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Abstract

Checkerboards instabilities for an algorithm of topological design are studied on a simple
example. The algorithm uses orthogonal rank-2 laminates as design variables, which need
to be regularized as the associated Hooke’s laws are degenerate. When the displacements
are approximated by Q1 or Q1-bubble elements, the discrete operator is linearized, and its
eigenvalues are computed in terms of the regularization parameter.

Keywords: Checkerboard instabilities, topological optimization.

Figure 1: 2d cantilever: beginning of instabilities (iteration 80, left), after convergence (iteration 400,
middle), after convergence with a proper filtering process (iteration 400 right).

1 Introduction

Algorithms for shape optimization by the homogenization method have become very popular in
structural design. Several versions have been developed [2], [1] and commercial software com-
panies are now offering packages, based on this methodology, that perform shape optimization.

The basic problem consists in distributing some elastic material in a given volume, in order
to design the shape that is most performant under given solicitations with respect to some
design criterion. Typically, the problem is formulated as the minimization of a cost functional
associated with the stress field, over a set of characteristic functions that represents the possible
distributions of a given elastic material, with Hooke’s law Ag. In the most studied case, the
objective function is the compliance, i.e., the work of prescribed external loads, applied on the
boundary of the volume where the shape is to be designed.

Homogenization pitches in, because this basic formulation does not translate into a sound
optimization problem, from the point of view of the calculus of variations. It turns out that the
kind of cost functional considered does not have the proper convexity properties, and a relaxation
of the formulation is necessary. From a numerical point of view, the natural formulation of the
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optimization problem yields numerical algorithms that are unstable under mesh refinements.
The relaxation is performed via homogenization theory, and amounts to reset the problem as
one of finding the most performant distribution of a specific family of porous materials, so as
to minimize the extended objective function. The appropriate porous materials are viewed as
composites made of mixtures of the original material Ay and voids. The original formulation
can then be replaced by that of minimizing the extended compliance with respect to two fields:
the admissible stresses or strains, and the parameters that describe a sufficiently large class of
admissible composites (the design variables).

M. Bendsoe and his collaborators use a saddle-point formulation using the strains and the
design variables [6]. We favor using the stresses and the design variables that describe a particular
family of composites, the so-called rank N laminates. Our choice is motivated by the fact that
one can explicitely determine the laminate, the compliance of which is optimal under a given
stress field. Thus, a natural numerical algorithm consists in iteratively solving an elasticity
problem to compute the stress field (for some fixed design variables) then in updating the design
variables (for a fixed stress field) using explicit optimality conditions [1]. In the computations
reported there, the elastic displacement is discretized with Q1 finite elements, while the design
parameters are chosen piecewise constant.

If a lot of progress has been made concerning the mathematical study of the continuous
problem, not much is known concerning the numerical analysis of the different algorithms that
have been proposed. Most of them, however, show checkerboard type instabilities on the density
of the material Ay in the composite, the variable that serves to visualize the results. Such
instabilities are typical features of saddle-point problems, and the traditional remedies applied
to computations for Stokes problem provide a satisfactory cure. Computations using higher order
elements for the displacement have been reported to be checkerboard-free (see for example [6]),
filtering the checkerboard modes of the density on macro-elements also gives good results [1], [3].
Another approach [7], consists in seeking a bound on the total perimeter of the shape.

Several authors invoke the Babuska-Brezzi inf-sup condition [4], to explain the appearance
of checkerboard. In [5], Diaz and Sigmund consider a patch of four elements, and show that the
discrete compliance computed with linear finite elements (respectively with quadratic elements)
is lower (respectively higher) than that of the solution to the continuous problem obtained by
homogenization.

In this note, we study a simple example where the algorithm of [1] produces these instabilities
and we try to relate them with the choice of rank-/NV laminates as design variables. As explained
above, the algorithm is based on an alternate directions method, where the stress field and
the design parameters are updated iteratively. At each iteration, the new design parameters,
are those of the optimal rank-N laminate (N = 2 in 2d, N = 3 in 3d). In 2d, the laminate
which is optimal under a stress field o is a rank-2 laminate with layers in orthogonal directions
(the principal directions of ¢), and proportions within the layers that depend on the principal
stresses. Only three parameters are necessary to describe those materials: the overall density
of Ay, 0, a direction n = (cos(a),sin(«)) and a proportion m. The 4 x 4 elasticity tensor of the
laminate (0, n,m) = (6, (1,0), m) has non-zero coefficients of the following form, in terms of the
Lamé coefficients x and p of A, :

dkp(k + p)0(1 —60(1 —m))(1 —m)
dkp (k+p)2(1 —0) —m(1 —m)62 ’

4kp(k + p)b(1 — Om)m
dkp (k+ p)2(1 —0) — m(1 — m)6?2

Ann = Az =

drp(k — p)0?m(1 — m)
dkp (K + p)2(1 —0) —m(1 —m)6?

Atr122 = Ao =
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In particular, it is degenerate (since Aj212 = 0), and cannot withstand shear stresses. The tensor
corresponding to « # 0, is deduced from the one above by a rotation of «, and thus bears the
same feature. This difficulty originates in the fact that we are dealing with mixtures of Ay and of
a degenerate Hooke’s law, namely void. In [1], the formulation is justified by considering mixtures
of Ag with a weaker material, and by letting the strength of the latter tend to 0. However sound
mathematically, the degenerate Hooke’s law has to be taken into account numerically, since it
might lead to ill-posed problems in the alternate direction algorithm. Therefore, the numerical
computations are performed by regularizing the Hooke’s law of the laminate. A small positive
parameter 7 is added to the diagonal terms corresponding to shear, when the matrix is expressed
in the principal directions of lamination. We want to study on a simple example, the influence
of this coefficient on the checkerboard patterns.
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Figure 2: A typical convergence plot. The objective function suddenly decreases after appearance of
checkerboards (solid line), while the convergence is smooth if the checkerboard filtering is used (dashed
line).

2 A 2d test-case

Checkerboard instabilities usually appear in “gray” zones of intermediate densities of composite
material, when the algorithm has almost converged. They typically occur in very fine meshes,
when the stress field is almost constant over neighbouring elements. In order to understand
what triggers their appearance, we study the smallest test-case we could find, that shows these
instabilities. It consists in a patch of 4 elements (2 x 2) on [—1,1]2. A symmetry condition is
imposed on the planes z = 0 and y = 0. An external pressure p; (respectively py) is applied on
the sides = £1 (resp. y = £1), cf. Figure 3. We choose the constraint on the weight (cf. [1])
so that the optimal solution is a uniform laminate with 6 = 1/2, ;n = (1,0), m = %.
We choose as initial design this configuration slightly perturbed on each element, and apply the
algorithm of [1]. Checkerboards are obtained if the displacement is discretized with Q1 elements.
When Q2 elements are used, the initial errors disappear after a few iterations and the algorithm
converges to the uniform solution.

We propose to analyse this phenomenon by an explicit computation, and linearize the opera-
tor that is iterated during the algorithm. This operator transforms a configuration (6, ng, my), 1 <
k < 4 of design parameters, constant on each element, (and the associated Hooke’s laws A*)
into an updated configuration in the following way. We consider regularized Hooke’s laws A* (),
obtained by adding > 0 on the shear components A%,,, A5,; of A¥, when the tensors are
expressed in the coordinates defined by (n, né) The solution to the discrete elasticity problem
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Figure 3: the 2 x 2 patch.

with Hooke’s laws Ay (n) is then computed and we obtain the associated stress fields (mean
stress on each element). Then we use the optimality conditions (cf. [1]) to compute the new
design parameters.

We linearize this operator about the configuration (6y,ng,mg) = (1/2,(1,0), ‘pl“l’ﬁ‘z)g‘), for
different choices of discretizations of the displacement, namely for Q1 and so-called QQ1-bubble
elements. The latter are the ()1 4-nodes elements with an additional node at the center, asso-
ciated to the biquadratic shape function 16zy(1 — z)(1 — y) in the reference element [0, 1]2. For
the Stokes problem, QX1 elements are known to produce checkerboard patterns on the pressure,
whereas the (Q1-bubble seem to produce stable results. In the first case, our test case has 12

degrees of freedom for the displacement, and 20 in the second.

To linearize the operator, we consider configurations of the form (1/2+ 0, (1, ay), \pl‘llf\|pz\ +
myg), compute exactly the displacement and make a Taylor expansion of the resulting design
variables. The computations have been made using the Maple symbolic calculator. They are

made easier with the following result :

Proposition 2.1 Checkerboard errors are stable for the linearized operator, i.e., if a1 = ag =
a3 = g, 1 = —0y = 03 = —04, mq1 = —m9 = m3g = —my, then the new error has the same
symmetries.

This property helps us to reduce the amount of computations, restricting the number of degrees
of freedom to the half of the whole set, using pointwise symmetries with respect to (0,0). Note
that a uniform error on the direction only (i.e., (0, ng, mg) = (0, (0,«),0), 1 < k < 4) produces
checkerboards.

Due to this proposition, an error, which has a checkerboard symmetry is described by only
3 variables, and its damping or magnifying reduces then to the computation of the eigenvalues
of a 3 x 3 matrix.

Proposition 2.2 For the Q1 and the Q1-bubble elements in 2d, if n > 0 is small enough and
if |p1|/|p2| is close to 1, the error matrixz has an eigenvalue greater than 1. Moreover, its largest
eigenvalue tends to 1 when the regqularizing parameter n tends to 07,

This last proposition indicates that small values of n should minimize the appearance of
instabilities. From a numerical point of vue, however, small values of 1 lead to ill-conditioned
systems and larger roundoff errors.

The @Q1-bubble element seems to slightly enhance the stability, as the larger eigenvalue is
lower than that of the Q1 case. Numerical tests on the global algorithm are underway to
determine if these elements lead however to stable solutions without filtering.
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Figure 4: Plot of the 2 first eigenvalues of the error matriz when pa = 2py (the third one is 0), for Q1
and Q1-bubble element, as functions of 1.

The condition |p1|/|p2| close to 1, for the eigenvalue to be greater than one, confirms the
numerical intuition that checkerboards are initiated in zones where the resulting stresses are
close to a uniform hydrostatic pressure.

In the context of damage simulation, similar relaxed formulations and algorithms are used,
involving the lamination of two non-degenerate materials. In this case, no checkerboard insta-
bilities have been reported.

In 3d, the formula for the optimal laminates are quite more complicated (see [1]). They
involve two regimes of orthogonal rank-3 and orthogonal rank-2 laminates. In contrast with the
rank-2, the Hooke’s laws in the orthogonal rank-3 regimes are non-degenerate. Numerical tests
suggest that checkerboard appearance is rare in 3d, and occur when a rank-2 laminate regime
is reached. These last remarks support the claim that checkerboards are a consequence of the
degeneracy of the rank-2 laminates.
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