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Abstract

Evolutionary Algorithms provide a general approach to inverse prob-
lem solving: As optimization methods, they only require the computa-
tion of values of the function to optimize. Thus, the only prerequisite
to efficiently handle inverse problems is a good numerical model of the
direct problem, and a representation for potential solutions.

The identification of mechanical inclusion, even in the linear elas-
ticity framework, is a difficult problem, theoretically ill-posed: Evolu-
tionary Algorithms are in that context a good tentative choice for a
robust numerical method, as standard deterministic algorithms have
proven inaccurate and unstable. However, great attention must be
given to the implementation. The representation, which determines
the search space, is critical for a successful application of Evolutionary
Algorithms to any problem. Two original representations are presented
for the inclusion identification problem, together with the associated
evolution operators (crossover and mutation). Both provide outstand-
ing results on simple instances of the identification problem, including
experimental robustness in presence of noise.

1 Introduction

Evolutionary Algorithms (EAs) are stochastic optimization methods that
have been demonstrated useful to solve difficult, yet unsolved, optimization
problems. Requiring no regularity of the objective function (or of the con-
straints), EAs are able to tackle optimization problems on different kinds
of search spaces, such as continuous, discrete or mixed spaces, as well as
spaces of graphs or lists. The only prerequisite are the definition of evolu-
tion operators such as crossover and mutation, satisfying as much as possible
heuristically derived requirements. The two main drawbacks of EAs are first
the large number of evaluation of the objective function they usually imply
before eventually reaching a good, if not optimal, solution; and second, their
stochastic aspect, weakening their robustness. Hence, EAs should be used
with care, on problems beyond the reach of standard deterministic optimiza-
tion methods.

In structural mechanics, the non-destructive identification of inclusions is
such a difficult problem, resisting to-date numerical methods: in its simplest
instance, a structure is known to be made of two different known materials,



but their repartition in the structure is unknown. The available data consist
of records of the mechanical behavior of the structure under known loadings.
The goal is to find the geometrical repartition of both materials from these
experimental data. In steel manufacturing plants, for instance, it is of vital
importance to check if coal scories are included in steel parts, and if their
repartition does not dangerously weaken the whole part. For a given reparti-
tion of both materials, the computation of the simulated mechanical behavior
of the structure is straightforward (e.g. using any Finite Element package).
The identification can then be viewed as an inverse problem.

This paper addresses this inverse problem using EAs. A possible objec-
tive function for such inverse problems is the difference between the simulated
mechanical behavior of a tentative repartition of both materials and the ac-
tual experimental behavior. However, the main difficulty is to define the
search space in which the EA will be defined. Considering past works on
the Optimum Design problem, (a closely related problem, where the goal is
to find a partition of a design domain into material and void), the straight-
forward representation is defined from a fixed mesh of the structure, leading
to a fixed-length bitstring well-suited to Genetic Algorithms. However, this
approach will not be considered here, as it makes the optimization problem
intractable when the underlying mesh is refined. Instead, two non-standard
representations (termed the Voronoi representation and the H-representation)
are introduced, independent of any a priori discretization, but leading to
variable-length “individuals”. Hence, specific operators have to be designed
and implemented.

Nevertheless, Evolutionary Algorithms working on these representations
give outstanding results on the inclusion identification problem in the con-
text of linear elasticity, outperforming previous deterministic numerical so-
lutions. Experimental evidences appear that the quality of the results highly
depends of the amount of experimental information the algorithm can rely
upon. Furthermore, the robustness against noise in the experimental data is
experimentally shown on simulated artificial noisy data.

The paper is organized the following way: In Section 2, a general frame-
work to address inverse problems with EAs is introduced. The mechanical
problem of inclusion identification is presented in details in Section 3. It is an
instance of the general inverse problem of Section 2, and can thus be solved by
Evolutionary Algorithms, once the search space has been skillfully designed:
Two original representations for that problem are presented in Section 4,
together with their specific evolution operators (crossover and mutations).
The first results, using the Voronoi representation, are presented in Section
5, demonstrating outstanding performance on artificial instances of the inclu-
sion identification problem. Comparative results for both representations are
presented in Section 5.6, opening the discussion about the a priori choice of a
representation for a given problem. This discussion leads to propose further
directions of research, sketched in Section 6.



2 Evolutionary inverse problems solving

This section presents a general framework to solve inverse problems by means
of Evolutionary Algorithms, which will be further applied to the Mechanical
problem introduced in Section 3.

2.1 Direct problems

Consider a process (e.g. a physical phenomenon) that produces output ex-
perimental results given some inputs (experimental conditions).

The successful resolution of the direct problem consists in building a sim-
ulated process able to accurately predict the experimental output of the phys-
ical phenomenon from the same experimental input data. Such simulation
generally relies on a function (law, algorithm, command, ...) modeling the
underlying physical behavior. Figure 1 gives a symbolic representation of a
physical process together with its simulated model.
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Experimental
conditions
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results

Figure 1: Direct problem. Physical and simulated process. Simulation is
successful (based on an accurate model) iff the error between experimental
results and numerical results is small.

2.2 Inverse problems

However, quite often, the model (law, command, ...) is not precisely known:
The goal of inverse problems is to find a model such that the numerical
simulations based on this model successfully approximates experimentations.
The data of inverse problems are experimental conditions together with the
corresponding actual experimental results.

Whenever a good simulation of a direct problem exists, Evolutionary
Computation can be used to address the inverse problem. The fitness of
a candidate solution can be computed as shown in Figure 2: the results of
the numerical simulation performed using the individual at hand as the model
to identify is compared to original experimental results, and the goal is to
reach the smallest possible error.
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Figure 2: Ewvolutionary approach for the inverse problem. The fitness of the
individual at hand is achieved by comparing the actual experimental results
with the numerical results obtained using the individual in place of the law
model.

2.3 The genotype space

The most critical step in evolutionary inverse problem solving is the choice of
the representation, which defines the genotype space (i.e. the search space).
In any case, the EA will find a good — if not the best — solution in the search
space. Hence it seems that larger search spaces allow better solutions to
be found. However, the larger is the search space, the more difficult is the
optimization task, and a trade-off has to be found.

Yet another important issue in inverse problem solving is the generaliza-
tion capability of the solution: How good is the resulting model when used
with experimental conditions that are different from those used during the
identification process? The usual answer in evolutionary inverse problem
solving is to use, during the identification, many different experimental con-
ditions, also termed fitness cases. The fitness is then the average of the error
over all fitness cases. Needless to say, the total computational cost increases
with the number of fitness cases.

3 The Mechanical Problem

This section gives a detailed presentation of the mechanical problem of inclu-
sion identification, and states the simplification hypotheses made throughout
this paper. The issues raised in Section 2 above will then be addressed on
this instance of inverse problem.

3.1 Background

Consider an open bounded domain @ ¢ RY (N = 2,3), with a smooth
enough boundary 012, filled with a linear elastic material. Under the hypoth-



esis of small deformations (linear elasticity) the following equations hold for,
respectively, the strain and the stress tensors:

e(x) = %(Vu(a:)VuT(m)), and o(z) := A(z)e(x), (1)

where u(z) is the displacement field at point z and A(z) is the elasticity
tensor (a fourth order tensor) involved in the Hooke’s law (1). A is supposed
to be inhomogeneous, which means that its value depends on the point z.
A(z) is a positive definite tensor which satisfies some symmetry conditions.

When A is given, one can state two kinds of boundary problems, respec-
tively of Dirichlet and Neuman type:

dive
u

where ug and gg are respectively a given displacement field and a given ex-
ternal force field on the boundary 992.

It is well known (see e.g. [4]) that each of these problem has a unique
solution (for the Neuman’s problem, one has to impose an integral condition
on go to insure existence, and an integral condition on w to eliminate rigid
displacements).

In the following, the inverse problem will be considered:

(2)

0 in Q, d dive = 0 in Q,
Ug on 012, an on = go on 012,

dive = 0 in Q,
. U = u; on 01},
find A such that ,Vi € {1,...,n}, Ju, on = g on 99, (3)
o = Ae,

where (g;)i=1,..,n and (u;)i=1,n are given.
Problem (3) is a discrete version of the “ideal” inverse problem:

find A, given application: A4 : ujsq — 7jaq- (4)

The underlying physical problem is still lacking much more of known
data than problem (3) since A4 is only known through a finite number of
experimental measures performed at a finite number of points. Hence, the
real identification problem treated by mechanical engineers can be stated as:

dive = 0 in Q,
o= ! i
find A such that V1 <i<n,Fu,{ &) = w VISispo g
o(z?)n = g V1I<j<p,
o = Ae,

where information on the boundary is only known at a finite number of
experimental points (z7);—1 ., for a finite number (n) of experiments. In
addition, these data may be known with a certain amount of experimental
error or noise.



3.2 State of the art

If the aim is the numerical treatment of problem (4) (and a fortiori problem
(3) or (5)) by “classical” (i.e. non-stochastic) methods, two theoretical points
are crucial:

e existence and uniqueness of A as a function of A 4,

e continuity of the dependency of A with respect to A 4.

Existence is of course essential to the pertinence of the identification problem,
but uniqueness and continuity are only needed to insure the reliability and
the stability of deterministic numerical algorithms. On the other hand, EAs
can deal with non-continuous functionals and non-unique solutions.

Problem (4) is the elastic equivalent of the so-called tomography problem
where the elliptic operator is the conductivity operator (div(AVu), u scalar
field) instead of the elasticity one (div(Ae(u)), u vector field).

The tomography problem as been widely studied. Under some hypothesis,
existence and uniqueness have been proved. However, the continuity of the
functional is only known in a weak sense, that cannot help for numerical
simulations.

The elasticity problem (4) is more difficult. Existence and uniqueness have
been proved for isotropic Hooke’s laws, but there is no continuity result. For
a comprehensive bibliographical discussion on this subject, see [6].

Numerical simulations by classical methods have shown that both tomog-
raphy [19] and elastic identification problems [6] are ill-posed, and thus EAs
are good tentative choice for a robust optimization method.

3.3 The direct problem

In this paper, attention has been focused on representation and on specific op-
erators for EAs. To highlight specific problems involved in these algorithms,
the mechanical problem (5) was restricted to a two-dimensional simpler class
of problems:

Let A; and As be two isotropic elasticity tensors, fully defined by Young’s
moduli E; and E5 and Poisson ratios v; and vy5. The aim is to solve Problems
(3) and (5), restricting allowable values of A(z) to

Alw) = { Ay if x(z) =1 (6)

where x is a characteristic function defined on Q: The target is hence a parti-
tion of Q in two subsets, each made of a material with known characteristics.

These problems, although less general than (3) and (5) are still beyond
the capabilities of deterministic algorithms (see [6]). Moreover, the general
Problem (5) can be treated in the same way, as well as identification in non-
linear elasticity (as discussed in Section 6).



The direct elasticity problems have been solved by a classical finite ele-
ment method (as described in [13]). All geometrical and mechanical details
are specified in Section 5.

4 Representations for mechanical inclusions

This section introduces two non-standard representations for the problem
described in Section 3. Both are variable-length representations, and use real
numbers as main components. Hence, specific operators (e.g. crossover and
mutation) have to be designed for each representation.

4.1 Prerequisites

A solution to the inclusion identification problem is a partition of the domain
of the structure into two subsets, each subset representing one of the materials
involved. Moreover, all connected components of any subset should have a
non-void interior and a regular boundary.

A theoretical framework has been developed by Ghaddar & al. [10] in
the context of Structural Optimum Design: The search space is restricted
to partitions with polygonal boundaries. Theoretical results are proven, ap-
proximation spaces are introduced and corresponding approximation results
are obtained. Though the objective function considered in this paper is quite
different from the one in [10], the same search space will be used here.

However, a significant difference between the objective functions in [10]
and the one to be used here is that the inclusion identification problem re-
quires a Finite Element Analysis on the direct problem (see Section 3.3) to
compute the fitness of a point of the search space (i.e. a given repartition
of both materials), as introduced in the general framework of Section 2, and
detailed in Section 5.2. It is well-known that meshing is a source of numerical
errors [5]. Hence, for any Evolutionary Algorithm, using a fitness function
based on the outputs of two Finite Element Analyses performed on different
meshes is bound to failure, at least when the actual differences of behavior
becomes smaller than the unavoidable numerical noise due to remeshing. The
use of the same mesh for all Finite Element Analyses (at least inside the same
generation) is thus mandatory to obtain significant results.

4.2 The bitstring representation

Once the decision to use a fixed mesh has been taken, and with even very
little knowledge of EAs, the straightforward representation for a partition of
the given domain is that of bitstrings: each element of the fixed mesh be-
longs to either one of the subsets of the partition, which can be symbolically
labeled 0 or 1. The resulting representation is a bitstring — or, more pre-
cisely, a bitarray, as the pure bitstring point of view can be misleading, see



[18]. Hence, almost all previous works using Genetic Algorithms in Optimum
Design did use that representation [11, 3, 17].

However, the limits of this bitstring representation clearly appear when
it comes to refining the mesh, in order either to get more accurate results
or to solve 3-dimensional problems: this would imply huge bitstring, as the
size of the bitstring is that of the underlying mesh. However, the size of the
population should increase proportionally to that of the bitstring, according
to both theoretical results [2] and empirical studies [27]. Moreover, more
generations are also needed to reach convergence, and the resulting algorithm
rapidly becomes intractable.

These considerations show the need for other representations, not relying
on a given mesh — even if a fixed mesh is used during the computation of
the fitness function. Two of such representations have been designed, and
successfully used on the Optimum Design problem [23, 24].

4.3 The Voronoi representation

A possible way of representing partitions of a given domain comes from com-
putational geometry, more precisely from the theory of Voronoi diagrams.
The ideas of Voronoi diagrams are already well-known in the Finite Element
community, as a powerful tool to generate good meshes [9]. However, the
representation of partitions by Voronoi diagrams aiming at their evolution-
ary optimization seems to be original.

Voronoi diagrams: Consider a finite number of points Vg,...,Vy (the
Voronot sites) of a given subset of R"™ (the design domain). To each site V;
is associated the set of all points of the design domain for which the closest
Voronoi site is V;, termed Voronoi cell. The Voronoi diagram is the partition
of the design domain defined by the Voronof cells. Each cell is a polyhedral
subset of the design domain, and any partition of a domain of R" into poly-
hedral subsets is the Voronoi diagram of at least one set of Voronoi sites (see
[20, 1] for a detailed introduction to Voronoi diagrams).

The genotype: Consider now a (variable length) list of Voronoi sites, each
site being labeled 0 or 1. The corresponding Voronoi diagram represents a
partition of the design domain into two subsets, if each Voronoi cell is labeled
as the associated site (here the Voronoi diagram is supposed regular, i.e. to
each cell corresponds exactly one site). Example of Voronoi representations
can be seen in Figure 3. The Voronoi sites are the dots in the center of
the cells. Note that this representation does not depend in any way on the
mesh that will be used to compute the mechanical behavior of the structure.
Furthermore, Voronoi diagrams being defined in any dimension, the extension
of this representation to R* and R" is straightforward.

An important remark is that this representation presents a high degree
of epistasis (the influence of one Voronoi site on the mechanical structure



is highly dependant on all neighbor sites). This will be discussed in more
details in Section 6.

Decoding: Practically, and for the reasons stated in Section 4.1 the fitness
of all structures will be evaluated using the same fixed mesh. A partition
described by Voronoi sites is thus mapped on this fixed mesh: the subset an
element belongs to is determined from the label of the Voronoi cell in which
the center of gravity of that element lies in.

Crossover operator: The idea of the crossover operators is to exchange
subsets of geometrically linked Voronoi sites. In this respect, it is similar to
the specific bitarray crossover described in [18, 17]; moreover, this mechanism
easily extends to any dimension [15]. Figure 3 demonstrates an application
of this crossover operator.

Mutation operators: Different mutation operators have been designed.
They are applied in turn, based on user-defined probabilities.

A first mutation operator modifies the coordinates of the Voronoi sites as
in the now-standard Gaussian mutation for real-valued variables from Evolu-
tion Strategies [25] (i.e. by addition of a Gaussian random variable of mean
0 and user-defined standard deviation) ; Another mutation randomly flips
the boolean attribute of some sites; Finally, dealing with variable-length rep-
resentations, one has to include as mutation operators the random addition
and destruction of some Voronoi sites.

'
Offspring 1 Ofspring 2

Parent 1 Parent 2

Figure 3: The Voronoi representation crossover operator. A random line is
drawn across both diagrams, and the sites on one side are exchanged

4.4 H-representation

Another representation for partitions is based on an old-time heuristic method
in Topological Optimum Design (TOD): from the initial design domain, con-
sidered as plain material, remove material at locations where the mechanical
stress is minimal, until the constraints are violated. However, the lack of
backtracking makes this method useless in most TOD problems. Never-
theless, this idea gave birth to the “holes” representation [7], later termed
H-representation.



The representation: The design domain is by default made of one mate-
rial, and a (variable length) list of “holes” describes the repartition of the
other material. These holes are elementary shapes taken from a library of
possible simples shapes. Only rectangular holes are considered at the mo-
ment, though on-going work is concerned with other elementary holes (e.g.
triangles, circles) [26, 16].

Example of structures described in the H-representation are presented
in Figure 4. The rectangles are taken in a domain larger than the design
domain, in order not to bias the boundary parts of the design domain toward
the default value.

The H-representation, as the Voronoi representation, is independent from
any mesh, and hence its complexity does not depend on any required accu-
racy for the simulation of the mechanical behavior of the structure. Its merits
and limitations will be discussed in the light of the experimental results pre-
sented in next sections.

"W

Cifspring 2
Parent 1 Parent 2 Offspring 1

Figure 4: The H-representation crossover operator. A random line is drawn
across both structures, and the holes on one side are exchanged.

Decoding: As for the Voronoi representation, the simulated behavior of the
shapes is computed on a given fixed mesh, to limit the numerical noise due
to re-meshing. The criterion to decide which subset an element does belong
to, is based on whether its center of gravity belongs to a hole (in which case
the whole element is void) or not.

Evolution operators: The evolution operators are quite similar to those of
the Voronoi representation:

e crossover by geometrical (2D or 3D) exchange of holes (see Figure 4 for
an example);

e mutation by Gaussian modification of the characteristics (coordinates
of the center, width and length) of some holes;

e mutation by random addition or destruction of some holes;

5 Numerical Results

This section presents the very first experiments (to the best of our knowledge)
on the inclusion identification problem using Evolutionary Algorithms.

10



5.1 Experimental settings

All numerical results for problem (3) have been obtained on a two-dimensional
square structure fixed on its left-side, the forces being applied at points of
the three other sides.

The aim is to identify the repartition of two materials into a given do-
main: a hard material (E = 1.5 and v = 0.3) and a soft material (E = 1 and
v = 0.3). A fixed mesh of size 24 x 24 was used throughout the experiments.

The reference experimental loading cases considered to compute one fit-
ness value (see Section 2) were here actually computed from a known con-
figuration of both materials in the structure. The optimal solution is thus
known, which allows a better insight and understanding during the evolu-
tion of the population. Moreover, much flexibility was required during the
tuning of the overall process, that actual experimental results could not have
bought. Finally, considerations about the noise in the experimental reference
recording also favor simulated results: there still is a bias (due to numeri-
cal error in the Finite Element Analysis), but, as this bias hopefully is the
same during the fitness computation, it should not weaken the results of the
evolutionary algorithm, as could unpredictable noise in actual measures. Of
course, further work will have to consider actual experimental results to fully
validate the approach.

5.2 The fitness functions

In real world situations, the design of the fitness function should take into
account as many loading cases as available, in order to use as much informa-
tion as possible about the behavior of the structure to be identified. However,
the choice made in these preliminary experiments of having simulated “refer-
ence experiments” makes it possible to use as many loading cases as needed.
In an attempt to have a sampling of the mechanical behavior of the struc-
ture as uniform as possible over the domain, 37 different loading cases were
used: Each loading case consists in pulling with a given force at one point of
the boundary of the structure, following the normal to the boundary of the
unloaded structure. The 37 loading points are equidistributed on the free
boundary of the square structure.

Another degree of freedom offered by the use of simulated experimental
values for the reference displacements addresses the number of points where
these reference displacements were available. In real world situations, some
gauges are placed to the boundary of the structure, and only the displace-
ments at those points is available. However, it seems clear that the more mea-
sure points, the easier the identification task. Hence, three different fitness
functions have been used throughout the numerical experiments presented
below, all using the 37 loading cases described above, but different in the
number of measure points used to compute the error between the reference

11



displacements (the so-called “experimental results”) and the displacements
of the partition at hand:

e The most informative fitness function, hereafter referred to as the total
fitness, takes into account the displacements at all nodes of the mesh.

e An intermediate fitness function uses only the displacements of all nodes
lying at the boundary fo the structure, and is termed the boundary fitness.

e The real-world fitness uses only 9 measure points equidistributed on the
free boundary of the square structure, incorporating much less information
to the fitness function, but resembling actual experimental conditions.

5.3 The Evolutionary Algorithm

The Evolutionary Algorithm used for all experiments presented in this paper
uses a standard GA scheme: linear ranking proportional selection, crossover
rate of 0.6, mutation rate of 0.2, all offspring replace all parents. The pop-
ulation size is set to 100, and at most 300 generations of the algorithms are
allowed — but it stops whenever 50 generations are run without any improve-
ment of the overall best fitness. Hence, between 10000 and 30000 Finite
Element Analyses were performed for each run, requiring around 9h on a
middle range HP workstation (715/75).

However, all experiments were run at least 10 times with independent
initial populations, to avoid as much as possible stochastic bias (as clearly
stated in [14], “You should never draw any conclusion of a single run of any
Evolutionary Algorithm”).

5.4 Results using the Voronoi representation

The very first experiments were performed using the Voronoi representation,
described in Section 4.3.

MO [ =

(Corner) (Square)  (Double square) (Checker)

Figure 5: The reference structures.

They were obtained on the reference partitions represented in Figure 5,
where black areas represent the soft material and white areas the harder
material (the examples range from the easiest to the most difficult).

The first results on the “corner” example of Figure 5-a were astonishingly
good: the exact solution was found 3 times out of 10 runs, in less than 100
generations when using the “total” fitness, and even once (in 250 generations)
using the boundary fitness. Figure 6 shows an example of a successful run,
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Perf 0.0971421 - |!m | Perf 0.0843307 - Gen.
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Figure 6: A successful run on the corner problem, using boundary fitness
(Perf). Plots of the best individual at different generations of the evolution

I: !!143879 Gen. 15

g

where the best individual at different stages of evolution is plot together with
the error, and the number of Voronoi sites it contains. The Voronoi sites
represented on the figure by grey little dots.

(a) W . ..., (b)

Figure 7: The checker problem: (a): with total fitness. (b): with real fitness.

On the “square” example of Figure 5-b, some difference began to appear
between the different fitnesses, but this example is still an easy problem.
This phenomenon was more and more visible as the difficulty of the problem
increased. When it came to the “checker” example of Figure 5-d, the total
fitness gave much better results than the real-world fitness, as can be seen
in Figure 7-a and -b. However, the real-world fitness gave some interesting
results, as can be seen on Figure 7-b: the actual values are clearly identified
along the boundary, except along the fixed side of the boundary, where too
little information is available.

5.5 Results in presence of noise

After these first satisfactory results on exact data, further validation of the
proposed approach had to take into account possible errors and noise in the
data. In order to test the sensibility of the algorithm to noise, artificial noise
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was purposely introduced in the reference “experimental” displacements. Fig-
ure 8 shows the results obtained on the (easy) “corner” example, with 2%
and 5% noise (i.e. when all reference displacements were multiplied by a
term (1+¢), € being a random variable uniformly distributed in [—0.02,0.02]
and [—0.05,0.05] respectively). The results are — of course | — degraded, but
they demonstrate a fairly good robustness, at least on this example.

(a) 10.00161973 - 7 Sites. Perf 0.0100125 - 5 sites. (b)

Figure 8: Robustness to noise. (a): with 2% noise. (b): with 5% noise.

5.6 Comparative results

Further experiments were run in order to compare both the Voronoi and the
H-representations. In fact, three representations were tested on together on
different problems: the Voronoi representation, the H-representation where
rectangles represent the soft material (termed H-0), and the H-representation
where rectangles represent the hard material (termed H-1).

Regarding the comparison between the two H-representation, their be-
havior was what could be expected, on reference structures like the “square”
example (Figure 5-b): it is by far easier to find rectangles describing the inside
square than rectangles approximating the outside of that square, and the H-1
representation consistently outperformed the H-0 representation. Moreover,
this phenomenon increases when the size of the inside square decreases.

However, from the limited experiments performed so far, it seems that the
Voronoi representation slightly outperforms the H-representations, in contra-
diction with the situation in the domain of Optimum Design [23]. Figure 9
shows an example of such a situation, on the problem of the “double square”
of Figure 5-c with “real” fitness. The plots represent the average over 10 inde-
pendent runs of the best fitness (i.e. the smallest error) along generations for
all three representations. Note that the variance of the results for all represen-
tation was very small, and all but one runs using the Voronoi representation
reached smaller error than the best runs of using the H-representation. The
best results for both the H-1 and the Voronoi representation are presented
on Figure 10.

6 Discussion and further work

Experimental comparisons of different representations encounter the diffi-
culty of designing “fair” experiments: the mutation operators are not the
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Figure 9: Comparative results on the “double-square” problem with “real”
fitness. The Voronoi representation slightly but consistently outperforms both
H-representations.

(a) I —— e (b)

Figure 10: Best results on the “double” example with real fitness for the
Voronoi and the H-1 representation.

same for all representations, forbidding any satisfactory way of comparing
the mutation strengths. Moreover, experimental comparative results on one
problem can hardly be generalized to too different problems.

Hence, it is essential to design a methodology, or at least some heuristics,
to guide a future practitioner of evolutionary inclusion identification in his
(or her) choice: Having so many possible representations for partitions os
materials (the bitarray of section 4.2, the Voronoi representations, both H-
0 and H-1 representations described in section 5.6) makes it more difficult
to choose among them when facing a specific instance of a problem. Some
promising directions are given in the literature.

The fitness variance theory of Radcliffe [22] studies the variance of the
fitness as a function of the order of an extension of schemas called formae
[21], and, simply put, shows that the complexity and difficulties of evolution
increases with the average variance of the fitness as a function of the formae
order. But if the formae and their order (or their precision) are well-defined
on any binary representation, including the bit-array representation rapidly
presented in Section 4.1, it is not straightforward to extend these definitions
to variable length representations, as the ones presented in this paper.

Moreover, Radcliffe’s fitness variance does not take into account the pos-
sible evolution operators. Further step in that direction would be to study
the variance of the change of fitness with respect to a given evolution op-
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erator (e.g. the Gaussian mutation of Voronol sites for different standard
deviations), in the line of the work in [8].

The fitness distance correlation of Jones [12] studies the correlation be-
tween the distance to the optimal point and the fitness. Simply put again, the
idea is that, the stronger this correlation, the narrower the peak the optimum
belongs to. Conjectures based on this remark are experimentally confirmed in
the bitstring frame. Nevertheless, the difficulty in variable-length representa-
tions is to define a distance which is meaningful for both the representation
and the problem at hand. Preliminary work addressing this issue define a
purely genotypic distance, based on partial matching of items of the variable-
length lists representing the two individuals. The first — on-going — studies
[16] demonstrate that the results of [12] seem to extend to the variable-length
case: the correlation between the distance to optimum and the fitness is a
good predictor of the performance of the representation on a given problem.
Moreover, in the case where a good correlation exists, equivalent results are
obtained when considering either the distance to the actual optimum or the
distance to the best individual in the current sample: if this was not true, the
method would be of poor practical interest, as the global optimum is usually
unknown.

Another direction of research regards the link between the representation
and the evolution scheme: as stated and partially demonstrated on the Op-
timum Design problem in [24], the higher degree of epistasis (i.e. interaction
among genetic material of the same individual when going from the geno-
type to the actual mechanical structure) in the representation should favor
top-down approaches, e.g. ES or EP schemes relying mostly upon mutation
operator, rather than the GA bottom-up approach relying upon the grad-
ual assembly of small building blocks to construct the a good solution. As
opposed to the Optimum Design problem, the inclusion identification prob-
lem is tunable and hence allows precise experiments to be conducted: the
optimum partition is known, and can be tailored at will: for instance, the
respective amount of both material can be prescribed, as well as the number
of connected components of both materials.

Further work will also consider the general problem (3) of Section 3 in-
stead of the boolean simplification (6): the extension of both representations
to handle real-valued labels instead of boolean labels is straightforward for
the Voronoi representation (replace the boolean label of each site by a real
number), and fairly simple to imagine for the H-representation (e.g. assign
a real-valued label to each “hole”, and, for each element, compute the mean
value of the labels of all holes covering the center of the element).
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7 Conclusion

This paper presents preliminary results using Evolutionary Computation on
an important engineering problem: non destructive inclusion identification
in Structural Mechanics. In spite of theoretical results on identifiability in
the linear elastic case, the standard deterministic numerical methods have to
face a ill-conditioned problem, and demonstrated to be both inaccurate and
unstable. On the opposite, the evolutionary method demonstrates powerful
on the simplified problem of linear elasticity involving two materials of known
characteristics.

These results required the design of non-standard representations together
with ad hoc genetic operators. The main feature of these representation is
their independence toward any discretization of the structure: hence the com-
plexity of the algorithm itself, in terms of number of fitness evaluations, only
depends on the problem at hand, regardless of the numerical method used
to compute the fitness. Moreover, these representations can — and will — be
extended easily to identify unknown materials in a given structure.
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