
Identi�cation of Mechanical InclusionsMarc Schoenauer Fran�cois Jouve Leila KallelCMAP { URA CNRS 756Ecole PolytechniquePalaiseau 91128, FranceFirstName.LastName@polytechnique.frAbstractEvolutionary Algorithms provide a general approach to inverse prob-lem solving: As optimization methods, they only require the computa-tion of values of the function to optimize. Thus, the only prerequisiteto e�ciently handle inverse problems is a good numerical model of thedirect problem, and a representation for potential solutions.The identi�cation of mechanical inclusion, even in the linear elas-ticity framework, is a di�cult problem, theoretically ill-posed: Evolu-tionary Algorithms are in that context a good tentative choice for arobust numerical method, as standard deterministic algorithms haveproven inaccurate and unstable. However, great attention must begiven to the implementation. The representation, which determinesthe search space, is critical for a successful application of EvolutionaryAlgorithms to any problem. Two original representations are presentedfor the inclusion identi�cation problem, together with the associatedevolution operators (crossover and mutation). Both provide outstand-ing results on simple instances of the identi�cation problem, includingexperimental robustness in presence of noise.1 IntroductionEvolutionary Algorithms (EAs) are stochastic optimization methods thathave been demonstrated useful to solve di�cult, yet unsolved, optimizationproblems. Requiring no regularity of the objective function (or of the con-straints), EAs are able to tackle optimization problems on di�erent kindsof search spaces, such as continuous, discrete or mixed spaces, as well asspaces of graphs or lists. The only prerequisite are the de�nition of evolu-tion operators such as crossover and mutation, satisfying as much as possibleheuristically derived requirements. The two main drawbacks of EAs are �rstthe large number of evaluation of the objective function they usually implybefore eventually reaching a good, if not optimal, solution; and second, theirstochastic aspect, weakening their robustness. Hence, EAs should be usedwith care, on problems beyond the reach of standard deterministic optimiza-tion methods.In structural mechanics, the non-destructive identi�cation of inclusions issuch a di�cult problem, resisting to-date numerical methods: in its simplestinstance, a structure is known to be made of two di�erent known materials,1



but their repartition in the structure is unknown. The available data consistof records of the mechanical behavior of the structure under known loadings.The goal is to �nd the geometrical repartition of both materials from theseexperimental data. In steel manufacturing plants, for instance, it is of vitalimportance to check if coal scories are included in steel parts, and if theirrepartition does not dangerously weaken the whole part. For a given reparti-tion of both materials, the computation of the simulated mechanical behaviorof the structure is straightforward (e.g. using any Finite Element package).The identi�cation can then be viewed as an inverse problem.This paper addresses this inverse problem using EAs. A possible objec-tive function for such inverse problems is the di�erence between the simulatedmechanical behavior of a tentative repartition of both materials and the ac-tual experimental behavior. However, the main di�culty is to de�ne thesearch space in which the EA will be de�ned. Considering past works onthe Optimum Design problem, (a closely related problem, where the goal isto �nd a partition of a design domain into material and void), the straight-forward representation is de�ned from a �xed mesh of the structure, leadingto a �xed-length bitstring well-suited to Genetic Algorithms. However, thisapproach will not be considered here, as it makes the optimization problemintractable when the underlying mesh is re�ned. Instead, two non-standardrepresentations (termed the Vorono�� representation and the H-representation)are introduced, independent of any a priori discretization, but leading tovariable-length \individuals". Hence, speci�c operators have to be designedand implemented.Nevertheless, Evolutionary Algorithms working on these representationsgive outstanding results on the inclusion identi�cation problem in the con-text of linear elasticity, outperforming previous deterministic numerical so-lutions. Experimental evidences appear that the quality of the results highlydepends of the amount of experimental information the algorithm can relyupon. Furthermore, the robustness against noise in the experimental data isexperimentally shown on simulated arti�cial noisy data.The paper is organized the following way: In Section 2, a general frame-work to address inverse problems with EAs is introduced. The mechanicalproblem of inclusion identi�cation is presented in details in Section 3. It is aninstance of the general inverse problem of Section 2, and can thus be solved byEvolutionary Algorithms, once the search space has been skillfully designed:Two original representations for that problem are presented in Section 4,together with their speci�c evolution operators (crossover and mutations).The �rst results, using the Vorono�� representation, are presented in Section5, demonstrating outstanding performance on arti�cial instances of the inclu-sion identi�cation problem. Comparative results for both representations arepresented in Section 5.6, opening the discussion about the a priori choice of arepresentation for a given problem. This discussion leads to propose furtherdirections of research, sketched in Section 6.2



2 Evolutionary inverse problems solvingThis section presents a general framework to solve inverse problems by meansof Evolutionary Algorithms, which will be further applied to the Mechanicalproblem introduced in Section 3.2.1 Direct problemsConsider a process (e.g. a physical phenomenon) that produces output ex-perimental results given some inputs (experimental conditions).The successful resolution of the direct problem consists in building a sim-ulated process able to accurately predict the experimental output of the phys-ical phenomenon from the same experimental input data. Such simulationgenerally relies on a function (law, algorithm, command, : : :) modeling theunderlying physical behavior. Figure 1 gives a symbolic representation of aphysical process together with its simulated model.
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Figure 1: Direct problem. Physical and simulated process. Simulation issuccessful (based on an accurate model) i� the error between experimentalresults and numerical results is small.2.2 Inverse problemsHowever, quite often, the model (law, command, : : :) is not precisely known:The goal of inverse problems is to �nd a model such that the numericalsimulations based on this model successfully approximates experimentations.The data of inverse problems are experimental conditions together with thecorresponding actual experimental results.Whenever a good simulation of a direct problem exists, EvolutionaryComputation can be used to address the inverse problem. The �tness ofa candidate solution can be computed as shown in Figure 2: the results ofthe numerical simulation performed using the individual at hand as the modelto identify is compared to original experimental results, and the goal is toreach the smallest possible error. 3
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ComparisonFigure 2: Evolutionary approach for the inverse problem. The �tness of theindividual at hand is achieved by comparing the actual experimental resultswith the numerical results obtained using the individual in place of the lawmodel.2.3 The genotype spaceThe most critical step in evolutionary inverse problem solving is the choice ofthe representation, which de�nes the genotype space (i.e. the search space).In any case, the EA will �nd a good { if not the best { solution in the searchspace. Hence it seems that larger search spaces allow better solutions tobe found. However, the larger is the search space, the more di�cult is theoptimization task, and a trade-o� has to be found.Yet another important issue in inverse problem solving is the generaliza-tion capability of the solution: How good is the resulting model when usedwith experimental conditions that are di�erent from those used during theidenti�cation process? The usual answer in evolutionary inverse problemsolving is to use, during the identi�cation, many di�erent experimental con-ditions, also termed �tness cases. The �tness is then the average of the errorover all �tness cases. Needless to say, the total computational cost increaseswith the number of �tness cases.3 The Mechanical ProblemThis section gives a detailed presentation of the mechanical problem of inclu-sion identi�cation, and states the simpli�cation hypotheses made throughoutthis paper. The issues raised in Section 2 above will then be addressed onthis instance of inverse problem.3.1 BackgroundConsider an open bounded domain 
 � IRN (N = 2; 3), with a smoothenough boundary @
, �lled with a linear elastic material. Under the hypoth-4



esis of small deformations (linear elasticity) the following equations hold for,respectively, the strain and the stress tensors:"(x) := 12(ru(x)ruT (x)); and �(x) := A(x)"(x); (1)where u(x) is the displacement �eld at point x and A(x) is the elasticitytensor (a fourth order tensor) involved in the Hooke's law (1). A is supposedto be inhomogeneous, which means that its value depends on the point x.A(x) is a positive de�nite tensor which satis�es some symmetry conditions.When A is given, one can state two kinds of boundary problems, respec-tively of Dirichlet and Neuman type:� div� = 0 in 
;u = u0 on @
; and � div � = 0 in 
;�:n = g0 on @
; (2)where u0 and g0 are respectively a given displacement �eld and a given ex-ternal force �eld on the boundary @
.It is well known (see e.g. [4]) that each of these problem has a uniquesolution (for the Neuman's problem, one has to impose an integral conditionon g0 to insure existence, and an integral condition on u to eliminate rigiddisplacements).In the following, the inverse problem will be considered:�nd A such that ;8i 2 f1; :::; ng; 9u; 8>><>>: div � = 0 in 
;u = ui on @
;�:n = gi on @
;� = A"; (3)where (gi)i=1;::;n and (ui)i=1;::;n are given.Problem (3) is a discrete version of the \ideal" inverse problem:�nd A, given application: �A : uj@
 �! �j@
. (4)The underlying physical problem is still lacking much more of knowndata than problem (3) since �A is only known through a �nite number ofexperimental measures performed at a �nite number of points. Hence, thereal identi�cation problem treated by mechanical engineers can be stated as:�nd A such that ;81 � i � n; 9u;8>><>>: div � = 0 in 
;u(xj) = uji 81 � j � p;�(xj):n = gji 81 � j � p;� = A"; (5)where information on the boundary is only known at a �nite number ofexperimental points (xj)j=1;:::;p for a �nite number (n) of experiments. Inaddition, these data may be known with a certain amount of experimentalerror or noise. 5



3.2 State of the artIf the aim is the numerical treatment of problem (4) (and a fortiori problem(3) or (5)) by \classical" (i.e. non-stochastic) methods, two theoretical pointsare crucial:� existence and uniqueness of A as a function of �A,� continuity of the dependency of A with respect to �A.Existence is of course essential to the pertinence of the identi�cation problem,but uniqueness and continuity are only needed to insure the reliability andthe stability of deterministic numerical algorithms. On the other hand, EAscan deal with non-continuous functionals and non-unique solutions.Problem (4) is the elastic equivalent of the so-called tomography problemwhere the elliptic operator is the conductivity operator (div(Aru), u scalar�eld) instead of the elasticity one (div(A"(u)), u vector �eld).The tomography problem as been widely studied. Under some hypothesis,existence and uniqueness have been proved. However, the continuity of thefunctional is only known in a weak sense, that cannot help for numericalsimulations.The elasticity problem (4) is more di�cult. Existence and uniqueness havebeen proved for isotropic Hooke's laws, but there is no continuity result. Fora comprehensive bibliographical discussion on this subject, see [6].Numerical simulations by classical methods have shown that both tomog-raphy [19] and elastic identi�cation problems [6] are ill-posed, and thus EAsare good tentative choice for a robust optimization method.3.3 The direct problemIn this paper, attention has been focused on representation and on speci�c op-erators for EAs. To highlight speci�c problems involved in these algorithms,the mechanical problem (5) was restricted to a two-dimensional simpler classof problems:Let A1 and A2 be two isotropic elasticity tensors, fully de�ned by Young'smoduli E1 and E2 and Poisson ratios �1 and �2. The aim is to solve Problems(3) and (5), restricting allowable values of A(x) toA(x) = � A1 if �(x) = 0A2 if �(x) = 1 (6)where � is a characteristic function de�ned on 
: The target is hence a parti-tion of 
 in two subsets, each made of a material with known characteristics.These problems, although less general than (3) and (5) are still beyondthe capabilities of deterministic algorithms (see [6]). Moreover, the generalProblem (5) can be treated in the same way, as well as identi�cation in non-linear elasticity (as discussed in Section 6).6



The direct elasticity problems have been solved by a classical �nite ele-ment method (as described in [13]). All geometrical and mechanical detailsare speci�ed in Section 5.4 Representations for mechanical inclusionsThis section introduces two non-standard representations for the problemdescribed in Section 3. Both are variable-length representations, and use realnumbers as main components. Hence, speci�c operators (e.g. crossover andmutation) have to be designed for each representation.4.1 PrerequisitesA solution to the inclusion identi�cation problem is a partition of the domainof the structure into two subsets, each subset representing one of the materialsinvolved. Moreover, all connected components of any subset should have anon-void interior and a regular boundary.A theoretical framework has been developed by Ghaddar & al. [10] inthe context of Structural Optimum Design: The search space is restrictedto partitions with polygonal boundaries. Theoretical results are proven, ap-proximation spaces are introduced and corresponding approximation resultsare obtained. Though the objective function considered in this paper is quitedi�erent from the one in [10], the same search space will be used here.However, a signi�cant di�erence between the objective functions in [10]and the one to be used here is that the inclusion identi�cation problem re-quires a Finite Element Analysis on the direct problem (see Section 3.3) tocompute the �tness of a point of the search space (i.e. a given repartitionof both materials), as introduced in the general framework of Section 2, anddetailed in Section 5.2. It is well-known that meshing is a source of numericalerrors [5]. Hence, for any Evolutionary Algorithm, using a �tness functionbased on the outputs of two Finite Element Analyses performed on di�erentmeshes is bound to failure, at least when the actual di�erences of behaviorbecomes smaller than the unavoidable numerical noise due to remeshing. Theuse of the same mesh for all Finite Element Analyses (at least inside the samegeneration) is thus mandatory to obtain signi�cant results.4.2 The bitstring representationOnce the decision to use a �xed mesh has been taken, and with even verylittle knowledge of EAs, the straightforward representation for a partition ofthe given domain is that of bitstrings: each element of the �xed mesh be-longs to either one of the subsets of the partition, which can be symbolicallylabeled 0 or 1. The resulting representation is a bitstring { or, more pre-cisely, a bitarray, as the pure bitstring point of view can be misleading, see7



[18]. Hence, almost all previous works using Genetic Algorithms in OptimumDesign did use that representation [11, 3, 17].However, the limits of this bitstring representation clearly appear whenit comes to re�ning the mesh, in order either to get more accurate resultsor to solve 3-dimensional problems: this would imply huge bitstring, as thesize of the bitstring is that of the underlying mesh. However, the size of thepopulation should increase proportionally to that of the bitstring, accordingto both theoretical results [2] and empirical studies [27]. Moreover, moregenerations are also needed to reach convergence, and the resulting algorithmrapidly becomes intractable.These considerations show the need for other representations, not relyingon a given mesh { even if a �xed mesh is used during the computation ofthe �tness function. Two of such representations have been designed, andsuccessfully used on the Optimum Design problem [23, 24].4.3 The Vorono�� representationA possible way of representing partitions of a given domain comes from com-putational geometry, more precisely from the theory of Vorono�� diagrams.The ideas of Vorono�� diagrams are already well-known in the Finite Elementcommunity, as a powerful tool to generate good meshes [9]. However, therepresentation of partitions by Vorono�� diagrams aiming at their evolution-ary optimization seems to be original.Vorono�� diagrams: Consider a �nite number of points V0; : : : ; VN (theVorono�� sites) of a given subset of IRn (the design domain). To each site Viis associated the set of all points of the design domain for which the closestVorono�� site is Vi, termed Vorono�� cell. The Vorono�� diagram is the partitionof the design domain de�ned by the Vorono�� cells. Each cell is a polyhedralsubset of the design domain, and any partition of a domain of IRn into poly-hedral subsets is the Vorono�� diagram of at least one set of Vorono�� sites (see[20, 1] for a detailed introduction to Vorono�� diagrams).The genotype: Consider now a (variable length) list of Vorono�� sites, eachsite being labeled 0 or 1. The corresponding Vorono�� diagram represents apartition of the design domain into two subsets, if each Vorono�� cell is labeledas the associated site (here the Vorono�� diagram is supposed regular, i.e. toeach cell corresponds exactly one site). Example of Vorono�� representationscan be seen in Figure 3. The Vorono�� sites are the dots in the center ofthe cells. Note that this representation does not depend in any way on themesh that will be used to compute the mechanical behavior of the structure.Furthermore, Vorono�� diagrams being de�ned in any dimension, the extensionof this representation to IR3 and IRn is straightforward.An important remark is that this representation presents a high degreeof epistasis (the in
uence of one Vorono�� site on the mechanical structure8



is highly dependant on all neighbor sites). This will be discussed in moredetails in Section 6.Decoding: Practically, and for the reasons stated in Section 4.1 the �tnessof all structures will be evaluated using the same �xed mesh. A partitiondescribed by Vorono�� sites is thus mapped on this �xed mesh: the subset anelement belongs to is determined from the label of the Vorono�� cell in whichthe center of gravity of that element lies in.Crossover operator: The idea of the crossover operators is to exchangesubsets of geometrically linked Vorono�� sites. In this respect, it is similar tothe speci�c bitarray crossover described in [18, 17]; moreover, this mechanismeasily extends to any dimension [15]. Figure 3 demonstrates an applicationof this crossover operator.Mutation operators: Di�erent mutation operators have been designed.They are applied in turn, based on user-de�ned probabilities.A �rst mutation operator modi�es the coordinates of the Vorono�� sites asin the now-standard Gaussian mutation for real-valued variables from Evolu-tion Strategies [25] (i.e. by addition of a Gaussian random variable of mean0 and user-de�ned standard deviation) ; Another mutation randomly 
ipsthe boolean attribute of some sites; Finally, dealing with variable-length rep-resentations, one has to include as mutation operators the random additionand destruction of some Vorono�� sites.
Parent 1 Parent 2 Offspring 1 Offspring 2Figure 3: The Vorono�� representation crossover operator. A random line isdrawn across both diagrams, and the sites on one side are exchanged4.4 H-representationAnother representation for partitions is based on an old-time heuristic methodin Topological Optimum Design (TOD): from the initial design domain, con-sidered as plain material, remove material at locations where the mechanicalstress is minimal, until the constraints are violated. However, the lack ofbacktracking makes this method useless in most TOD problems. Never-theless, this idea gave birth to the \holes" representation [7], later termedH-representation. 9



The representation: The design domain is by default made of one mate-rial, and a (variable length) list of \holes" describes the repartition of theother material. These holes are elementary shapes taken from a library ofpossible simples shapes. Only rectangular holes are considered at the mo-ment, though on-going work is concerned with other elementary holes (e.g.triangles, circles) [26, 16].Example of structures described in the H-representation are presentedin Figure 4. The rectangles are taken in a domain larger than the designdomain, in order not to bias the boundary parts of the design domain towardthe default value.The H-representation, as the Vorono�� representation, is independent fromany mesh, and hence its complexity does not depend on any required accu-racy for the simulation of the mechanical behavior of the structure. Its meritsand limitations will be discussed in the light of the experimental results pre-sented in next sections.
Parent 1 Parent 2 Offspring 1

Offspring 2Figure 4: The H-representation crossover operator. A random line is drawnacross both structures, and the holes on one side are exchanged.Decoding: As for the Vorono�� representation, the simulated behavior of theshapes is computed on a given �xed mesh, to limit the numerical noise dueto re-meshing. The criterion to decide which subset an element does belongto, is based on whether its center of gravity belongs to a hole (in which casethe whole element is void) or not.Evolution operators: The evolution operators are quite similar to those ofthe Vorono�� representation:� crossover by geometrical (2D or 3D) exchange of holes (see Figure 4 foran example);� mutation by Gaussian modi�cation of the characteristics (coordinatesof the center, width and length) of some holes;� mutation by random addition or destruction of some holes;5 Numerical ResultsThis section presents the very �rst experiments (to the best of our knowledge)on the inclusion identi�cation problem using Evolutionary Algorithms.10



5.1 Experimental settingsAll numerical results for problem (3) have been obtained on a two-dimensionalsquare structure �xed on its left-side, the forces being applied at points ofthe three other sides.The aim is to identify the repartition of two materials into a given do-main: a hard material (E = 1:5 and � = 0:3) and a soft material (E = 1 and� = 0:3). A �xed mesh of size 24� 24 was used throughout the experiments.The reference experimental loading cases considered to compute one �t-ness value (see Section 2) were here actually computed from a known con-�guration of both materials in the structure. The optimal solution is thusknown, which allows a better insight and understanding during the evolu-tion of the population. Moreover, much 
exibility was required during thetuning of the overall process, that actual experimental results could not havebought. Finally, considerations about the noise in the experimental referencerecording also favor simulated results: there still is a bias (due to numeri-cal error in the Finite Element Analysis), but, as this bias hopefully is thesame during the �tness computation, it should not weaken the results of theevolutionary algorithm, as could unpredictable noise in actual measures. Ofcourse, further work will have to consider actual experimental results to fullyvalidate the approach.5.2 The �tness functionsIn real world situations, the design of the �tness function should take intoaccount as many loading cases as available, in order to use as much informa-tion as possible about the behavior of the structure to be identi�ed. However,the choice made in these preliminary experiments of having simulated \refer-ence experiments" makes it possible to use as many loading cases as needed.In an attempt to have a sampling of the mechanical behavior of the struc-ture as uniform as possible over the domain, 37 di�erent loading cases wereused: Each loading case consists in pulling with a given force at one point ofthe boundary of the structure, following the normal to the boundary of theunloaded structure. The 37 loading points are equidistributed on the freeboundary of the square structure.Another degree of freedom o�ered by the use of simulated experimentalvalues for the reference displacements addresses the number of points wherethese reference displacements were available. In real world situations, somegauges are placed to the boundary of the structure, and only the displace-ments at those points is available. However, it seems clear that the more mea-sure points, the easier the identi�cation task. Hence, three di�erent �tnessfunctions have been used throughout the numerical experiments presentedbelow, all using the 37 loading cases described above, but di�erent in thenumber of measure points used to compute the error between the reference11



displacements (the so-called \experimental results") and the displacementsof the partition at hand:� The most informative �tness function, hereafter referred to as the total�tness, takes into account the displacements at all nodes of the mesh.� An intermediate �tness function uses only the displacements of all nodeslying at the boundary fo the structure, and is termed the boundary �tness.� The real-world �tness uses only 9 measure points equidistributed on thefree boundary of the square structure, incorporating much less informationto the �tness function, but resembling actual experimental conditions.5.3 The Evolutionary AlgorithmThe Evolutionary Algorithm used for all experiments presented in this paperuses a standard GA scheme: linear ranking proportional selection, crossoverrate of 0.6, mutation rate of 0.2, all o�spring replace all parents. The pop-ulation size is set to 100, and at most 300 generations of the algorithms areallowed { but it stops whenever 50 generations are run without any improve-ment of the overall best �tness. Hence, between 10000 and 30000 FiniteElement Analyses were performed for each run, requiring around 9h on amiddle range HP workstation (715/75).However, all experiments were run at least 10 times with independentinitial populations, to avoid as much as possible stochastic bias (as clearlystated in [14], \You should never draw any conclusion of a single run of anyEvolutionary Algorithm").5.4 Results using the Vorono�� representationThe very �rst experiments were performed using the Vorono�� representation,described in Section 4.3.
(Corner) (Square) (Double square) (Checker)Figure 5: The reference structures.They were obtained on the reference partitions represented in Figure 5,where black areas represent the soft material and white areas the hardermaterial (the examples range from the easiest to the most di�cult).The �rst results on the \corner" example of Figure 5-a were astonishinglygood: the exact solution was found 3 times out of 10 runs, in less than 100generations when using the \total" �tness, and even once (in 250 generations)using the boundary �tness. Figure 6 shows an example of a successful run,12



Perf 0.0971421 - Gen. 1 Perf 0.0843307 - Gen. 3 Perf 0.0490249 - Gen. 6 Perf 0.0143879 - Gen. 15 

Perf 0.0142559 - Gen. 22 Perf 0.0127262 - Gen. 28 Perf 0.0117122 - Gen. 33 Perf 0.00694829 - Gen. 35 

Perf 0.00605394 - Gen. 42 Perf 0.00321004 - Gen. 47 Perf 2.92855e-05 - Gen. 58 Perf 0 - Gen. 63 Figure 6: A successful run on the corner problem, using boundary �tness(Perf). Plots of the best individual at di�erent generations of the evolutionwhere the best individual at di�erent stages of evolution is plot together withthe error, and the number of Vorono�� sites it contains. The Vorono�� sitesrepresented on the �gure by grey little dots.
(a) Perf 5.22659e-05 - 37 sites Perf 0.000184141 - 38 sites (b)Figure 7: The checker problem: (a): with total �tness. (b): with real �tness.On the \square" example of Figure 5-b, some di�erence began to appearbetween the di�erent �tnesses, but this example is still an easy problem.This phenomenon was more and more visible as the di�culty of the problemincreased. When it came to the \checker" example of Figure 5-d, the total�tness gave much better results than the real-world �tness, as can be seenin Figure 7-a and -b. However, the real-world �tness gave some interestingresults, as can be seen on Figure 7-b: the actual values are clearly identi�edalong the boundary, except along the �xed side of the boundary, where toolittle information is available.5.5 Results in presence of noiseAfter these �rst satisfactory results on exact data, further validation of theproposed approach had to take into account possible errors and noise in thedata. In order to test the sensibility of the algorithm to noise, arti�cial noise13



was purposely introduced in the reference \experimental" displacements. Fig-ure 8 shows the results obtained on the (easy) \corner" example, with 2%and 5% noise (i.e. when all reference displacements were multiplied by aterm (1+"), " being a random variable uniformly distributed in [�0:02; 0:02]and [�0:05; 0:05] respectively). The results are { of course ! { degraded, butthey demonstrate a fairly good robustness, at least on this example.
(a) Perf 0.00161973 - 7 sites Perf 0.0100125 - 5 sites (b)Figure 8: Robustness to noise. (a): with 2% noise. (b): with 5% noise.5.6 Comparative resultsFurther experiments were run in order to compare both the Vorono�� and theH-representations. In fact, three representations were tested on together ondi�erent problems: the Vorono�� representation, the H-representation whererectangles represent the soft material (termed H-0), and the H-representationwhere rectangles represent the hard material (termed H-1).Regarding the comparison between the two H-representation, their be-havior was what could be expected, on reference structures like the \square"example (Figure 5-b): it is by far easier to �nd rectangles describing the insidesquare than rectangles approximating the outside of that square, and the H-1representation consistently outperformed the H-0 representation. Moreover,this phenomenon increases when the size of the inside square decreases.However, from the limited experiments performed so far, it seems that theVorono�� representation slightly outperforms the H-representations, in contra-diction with the situation in the domain of Optimum Design [23]. Figure 9shows an example of such a situation, on the problem of the \double square"of Figure 5-c with \real" �tness. The plots represent the average over 10 inde-pendent runs of the best �tness (i.e. the smallest error) along generations forall three representations. Note that the variance of the results for all represen-tation was very small, and all but one runs using the Vorono�� representationreached smaller error than the best runs of using the H-representation. Thebest results for both the H-1 and the Vorono�� representation are presentedon Figure 10.6 Discussion and further workExperimental comparisons of di�erent representations encounter the di�-culty of designing \fair" experiments: the mutation operators are not the14
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Perf 0.00011479 - 23 sites 

  

Perf 0.000241374 (b)Figure 10: Best results on the \double" example with real �tness for theVorono�� and the H-1 representation.same for all representations, forbidding any satisfactory way of comparingthe mutation strengths. Moreover, experimental comparative results on oneproblem can hardly be generalized to too di�erent problems.Hence, it is essential to design a methodology, or at least some heuristics,to guide a future practitioner of evolutionary inclusion identi�cation in his(or her) choice: Having so many possible representations for partitions osmaterials (the bitarray of section 4.2, the Vorono�� representations, both H-0 and H-1 representations described in section 5.6) makes it more di�cultto choose among them when facing a speci�c instance of a problem. Somepromising directions are given in the literature.The �tness variance theory of Radcli�e [22] studies the variance of the�tness as a function of the order of an extension of schemas called formae[21], and, simply put, shows that the complexity and di�culties of evolutionincreases with the average variance of the �tness as a function of the formaeorder. But if the formae and their order (or their precision) are well-de�nedon any binary representation, including the bit-array representation rapidlypresented in Section 4.1, it is not straightforward to extend these de�nitionsto variable length representations, as the ones presented in this paper.Moreover, Radcli�e's �tness variance does not take into account the pos-sible evolution operators. Further step in that direction would be to studythe variance of the change of �tness with respect to a given evolution op-15



erator (e.g. the Gaussian mutation of Vorono�� sites for di�erent standarddeviations), in the line of the work in [8].The �tness distance correlation of Jones [12] studies the correlation be-tween the distance to the optimal point and the �tness. Simply put again, theidea is that, the stronger this correlation, the narrower the peak the optimumbelongs to. Conjectures based on this remark are experimentally con�rmed inthe bitstring frame. Nevertheless, the di�culty in variable-length representa-tions is to de�ne a distance which is meaningful for both the representationand the problem at hand. Preliminary work addressing this issue de�ne apurely genotypic distance, based on partial matching of items of the variable-length lists representing the two individuals. The �rst { on-going { studies[16] demonstrate that the results of [12] seem to extend to the variable-lengthcase: the correlation between the distance to optimum and the �tness is agood predictor of the performance of the representation on a given problem.Moreover, in the case where a good correlation exists, equivalent results areobtained when considering either the distance to the actual optimum or thedistance to the best individual in the current sample: if this was not true, themethod would be of poor practical interest, as the global optimum is usuallyunknown.Another direction of research regards the link between the representationand the evolution scheme: as stated and partially demonstrated on the Op-timum Design problem in [24], the higher degree of epistasis (i.e. interactionamong genetic material of the same individual when going from the geno-type to the actual mechanical structure) in the representation should favortop-down approaches, e.g. ES or EP schemes relying mostly upon mutationoperator, rather than the GA bottom-up approach relying upon the grad-ual assembly of small building blocks to construct the a good solution. Asopposed to the Optimum Design problem, the inclusion identi�cation prob-lem is tunable and hence allows precise experiments to be conducted: theoptimum partition is known, and can be tailored at will: for instance, therespective amount of both material can be prescribed, as well as the numberof connected components of both materials.Further work will also consider the general problem (3) of Section 3 in-stead of the boolean simpli�cation (6): the extension of both representationsto handle real-valued labels instead of boolean labels is straightforward forthe Vorono�� representation (replace the boolean label of each site by a realnumber), and fairly simple to imagine for the H-representation (e.g. assigna real-valued label to each \hole", and, for each element, compute the meanvalue of the labels of all holes covering the center of the element).
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