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1 Introduction
Numerical methods of shape and topology optimization based on the level set
representation and on shape di�erentiation make possible topology changes dur-
ing the optimization process. But they do not solve the inherent problem of ill-
posedness of shape optimization which manifests itself in the existence of many
local minima, usually having di�erent topologies. The reason is that the level
set method can easily remove holes but can not create new holes in the middle
of a shape. In practice, this e�ect can be checked by varying the initialization
which yields di�erent optimal shapes with di�erent topologies. This absence
of a nucleation mechanism is an inconvenient mostly in 2-d: in 3-d, it is less
important since holes can appear by pinching two boundaries.

In [1] we have proposed, as a remedy, to couple our previous method with the
topological gradient method (cf. [5][6][7][13]). Roughly speaking it amounts to
decide whether or not it is favorable to nucleate a small hole in a given shape.
Creating a hole changes the topology and is thus one way of escaping local
minima. Our coupled method of topological and shape gradients in the level
set framework is therefore much less prone to �nding local, non global, optimal
shapes. For most of our 2-d numerical examples of compliance minimization, the
expected global minimum is attained from the trivial full domain initialization.

2 Setting of the problem
We restrict ourselves to linear elasticity. A shape is a bounded open set Ω ⊂ Rd

(d = 2 or 3) with a boundary made of two disjoint parts ΓN and ΓD, submitted
to respectively Neumann and Dirichlet boundary conditions. All admissible
shapes Ω are required to be a subset of a working domain D ⊂ Rd. The shape
Ω is occupied by a linear isotropic elastic material with Hooke's law A de�ned,
for any symmetric matrix ξ, by Aξ = 2µξ + λ

(
Trξ

)
Id, where µ and λ are the

Lamé moduli. The displacement �eld u is the solution of the linearized elasticity
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system 


−div (Ae(u)) = f in Ω

u = 0 on ΓD(
Ae(u)

)
n = g on ΓN ,

(1)

where f ∈ L2(D)d and g ∈ H1(D)d are the volume forces and the surface loads.
If ΓD 6= ∅, (1) admits a unique solution in u ∈ H1(Ω)d. The objective function
is denoted by J(Ω). In this paper, only the compliance will be considered:

J(Ω) =
∫

Ω

f · u dx+
∫

ΓN

g · u ds =
∫

Ω

Ae(u) · e(u) dx. (2)

To avoid working on a problem with a volume constraint, we introduce a La-
grange multiplier ` and consider the minimization

inf
Ω⊂D

L(Ω) = J(Ω) + `|Ω|. (3)

3 Shape derivative
To apply a gradient method to the minimization of (3) we recall the classical
notion of shape derivative (see e.g. [9][12]). Starting from a smooth open set
Ω, we consider domains of the type Ωθ =

(
Id + θ

)
(Ω), with Id the identity

mapping of Rd and θ a vector �eld in W 1,∞(Rd,Rd).

De�nition: The shape derivative of J at Ω is de�ned as the Fréchet derivative
at 0 of the application θ → J

(
( Id + θ)(Ω)

)
, i.e.

J
(
( Id + θ)(Ω)

)
= J(Ω) + J ′(Ω)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖ = 0 ,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).
We recall the following classical result (see [3] and references therein).

Theorem 1 (shape derivative for the compliance): Let Ω be a smooth
bounded open set and θ ∈ W 1,∞(Rd;Rd). If f ∈ H1(Ω)d, g ∈ H2(Ω)d, u ∈
H2(Ω)d, then the shape derivative of (2) is

J ′(Ω)(θ) =
∫

ΓN

(
2

[
∂(g · u)
∂n

+Hg · u+ f · u
]
−Ae(u) · e(u)

)
θ · nds

+
∫

ΓD

Ae(u) · e(u) θ · nds,

where H is the mean curvature de�ned by H = divn.

4 Topological derivative
One drawback of the method of shape derivative is that no nucleation of holes
inside the domain are allowed. Numerical methods based on the shape derivative
may therefore fall into a local minimum. A remedy to this inconvenience has
been proposed as the bubble method, or topological asymptotic method, [6], [7],
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[13]. The main idea is to test the optimality of a domain to topology variations
by removing a small hole with appropriate boundary conditions.

Consider an open set Ω ⊂ Rd and a point x0 ∈ Ω. Introduce a �xed model
hole ω ⊂ Rd, a smooth open bounded subset containing the origin. For ρ > 0 we
de�ne the translated and rescaled hole ωρ = x0 +ρω and the perforated domain
Ωρ = Ω \ ω̄ρ. The goal is to study the variations of the objective function J(Ωρ)
as ρ→ 0.

De�nition: If the objective function admits the following so-called topological
asymptotic expansion for small ρ > 0

J(Ωρ) = J(Ω) + ρdDTJ(x0) + o(ρd),

then DTJ(x0) is called the topological derivative at point x0.

If the model hole ω is the unit ball, the following result gives the expression
of the topological derivative for the compliance J(Ω) with Neumann boundary
conditions on the hole in 2d (see [7], [13]).

Theorem 2: Let ω be the unit ball of R2. If f = 0, g ∈ H2(Ω)2 and u ∈ H2(Ω)2,
then ∀x ∈ Ω ⊂ R2, if C2 = π(λ+ 2µ)/(2µ(λ+ µ)),

DTJ(x) = C2

{
4µAe(u) · e(u) + (λ− µ)tr(Ae(u))tr(e(u))

}
(x).

The above expression is nonnegative. This means that, for compliance mini-
mization, there is no interest in nucleating holes if there is no volume constraint.
However, if a volume constraint is imposed, the topological derivative may have
negative values due to the addition of the term −`|ω|. For the minimization
problem (3), the corresponding topological gradient is DTL(x) = DTJ(x)−`|ω|.
At the points where DTL(x) < 0, holes are introduced into the current domain.

5 Level set method for shape optimization
Consider D ⊂ Rd a bounded domain in which all admissible shapes Ω are
included, i.e. Ω ⊂ D. Following the idea of Osher and Sethian [10], the boundary
of Ω is represented by means of a level set function ψ such that ψ(x) < 0 ⇔
x ∈ Ω. The normal n to the shape Ω is recovered as ∇ψ/|∇ψ| and the mean
curvature H is given by div (∇ψ/|∇ψ|).

During the optimization process, the shape Ω(t) is going to evolve according
to a �ctitious time parameter t > 0 which corresponds to descent stepping. The
evolution of the level set function is governed by the following Hamilton-Jacobi
transport equation [10]

∂ψ

∂t
+ V |∇ψ| = 0 in D, (4)

where V (t, x) is the normal velocity of the shape's boundary. The choice V is
based on the shape derivative computed in Theorem 1

L′(Ω)(θ) =
∫

∂Ω

v θ · nds, (5)
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where the integrand v(u, n,H) depends on the state u, the normal n and the
mean curvature H. The simplest choice is to take the steepest descent θ = −vn.
This yields a normal velocity for the shape's boundary V = −v. Another choice
consists in smoothing the velocity �eld vn by applying the Neumann-to-Dirichlet
map to −vn. The method described in details in [8] is used in the numerical
computations.

The main point is that the Lagrangian evolution of the boundary ∂Ω is
replaced by the Eulerian solution of a transport equation in the whole �xed
domain D. Likewise the elasticity equations for the state u are extended to
the whole domain D by using the so-called �ersatz material� approach. The
Hamilton-Jacobi equation (4) is solved by an explicit upwind scheme (see e.g.
[11]) on a Cartesian grid with a time stepping satisfying a CFL condition. To
regularize the level set function (which may become too �at or too steep), it
is periodically reinitialized by solving another Hamilton-Jacobi equation which
admits, as a stationary solution, the signed distance to the initial interface [11].

6 Optimization algorithm
For the minimization problem (3) we propose an iterative coupling of the level set
method and of the topological gradient method. Both methods are gradient-type
algorithms, so our coupled method can be thought of as an alternate directions
descent algorithm.

The level set method relies on the shape derivative L′(Ω)(θ) of Section 3,
while the topological gradient method is based on the topological derivative
DTL(x) of Section 4. These two types of derivative de�ne independent descent
directions that we simply alternate as follows.

In a �rst step, the level set function ψ is advected according to the velocity
−v. Then, holes are introduced into the current domain Ω where the topological
derivative DTL(x) is minimum and negative.

Our proposed algorithm is structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess
Ω0 (usually the full working domain D).

2. Iteration until convergence, for k ≥ 0:

(a) Elasticity analysis. Computation of the state uk solving a prob-
lem of linear elasticity on Ωk. This yields the shape derivative, the
velocity vk and the topological gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape Ωk,
characterized by the level set function ψk, is deformed into a new
shape Ωk+1, characterized by ψk+1 which is the solution of the Hamilton-
Jacobi equation (4) after a time interval ∆tk with the initial condition
ψk and a velocity −vk. ∆tk is chosen such that L(Ωk+1) ≤ L(Ωk).

(c) Topological gradient. If mod (k, ntop) = 0, nucleation step:
Ωk+1 is obtained by inserting new holes into Ωk according to the
topological gradient.

For details about the shape gradient step and the topological gradient step,
we refer to our previous works [1][2][3].
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7 A numerical example in 2-d
It is a variation of the classical cantilever, but its optimal solution have a more
complex topology. It consists in a rectangular domain of dimensions 10×8 with
a square hole whose boundaries are submitted to an homogeneous Dirichlet
boundary condition. The domain is meshed with a regular 150× 120 grid. Fig-
ure 1 shows the solution obtained by the algorithm coupling shape and topolog-
ical sensitivity, starting from the full domain, with 1 step of topological gradient
every 10 iterations.

The convergence history of Figure 2, for di�erent numbers of initial holes,
ranging from 0 to 160, gives some hints on the e�ciency of the level set method
without topological gradient: �rst, it con�rms that a �topologically poor� initial-
ization cannot convergence to a good solution; second, it shows that initializing
with �many holes� is not a good idea too. The good strategy lies in between,
but it is generally not easy to �nd. The topological gradient allows the con-
vergence to a good solution, starting from the full domain, without the need of
adjusting any tricky numerical parameters. Remark that the solution computed
from initialization 3 (22 holes) is also good, but it has been reached after an
history where it had to escape from many local minima, using the tolerance of
the algorithm to small increases of the objective function.

Figure 1: The initial con�guration (full domain) and the solution obtained by
the level set method with topological gradient.
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Figure 2: Convergence history of the homogenization method, the level set
method with topological gradient (full domain initialization), and the plain level
set method with 4 di�erent initial states.
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