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SEPARATION OF SCALES IN AN ELASTIC INVERSE PROBLEM

H. Ammari1, P. Garapon2 and F. Jouve3

Abstract. Elastography is an imaging modality of Young’s Modulus of a biological medium (breast,
liver,. . . ). It consists of vibrating a medium and infer from the observed wavefield the distribution of
elasticity. The displacement field is observed in the all volume. It thus requires to solve an inverse
problem. We present an optimization approach which solves the problem by minimizing a discrepancy
functional. When we want to recover a complex inclusion in homogenous medium, we notice that the
information contained in the wavefield should be decomposed into two parts, a near field close from
the inclusion and a far field part away from it. As we justify theoretically and numerically, separating
these scales allows us have a local and precise reconstruction.

Résumé. L’elastographie est une technique d’imagerie de l’élasticité des tissus du corps humain
(sein, foie,. . . ). Cela consiste à faire vibrer un milieu et à observer dans le volume le champ de
déplacement induit, afin d’en déduire la carte de module d’Young. Il faut pour cela résoudre un
problème inverse. Nous proposons une approche par optimisation qui maximise la vraisemblance
entre un modèle numérique et les observations expérimentales. En voulant reconstruire une inclusion
complexe, nous remarquons que l’information contenue dans le champ de déplacement se sépare en
deux termes, de champs proche au voisinage de l’inclusion, et de champ lointain à grande distance
du défaut. Nous justifions théoriquement et numériquement qu’il est profitable de séparer ces deux
informations pour obtenir une reconstruction locale et précise.

Introduction

Mechanical response of living tissues is a wide source of information in medical science. Echography, is an
example of situation where one exploits the response of a tissue to a compressional or sound wave. It provides
information on a specific contrast, which is mainly anatomic. That is why echography is often used to image
structures in the body. The stiffness of tissues provides very interesting clinical information: it helps discriminate
between benign and malignant lesions in the breast, it helps diagnosis liver fibrosis, it can monitor muscle fine
muscular activity,. . . Yet, this stiffness, or shear modulus is not related in general to the compressional modulus,
and thus is invisible to echography.

The static way to understand shear modulus is to ask the following question: suppose you shear a tissue
with a static force, what is the amplitude of the transverse displacement that will occur ? The relationship
between the observed displacement and the applied stress, will give an estimate of the shear modulus. The
interpretation of compressional response would be to apply a compression force on tissue and measure the
change in volume. For the case of biological tissues, this is very different from the previous interpretation. The
dynamic interpretation of the shear modulus is the following: suppose you apply dynamic shear in the medium
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Figure 1. Vibrating the medium at a single frequency induces a stationary elastic field in the medium.

(an impulse or an harmonic excitation), what will be the resulting displacement? If one have access to this
displacement, one could solve an inverse problem and have access to the shear modulus. This is the principle
of elastography. It thus relies on three steps: apply dynamic shear to a tissue, measure displacement and solve
an inverse problem to get a map of Young’s modulus. Each one of these three steps is a technical challenge by
itself: Applying dynamic shear to tissues can be done by simply vibrating a piezoelectric transducer on a body,
which is the technique used in Magnetic Resonance Elastography. But the shear may not transmit well to the
interesting part of tissues, because it may be disturbed by surface layers of fat or bones. One has suggested to
induce remotely shear in tissues by focusing an ultrasonic beam; see [7]. These techniques induce a wavefield
u∗ in the medium. The imaging part is also a technical challenge because it needs to remotely image the
wavefield in the medium. One could use a specific Magnetic Resonance sequence that track displacements;
see [4]. That is the technique we are interested in. But one could also record this wavefield remotely using
ultra-fast echography; see [7]. The inverse problem is how to recover the shear modulus map µ(x) from the
measurements of the field u. This is the problem we are going to discuss. The paper is organized as follows:
We present the mathematical framework in section 1. In section 2, we present a multi-scale argument. Finally,
we discuss the numerical results and their stability in section 3.

1. The inverse problem of elastography

1.1. Mathematical Model

The experimental setting we try to model in briefly described in Fig. 1, the experimental results obtained
by R. Sinkus’s group are shown in Fig. 2. Here Ω will be the biological set we want to investigate, Γ1 and Γ2

are parts of boundary of this domain, which are respectively the interface which we vibrate, and the part of
the boundary which is constraint free. The mechanical modelling of biological media chosen here is the linear,
continuous, and incompressible elasticity system. The incompressibility assumption is justified by the great
difference observed experimentally between the two Lamé parameters λ and µ. In soft media, λ ≈ 109Pa and
µ ≈ 103Pa, so the incompressible assumption is justified. In this context, the Young’s modulus is related to
the shear modulus E ≈ 3µ so mapping one or the other is equivalent.

Let e(v) = 1

2
(∇v + ∇vT) be the strain tensor, A[X] = λTr(X)I + 2µX be the stress-strain relationship,

and let ν be the outward unit normal to ∂Ω. One can prove that as λ → ∞, the solution v of the following
elasticity system:







∇.A[e(v)] + ρω2v = 0 in Ω,

v = F in Γ1,

A[e(u)]ν = 0 in Γ2,

(1)
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Figure 2. Experimental
wavefield into a biomedical
phantom. The displacement
are acquired by an elas-
toraphy MR sequence (R.
Sinkus’s group - LOA). the
transducer is at the bottom,
one notices that although the
waves are visible, the am-
plitude decay in the vertical
direction, because of a slight
viscosity of the tissue.

converges to u defined by:














∇.(µ(x)e(u)) + ρω2u + ∇p = 0 in Ω,

∇.u = 0 in Ω,

u = F in Γ1,

e(u)ν = 0 in Γ2.

(2)

1.2. Setting of the inverse problem

We consider the following inverse medium problem: Suppose the solution u to (2) is known in the all domain
Ω, is it possible to recover a map of the shear modulus µ(x) ?

Previous works in the Elastography community have proposed a local reconstruction based on an explicit
inversion formula: Let q be the rotational of u, q = ∇× u then

µ = −
ρω2q

∆q
.

This formula is local but has to overcome a major stability issue, computing the terms ∆∇×u and ∇×u being
very unstable. Moreover, this models assumes the shear modulus µ to be locally homogenous, so this method is
a priori of low resolution to reconstruct sharp contrasts, and jumps. That is indeed what is observed in practice.
We suggest to address the problem by minimizing the discrepancy functional between the observation field and
the synthetic field computed according to model (2), that is J(µ) = ||uexp − umodel||

2
L2(Ω). This means that

the estimated shear modulus map µ̂ is optimal to match the model with the experiment over the all domain Ω.
This a very natural and widely used approach in inverse problem theory. It can be seen the natural extension of
impedance imaging procedures. This approach has been investigated by the biomedical community, for instance
in [9, 10].

1.3. Optimization of the discrepancy functional

If one wants to minimize the functional J(µ) = ||u∗ − u(µ)||2
2
, one is interested in computing the gradient of

the functional ∂J
∂µ

. The variational formulation of (2), together with the lifting of the boundary condition into

an external force f̃ , allows us to rewrite the minimization program:







Min J(µ) = ||u∗ − u(µ)||2
2

and

∫

Ω

µ e(u) : e(v) + ρω2u.vdx =

∫

Ω

f̃ .v dx, ∀v ∈ Hdiv,
(3)
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where Hdiv = {v ∈ H1
0 such that ∇.v = 0}.

We write an alternative augmented lagrangian formulation that relaxes the constraint:

J̃(u,v, µ) = J(µ) +

∫

Ω

µ(x)e(u) : e(v)(x) + ρω2u.v(x)dx − f̃ .v dx.

It follows that J(µ) = J̃(u(µ),v, µ). The chain rules thus gives

∂J

∂µ
= µ e(u) : e(v) as long as

∂J̃

∂u
≡ 0.

This last condition determines the adjoint parameter v:

∀h ∈ Hdiv,

∫

Ω

(u− u∗).h =

∫

Ω

µe(h) : e(v) + ρω2h.v.

We can consequently summarize the gradient of the discrepancy functional as follows:























∂J
∂µ

= µ e(u) : e(v) ,

∇.(µ(x)∇u) + ρω2u + ∇p = f ∇.u = 0 ,

∇.(µ(x)∇v) + ρω2v + ∇q = (u− u∗) ∇.v = 0 .

(4)

1.4. Numerical implementation

We implemented this gradient descent method with the following loop:

• Initialization: Set initial guess µ0 to be homogenous. Compute the initial forward problem u(µ0),
compute the initial cost function ||u∗ − u(µ0)||

2
2, compute the inital adjoint problem v0, and set initial

descent parameter δ0.
• Main loop: For a certain number of iterations N : compute the gradient µn(x)e(un) : e(vn). Compute

the new forward and adjoint fields un+1, vn+1, associated to µn+1 = µn + δnµn(x)e(un) : e(vn) .
Compute the new cost function Jn+1 = ||u∗ − u(µn+1)||

2
2.

If Jn+1 < Jn then set δn+1 = δn ∗ (1.1) and µn+1 = µn+1.
if Jn+1 > Jn then set δn+1 = δn ∗ (0.5) and µn+1 = µn.

• End: End the loop after a fixed number of iterations, or when the cost becomes smaller than a given
parameter ǫ.

Notice that we used an ”adaptative” step amplitude δ to enforce the decrease of the functional by diminishing
the step. When the descent seems to be efficient, one increases the step size. This is somehow dichotomy in
order to find an optimal step size for each iteration. Even though the idea seems very standard, we still observed
some speed up of the descent. Yet, the convergence speed of the algorithm was of course far from being optimal,
as one could guess as far as we use a basic gradient descent method. We think of speeding up the method with
Newton or Quasi Newton methods, but this remains to be implemented.

1.5. Numerical illustration

To perform our computations, we used the ”SOL” FEM solver developed by the third author. We imple-
mented 2D examples on rectangular meshes of rectangular elements. We typically used 140×140 meshes and
each computation (forward or adjoint) took approximately 20 seconds on a dual core processor. The ”experi-
mental” field obtained numerically are shown in Fig. 3, together with the reconstruction results.
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Figure 3. The numerically simulated displacement field on the left, the actual shear modulus
map in the middle, and the reconstructed map on the right.

1.6. Recovery of details

Suppose we want to recover a more complex map, like a small inclusion of different shear modulus µ̃, of
complex shape in homogenous background of shear modulus µ. Such a situation, similar to the one encountered
in Fig. 4, corresponds to the scheme in Fig. 5. If we want to recover a more complex map of shear modulus, the
algorithm seems to be less efficient as shown in Fig. 4. The reason for this is that the information contained in
the far field and close field is completely different because of the diffraction property of the wave propagation.
The propagation filters all the rapid spatial oscillations in the far field. One could see that by decomposing a
solution w(r, θ) of the Helmholtz equation (∆+ω2)w = 0 in 2D, scattered from a complex object, and satisfying
a radiation condition:

w(r, θ) =
∑

wnHn(ωr)einθ .

where Hn are Hankel’s functions. The rapid angular oscillations associated to high values of n, are associated to
rapidly decaying Hn. The relevant parameter to quantify this decay is ωr, which means that the characteristic
decay length is determined by the wavelength Λ = 2π

ω
.

Thus the algorithm performs a bad trade off between the far field reconstruction and near field reconstruction.
In fact, one could decompose the discrepancy functional over the all domain in two parts:

J(µ) =
∑

close field

||u∗ − u||2 +
∑

far field

||u∗ − u||2.

But these two parts have different minimizers, for the intrinsic reason that the information carried in the near
and far field parts of u∗ are different. As we will see in the next section, the only information that travels away
from the inclusion is a kind of polarization tensor (which we have called in [1] Viscous Moment Tensor), and the
reconstructed inclusion should be an equivalent ellipse. But in the near field, the perturbation is the solution
of a problem, which is well posed in the sense that the near field is one to one with the corresponding shape
and contrast of the inclusion.

For this reason, we want to separate the two scales in order to coherently treat each part of the information.

2. Scale separation in the inverse problem

We introduce two scales in the problem as illustrated in Fig. 5. The small spatial scale is associated to a
near variable ξ = x−z

ǫ
. It will characterize the perturbation due to the inclusion, in a small region around z.

The large variable is associated to perturbation far from the object. In order to formally derive the two scale
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Figure 4. Actual and recovered map in the case of a complex map. We fail to recover accu-
rately the details form the far field measurements.

x

D= z + ǫ B

Ω

ξ = x−z
ǫ

Figure 5. We introduce two scales to capture the different nature of the perturbation near
the inclusion, and far from the inclusion.

asymptotics when the dimensions of the perturbation ǫ goes to 0, we introduce an Ansatz development for the
perturbed elastic field. Suppose u is the solution to:







































(µ∆ + ω2ρ)u + ∇p = 0 in Ω − D,

(µ̃∆ + ω2ρ)u + ∇p = 0 in D,

u|− = u|+ on ∂D,

(p|+ − p|−)N + µ ∂u

∂N
|+ − µ̃ ∂u

∂N
|− = 0 on ∂D,

∇.u = 0 in Ω,

u = F on Γ1,
∂u

∂ν
= 0 on Γ2,

(5)

where ∂
∂N

denotes 1
2 ( ∂

∂n
+ ∂

∂n

T
) and n is the outward unit normal to ∂D. One verifies that (5) is the same

equation as (2), in the case where µ is piecewise constant, and has a different value µ̃ in the inclusion. To
see this, one could use the weak formulation of (2) and integrate by parts in order to obtain the transmission
conditions. Then we set the following a priori inner and outer expansions, that correspond to the perturbed
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near and far field:


























u(x) = U0(x) + ǫU1(x) + ǫ2U2(x) + . . .

û(ξ) = v0(ξ) + ǫv1(ξ) + ǫ2v2(ξ) + . . .

lim
x→0

u(x) = lim
|ξ|→∞

û(ξ).

(6)

One assume the same kind of expansion for the pressure field p, which we omit to write, as we focus on the
displacement field u. If we input this Ansatz in equation (5) and change variables x → x−z

ǫ
. We see when

identifying the terms in ǫ−2 and ǫ−1 that:

û(ξ) = Uµ=µ̃(z) + ǫv̂(ξ) + O(ǫ2),

where v̂ is defined by:






















µ∆v̂ + ∇p̂ = 0 in Ω − D,

µ̃∆v̂ + ∇p̂ = 0 in D,

v̂|− = v̂|+ on ∂D,

(p̂|+ − p̂|−)N + µ ∂v̂

∂N
|+ − µ̃ ∂v̂

∂N
|− = 0 on ∂D,

∇.v̂ = 0 in Ω,

(7)

subject to the matching conditions:

{

v̂(ξ) −∇Uµ=µ̃(z)ξ → 0 as |ξ| → ∞,

p̂(ξ) → 0, as |ξ| → ∞,
(8)

which couple the inner and outer expansions. Condition (8) corresponds to

lim
x→0

u(x) = lim
|ξ|→∞

û(ξ).

For the far field asymptotic expansion, we notice that the difference between the perturbed field and the
background field U0, which is the field when µ̃ = µ, verifies the following system:







































































(∆ + κ2)(u − U0) +
1

µ
∇(p − q0) = 0 in Ω \ D,

(∆ + κ2)(u − U0) +
1

µ
∇(p − q0) = (κ2 − κ̃2)u +

(

1

µ
−

1

µ̃

)

∇p in D,

(u − U0)
∣

∣

+
− (u − U0)

∣

∣

−
= 0 on ∂D,

1

µ
(p − q0)

∣

∣

+
N +

∂

∂N
(u − U0)

∣

∣

+

=
1

µ
(p − q0)

∣

∣

−
N +

∂

∂N
(u − U0)

∣

∣

−
+

µ̃ − µ

µ

∂u

∂N

∣

∣

−
on ∂D,

∇ · (u− U0) = 0 in Ω,

u − U0 = 0 on ∂Ω,

(9)

where κ = ρω
µ

and κ̃ = ρω
µ̃

. Integrating over y ∈ Ω\D the first equation in (9) against Green’s function Gi(x, y),

which is defined by






(µ∆y + ω2ρ)Gi(x, y) + ∇π = δy=xei,

∇y.Gi(x, y) = 0,

(10)

and using the divergence theorem, we obtain the following representation formula for x ∈ Ω:

u(x) = U0(x) + (
µ̃

µ
− 1)

∫

∂D

G(x, y)
∂u

∂N

∣

∣

∣

∣

−

(y) dσ(y) + (
1

µ
−

1

µ̃
)

∫

D

G(x, y)∇p(y) dy,
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where GX =
∑

i,j eiG
i
jXj and Gi

j is the j-th component of Gi.
Since

(

µ̃

µ
− 1

)
∫

∂D

∂u

∂N

∣

∣

∣

∣

−

(y) dσ(y) + (
1

µ
−

1

µ̃
)

∫

D

∇p(y) dy = −

(

µ̃

µ
− 1

)

κ2

∫

D

u dy,

as it can be seen by integration by parts, we obtain from the inner expansion that for x far away from z, in R
2,

u0(x) ≈ U0(x) + ǫ2
2

∑

i,j,ℓ=1

ei∂ℓG
i
j(x, z)

[

(
µ̃

µ
− 1)

∫

∂B

(

∂v̂

∂N

)

j

∣

∣

∣

∣

−

(ξ)ξℓ dσ(ξ) + (
1

µ
−

1

µ̃
)

∫

B

∂j p̂(ξ)ξℓ dξ

]

.

which may simplify as follows:

u0(x) ≈ U0(x) + ǫ2(
µ̃

µ
− 1)

2
∑

i,j,ℓ=1

ei∂ℓG
i
j(x, z)

[
∫

B

e(v̂)j,ℓ(ξ) dσ(ξ)

]

.

where E is defined in (2).
The quantity

∫

B
e(v̂)j,ℓ(ξ) dσ(ξ) is closely related to the Viscous Moment Tensor (V p,q

j,ℓ )j,ℓ,p,q we defined in [1]:

V(B)j,ℓ =

∫

B

e(v̂)j,ℓ(ξ) dσ(ξ) = ∂pU
q
0V

p,q
j,ℓ .

This notion of Viscous Moment Tensors generalizes the notion of polarization tensor. The rigorous proof of
convergence for these asymptotics are based on adequate layer potential analysis, and can be found in [1]. One
could summarize these asymptotics as follows:







û(ξ) ≈ Uµ=µ̃(z) + ǫ.v̂(ξ) in the near field,

u(x) ≈ Uµ=µ̃(x) + ǫ2( µ̃
µ
− 1)∇G : V(B) in the far field.

(11)

We stress the following points:

• Although it decays rapidly with the volume of the defect, there exists a coupling between a local
perturbation at the location z and the far field everywhere in the domain.

• As expected, the far field perturbation carries a less accurate information since the field v̂ is integrated
over the boundary of B and it is multiplied by ∇G, whereas the near field carries a more accurate
information.

• The fact that there is no uniform asymptotics for the perturbed field over the all domain, show that
it is impossible to do good inverse processing of the data on the all domain, one has to perform local

reconstruction. We exploit this fact by running the method on a subregion just around the suspected
defect.

We observe that indeed, we achieved to coherently treat the different scales as we get a reconstruction which
is pixelwise; see Fig. 6. Indeed, as suggested by our mathematical analysis, the resolution of the local method is
essentially the spatial resolution of the imaging system, that is the resolution with which u∗ is acquired. That
is what we see in the numerical test. Indeed, previous result suggest that if the data is completely scalable
(suppose you have infinite spatial resolution for u∗) and no noise is added, you can reconstruct µ with infinite
precision. As far as there is a certain scaling where µrescaled has the morphology of Fig. 5, one transforms
the data in the same scaling, and one will end up with a problem where the gradient descent gives satisfactory
results. Of course in practice, the limitations are the sampling density, and the noise. In practical cases, the
sampling density is the main limiting factor; see [10].
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Figure 6. Reconstruction without separation of scales on the left, a zoom on the inclusion to
recover in the middle, and on the right the reconstruction limited on the subregion defined by
the full black line on the left.

Figure 7. Elastic field with 35 % noise, and reconstruction of an inclusion. Although the data
is noisy, the inclusion is still visible.

3. Stability of the method

We discuss the stability of the reconstruction method when noise is added to the data. We added random
gaussian noise on each pixel with no correlation from a pixel to another, we then ran the reconstruction on
these noisy sets.

3.1. Stability of the ”global” and ”local” reconstruction method

When we reconstructed the shear modulus from the data from the all domain Ω (that is without scale
separation), we observed that the method was quite robust.

This stability feature is due to the fact that the spatial frequencies which dominate in the data are mostly
of the order of k = 1

ω
, whereas the noise is uncorrelated and thus features very high spatial frequencies. The

algorithm is thus marginally disturbed by the noise. This causes the efficient noise to be reduced, and the
problem to be better posed in the ”sense of stability”.
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Figure 8. With 5% noise on the local data (36 × 41 pixels), the reconstruction crashes.

We performed the same test on the local data. We aim to investigate the stability of the separation of scales
when the data is noisy. We observed that the method was quite unstable on the local data, this was because
the fine information of the local data is coded in high spatial frequencies, and consequently the information was
significantly disturbed by the noise.
One could ask the question of the optimal size of the subregion, where we implement the method, in order to
gain accuracy of the reconstruction, and to keep stability. The natural answer is the wavelength of the problem

understood as ( ρω2

µtypical
)−

1

2 . The subregion should probably have a size of the same order as the wavelength.

3.2. Local or global reconstruction ?

As already noticed, this inverse problem is essentially local in the sense that local data determine local
solution. An another way to see this is to consider that because the data is available over the all domain, the
problem is posed in the same way, wether one considers Ω or Ω′ ⊂ Ω, or Ω′′ ⊂ Ω′. The most local approach
would be to estimate locally the derivatives of u∗, with a local finite difference scheme. That is the method
referred to in 1.2.
Yet in practice, the inverse problem is not:

u(x) → µ(x)

but rather:
Sh[u(x) + δW(x)] → µ(x)

where W is additive noise, and Sh is a sampling operator. This modification imposes to take advantage of the
spatial coherence of the wavefield. Because the local reconstruction is unstable, one has to make a trade off
between stability and accuracy: The smaller the data-sets you consider, the better is the accuracy, but the less
stable the method becomes. The consequence of this in purely local reconstructions like (2), is that one has to
interpolate and smooth the data in order to make the computation more stable, and this smooth interpolation
process requires to consider the data in a neighborhood of the point of interest.

3.3. Regularization of the local reconstruction

In order to stabilize the local reconstruction, we minimized a regularized functional:

Jreg(µ) = J(µ) + β

∫

Ω

|∇µ(x)|dx.

The gradient of the regularization term, which is the total variation of the shear modulus map, is known:

∂TV (µ)

∂µ
= −

∫

Ω

∇.(
∇µ

|∇µ|
)dx.
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Figure 9. Local reconstruction of an inclusion without regularization (Left), and with regu-
larization (Right). The inclusion in more visible with the regularized reconstruction.

With this modified gradient, we had the results of Fig. 9.
Although we see some regularization on the results, the parameters β and δ0 are quite tricky to tune.

4. Conclusion and perspectives

We supported the idea that treating scales independently is essential to achieve maximal resolution. For us,
this was practically done by performing the analysis on small sub-zones. We would like to know wether it is
possible to process the spatial spectrum of the data directly in order to avoid the painful handling of sub-zones.
Multi-scale techniques such as wavelets might be of some help although the technical handling of multi-scale
tools are not easy in the framework of finite elements.
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