made precise) as in the recent works [22,40,55]. Although a convergence of
(2.12) to (2.13) would probably be difficult and quite technical to prove, our numerical results are a clear indication that
it may hold true.

This conjectured link between the damage model (2.11) and the fracture model (2.13) is, of course, reminiscent (but not
equivalent) of the numerical approach in [20,21] where a fracture model is numerically approximated by a damage model
(based on the C-convergence result of [7]).

3. Shape derivative

3.1. On the notion of shape gradient

Shape differentiation is a classical topic [3,38,46,52,59]. We briefly recall its definition and main results in the present
context. Here, the overall domain X is fixed and we consider a smooth open subset x �X which may vary. Denoting by
v the characteristic function of x, we consider variations of the type
vh ¼ v � Idþ hð Þ; i:e:; vhðxÞ ¼ v xþ hðxÞð Þ;
with h 2W1;1ðX; RdÞ such that h is tangential on @X (this last condition ensures that X = (Id + h)X). It is well known that, for
sufficiently small h, (Id + h) is a diffeomorphism in X.

Definition 3.1. The shape derivative of a function J(v) is defined as the Fréchet derivative in W1;1ðX; RdÞ at 0 of the
application h ? J(v�(Id + h)), i.e.
Jðv � ðIdþ hÞÞ ¼ JðvÞ þ J0ðvÞðhÞ þ oðhÞ with lim
h!0

joðhÞj
khkW1;1

¼ 0;
where J0(v) is a continuous linear form on W1;1ðX; RdÞ.
Lemma 3.1 ([38,59]). Let x be a smooth bounded open subset of X and h 2W1;1ðX; RdÞ. Let f 2 H1(X) and g 2 H2(X) be two
given functions. Assume that R is a smooth subset of @x with boundary @R. The shape derivatives of
J1ðxÞ ¼
Z

x
f dV and J2ðRÞ ¼

Z
R

g dS
are J01ðxÞ ¼
R
@x f h � ndS and
J02ðRÞ ¼
Z

R

@g
@n
þ gH

� �
h � ndSþ

Z
@R

g h � sdL; ð3:1Þ
respectively, where n is the exterior unit vector normal to @x, H is the mean curvature and s is the unit vector tangent to @x such
that s is normal to both @R and n, and dL is the (d � 2)-dimensional measure along @R.
3.2. Main result

To simplify the notations we forget the time index ti in this section. Although the state equation and the cost function of
the Francfort–Marigo model are (2.2) and (2.4), respectively, we consider a slightly more general setting in this section (to
pave the way to more general models in the future). More precisely, we consider a state equation
�divðAveðuvÞÞ ¼ fv in X;

uv ¼ uD on CD;

AveðuvÞn ¼ gv on CN;

8><
>: ð3:2Þ
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where
fv :¼ ð1� vÞf 1 þ vf 0 and gv :¼ ð1� vÞg1 þ vg0
with f k 2 H1ðX; RdÞ \ C0;aðX; RdÞ and gk 2 H2ðX; RdÞ \ C1;aðX; RdÞ, k = 0 or 1 (0 < a < 1). We also assume that uD belongs to
H2ðX; RdÞ and that the subset X0 (with characteristic function v) is smooth. Under these assumptions the solution uv of
(3.2) belongs to H2ðX0; RdÞ and H2ðX1; RdÞ and is of class C2;a away from the boundary and from the interface. The cost func-
tion is taken as
JðvÞ ¼ 1
2

Z
X

AveðuvÞ � eðuvÞdV þ
Z

X
jvðx; uvÞdV þ

Z
@X

hvðx;uvÞdS; ; ð3:3Þ
where
jv :¼ ð1� vÞj1 þ vj0 and hv :¼ ð1� vÞh1 þ vh0
with jk(x, u) and hk(x, u), k = 0, 1, twice differentiable functions with respect to u, satisfying the following growth conditions
jjkðx;uÞj 6 Cðjuj2 þ 1Þ; jðjkÞ0ðx;uÞj 6 Cðjuj þ 1Þ; jðjkÞ00ðx;uÞj 6 C;

jhkðx;uÞj 6 Cðjuj2 þ 1Þ; jðhkÞ0ðx;uÞj 6 Cðjuj þ 1Þ; jðhkÞ00ðx;uÞj 6 C:
ð3:4Þ
where 0 denotes the partial derivative with respect to u 2 Rd. To avoid some unnecessary technicalities we also assume that
h1(x, uD (x)) = h0(x, uD(x)) on CD so that the objective function is equal to
JðvÞ ¼ 1
2

Z
X

AveðuvÞ � eðuvÞdV þ
Z

X
jvðx; uvÞdV þ

Z
CN

hvðx;uvÞdSþ C;
where C is a constant which does not depend on v.

Remark 3.1. When the imposed displacement on CD vanishes, uD = 0, the cost function of the Francfort–Marigo model
simplifies and reduces to a multiple of the compliance. Indeed, the energy equality for the state Eq. (2.2) (which is valid only
if uD = 0), namely
Z
X

AveðuvÞ � eðuvÞdV ¼
Z

X
f � uv dV þ

Z
CN

g � uv dS;
implies that the cost function (2.4) (with jv = jv � f�uv and gv = �g�uv) reduces to
JðvÞ ¼ j
Z

X
vdV � 1

2

Z
X

f � uv dV þ
Z

CN

g � uv dS
� �

: ð3:5Þ
Of course, the study of (3.5) is much simpler than that of the general objective function (3.3). However, since many numerical
tests involve non-homogeneous boundary displacements, uD – 0, we must study (3.3) and not merely (3.5).

We need to introduce the so-called adjoint problem
�divðAveðpvÞÞ ¼ fv þ j0vðx;uvÞ in X;

pv ¼ 0 on CD;

AveðpvÞn ¼ gv þ h0vðx;uvÞ on CN :

8><
>: ð3:6Þ
We denote by R the interface between the damaged and healthy regions X0 and X1. We define n = n0 = �n1 the outward unit
normal vector to R. We use the jump notation
½a� ¼ a1 � a0 ð3:7Þ
for a quantity a that has a jump across the interface R.
The shape derivative of (3.3) will be an integral on the interface R as is clear from Lemma 3.1. The state uv and adjoint pv

are continuous on R but not all their derivatives. Actually the tangential components of their deformation tensors are con-
tinuous as well as the normal vector of their stress tensors. To make this result precise, at each point of the interface R we
introduce a local basis made of the normal vector n and a collection of unit tangential vectors, collectively denoted by t, such
that (t, n) is an orthonormal basis. For a symmetric d � d matrix M, written in this basis, we introduce the following
notations
M ¼
Mtt Mtn

Mnt Mnn

� �
;

where Mtt stands for the (d � 1) � (d � 1) minor of M, Mtn is the vector of the (d � 1) first components of the d-th column of
M, Mnt is the row vector of the (d � 1) first components of the d-th row of M, and Mnn the (d, d) entry of M. Let us recall
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that dV, dS and dL indicate volume integration in Rd, and surface (or line, according to the value of d) integration in Rd�1 and
Rd�2, respectively.

Lemma 3.2. Let e and r denote the strain and stress tensors of the solution to the state Eq. (3.2) or adjoint state Eq. (3.6). All
components of rnt, rnn, and ett are continuous across the interface R (assumed to be smooth) while all other entries have jumps
through R, rewritten in terms of these continuous quantities as
½enn� ¼ ½ð2lþ kÞ�1�rnn � ½kð2lþ kÞ�1�trett;

½etn� ¼ ½ð2lÞ�1�rtn;

½rtt � ¼ ½2l�ett þ ð½2lkð2lþ kÞ�1�trett þ ½kð2lþ kÞ�1�rnnÞId�1
2 ;

8><
>: ð3:8Þ
where Id�1
2 is the identity matrix of order d � 1.
Proof. By standard regularity theory, on both sides of the smooth interface R the solution, as well as its deformation and
stress tensors e and r, are smooth. This implies that the continuity of the displacement through the interface yields the con-
tinuity of ett. The transmission condition implies that rtn and rnn are also continuous on the interface. The other quantities
have jumps (3.8) which are computed through the strain–stress relation (2.1). h
Theorem 3.1. Let X be a smooth bounded open set, R be a smooth hypersurface in X, c = R \CN and h 2W1;1ðX; RdÞ. The shape
derivative in the direction h of the objective function J(v), as given by (3.3), is
J0ðvÞðhÞ ¼
Z

R
DðxÞ h � ndSþ

Z
R
ðf 0 � f 1Þ � pv þ ðj

0 � j1Þðx;uvÞ
� �

h � ndSþ
Z

c
ðg0 � g1Þ � pv þ ðh

0 � h1Þðx;uvÞ
� �

h � sdL

ð3:9Þ

with
DðxÞ ¼ � 1
ðkþ 2lÞ

� 	
rnnðuvÞrnnðpvÞ �

1
l

� 	
rtnðuvÞ � rtnðpvÞ þ ½2l�ettðuvÞ � ettðpvÞ þ

2kl
ðkþ 2lÞ

� 	
trettðuvÞtrettðpvÞ

þ k
ðkþ 2lÞ

� 	
ðrnnðuvÞtrettðpvÞ þ rnnðpvÞtrettðuvÞÞ þ

1
2ðkþ 2lÞ

� 	
ðrnnðuvÞÞ2 þ

1
2l

� 	
jrtnðuvÞj2

� ½l�jettðuvÞj2 �
kl

kþ 2l

� 	
trettðuvÞ

 �2 � k

kþ 2l

� 	
rnnðuvÞtrettðuvÞ; ð3:10Þ
where uv and pv are the solutions of the state Eq. (3.2) and adjoint Eq. (3.6), respectively, and where the brackets denotes the jump
as defined by (3.7). Equivalently, DðxÞ can be rewritten as
DðxÞ ¼ �rnnðuvÞ½ennðpvÞ� þ ettðuvÞ � ½rttðpvÞ� � 2½etnðuvÞ� � rtnðpvÞ

þ 1
2

rnnðuvÞ½ennðuvÞ� � ettðuvÞ � ½rttðuvÞ� þ 2rtnðuvÞ � ½etnðuvÞ�

 �

: ð3:11Þ
Remark 3.2. A formula, partially symmetric to (3.11), holds true
DðxÞ ¼ �rnnðpvÞ½ennðuvÞ� þ ettðpvÞ � ½rttðuvÞ� � 2½etnðpvÞ� � rtnðuvÞ

þ 1
2

rnnðuvÞ½ennðuvÞ� � ettðuvÞ � ½rttðuvÞ� þ 2rtnðuvÞ � ½etnðuvÞ�

 �

: ð3:12Þ
The main interest of (3.11), or (3.12), compared to (3.10), is that it does not involve jumps of the Lamé coefficients which
blow up when the damaged phase degenerate to zero.

Indeed, it is interesting to investigate the limit of the shape derivative in Theorem 3.1 when A0 converges to zero. In such a
case, we recover previously known formulas, used in shape optimization [3,38,59]. As A0 tends to zero, it is well known that,
on the interface R, the normal stress rn = (rtn, rnn) converges also to zero, while the deformation tensor e remains bounded.
Therefore, the limit formula of (3.11), or (3.12), is
DðxÞ ¼ ettðuvÞ � rttðpvÞ �
1
2

ettðuvÞ � rttðuvÞ: ð3:13Þ
The proof of Theorem 3.1 is given in the next subsection (except some technical computations which are postponed to
Appendix A). Similar results in the conductivity setting (scalar equations) appeared in [15,39,51].

Let us now restate Theorem 3.1 for the Francfort–Marigo cost function, in which case we have
jkðx;uÞ ¼ �f k � uk þ jdk0 and hkðx;uÞ ¼ �gk � uk;
where dk0 is the Kronecker symbol, equal to 0 if k = 1 and to 1 if k = 0. It turns out that the problem is self-adjoint, i.e., there is
no need of an adjoint state. More precisely, in this context we find that pv = 0. We further simplify the previous Theorem 3.1
by taking forces which are the same in the damaged and healthy regions, i.e., f0 = f1 and g0 = g1. Then, we obtain
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Corollary 3.1. Let f0 = f1 and g0 = g1. The shape derivative of (2.4) in the direction h is
J0ðvÞðhÞ ¼
Z

R
DðxÞh � ndS
with
DðxÞ ¼ jþ 1
2

rnnðuvÞ½ennðuvÞ� � ettðuvÞ � ½rttðuvÞ� þ 2rtnðuvÞ � ½etnðuvÞ�

 �

: ð3:14Þ
Furthermore, if A0
6 A1, then ðDðxÞ � jÞ 6 0 on R.

The last result of Corollary 3.1 implies that, upon neglecting the Griffith energy release rate, i.e. taking j = 0, one should
take h � n P 0 to get a negative shape derivative. In other words, the damaged phase should fill the entire domain in order to
minimize the energy functional (2.4) (which is clear from the minimization (2.5)).

3.3. The Lagrangian approach to shape differentiation

This section is devoted to the proof of Theorem 3.1 by means of a Lagrangian method which, in the context of shape opti-
mization, is described in e.g. [3,5,26]. It amounts to introduce a Lagrangian which, as usual, is the sum of the objective func-
tion and of the constraints multiplied by suitable Lagrange multipliers. In shape optimization the state equation is seen as a
constraint and the corresponding Lagrange multiplier is precisely the adjoint state at optimality. The shape derivative J0(v)(h)
is then obtained as a simple partial derivative of the Lagrangian L. This approach is also very convenient to guess the exact
form of the adjoint problem.

In the present setting it is the shape of the subdomains X0 and X1 which is varying, or equivalently the interface R. Dif-
ferentiating with respect to the position of this interface is more complicated than differentiating with respect to the outer
boundary as in usual shape optimization problems. The additional difficulty, which was recognized in [51] (see also [15,39])
is that the solution uv of the state Eq. (3.2) is not shape differentiable in the sense of Definition 3.1. The reason is that some
spatial derivatives of uv are discontinuous at the interface (because of the jump in the material properties): thus, when we
additionally differentiate with respect to the position of R, we obtain that those spatial derivatives of u0vðhÞ have a part which
is a measure concentrated on the interface, and consequently u0vðhÞ ‘‘escapes’’ from the functional space V in which we dif-
ferentiate. The remedy is simply to rewrite the state Eq. (3.2) as a transmission problem. We thus introduce the restrictions
u0 to X0, and u1 to X1, of the solution uv of (3.2). In other words, they satisfy uv = (1 � v)u1 + vu0 and are solutions of the
transmission problem
�divðA1eðu1ÞÞ ¼ f 1 in X1;

u1 ¼ uD on C1
D ¼ CD \ @X1;

A1eðu1Þn1 ¼ g1 on C1
N ¼ CN \ @X1;

u1 ¼ u0 on R ¼ @X0 \ @X1;

A1eðu1Þn1 þ A0eðu0Þn0 ¼ 0 on R

8>>>>>>><
>>>>>>>:

ð3:15Þ
and
�divðA0eðu0ÞÞ ¼ f 0 in X0;

u0 ¼ uD on C0
D ¼ CD \ @X0;

A0eðu0Þn0 ¼ g0 on C0
N ¼ CN \ @X0;

u0 ¼ u1 on R;

A0eðu0Þn0 þ A1eðu1Þn1 ¼ 0 on R

8>>>>>><
>>>>>>:

; ð3:16Þ
which is equivalent to (3.2). Recall that n = n0 = �n1 denotes the outward unit normal vector to the interface R.
Introducing the notations ri(vi) = Aie(vi) and ri(qi) = Aie(qi), the general Lagrangian is defined as
Lðv1; v0; q1; q0;RÞ ¼
Z

X1
j1ðx;v1Þ þ 1

2
r1ðv1Þ � eðv1Þ � r1ðv1Þ � eðq1Þ þ f 1 � q1

� 	
dV

þ
Z

X0
j0ðx; v0Þ þ 1

2
r0ðv0Þ � eðv0Þ � r0ðv0Þ � eðq0Þ þ f 0 � q0

� 	
dV þ

Z
C0

N

g0 � q0 þ h0ðx;v0Þ
h i

dS

þ
Z

C1
N

½g1 � q1 þ h1ðx;v1Þ�dS� 1
2

Z
R
ðr1ðv1Þ þ r0ðv0ÞÞn � ðq1 � q0ÞdS� 1

2

Z
R
ðr1ðq1Þ

þ r0ðq0ÞÞn � ðv1 � v0ÞdSþ 1
2

Z
R
ðr1ðv1Þ þ r0ðv0ÞÞn � ðv1 � v0ÞdS; ð3:17Þ
where q0 and q1 play the role of Lagrange multiplier or, at optimality, of the adjoint state p0 and p1(on the same token, at
optimality v0, v1 are equal to u0, u1). The functions v0, v1 satisfy non homogeneous Dirichlet boundary conditions and belong
to the affine space V, while the other functions q0, q1 vanishes on CD and thus belong to the vector space V0 defined as
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V0 ¼ fu 2 H1ðX; RdÞ such that u ¼ 0 on CDg:
Of course, differentiating the Lagrangian with respect to q0 and q1, and equaling it to 0, provides the state Eqs. (3.15) and
(3.16). The next result states that differentiating the Lagrangian with respect to v0 and v1, and equaling it to 0, yields the
adjoint equation.

Lemma 3.3. The optimality condition
@L

@v1 ðu
1;u0;p1;p0;vÞ ¼ @L

@v0 ðu
1;u0;p1;p0;vÞ ¼ 0
for variations in V0 is equivalent to the adjoint problem (3.6).
Proof. This is a classical computation [3,26,51] which we do not detail. Differentiating the Lagrangian with respect to v0 and
v1 and equaling it to zero yields
�divðAieðpiÞÞ ¼ j0iðx;uiÞ � divðAieðuiÞÞ in Xi;

pi ¼ 0 on Ci
D;

AieðpiÞni ¼ h0iðx;uiÞ þ AieðuiÞni on Ci
N;

p0 ¼ p1 on R;

A0eðp0Þn ¼ A1eðp1Þn on R;

8>>>>>>>>><
>>>>>>>>>:

ð3:18Þ
which is equivalent to (3.6). h

As we already said, the solution uv of (3.2) is not shape differentiable. However its Lagrangian or transported counterpart,
namely h ? uv�(Id+h) � (Id + h), is actually differentiable by a simple application of the implicit function theorem (see Chapter
5 in [38]). As a consequence, upon a suitable extension outside Xi, the solution ui of (3.15) and (3.16) are indeed shape
differentiable.

Lemma 3.4. The solutions u1 of (3.15) and u0 of (3.16) are shape differentiable.

The main interest of the Lagrangian is that its partial derivative with respect to the shape v, evaluated at the state uv and
adjoint pv, is equal to the shape derivative of the cost function.

Lemma 3.5. The cost function J(v) admits a shape derivative which is given by
J0ðvÞðhÞ ¼ @L
@v ðu

1;u0;p1;p0;vÞðhÞ; ð3:19Þ
where (u1, u0, p1, p0) are the solutions of the state Eq. (3.15) and (3.16) and adjoint Eq. (3.18).
Proof. This is again a classical result [3,26] which we briefly recall. We start from the identity
JðvÞðhÞ ¼ Lðu1;u0; q1; q0;vÞ; ð3:20Þ
where q1, q0 are any functions in V. We differentiate (3.20) with respect to the shape. By virtue of Lemma 3.4 we obtain
J0ðvÞðhÞ ¼ @L
@v ðu

1;u0; q1; q0;vÞðhÞ þ @L

@v0;1 ðu
1;u0; q1; q0;vÞ; @u0;1

@v ðhÞ
� 

: ð3:21Þ
The notation @L
@v means that it is a shape partial derivative, i.e., we differentiate L in the sense of Definition 3.1 while keeping

the other arguments (u1, u0, q1, q0) fixed. Taking now (q1, q0) = (p1, p0) cancels the last term in (3.21) because it is the var-
iational formulation of the adjoint problem by virtue of Lemma 3.3. We thus obtain (3.19). h

To finish the proof of Theorem 3.1 it remains to compute the partial shape derivative of the Lagrangian. It is a conceptually
simple application of Lemma 3.1 which, nevertheless, is quite tedious. Therefore the proof of the following Lemma is post-
poned to Appendix A.

Lemma 3.6. The partial shape derivative of the Lagrangian
@L

@v ðu
1;u0;p1;p0;vÞðhÞ;
is precisely equal to the right hand side of (3.9).
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4. Topological derivative

The aim of this section is to evaluate the sensitivity of the cost function to the introduction of an infinitesimal damaged
region xq inside the healthy region X1. In theory the shape of the smooth inclusion can be arbitrary. However, for practical
and numerical purposes it will be assumed to be a ball in Rd.

4.1. Main result

Let x be a smooth open subset of Rd. Let q > 0 be a small positive parameter which is intended to go to zero. For a point
x0 2X1 we define a rescaled inclusion
xq ¼ x 2 Rd :
x� x0

q
2 x

� �
; ð4:1Þ
which, for small enough q is strictly included in X1 and disconnected from X0. The total damaged zone is thus X0
q :¼ X0 [xq

and the healthy phase is X1
q :¼ X nX0

q. Let vq;v;vxq
denote the characteristic functions of X0

q;X
0 and xq, respectively (ver-

ifying vq ¼ vþ vxq
). In the sequel, in order to distinguish integration in the variables x and y :¼ x�x0

q , the symbol dV will
sometimes be replaced by dV(y) or dV(g) (where g is a dummy variable similar to y).

Let us recall the notations for the non-perturbed domain X = X0 [X1 (i.e., without the damage inclusion). The cost func-
tion then writes as
JðvÞ ¼ 1
2

Z
X

AveðuvÞ � eðuvÞdV þ
Z

X
jvðx; uvÞdV þ

Z
@X

hvðx;uvÞdS; ð4:2Þ
where jv = j0v + j1(1 � v), hv = h0v + h1(1 � v), and the so-called ‘‘background’’ solution’’ uv solves the state Eq. (3.2) on
X = X0 [X1. As in the previous section, we assume that the integrands j0, j1(x, u) and h0, h1(x, u) are twice differentiable func-
tions with respect to u, satisfying the growth conditions (3.4). Moreover, let us recall that the so-called ‘‘background’’ dual
solution pv solves the adjoint problem (3.6) on X = X0 [X1.

On the perturbed domain X ¼ X0
q [X1

q, the cost function is
JðvqÞ ¼
1
2

Z
X

Avq eðuvq Þ � eðuvq ÞdV þ
Z

X
jvq
ðx; uvq ÞdV þ

Z
@X

hvðx;uvq ÞdS;
because vq 	 v, and thus hvq
	 hv, on @X (the inclusion xq is away from the boundary), and where uvq

solves
�divðAvq
eðuvq

ÞÞ ¼ f in X;

uvq
¼ uD on CD;

Avq
eðuvq

Þn ¼ g on CN;

8>><
>>: ð4:3Þ
with Avq
¼ A0vq þ A1ð1� vqÞ, the Lamé tensor of the material with the inclusion.

Definition 4.1. If the objective function admits the following so-called topological asymptotic expansion for small q > 0:
JðvqÞ � JðvÞ � qdDJðx0Þ ¼ oðqdÞ
then the number DJ(x0) is called the topological derivative of J at x0 for the inclusion shape x.
The main result of this section is the following theorem.

Theorem 4.1. The topological derivative DJ(x0) of the general cost function (4.2), evaluated at x0 for an inclusion shape x, has the
following expression:
DJðx0Þ :¼ MeðuvÞðx0Þ � eðpvÞðx0Þ �
1
2

MeðuvÞðx0Þ � eðuvÞðx0Þ þ jxjðj0 � j1Þðx0;uvðx0ÞÞ; ð4:4Þ
where uv and pv are the solution to the primal and dual problems (3.2) and (3.6), respectively, and where M is the so-called elastic
moment tensor as defined below by (4.10). Moreover, M is positive if [A] is positive, and negative if [A] is negative.

In the case of our damage model, the cost function is (2.4), i.e., jv(x, uv) = jv � f � uv and hv(x, uv) = � g � uv. The problem
is then known to be self-adjoint, i.e., the adjoint pv is equal to 0. In such a case Theorem 4.1 simplifies as follows.

Corollary 4.1. The topological derivative of the cost function (2.4) at x0 for an inclusion shape x is
DJðx0Þ :¼ jxjj� 1
2

MeðuvÞðx0Þ � eðuvÞðx0Þ; ; ð4:5Þ
where uv is the background solution of (3.2) and M is the elastic moment tensor defined below by (4.10).
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In 2d, the elastic moment tensor M for a unit disk-inclusion x has been computed in [10]. The topological derivative (4.5)
for a disk-inclusion is:
DJðx0Þ ¼ pj� 2p l1½l�ðk1 þ 2l1Þ
k1ðl0 þ l1Þ þ l1ðl1 þ 3l0Þ

eðuvÞ � eðuvÞðx0Þ

þ p
2
�ðk1 þ 2l1Þ½kþ l�

k0 þ l0 þ l1
þ 2

l1½l�ðk1 þ 2l1Þ
k1ðl0 þ l1Þ þ l1ðl1 þ 3l0Þ

� �
treðuvÞtreðuvÞðx0Þ:
In 3d, the elastic moment tensor M for a unit ball-inclusion x has also been computed in [11]. The topological derivative
(4.5) for a ball-inclusion is:
DJðx0Þ ¼
4p
3

j� 2p
3b

2½l�eðuÞ � eðuÞ þ ½k�b� 2½l�a
ð3aþ bÞ treðuÞtreðuÞ

� �
;

with m1 ¼ k1
2ðk1þl1Þ

and
a :¼ �5l1m1½k� � k1½l�
15k1l1ð1� m1Þ

; b :¼ 15l1ð1� m1Þ � 2½l�ð4� 5m1Þ
15l1ð1� m1Þ

> 0:
In order to prove Theorem 4.1 we need several technical tools detailed in the next subsections.

4.2. Elastic moment tensor

The goal of this subsection is to define the elastic moment tensor as a 4th order tensor expressing the leading behavior in
the far field of wn, solution to the canonical problem (4.9) of a unit damage inclusion x in a uniform healthy background.

We introduce a microscopic variable y ¼ x�x0
q in order to rescale the problem with a unit inclusion x. This rescaling, cen-

tered on the inclusion, in the limit as q goes to zero, transforms the elasticity problem posed on X in a problem posed on Rd.
The symbols ey, divy etc. are used to specify the derivation w.r.t. y.

We begin by recalling the Green tensor for linear elasticity in a uniform infinite material.

Notation 4.1 (Green tensor of elasticity). The fundamental tensor of linear elasticity C :¼ (Cij)16i, j6d reads:
CijðyÞ :¼
� a

4p
dij

jyjd�2 � b
4p

yiyj

jyjd
if d P 3;

a
2p dij ln jyj � b

2p
yiyj

jyj2
if d ¼ 2;

8<
: ; ð4:6Þ
where
a ¼ 1
2

1
l1 þ

1
2l1 þ k1

 !
and b ¼ 1

2
1
l1 �

1
2l1 � k1

 !
:

The component Cij represents the ith Cartesian component of the fundamental solution in the free-space with a unit Dirac
load d0 at the origin in the direction of vector �ej, that is,
�div A1ey

Xd

i¼1

Cijei

 ! !
¼ �ejd0; ð4:7Þ
where ek denotes the kth element of the canonical basis of Rd.
We introduce the following Hilbert space (so-called Deny-Lions or Beppo-Levi space)
W :¼ fw 2 H1
locðRd; RdÞ such that eðwÞ 2 L2ðRd; Rd�dÞg; ð4:8Þ
equipped with the scalar product of L2ðRdÞ for the deformation tensor e(w), which is well adapted to elasticity problems
posed in the whole space Rd. For any symmetric matrix n we introduce wn(y), solution to the canonical problem
�divyðAvx
eyðwnÞÞ ¼ �divyðvx½A�nÞ in Rd;

wn 2W;

(
ð4:9Þ
which is easily seen to be well-posed. The fact that wn belongs to W implies it has some decay properties at infinity (by
embedding of W in some Lebesgue space, see [29,2]). We shall not dwell on them since Lemma 4.1 below improve these
decay properties.

Lemma 4.1 (Far field expression). The solution wn of the canonical problem (4.9) has the following pointwise behavior at
infinity:
wn ¼ �@pCqðyÞMpqklnkl þOðjyj�dÞ as jyj ! 1; ð4:10Þ
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where Cq :¼ Ckqek is the fundamental Green’s tensor of linear elasticity of the healthy material, and M is the 4th order elastic mo-
ment tensor with respect to inclusion x, independent of n, defined by
M ¼ ½A�ðN þ jxjI4Þ ð4:11Þ
with a 4th order tensor N defined by
Nn :¼
Z

x
eyðwnÞdVðyÞ:: ð4:12Þ
Remark 4.1. Lemma 4.1 tells us that, because the right hand side in (4.9) has zero average, wn behaves like Oðjyj�dþ1Þ at
infinity. The interest of the canonical problem for us is that, by denoting n0 = e(uv)(x0), we shall prove in some sense
uvq
ðxÞ 
 uvðxÞ þ qwn0

x� x0

q

� �
:

Remark 4.2. The elastic moment tensor M as defined by (4.11) is exactly the same tensor as introduced in [8,10] (by means
of layer potential techniques) or in [25] (by means of a variational approach in the conductivity setting).
Proof of Lemma 4.1. Let us consider an inclusion x located in the free-space Rd and introduce a smooth open set U strictly
containing x and a cut-off function u 2 C1ðRdÞ such that u 	 0 on x, u 	 1 on Rd n U. We define a function f(y) by
f :¼ �divy Avx
eðuwnÞ


 �
; ð4:13Þ
which has compact support in U because of (4.9) and the fact that u 	 1 on Rd n U. Since u 	 0 on x we deduce that
�divyðA1eyðuwnÞÞ ¼ f in Rd;

uwn 2W:

(
ð4:14Þ
We can thus use the Green tensor to compute the kth component of the solution of (4.14)
uðyÞek �wnðyÞ ¼ �
Z

Rd
Ckqðy� gÞfqðgÞdVðgÞ: ð4:15Þ
It turns out that
Z
Rd

f ðyÞdVðyÞ ¼
Z

U
f ðyÞdVðyÞ ¼ �

Z
@U

Avx
eðuwnÞndSðyÞ ¼ �

Z
U

divðAvx
eðwnÞÞdVðyÞ ¼ð4:9Þ �

Z
U

divðvx½A�nÞdVðyÞ

¼ �
Z
@U

vx½A�nn dSðyÞ ¼ 0
with n denoting the usual normal unit vector to @U. By Taylor expansion of the Green function Ckq(y � g) in terms of Ckq(y)
and its derivatives, taking into account that f has zero average and compact support in U, and since u 	 1 away from U, (4.15)
yields that
ek �wnðyÞ ¼ @pCkqðyÞ
Z

Rd
gpfqðgÞgþOðjyj�dÞ: ð4:16Þ
Let us now evaluate
R

Rd gpfqðgÞdVðgÞ that for the sake of calculus is rewritten as
R

Rd Bpqg � f ðgÞdVðgÞ, where Bpq :¼ eq � ep is a
second order tensor. By (4.13) and since A1 ¼ Avx

on @U,
Z
U

Bpqg � f ðgÞdVðgÞ ¼
Z

U
Avx

eðuwnÞ � eðBpqgÞdVðgÞ �
Z
@U

Avx
eðuwnÞn � BpqgdSðgÞ

¼
Z

U
A1eðuwnÞ � eðBpqgÞdVðgÞ �

Z
@U

A1eðuwnÞn � BpqgdSðgÞ

¼ �
Z

U
divðA1eðBpqgÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

uwndVðgÞ þ
Z
@U

A1eðBpqgÞn �uwndSðgÞ �
Z
@U

A1eðuwnÞn � BpqgdSðgÞ

¼
Z
@U
ðAvx

eðBpqgÞn �wn � Avx
eðwnÞn � BpqgÞdSðgÞ

¼
Z

U
divðAvx

eðBpqgÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼divð�vx ½A�BpqÞ

�wndVðgÞ �
Z

U
div Avx

eðwnÞ

 �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼divðvx ½A�nÞ

�BpqgdVðgÞ

¼
Z

x
½A�Bpq � eðwnÞdVðgÞ þ

Z
x
½A�n � BpqdVðgÞ ¼ ½A�Bpq �

Z
x
ðeðwnÞ þ nÞdVðgÞ: ð4:17Þ
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Introducing Mijkl defined as
Mijkl :¼ ½A�ijmnðN þ jxjI4Þmnkl ð4:18Þ
we obtain (4.10). h
Lemma 4.2 (Symmetry and signature of M). The elastic moment tensor M, defined by (4.11), is symmetric and positive if A0 < A1

while negative if A0 > A1.
Proof of Lemma 4.2. Let us multiply (4.9) by the solution wn0 for another symmetric tensor n0, integrate by parts and observe
that, by the symmetry property of the left hand side, we have
Z

Rd
Avx

eðwnÞ � eðwn0 ÞdV ¼ ½A�n � Nn0 ¼ ½A�n0 � Nn ¼ ½A�N � n� n0 ¼ ½A�N � n0 � n; ð4:19Þ
the symmetry of [A]N and hence of M immediately follows. Take n = n0 in (4.19), then [A]N is clearly positive. Therefore if
[A] > 0, then M is obviously positive. Assume now that [A] < 0. The solution wn of (4.9) is the minimizer of the following
energy
IðwÞ ¼ 1
2

Z
Rd

Avx
eðwÞ � eðwÞdV �

Z
Rd

vx½A�n � eðwÞdV
and its minimal value is, by (4.12), IðwnÞ ¼ � 1
2 ½A�Nn � n. On the other hand as soon as we rewrite
Avx
eðwÞ � eðwÞ ¼ �vx½A�eðwÞ � eðwÞ þ A1eðwÞ � eðwÞ
we obtain the lower bound I�(w):
IðwÞP I�ðwÞ :¼ �1
2

Z
Rd

vx½A�eðwÞ � eðwÞdV �
Z

Rd
vx½A�n � eðwÞdV :
It is easily seen that e(w) = �n is a critical point in x of the above lower bound, which, by the negative character of [A], turns
out to be the unique minimizer, thereby providing the minimal value 1

2 jxj½A�n � n. Thus we deduce that
jxj½A�n � n 6 �½A�Nn � n
which implies the desired result M < 0. h
4.3. Asymptotic analysis in the perturbed domain

This subsection is aimed at comparing the solutions of elasticity problems in the perturbed and non-perturbed domains.
We define the difference v :¼ uvq

� uv between the perturbed (uvq
) and the background (uv) displacement fields. The equa-

tion satisfied by v is
�divðAvq
eðvÞÞ ¼ �divðvxq

½A�eðuvÞÞ in X;

v ¼ 0 on CD;

Avq eðvÞn ¼ 0 on CN :

8>>><
>>>: ð4:20Þ
Let us introduce a tensor n0 :¼ e(uv)(x0) and let wn0 ðyÞ be the solution of (4.9) for n = n0. We define a rescaled function
wq

n0
ðxÞ :¼ qwn0

x�x0
q

� �
which is a solution to
�div Avq
e wq

n0

� �� �
¼ �div ½A�vxq

eðuvÞðx0Þ
� �

in X;
satisfying non-homogeneous, but small, boundary conditions. This function wq
n0

is the leading term of a so-called inner
asymptotic expansion for v as stated by the following Lemma.

Lemma 4.3. For any cut-off function h 2 C1c ðXÞ such that h 	 1 in a neighborhood U of x0, there exists a constant C > 0
independent of q such that we have
v ¼ hwq
n0
þ d; ð4:21Þ
with
kdkH1ðXÞ 6 Cqd=2þ1: ð4:22Þ
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Moreover
kwq
n0
kL2ðXÞ 6 C

q2
ffiffiffiffiffiffiffiffiffiffiffi
log q

p
if d ¼ 2

qd=2þ1 if d P 3

(
and keðwq

n0
ÞkL2ðXÞ 6 Cqd=2: ð4:23Þ
Remark 4.3. In the vicinity of the inclusion xq, we have h 	 1 for sufficiently small q, and (4.21) can be restated as
vðxÞ ¼ qwn0

x� x0

q

� �
þ oH1 ðqÞ;
which is an inner asymptotic expansion for v, solution of (4.20). The L2-norms of d and wq
n0

are of the same order (at least for
d P 3) but the L2-norm of rd is smaller by a factor q than that of rwq

n0
, which explains the o(q) remainder in the above

approximation of v.
Proof of Lemma 4.3. The estimates (4.23) on wq
n0

are simply obtained by rescaling and by the decay properties of wn0 . We
obtain
keðwq
n0
Þk2

L2ðXÞ ¼
Z

X
jeyðwn0Þ

x
q

� �
j2dV ¼ qd

Z
X=q
jeyðwn0 ÞðyÞj

2dVðyÞ 6 Cqd:
Similarly
kwq
n0
k2

L2ðXÞ ¼ q2
Z

X
jwn0

x
q

� �
j2 dV ¼ qdþ2

Z
X=q
jwn0 ðyÞj

2dVðyÞ:
However, Lemma 4.1 tells us that the behavior at infinity of wn0 is such that it does not belong to L2ðRdÞ but is of the order of
Oðjyj�dþ1Þ. Therefore, using the radial coordinate r = jyj yields
kwq
n0
k2

L2ðXÞ 6 Cqdþ2
Z

X=q

1

1þ jyj2ðd�1Þ dVðyÞ 6 Cqdþ2
Z 1=q

1

dr
rd�1 6 C

q4j log qj if d ¼ 2;
qdþ2 if d P 3

(
ð4:24Þ
which is the desired result. Furthermore, since wn0 ¼ Oðjyj�dþ1Þ and rwn0 ¼ Oðjyj�dÞ at infinity, we also deduce by rescaling
that
kwq
n0
kL1ðXnUÞ 6 Cqd and krwq

n0
kL1ðXnUÞ 6 Cqd: ð4:25Þ
We now write the equation satisfied by d:
�divðAvq
eðdÞÞ ¼ �div ½A�vxq

ðeðuvÞðxÞ � eðuvÞðx0ÞÞ
� �

þ g in X;

d ¼ 0 on CD;

Avq
eðdÞn ¼ 0 on CN ;

8>><
>>: ð4:26Þ
where
g ¼ div½Avq
eðhwq

n0
Þ� � hdiv½vxq

½A�eðuvÞðx0Þ�: ð4:27Þ
Let us multiply (4.26) and (4.27) by d and integrate by parts, in such a way that
CkeðdÞk2
L2ðXÞ 6

Z
X

Avq
eðdÞ � eðdÞdV

����
���� 6

Z
xq

½A�ðeðuvÞðxÞ � eðuvÞðx0ÞÞ � eðdÞ
�� ��dV þ

Z
X

g � ddV
����

����: ð4:28Þ
for C > 0. Let us remark that, away from the interface between the two phases, uv is of class C2;a for some a > 0 (since we
assume the forces to be of class C0;a). Furthermore, the inclusion xq is smooth, so the C2;a regularity of uv holds up to the
interface in the inclusion, and hence
jeðuvÞðxÞ � eðuvÞðx0Þj 6 Cq in xq; ð4:29Þ
which implies
Z
xq

½A�ðeðuvÞðxÞ � eðuvÞðx0ÞÞ � eðdÞ
�� ��dV 6 Cqd=2þ1keðdÞkL2ðXÞ: ð4:30Þ
Moreover by (4.27), it results that
Z
X

g � ddV ¼ �
Z

X
Avq

eðhwq
n0
Þ � eðdÞdV þ

Z
X
vxq
½A�eðuvÞðx0Þ � eðhdÞdV ¼ �

Z
X

Avq
eðhwq

n0
Þ � eðdÞdV þ

Z
X

Avq
eðwq

n0
Þ � eðhdÞdV

¼
Z

X
Avq

eðwq
n0
Þ � ðd�rhÞs � eðdÞ � ðwq

n0
�rhÞs

� �
dV ; ð4:31Þ
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where the superscript ‘‘s’’ stands for the symmetric part. Hence, since rh vanishes on a neighborhood U of xq, by Korn
inequality and by estimates (4.25), it follows that
Z

X
g � ddV

����
���� 6 C kwq

n0
kL1ðXnUÞ þ keðw

q
n0
ÞkL1ðXnUÞ

� �
krhkL2ðXnUÞkeðdÞkL2ðXÞ 6 CqdkeðdÞkL2ðXÞ: ð4:32Þ
Therefore, by (4.28)–(4.32) and since d/2 + 1 6 d for d P 2, the following global estimate holds
keðdÞkL2ðXÞ 6 C qd þ qd=2þ1

 �

6 Cqd=2þ1; ð4:33Þ
completing the proof by Korn and Poincaré inequalities. h

Similarly, we shall need a comparison between the perturbed and background adjoints. However, the adjoint in the per-
turbed domain (with an inclusion) is not the standard one. Rather, we introduce a slightly different adjoint problem
�divðAvq
eð~pvq

ÞÞ ¼ fv þ j0vðx;uvÞ in X;

~pvq
¼ 0 on CD;

Avq eð~pvq Þn ¼ gv þ h0vðx;uvÞ on CN ;

8>><
>>: ð4:34Þ
whose solution ~pvq
depends on the inclusion since the Lamé tensor Avq

corresponds to the perturbed domain X ¼ X0
q [X1

q.
Nevertheless, ~pvq

is different from pvq
, defined by (3.6) with vq instead of v, because the right hand side of (4.34) depends

only on v and not on vq.
We define the difference between the above perturbed adjoint and the ‘‘true’’ background adjoint, q :¼ ~pvq

� pv, which is
the solution of
�divðAvq
eðqÞÞ ¼ �divðvxq

½A�eðpvÞÞ in X;

q ¼ 0 on CD;

Avq
eðqÞn ¼ 0 on CN :

8><
>: ð4:35Þ
We introduce the tensor n00 :¼ eðpvÞðx0Þ and the rescaled function wq
n00
ðxÞ :¼ qwn00

x�x0
q

� �
which is the leading term of an inner

asymptotic expansion for q. Lemma 4.3 can then be generalized as follows.

Lemma 4.4. For any cut-off function h 2 C1c ðXÞ such that h 	 1 in a neighborhood U of x0, there exists a constant C > 0
independent of q such that we have
q ¼ hwq
n00
þ d;
with
kdkH1ðXÞ 6 Cq1þd=2:: ð4:36Þ
Moreover
kwq
n00
kL2ðXÞ 6 C

q2
ffiffiffiffiffiffiffiffiffiffiffi
log q

p
if d ¼ 2

qd=2þ1 if d P 3

(
and keðwq

n00
ÞkL2ðXÞ 6 Cqd=2:
4.4. Proof of Theorem 4.1

We combine the ingredients of the two previous subsections to prove Theorem 4.1 on the topological derivative. Let us
recall that we assume the integrands of the objective function, j0, j1(x, u) and h0, h1(x, u), to be C2 functions with respect to u
with adequate growth conditions.

Recalling that hvq
	 hv on @X because the inclusion does not touch the boundary, we write a second-order Taylor expan-

sion of the objective function
JðvqÞ¼
1
2

Z
X

AveðuvþvÞ �eðuvþvÞdV�1
2

Z
xq

½A�eðuvþvÞ �eðuvþvÞdVþ
Z

X
jvðuvþvÞdV

þ
Z
@X

hvðuvþvÞdSþ
Z

xq

ðj0� j1ÞðuvþvÞdV ¼ JðvÞþ
Z

X
AveðuvÞ �eðvÞdVþ1

2

Z
X

AveðvÞ �eðvÞdV

�1
2

Z
xq

½A�ðeðuvÞ �eðuvÞþ2eðuvÞ �eðvÞÞdV�1
2

Z
xq

½A�eðvÞ �eðvÞdVþ
Z

X
j0vðx;uvÞ �vdVþ

Z
@X

h0vðx;uvÞ �vdS

þ
Z

xq

ðj0� j1ÞðuvÞdVþ1
2

Z
X

j00vðuvÞv �v dVþ1
2

Z
@X

h00vðuvÞv �vdSþ
Z

xq

ðj0� j1Þ0ðuvÞ �v dVþ1
2

Z
xq

ðj0� j1Þ00ðuvÞv �v dV ;

ð4:37Þ
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where uv ¼ uv þ fv with 0 < f < 1. From assumption (3.4) we know that j00v and h00v are bounded on X and thus
Z
X

j00vðuvÞv � v dV
����

���� 6 Ckvk2
L2ðXÞ 6 oðqdÞ
and, since v = d on @X,
Z
@X

h00vðuvÞv � vdS
����

���� ¼
Z
@X

h00vðuvÞd � ddS
����

���� 6 Ckdk2
H1ðXÞ 6 oðqdÞ
by Lemma 4.3. A similar estimate holds for the last term of (4.37). The penultimate term is bounded by
Z
xq

ðj0 � j1Þ0ðuvÞ � vdV

�����
����� 6 Cqd=2 kuvkL1ðxqÞ þ 1

� �
kvkL2ðXÞ 6 oðqdÞ
because the background solution uv is smooth on xq (it does not ‘‘see’’ the inclusion). Thus, the two last lines of (4.37) are
small of the order of o(qd). All other terms in (4.37) contribute to the final result, formula (4.4). First, by rescaling and con-
tinuity of uv on xq, we have
Z

xq

ðj0 � j1ÞðuvÞdV ¼ qdjxjðj0 � j1Þðuvðx0ÞÞ þ oðqdÞ:
Similarly, by continuity of e(uv), using the notation n0 = e(uv)(x0), and since v ¼ hwq
n0
þ d with h 	 1 in xq, we deduce
1
2

Z
xq

½A�ðeðuvÞ � eðuvÞ þ 2eðuvÞ � eðvÞÞd ¼
qd

2

Z
x
½A�ðn0 � n0 þ 2n0 � eyðwn0 ÞÞdVðyÞ þ

Z
xq

½A�eðuvÞ � eðdÞdV þ oðqdÞ:
Using again the continuity of e(uv) in xq and (4.36), we bound the last term
j
Z

xq

½A�eðuvÞ � eðdÞdV j 6 Cqdþ1:
Second, from the variational formulation of (4.20) we get
1
2

Z
X

AveðvÞ � eðvÞdV � 1
2

Z
xq

½A�eðuvðvÞ � eðvÞdV ¼ 1
2

Z
X

Avq
eðvÞ � eðvÞdV ¼ 1

2

Z
xq

½A�eðuvÞ � eðvÞdV

¼ qd

2

Z
x
½A�n0 � eyðwn0ÞdVðyÞ þ oðqdÞ;
where we have again replaced v by wq
n0
þ d in xq and neglected the d term. Third, from (3.2) we have
Z

X
AveðuvÞ � eðvÞdV ¼

Z
X

fv � v dV þ
Z
@X

gv � v dS:
Thus, the Taylor expansion (4.37) of the objective function is rewritten
JðvqÞ ¼ JðvÞ þ
Z

X
fv þ j0vðx; uvÞ
� �

� v dV þ
Z
@X

gv þ h0vðx;uvÞ
� �

� v dS� qd

2

Z
x
½A�ðn0 � n0 þ n0 � eyðwn0 ÞÞdVðyÞ

þ qdjxjðj0 � j1Þðuvðx0ÞÞ þ oðqdÞ: ð4:38Þ
By Lemma 4.1 we know that
�qd

2

Z
x
½A�ðn0 � n0 þ n0 � eyðwn0 ÞÞdVðyÞ ¼ �qd

2
Mn0 � n0:
It remains to show that the two first integrals in the right hand side of (4.38) are of order OðqdÞ and find formula (4.4) for the
topological derivative. To do so, we use the adjoint problems (4.34) and (4.35) as follows. Multiplying (4.34) by v and (4.20)
by ~pvq

we obtain
Z
X

fv þ j0vðx;uvÞ
� �

� vdV þ
Z
@X
ðgv þ h0vðx;uvÞÞ � v dS ¼

Z
X

Avq
eð~pvq

Þ � eðvÞdV ¼
Z

xq

½A�eðuvÞ � eð~pvq
ÞdV

¼
Z

xq

½A�eðuvÞ � eðpv þ qÞdV ¼
Z

xq

½A�eðuvÞ � eðpv þ hwq
n00
þ dÞdV

¼ qd
Z

x
½A�n0 � n00 þ eyðwn00

Þ
� �

dVðyÞ þ oðqdÞ ¼ qdMn0 � n00 þ oðqdÞ;
by application of Lemma 4.4, rescaling, using the continuity of e(uv) and e(pv) in xq and thanks to the formula for M in Lem-
ma 4.1 (recall that n00 ¼ eðpvÞðx0Þ). Eventually we have proved
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JðvqÞ ¼ JðvÞ � qd

2
Mn0 � n0 þ qdMn0 � n00 þ qdjxjðj0 � j1Þðuvðx0ÞÞ þ oðqdÞ;
which is precisely formula (4.4). This achieves the proof of Theorem 4.1 since the properties of M have been proved in Lemma
4.2.

5. Computational algorithm

The main task is to compute, for each discrete time ti, i P 0, a minimizer vi of the Francfort–Marigo model (2.8). As we
already said, we are interested in local minima. Our notion of local minima is numerical in essence, that is, we minimize (2.8)
with a gradient descent algorithm in the level set framework. A minimum is thus local in the sense of perturbations of the
location of the interface R. Our algorithm is made of two nested loops:

(i) An outer loop corresponding to the increasing sequence of discrete times ti, i P 0.
(ii) An inner loop of gradient iterations for the minimization of the functional (2.8) at each fixed time step ti.

The irreversibility constraint (2.7) on the damaged zone is taken into account in the outer loop (i), whereas the inner loop
(ii) is purely numerical and is not subject to this irreversibility constraint between two successive iterates of (ii). The inner
loop is performed with the level set method of Osher and Sethian [50] that we now briefly describe (it is very similar with its
application in the context of shape optimization [5,62]).

In the fixed bounded domain X, uniformly meshed once and for all, we parametrize the damaged zone X0 by means of a
level set function w such that
wðxÞ ¼ 0() x 2 R;

wðxÞ < 0() x 2 X0;

wðxÞ > 0() x 2 X1:

8><
>:
The normal n to the damaged region X0 is recovered asrw/jrwj and the mean curvature H is given by the divergence of the
normal divn. These quantities are evaluated by finite differences since our mesh is uniformly rectangular. Although n and H
are theoretically defined only on R, the level-set method allows to define easily their extension in the whole domain X.

Following the minimization process, the damaged zone is going to evolve according to a fictitious time s which corre-
sponds to descent stepping and has nothing to do with the ‘‘real’’ time ti in the outer loop (i). As is well-known, if the shape
is moving with a normal velocity V, then the evolution of the level-set function is governed by a simple Hamilton–Jacobi
equation [49,57],
@w
@s
þ Vjrwj ¼ 0; ð5:1Þ
which is posed in the whole body X, and not only on the interface R, when the velocity V is known everywhere. We now
explain how we derive V for our specific problem.

For the minimization of (2.8) we use the shape derivative given by (3.9),
J0ðvÞðhÞ ¼
Z

R
Dh � ndS; ð5:2Þ
where the integrand DðxÞ 2 L2ðRÞ is given by Theorem 3.1 and h 2W1;1ðX; RdÞ in any admissible direction of derivation.
Since only the normal component of h plays a role in (5.2), we always look for a normal vector field, i.e., we restrict our atten-
tion to
h ¼ v n with a scalar field v 2W1;1ðXÞ: ð5:3Þ
The velocity V is going to be chosen as an ‘‘optimal’’ direction of derivation, v, such that
J0ðvÞðV nÞ ¼
Z

R
DV dS 6 0: ð5:4Þ
The simplest choice V ¼ �D, which enforces (5.4) and is commonly used in structural optimization [5], is not satisfactory in
the present situation, since D is defined as a jump on R only, without natural extension over X. We therefore suggest another
choice based on the identification of the duality product between J0(v) and v (recalling that h = vn) with the usual scalar
product in H1(X). In other words we represent J0(v) by a scalar field ð�VÞ 2 H1ðXÞ such that, for any test function v,
J0ðvÞðv nÞ ¼ �
Z

X
ðrV � rv þ VvÞdV : ð5:5Þ
Combining (5.2) and (5.5), and requiring the descent condition (5.4), we choose the velocity V in (5.1) as the unique solution
in H1(X) of the variational formulation
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Z
X
ðrV � rv þ VvÞdV ¼ �

Z
R
Dv dS 8 v 2 H1ðXÞ: ð5:6Þ
Solving (5.6) to compute a shape derivative is a usual trick in shape optimization for regularizing derivatives [3,52]. How-
ever, (5.6) is used here mostly for extending the ‘‘natural’’ velocity D away from the interface R. In practice we add a small
positive coefficient (linked to the mesh size) in front of the gradient term in (5.6) in order to limit the regularization and the
spreading of the velocity around the interface.

For numerical purpose, as explained in [5], the surface integral in the right hand side of (5.6) is written as a volume integral
Z
R
Dv dS ¼

Z
X

dRDv dV ; ð5:7Þ
where the Dirac mass function dR is approximated by
d�R ¼
1
2
jrðs�ðwÞÞj
with the following approximation of the sign function
s�ðxÞ ¼
wðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðxÞ2 þ �2
q ;
where � > 0 is a small parameter chosen in order to spread the integration over a few mesh cells around the interface. The
integrand D, being actually a jump ½E� of a discontinuous quantity E (see formulae (3.11) or (3.12)), requires also some special
care. In (5.7) we replace D ¼ ½E� by
Dapprox ¼ ½E�approx ¼ 2ðð1� vÞE � vEÞ;
where v is the characteristic function of the damaged phase (numerically it is always equal to 0 or 1 except in those cells cut
by the interface where it is interpolated by the local proportion of damaged phase in the cell). The factor 2 in the above for-
mula takes into account the fact that
Z

X
d�RvdV 
 1

2

Z
R

dS:
In our numerical experiments we use formula (3.11) and not (3.10) because the latter one exhibits singular jumps when the
damaged phase is very weak (which is the case for our simulations of crack propagation). Of course, in the case of a degen-
erate (zero) damaged phase we can use the limit formula given by Remark 3.2 which are of course much simpler (we did so
in our previous publication [6]).

Remark 5.1. Note that the same problem of computing a jump of a discontinuous quantity at an interface was
independently addressed in [42]. This work is also relying on the level set method and is applied to the Mumford–Shah
functional in image segmentation. It can also be applied to fracture mechanics and, as our proposed approach, it relies on a
fattening of the fracture path.

Our proposed algorithm for the inner loop (ii) is an iterative method, structured as follows:

1. Initialization of the level set function w0 as the signed distance to the previous damaged interface Ri corresponding to the
characteristic function v0 	 vi.

2. Iteration until convergence, for k P 0:
(a) Computation of the state uk by solving a problem of linear elasticity with coefficients Avk ¼ ð1� vkÞA1 þ vkA0.

(b) Deformation of the interface by solving the transport Hamilton–Jacobi equation (5.1). The new interface Rk+1 is char-
acterized by the characteristic function vk+1 or the level-set function wk+1 solution of (5.1) after a pseudo-time step
Dsk starting from the initial condition wk(x) with velocity Vk computed through (5.6) in terms of uk. The pseudo-time
step Dsk is chosen such that J(vk+1) 6 J(vk).

(c) Irreversibility constraint: we replace vk+1 by max (vk+1, v0) where v0 	 vi corresponds to the damaged zone at the
previous iteration of the outer loop (i).

At each iteration of above the inner loop, for stability reasons, we also reinitialize the level-set function w [49,57]. This is
crucial because the integrand D of the shape derivative involves normal and tangential components of stress or strain ten-
sors, which requires a precise evaluation of the normal n by formula rw/jrwj. Actually it turns out that this reinitialization
step must be much more precise in the present context than for shape optimization [5]. Indeed, a poor reinitialization can
influence the propagation of the damage zone. We therefore use a trick suggested in [54] for an increased accuracy of the
second-order reinitialization process. The Hamilton–Jacobi equation (5.1) is solved by an explicit second order upwind
scheme on a Cartesian grid. The boundary conditions for w are of Neumann type. Since this scheme is explicit in time, its
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time step is given by a CFL condition. In numerical practice we often take the descent step Dsk of the order of the Hamilton–
Jacobi time step which stabilizes the damage evolution.

6. Simulation results

Otherwise explicitly mentioned, all our numerical experiments are performed with a healthy material having Young
modulus E1 = 1000 and Poisson ratio m1 = 0.3 (white material on the pictures). The damaged phase (black material on the pic-
tures) has always Poisson ratio m0 = 0.3 (the fact that m0 = m1 does not matter) but has different Young modulus in different
places. More precisely, in Section 6.1 we consider a moderately weak damaged phase with E0 = 500, while in the next sub-
sections the damage phase is assumed to be almost degenerate, i.e. E0 = 10�3: this last case corresponds to a limit where our
model behaves almost like a brittle fracture model. Actually some models of fracture mechanics [33] are approximated by C-
convergence techniques [20,21], which is similar in spirit to a damage model. Therefore it is not surprising that our damage
model can predict crack propagation.

In the sequel we call critical load the value of the applied displacement for which the damage region has completely
crossed the computational domain (meaning failure of the structure), and initiation load the first value for which the damage
zone departs from its initialization. All other intermediate load values are called subcritical, while values above the critical
one are called supercritical.

In order to validate our method, two types of numerical experiments are done. On the one hand, for simple problems we
check convergence under various refinements of the mesh size, of the time step, etc. On the other hand, we compare our
results with a variety of existing benchmarks tested by laboratory experiments or other numerical methods.

6.1. 2d damage simulation

The numerical experiments with a moderately weak damaged phase, E0 = 500, are easier to perform that the ones with a
degenerate phase but their results are mechanically less interesting. Therefore we content ourselves with a single experi-
ment, namely a mode I traction (Fig. 1) in a square box of size 1 with a Griffith energy release parameter j = 1. The imposed
vertical displacement at the bottom is increased from 0.02 to 0.08 on a given time interval and shown as abscissa in the fig-
ures. In order to study convergence under mesh refinement, four different meshes are used: 280 � 280 (coarse), 320 � 320
(intermediate 1), 400 � 400 (intermediate 2), 452 � 452 (fine). Similarly, for convergence under time step refinement, we
divide the time interval successively in 100, 200 and 400 time steps. Fig. 1 displays the result for the 320 � 320 mesh with
100 time steps. There are no subcritical loads: the initiation load coincides with the critical load which means that, not only
the appearance of damage is sudden, but the structure completely fails in just one load displacement increment. Fig. 2 shows
that the results are convergent under mesh refinements. The curves are almost identical and the position of the critical load
is clearly converging as the mesh is refined. Fig. 3 is concerned with convergence under time-step refinement. In particular,
the critical loads for the three time refinements show very good agreement, meaning that our quasi-static numerical model
seems to converge to a time-continuous model as the time step tends to zero.

The cost function (2.4), which is minimized at each time step, is the sum of the Griffith or damage energy and of the elas-
tic energy. The damage energy, displayed in Fig. 2(a), is discontinuous and increases abruptly at the critical load. Similarly,
the elastic energy, displayed in Fig. 2(b), is discontinuous decreasing at the critical load, which corresponds to the release of
energy produced by damage. However, by comparison, the cost function, displayed in Fig. 2(c), seems to be roughly contin-
uous with respect to time (there is a small bump at the critical load).

Eventually, we have checked the following formula for the dissipation of energy (see Theorem 4.1 in [31])
Fig. 1.
impose
min
u;v

J ðu;vÞðTÞ �min
u;v

J ðu;vÞð0Þ ¼
Z T

0

Z
CD

ðrnÞ � duD

dt
ðtÞdSdt; ð6:1Þ
Mode I damage for the 320 � 320 mesh with 100 time steps. Initial configuration with an imposed displacement of 0.02 (a) critical load at an
d displacement of 0.06 (b) and supercritical load with an imposed displacement of 0.072 (c).
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Fig. 2. Mode I damage experiment: variations of various energies as functions of the imposed displacement. Griffith energy (a), elastic energy (b) and cost
function (c) for four different mesh refinements with 100 time steps.
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where J is defined by (2.3) and uD is the applied displacement. In the absence of any other applied load, formula (6.1) ex-
presses the conservation of total energy. If we plot the right hand side of (6.1), we obtain exactly the cost function on the left
hand side with a numerical precision of the order of 10�6.

6.2. 2d Fracture with mode I loading

We now switch to a very weak damage phase, E0 = 10�3, in order to mimic crack propagation. Here the Griffith energy
release parameter is j = 3.5. We perform the same mode I traction experiment as in Section 6.1 with the same parameter
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values otherwise explicitly specified. For a mesh of size 320 � 320, with an initial crack having a width of 8 mesh cells, a
height of 16, and for 100 time steps, when the imposed vertical displacement at the bottom is increased from 0.005 to
0.05, we obtain a crack which breaks the structure in just one time increment (see Fig. 4). For all other values of the param-
eters, the same qualitative behavior is observed: the initial and critical loads are the same for a mode I crack.
Fig. 4. Mode I crack: initial configuration (a) and critical load at 0.0028 (b).

0.01 0.02 0.03 0.04 0.050.005 0.015 0.025 0.035 0.045
0

0.1

0.2

0.3

0.4

0.05

0.15

0.25

0.35

100, 200 and 400

Fig. 5. Time-step refinement for the mode I crack: cost function with respect to the imposed displacement for three time refinements.
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We then investigate the convergence under time-step refinement (Fig. 5). The imposed vertical displacement at the bot-
tom is increased from 0.005 to 0.05. The time interval is successively divided in 100, 200 and 400 time steps. The mesh is of
size 320 � 320 with an initial crack having a width of 8 mesh cells. In Fig. 5 the values of the critical loads are obviously con-
verging as Dt goes to zero. Therefore we believe that our quasi-static numerical model, as applied to ‘‘crack-like’’ damage,
also converges to a time-continuous model as the time step tends to zero.

We now perform three different test cases of convergence under mesh refinement with four meshes for each test (see
Figs. 6–8). The four different meshes are: 280 � 280 (coarse), 320 � 320 (intermediate 1), 400 � 400 (intermediate 2),
452 � 452 (fine). From these three refinement processes, only the last one is fully satisfactory but the two previous ones
are illuminating so we keep them in our exposition.

In the first case (Fig. 6), the given initial crack has a constant width. In other words, the number of cells in a cross-section
of the initial crack is 6, 8, 10 and 12, respectively for the four different meshes. The initial crack tip is slightly rounded for the
finer meshes in order to avoid the appearance of sharp corners. The imposed vertical displacement at the bottom is increased
from 0.005 to 0.05. In Fig. 6 we observe that the value of the critical load is decreasing as the mesh is refined and does not
seem to converge (especially when compared to the damage case in Fig. 2). Similarly, the value of the cost function at the
critical load is decreasing with finer meshes because a thinner crack (on a finer mesh) costs less Griffith energy. Therefore,
contrary to the damage experience of Subsection 6.1, no mesh convergence can be claimed in this first experiment.

In the second case (Fig. 7), we anticipate that a crack should have a thickness of the order of a few cells Dx when Dx goes
to zero. Therefore, whatever the value of Dx, the initial crack is chosen with a width of two cells only, which means that the
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Fig. 6. First mesh convergence test for the mode I crack: cost function with respect to the imposed displacement for various meshes and with 100 time
steps.
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Fig. 7. Second mesh convergence test for the mode I crack: cost function with respect to the imposed displacement for various meshes and with 100 time
steps.
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initial crack is thinner and thinner as the mesh is refined. The imposed vertical displacement at the bottom is now increased
from 0.005 to 0.05. Refinements with respect to the mesh size are shown in Fig. 7. The critical load again occurs sooner for
finer meshes, thereby indicating that there is no convergence under mesh refinement.

In the third case (Fig. 8), we replace the minimization of (2.4) by that of the scaled cost function (2.11) in an attempt to
show that there is indeed convergence under mesh refinement. In other words we replace the Griffith energy release param-
eter j by its scaled version c

Dx ¼ j‘
Dx where Dx is the mesh size. We again choose E0/E1 = 10�6 and take ‘ = 1/320 (so that

‘/Dx = 1 for the ‘‘intermediate 1’’ mesh). In practice, this scaling implies that it is more difficult to create damage for finer
meshes, a phenomenon that should balance the opposite effect displayed in the two previous cases. As explained in Sec-
tion 2.3 this scaling is precisely designed so the scaled Griffith energy converges to a surface energy when Dx goes to zero.
In Fig. 8 we check that the critical loads are converging, so we claim that mesh convergence is observed with this particular
scaling of j.

Eventually, we have again checked the balance of energy expressed in (6.1): the cost function perfectly matches the time
integral of the dissipated energy (i.e. the right hand side of (6.1)), up to a numerical precision of the order of 10�6.

6.3. 2d fracture with mode II loading

We now turn to another crack experiment with a mode II loading. The dimensions of the computational domain are the
same as in the above mode I experiments. The weak damage phase is again E0 = 10�6 while the imposed horizontal displace-
ment at the bottom is here increased from 0.1 to 1.0 on a given time interval. In Fig. 9(a) and (b) the initial and critical cracks
are shown for the 320 � 320 mesh. We emphasize that ‘‘critical’’ has not exactly the same meaning here as for the mode I
crack: the mode II crack does not actually break the structure. The crack stops just a few cells before reaching the opposite
boundary and does not move anymore as the load increases. This longest crack configuration is called critical. However, frac-
ture is here again brutal in the sense that the initiation load coincides with the critical load. In Fig. 9 we can see that the mode
II loading yields a branching of the crack. By symmetry and since the model is linearized elasticity the two crack branches are
Fig. 9. Mode II crack experiment: initial configuration (a) and critical load at 0.49 (b).
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symmetric, one in compression and the other in traction. It means that another mechanical model taking into account the
non-interpenetration of material would produce only the branch under traction, i.e., the lips of which are opening under the
load, as it can be observed in physical experiments.

Four different meshes are used: 280 � 280 (coarse), 320 � 320 (intermediate 1), 400 � 400 (intermediate 2), 452 � 452
(fine). In our experiment (Fig. 10), we minimize the scaled version (2.11) of the cost function, i.e., j is replaced by j‘

Dx, and the
crack width is always exactly two mesh cells. Convergence under mesh refinement is clearly obtained. Even more, the two
finest mesh curves almost coincide.

6.4. Bittencourt’s drilled plate

This test case has been proposed in [16] where we found all the required numerical values of the parameters. It has been
reproduced in many other works, including [18,13]. The Young modulus of the healthy phase is 3000 and its Poisson ratio
0.35. The damaged phase has a Young modulus 3 � 10�3 and the same Poisson ratio. The value of the Griffith energy release
parameter is j = 0.0014. Contrary to all other numerical simulations in this paper, the present experiment has been
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Fig. 10. Mode II crack test: cost function (2.11) with respect to simultaneous mesh, crack and j refinements for 100 time steps.

Fig. 11. The two Bittencourt’s experiments: (a) first case a = 6, b = 1.5 and (b) second case a = 5, b = 1.
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performed with a given fixed applied force instead of a sequence of increasing displacements. The vertical unit load is ap-
plied on a single concentrated point of the upper body boundary. The value of the Griffith energy release parameter j is such
that this applied unit load is critical, i.e. a single time step produces the cracks displayed in Fig. 11(a) and (b) for two different
crack initializations. The distance from the left face to the initial crack is denoted by a, while b is the initial crack length. The
three holes carry a Neumann boundary condition. We use a non-uniform rectangular mesh of size 470 � 800 which is more
refined in the vicinity of the holes. These two results are in good agreement with laboratory experiment of [16], although
that of Fig. 11(a) shows a slightly different crack path near the second hole.

6.5. Coalescence of multiple cracks

This experiment is made on a pre-cracked sample (of size 1.6 � 2.2) with a vertical imposed displacement along the ver-
tical sides (corresponding to a Mode II type loading). The healthy material has Young modulus E1 = 1 and Poisson ratio
m1 = 0.3, the damaged phase has the same Poisson ratio but a smaller Young modulus E0 = 10�3. The value of the Griffith en-
ergy release parameter is j = 10�7. The imposed vertical displacement is increased from 0.001 to 0.005 with 100 time steps.
The critical load is attained at 0.0014. Two different meshes are shown in Fig. 12.
Fig. 12. Multiple crack experiment with a Mode II loading.

Fig. 13. Fiber-reinforced matrix: isocontours of the topological derivative at the initialization.
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6.6. Traction experiment on a fiber reinforced matrix

We perform a test case proposed in [20] where all precise values of the parameters can be found. The setting of Fig. 14(a)
is the following. A unit vertical displacement is exerted on the upper layer of the solid which is also clamped at its midpoint
to avoid translations and rotations. The fiber (grey inclusion in Fig. 14(a)) is also clamped. The healthy material has Young
modulus E1 = 1000 and Poisson ratio m1 = 0.3, the damaged phase has the same Poisson ratio but a much smaller Young mod-
ulus E0 = 10�3. The value of the Griffith energy release parameter is j = 8000. Excellent agreement with the numerical results
of [20] are observed. Let us emphasize that this experiment is the only one using the topological derivative to initiate the
damaged zone: the map of the topological gradient at the initialization is displayed in Fig. 13. More precisely, the initial body
is completely healthy without any damage: the applied load is gradually increased, until damage appears because the topo-
logical derivative becomes negative. Once the damaged zone has been initialized we use our shape gradient method to prop-
agate the crack without further use of the topological gradient. The final crack in Fig. 14 is very similar to that computed in
[20].

There is a subtle point here in the use of the topological derivative. Such a notion is well defined for the cost function (2.3)
which features a bulk Griffith-type energy. However, it is not possible to define a topological derivative for the cost function
(2.13) which has a surface Griffith energy. Indeed, surface energy asymptotically dominates bulk energy for small inclusions
and no balance can be established. In other words the notion of topological derivative makes sense in our damage model but
is irrelevant for fracture models.
Fig. 14. Fiber-reinforced matrix: an example of crack initiation by the topological derivative.
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Note also that the initialization pattern suggested by the topological derivative (which is necessarily small by definition)
is not a local minimizer of the cost function. Thus, such an initialization is difficult to compare with other ones in the liter-
ature and its small extension is not a contradiction with theoretical results [28] stating that an initial crack (minimizing the
cost function) cannot be too small.

Therefore we now compare different (10) initializations for the same problem. The first initialization is that given by the
topological gradient and already displayed in Fig. 14(b). The nine other ones, displayed in Fig. 15, are increasingly larger
cracks obtained as intermediate inner iterates in the previous computation (they are therefore not local minimizers of the
cost function). The larger cracks of Fig. 15 are very similar to the initial crack pattern in [21]. For each of these initial cracks
we restarted the crack evolution from a zero imposed displacement which is then gradually increased. The evolutions of the
elastic energy, the Griffith energy and the cost function, when the imposed displacement is increased, are shown in Fig. 16.
One can clearly see the importance of the initialization, a well-known fact in the minimization of non-convex energies. The
idea of restarting the minimization at smaller loading parameters from an intermediate crack solution at a larger loading
parameter has already been exploited in the so-called back-tracking algorithm of [19,21] for global minimization. Of course,
the larger the initial crack is, the smaller is the critical load. Interestingly enough we found that, for the 4th up to the 10th
initializations, part of the crack evolution is smooth with respect to the loading parameter. This is actually the only occur-
rence in our numerical tests of a continuous crack evolution: all other examples feature a brutal fracture process. This
smooth behavior is very similar to that obtained in [21] (see Figs. 31 and 32 on p. 92). In Fig. 17, for the 5th initialization,
we plot the two crack patterns obtained for the values 0.28 and 0.44 of the imposed displacement: in between the crack evo-
lution is continuous.
6.7. 3d mode 1, mode 2 and mode 3 cracks

We eventually conclude our numerical tests by performing the 3 different mode loadings in 3d with boundary conditions
(imposed displacements) shown in Fig. 18. We work with a cubic domain of size 1 � 1 � 1 meshed with 80 � 80 � 80 cubic
Fig. 15. Fiber-reinforced matrix: different crack initializations.
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Fig. 16. Elastic energy, Griffith energy and cost function, as a function of the imposed displacement, for the 10 initializations of Fig. 15. The first
initialization corresponds to the largest critical load (or discontinuity) and the critical load is decreasing with the label of the initialization.
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cells: its left back face (circles) is fixed while a uniform displacement of modulus 0.04 is applied on its right front face. The
healthy material has Young modulus E1 = 104 and Poisson ratio m1 = 0.3, the damaged phase has the same Poisson ratio but a
smaller Young modulus E0 = 1. The value of the Griffith energy release parameter is j = 1. The initial and final cracks are
shown in Fig. 19.

For this large test case (involving around 1.56 � 106 degrees of freedom) we use a sparse parallel direct linear solver for
solving the elasticity system, requiring 40 GB of memory and 15 min on 8 Intel Xeon processors. Each of these 3d



Fig. 17. Fiber-reinforced matrix: two crack patterns for the 5th initialization at the beginning and at the end of a smooth evolution.

Fig. 18. Boundary conditions for the modes I, II and III in 3d.
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computations requires of the order of 150 and 200 iterations, i.e. solutions of the elasticity system, so the overall CPU time is
about two days.

7. Concluding remarks

We have proposed a numerical method, based on the Francfort–Marigo damage model and using a single level set func-
tion with standard finite elements, for the simulation of damage evolution and crack propagation. Our method is computing



Fig. 19. Initial and final cracks for the modes I, II and III in 3d.
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a class of local minimizers of the Francfort–Marigo energy. The crack paths predicted by our numerical experiments are in
excellent qualitative agreement with previous results in the literature. However, the quasi-static evolutions of the elastic
energy, Griffith-type damage energy and total cost function are different from those we found in [21] (using global minimi-
zation), and in [48] (using criticality). First, cracks often break the structure in a single time increment: fracture is thus a
brutal process in most of our computations, which is not the case in [21,48]. Second, as opposed to the global minimization
approach of [21], the cost function (which is the sum of the elastic and damage energies) is not continuous in time: at the
critical load (when the structure breaks down) some energy is thus dissipated. This phenomenon seems to be featured by all
local minimization approaches and is usually interpreted as the necessity of including kinetic effects in the model.

The ill-posed character of the minimization problem (2.4) or (2.11) (which do not admit minimizers, in general) manifests
itself in various aspects. First, as already said, we rarely found a local minimizer in our numerical tests unless the structure
was broken (fracture is a brutal process). The only exception is the fiber reinforced matrix test of Section 6.6 where a larger
than usual initial crack allows us to obtain a smooth evolution of the crack, similar to that obtained in [21]. Second, our
numerical results are quite sensitive to some implementation issues. For example, it is necessary to use the complete shape
derivative formulas (3.9) (which features the two phases) and not their simpler limit (3.13), obtained when the damaged
phase is assumed to have zero rigidity, otherwise the minimization of the cost function is less complete and the values of
the initiation or critical loads may be wrong. Another important issue is the reinitialization process which must be precise
enough so that the normal and tangent vectors to the interface between the two phases are always accurately computed
while the interface itself does not move at all during reinitialization (otherwise it would contradict the irreversibility
constraint).

An interesting open problem is to prove the conjectured convergence of the discrete scaled energy (2.12) towards the
fracture model (2.13). A natural extension of our work is to handle a non-interpenetration condition so that cracks under
compression do not propagate. We have used standard Q1 finite elements for solving the linear elasticity system which fea-
tures a large variation of the Young modulus between the two phases. It would be interesting to study if extended finite ele-
ment methods (XFEM, see e.g. [36,37]) would improve the numerical precision at a not too large expense in CPU cost. Of
course, we should also perform more realistic test cases and make precise comparisons with both physical experiments
and other codes, including a study of CPU cost. Eventually let us mention that shape optimization for minimizing the risk
of crack propagation is also a promising field to investigate, following [45].
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Appendix A. Computation of the shape derivative

This appendix is devoted to the proofs of Lemma 3.6 and Corollary 3.1. We begin with Lemma 3.6 which furnishes the partial
shape derivative of the Lagrangian. To prove it we use Lemma 3.1. On the one hand, the derivatives of integrals on X0,1 are sim-
ple. On the other hand, the interface R is either a closed surface without boundary or a surface which meets the outer boundary
@X: in both cases the derivative of an integral on R has no contribution on its boundary @R as in (3.1). Eventually, even if the
surfaces C0;1

N are subset of the fixed boundary CN, they can vary tangentially to CN, so the derivatives of integrals on C0;1
N are

made of the sole boundary term on c ¼ @C0;1
N in (3.1). Therefore, the partial shape derivative of L is
h@L
@v ;/i ¼

Z
R

r1ðu1Þ � eðp1Þ � r0ðu0Þ � eðp0Þ

 �

h � ndSþ
Z

R
�f 1 � p1 þ f 0 � p0 � j1ðu1Þ þ j0ðu0Þ
� �

h � ndS

þ 1
2

Z
R
ðr0ðu0Þ � eðu0Þ � r1ðu1Þ � eðu1ÞÞh � ndS� 1

2

Z
R

@

@n
þ H

� �
ððr1ðu1Þnþ r0ðu0ÞnÞ � ðp1 � p0ÞÞh � ndS

� 1
2

Z
R

@

@n
þ H

� �
ððr1ðp1Þnþ r0ðp0ÞnÞ � ðu1 � u0ÞÞh � ndS

þ 1
2

Z
R

@

@n
þ H

� �
ððr1ðu1Þnþ r0ðu0ÞnÞ � ðu1 � u0ÞÞh � nkdSþ

Z
c
ðg0 � p0 � g1 � p1 þ h0ðu0Þ � h1ðu1ÞÞh � sdL;

ðA:1Þ
where H denotes the mean curvature and s is the external unit vector normal to c = @CN and n. Since u0 = u1 and p0 = p1 on R,
the terms involving the curvature vanish on R. Similarly the normal component of the stress tensors are continuous through
R. Thus, (A.1) simplifies in
h@L
@v ;/i ¼

Z
R
ðr1ðu1Þ � eðp1Þ � r0ðu0Þ � eðp0ÞÞh � ndSþ

Z
R

1
2
ðr0ðu0Þ � eðu0Þ � r1ðu1Þ � eðu1ÞÞh � ndS�

Z
R
rðuÞn

� @ðp
1 � p0Þ
@n

h � ndS�
Z

R
rðpÞn � @ðu

1 � u0Þ
@n

h � ndSþ
Z

R
rðuÞn � @ðu

1 � u0Þ
@n

h � ndS�
Z

R
ððf 1 � f 0Þ � p

þ j1ðuÞ � j0ðuÞÞh � ndS�
Z

c
ððg1 � g0Þ � pþ h1ðuÞ � h0ðuÞÞh � sdL; ðA:2Þ
where u, p, r(u)n, r(p)n denotes the continuous quantities at the interface. The two last lines of (A.2) are expressed only in
terms of continuous quantities through the interface, but not the five first lines that we must rewrite, using Lemma 3.2, as an
explicit expression in terms of continuous functions at the interface and jumps of the Lamé coefficients. (In the following
computations, the symbol � will denote, according to the context, either a scalar product between two vectors, or between
two matrices.)

Let us compute the integrand in the first term of the right hand side of (A.2). In the local orthonormal basis (t, n) (adapted
to the interface R and introduced in Lemma 3.2) the following decomposition holds
r1ðu1Þ � eðp1Þ ¼ r1
nnðu1Þennðp1Þ þ 2r1

tnðu1Þ � etnðp1Þ þ r1
ttðu1Þ � ettðp1Þ:
From Lemma 3.2 it rewrites as
r1ðu1Þ � eðp1Þ ¼ 1
k1 þ 2l1

r1
nnðu1Þ r1

nnðp1Þ � k1trettðp1Þ

 �

þ 1
l1 r1

tnðu1Þ � r1
tnðp1Þ

þ 2l1ettðu1Þ þ k1

k1 þ 2l1
2l1trettðu1Þ þ r1

nnðu1Þ

 �

Id�1
2

" #
� ettðp1Þ

¼ 1
k1 þ 2l1

r1
nnðu1Þr1

nnðp1Þ þ 1
l1 r1

tnðu1Þ � r1
tnðp1Þ þ 2l1ettðu1Þ � ettðp1Þ þ 2k1l1

k1 þ 2l1
trettðu1Þtrettðp1Þ:
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A similar computation with the index 0 instead of 1 yields the difference
r1ðu1Þ � eðp1Þ � r0ðu0Þ � eðp0Þ ¼ 1
kþ 2l

� 	
rnnðuÞrnnðpÞ þ

1
l

� 	
rtnðuÞ � rtnðpÞ þ ½2l�ettðuÞ � ettðpÞ þ

2kl
kþ 2l

� 	
trettðuÞtrettðpÞ
which is expressed, as desired, only in terms of continuous functions at the interface. On the same token we deduce
r0ðu0Þ � eðu0Þ � r1ðu1Þ � eðu1Þ ¼ �1
kþ 2l

� 	
rnnðuÞð Þ2 � 1

l

� 	
jrtnðuÞj2 � ½2l�jettðuÞj2 �

2kl
kþ 2l

� 	
ðtrettðuÞ2:
We now consider the integrand of the third, fourth of fifth line of (A.2). We use the following identity for two displace-
ments v and q
if q ¼ 0 on R; then rðvÞn � @q
@n
¼ 2ðrðvÞnÞ � ðeðqÞnÞ � rnnðvÞennðqÞ on R:
We obtain
rðuÞn � @ðp
1 � p0Þ
@n
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2k
kþ 2l
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1
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� 1
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rnnðuÞrnnðpÞ þ

k
kþ 2l
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kþ 2l

� 	
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1
l
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k
kþ 2l

� 	
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We get a similar expression for rðpÞn � @ðu1�u0Þ
@n and rðuÞn � @ðu1�u0Þ

@n . Summing up these contributions we deduce that the inte-
grand of the five first lines of the right hand side of (A.2) is
DðxÞ ¼ � 1
kþ 2l

� 	
rnnðuÞrnnðpÞ �

1
l

� 	
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þ k
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1
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1
2l
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� kl
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k
kþ 2l

� 	
rnnðuÞtrettðuÞ
which is precisely formula (3.10). Using the relations (3.8) between e and r (see Lemma 3.2) we easily deduce (3.11) from
(3.10), which finishes the proof of Lemma 3.6. h

Proof of Corollary 3.1. The Francfort–Marigo objective function is obtained for jk(u) = �f k�u + jdk0 and hk(u) = �gk�u.
We deduce that j0kðuÞ ¼ �f k and h0kðuÞ ¼ �gk, and thus that the adjoint state vanishes pv = 0. If we further assume that
f 0 = f 1 and g0 = g1, the shape derivative reduces to
J0ðvÞðhÞ ¼
Z

R
DðxÞ h � ndS
with
DðxÞ ¼ 1
2ðkþ 2lÞ

� 	
ðrnnðuvÞÞ2 þ

1
2l
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� 	
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k
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� 	
rnnðuvÞtrettðuvÞ:

ðA:4Þ
Assumption A0
6 A1 is equivalent to [l] P 0 and ½,�P 0 with , :¼ kþ 2

d l, the bulk modulus. Since rtn(u) only appears as a
square product in (A.4), it suffices to check that the combination of all other terms is indeed negative, that is,
1
kþ 2l

� 	
ðrnnðuÞÞ2 � ½2l�jettðuÞj2 �

2kl
kþ 2l

� 	
ðtrettðuÞÞ2 �

2k
kþ 2l

� 	
rnnðuÞtrettðuÞ 6 0: ðA:5Þ
Since (trett(u))2
6 (d � 1)jett(u)j2 (where d = 2, 3 is the space dimension) the left hand side of (A.5) is bounded from above

by
1
kþ 2l

� 	
rnnðuÞ2 �

2l
d� 1

þ 2kl
kþ 2l

� 	
ðtrettðuÞÞ2 �

2k
kþ 2l

� 	
rnnðuÞtrettðuÞ; ðA:6Þ
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which writes in term of , and l as
d
d,þ 2ðd� 1Þl

� 	
rnnðuÞ2 �

d
d� 1

2d,l
d,þ 2ðd� 1Þl
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d,� 2l
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� 	
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Since, by assumption A0
6 A1, we have
d
d,þ 2ðd� 1Þl

� 	
6 0 and

2d,l
d,þ 2ðd� 1Þl

� 	
P 0;
the quadratic form (A.6) is negative if and only if
d,� 2l
d,þ 2ðd� 1Þl�

� 	2

6 � d
d� 1

d
d,þ 2ðd� 1Þl

� 	
2d,l

d,þ 2ðd� 1Þl

� 	
: ðA:7Þ
Introducing the new variables ,0 ¼ d,
2 and l0 = (d � 1)l, (A.7) is equivalent to
1
,0 þ l0

� 	
,0l0

,0 þ l0

� 	
6 � 1

d2

ðd� 1Þ,0 � l0

,0 þ l0

� 	2

¼ �1
4

,0 � l0

,0 þ l0

� 	2

: ðA:8Þ
A brute force computation shows that (A.8) holds true. h
References

[1] J. Alfaiate, G.N. Wells, L.J. Sluys, On the use of embedded discontinuity elements with crack path continuity for mode-I and mixed-mode fracture, Eng.
Fract. Mech. 69 (2002) 661–686.

[2] G. Allaire, Continuity of the Darcy’s law in the low-volume fraction limit, Ann. Scuola Norm. Sup. Pisa 18 (1991) 475–499.
[3] G. Allaire, Conception optimale de structures, Collection: Mathématiques et Applications, vol. 58, Springer, 2007.
[4] G. Allaire, S. Aubry, F. Jouve, Simulation numérique de l’endommagement à l’aide du modèle Francfort–Marigo, in: Actes du 29ème congrès d’analyse

numérique, ESAIM Proceedings, vol. 3, pp.1–9, 1998.
[5] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. 194 (1) (2004) 363–393.
[6] G. Allaire, F. Jouve, N. Van Goethem, A level set method for the numerical simulation of damage evolution, in: R. Jeltsch, G. Wanner (Eds.), Proceedings

of ICIAM 2007, Zürich, EMS, Zürich, 2009.
[7] L. Ambrosio, V. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via C-convergence, Commun. Pure Appl. Math. 43

(8) (1990) 999–1036.
[8] H. Ammari, H. Kang, Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, vol. 1846, Springer, 2000.
[9] H. Ammari, H. Kang, G. Nakamura, K. Tanuma, Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an

inclusion of small diameter and detection of an inclusion, J. Elasticity 67 (2) (2002) 97–129.
[10] H. Ammari, An introduction to mathematics of emerging biomedical imaging, Collection: Mathématiques et Applications, vol. 62, Springer, 2008.
[11] H. Ammari, P. Calmon, E. Iakovleva, Direct elastic imaging of a small inclusion, SIAM J. Imaging Sci. 1 (2008) 169–187.
[12] L. Ambrosio, G. Buttazzo, An optimal design problem with perimeter penalization, Calc. Var. 1 (1993) 55–69.
[13] P. Areias, J. Alfaiate, D. Dias-da-Costa, E. Julio, Arbitrary bi-dimensional finite strain crack propagation, Comput. Mech. 45 (1) (2009) 61–75.
[14] P.-E. Bernard, N. Moës, C. Stolz, N. Chevaugeon, A thick level set approach to model evolving damage and transition to fracture, in: Proceedings of ECCM

2010, Paris, May 16–21, 2010.
[15] Ch. Bernardi, O. Pironneau, Sensitivity of Darcy’s law to discontinuities, Chinese Ann. Math. Ser. B 24 (2) (2003) 205–214.
[16] T.N. Bittencourt, A.R. Ingraffea, P.A. Wawrzynek, J.L. Sousa, Quasi-automatic simulation of crack propagation for 2D LEFM problems, Eng. Fract. Mech.

55 (2) (1996) 321–324.
[17] M. Bonnet, A. Constantinescu, Inverse problems in elasticity, Inverse Problems 21 (2005) 1–50.
[18] S. Bordas, B. Moran, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Eng. Fract. Mech. 73 (9) (2006)

1176–1201.
[19] B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interface Free Bound 9 (2007) 411–430.
[20] B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids 48 (4) (2000) 797–826.
[21] B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture, Journal of Elasticity 91 (2008) 5148.
[22] A. Braides, C. Larsen, C-convergence for stable states and local minimizers, preprint.
[23] A. Braides, A. Piatnitski, Homogenization of surface and length energies for spin systems, preprint. Available at <http://cvgmt.sns.it/papers/brapia10/>.
[24] H.D. Bui, Mécanique de la rupture fragile, Masson, Paris, 1983.
[25] Y. Capdeboscq, Michael S. Vogelius, Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities,

Asymptot. Anal. 50 (3–4) (2006) 175–204.
[26] J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée de la fonction coût, Math. Model. Numer. Anal. 20 (3) (1986) 371–

402.
[27] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math. 55

(1995) 827–863.
[28] A. Chambolle, A. Giacomini, M. Ponsiglione, Crack initiation in brittle materials, Arch. Ration. Mech. Anal. 188 (2008) 309–349.
[29] J. Deny, J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier. Grenoble 5 (1953–54) (1955) 305–370.
[30] H. Eschenauer, V. Kobelev, A. Schumacher, Bubble method for topology and shape optimization of structures, Struct. Optimiz. 8 (1994) 42–51.
[31] G. Francfort, A. Garroni, A variational view of brittle damage evolution, Arch. Ration. Mech. Anal. 182 (1) (2006) 125–152.
[32] G. Francfort, J.-J. Marigo, Stable damage evolution in a brittle continuous medium, Eur. J. Mech. A/Solids 12 (2) (1993) 149–189.
[33] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (8) (1998) 1319–1342.
[34] S. Garreau, P. Guillaume, M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim. 39 (6) (2001) 1756–

1778.
[35] A. Garroni, C. Larsen, Threshold-based quasi-static brittle damage evolution, Arch. Ration. Mech. Anal. 194 (2) (2009) 585–609.
[36] A. Gravouil, N. Moës, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets – Part I: Mechanical model, Int. J. Numer.

Methods Eng. 53 (11) (2002) 2549–2568.
[37] A. Gravouil, N. Moës, T. Belytschko, Non-planar 3D crack growth by the extended finite element and level sets – Part II: Level set update, Int. J. Numer.

Methods Eng. 53 (11) (2002) 2569–2586.
[38] A. Henrot, M. Pierre, Variation et optimisation de formes, Mathématiques et Applications, vol. 48, Springer-Verlag, 2005.

http://cvgmt.sns.it/papers/brapia10/


5044 G. Allaire et al. / Journal of Computational Physics 230 (2011) 5010–5044
[39] F. Hettlich, W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement, Inverse Problems 14 (1) (1998)
67–82.

[40] R. Jerrard, P. Sternberg, Critical points via Gamma-convergence: general theory and applications, J. Eur. Math. Soc. 11 (2009) 705–753.
[41] C. Larsen, Epsilon-stable quasi-static brittle fracture evolution, Commun. Pure Appl. Math. 63 (2010) 630–654.
[42] C. Larsen, C. Richardson, M. Sarkis, A level set method for the Mumford-Shah functional and fracture, SIAM J. Imag. Sci., in press. Available from:

<http://www.preprint.impa.br/shadows/SERIE_A/2008/581.html>.
[43] J.-B. Leblond, Mécanique de la rupture fragile et ductile, Hermes Science Publications, Paris, 2003.
[44] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1) (1999) 131–150.
[45] A. Munch, P. Pedregal, Relaxation of an optimal design problem in fracture mechanics, ESAIM:COCV 16 (2010) 719–743.
[46] F. Murat, S. Simon, Etudes de problèmes d’optimal design, Lecture Notes in Computer Science, vol. 41, Springer-Verlag, Berlin, 1976, pp. 54–62.
[47] M. Negri, A finite element approximation of the Griffith’s model in fracture mechanics, Numer. Math. 95 (2003) 653–687.
[48] M. Negri, Ch. Ortner, Quasi-static crack propagation by Griffith’s criterion, M3AS 18 (2008) 1895–1925.
[49] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, vol. 153, Springer-Verlag, New York, 2003.
[50] S. Osher, J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 78

(1988) 12–49.
[51] O. Pantz, Sensibilité de l’équation de la chaleur aux sauts de conductivité, C.R. Acad. Sci. Paris, Ser. I 341 (2005) 333–337.
[52] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, 1984.
[53] R.-M. Pradeilles-Duval, C. Stolz, Mechanical transformations and discontinuities along a moving surface, J. Mech. Phys. Solids 43 (1) (1995) 91–121.
[54] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (2000) 51–67.
[55] E. Sandier, S. Serfaty, Gamma-convergence of gradient flows and application to Ginzburg–Landau, Commun. Pure Appl. Math. 57 (2004) 1627–1672.
[56] B. Schmidt, F. Fraternali, M. Ortiz, Eigenfracture: an eigendeformation approach to variational fracture, Multiscale Model. Simul. 7 (1) (2009) 1237–

1266.
[57] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and

Materials Science, Cambridge University Press, 1999.
[58] J. Sokołowski, A. _Zochowski, On the topological derivative in shape optimization, SIAM J. Control Optim. 37 (1999) 1251–1272.
[59] J. Sokołowski, J.P. Zolesio, Introduction to shape optimization: shape sensitivity analysis, Springer Series in Computational Mathematics, vol. 10,

Springer, Berlin, 1992.
[60] C. Stolz, Energy Methods in Non-Linear Mechanics, Lecture Notes, vol. 11, IPPT PAN and CoE AMAS, Warsaw, 108p., ISSN 1642-0578, 2004.
[61] N. Van Goethem, A. Novotny, Crack nucleation sensitivity analysis, Math. Methods Appl. Sci. 33 (16) (2010).
[62] M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246.

http://www.preprint.impa.br/shadows/SERIE_A/2008/581.html

	Damage and fracture evolution in brittle materials by shape  optimization methods
	Introduction
	The Francfort–Marigo model of damage
	Description of the model
	Mathematical properties of the model
	Goal of the present study

	Shape derivative
	On the notion of shape gradient
	Main result
	The Lagrangian approach to shape differentiation

	Topological derivative
	Main result
	Elastic moment tensor
	Asymptotic analysis in the perturbed domain
	Proof of Theorem 4.1

	Computational algorithm
	Simulation results
	2d damage simulation
	2d Fracture with mode I loading
	2d fracture with mode II loading
	Bittencourt’s drilled plate
	Coalescence of multiple cracks
	Traction experiment on a fiber reinforced matrix
	3d mode 1, mode 2 and mode 3 cracks

	Concluding remarks
	Acknowledgments
	Computation of the shape derivative
	References


