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Abstract

We discuss a method of structural optimization in the context of linear
elasticity. We seek the optimal shape of an elastic body which is both of
minimum weight and maximal stiffness under specified loadings. Mathe-
matically, a weighted sum of the elastic compliance and of the weight is
minimized among all possible shapes. This problem is known to be ”ill-
posed”, namely there is generically no optimal shape and the solutions
computed by classical numerical algorithms are highly sensitive to the ini-
tial guess and mesh-dependent. Our method is based on the homogenization
theory which makes this problem well-posed by allowing microperforated
composites as admissible designs. A new numerical algorithm is thus ob-
tained which allows to capture an optimal shape on a fixed mesh. Such
a procedure is called topology optimization since it places no explicit or
implicit restriction on the topology of the optimal shape, i.e. on its number
of holes or members.

1. Introduction.

We consider the following structural optimization problem : find the optimal
shape that minimizes a weighted sum of its elastic compliance and weight.
As usual the compliance (i.e. the work done by the load) is a global measure
of the design’s rigidity. No explicit or implicit restrictions are made on the
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shape’s boundary. We work in a bounded reference domain €, occupied by
a linearly elastic material with isotropic Hooke’s law A (with bulk and
shear moduli k¥ and p), and loaded on its boundary by some given force f.
An admissible structure w is a subset of the reference domain Q obtained
by removing one or more holes (the new boundaries created this way are
traction-free). The equations of elasticity for the resulting design are

o= Age(u) e(u) = H(Vu+ Viu)

dive = 0 inw (1)
c-n=f on 0N

o-n=0 on dw \ 909

where u is the displacement vector and o the constraint matrix. The com-
pliance of the structure w is

c(w) = /89 fru= /one(u).e(u) = /wAala.a. (2)

Introducing a positive Lagrange multiplier A, our structural optimization
problem is to minimize, over all subsets w C €, the objective function F(w)
equal to the weighted sum of the compliance and weight of w. In other words
we want to compute minimizers of
inf (E(w) = c¢(w) + Aw]). (3)
wCq2
The Lagrange multiplier A has the effect of balancing the two contradic-
tory objectives of rigidity and lightness of the shape (increasing its value
decreases the weight).

As is well known, in absence of any supplementary constraints on the
admissible designs w (namely, without smoothness of the boundary), the
objective function F(w) may have no minimizer, i.e. there is no optimal
shape (see e.g. (Kohn et al., 1986), (Lurie et al., 1982), (Murat et al., 1985)).
The physical reason for this non-existence is that it is often advantageous
to cut infinitely many small holes (rather than just a few big ones) in a
given design in order to decrease the objective function. Thus, achieving
the minimum may require a limiting procedure leading to a ”generalized”
design consisting of composite materials made by microperforation of the
original material.

To cope with this physical behavior of nearly optimal shapes, we have to
enlarge the space of admissible designs by permitting perforated composites
from the start : this process is called relazation. Such composite structures
are determined by two functions #(z) and A(z) : @ is the local volume
fraction of the original material, taking values between 0 and 1, and A(z) is
the effective Hooke’s law determined by the microstructure of perforations.
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Of course, we need to find an adequate definition of the relaxed objective
function E(6, A) which generalizes E(w). This is done in the next section
by using homogenization theory which gives optimal effective properties
of composite materials. The ultimate goal is twofold : prove an existence
theorem of relaxed or composite optimal design, and find a new numerical
algorithm for computing optimal shapes.

The interested reader is referred to the pioneering works (Kohn et al.,
1986), (Lurie et al., 1982), and (Murat et al., 1985) for more details on the
mathematical theory of relaxation by homogenization for structural design
problems. The first numerical applications on meaningful problems have
appeared more recently (see (Allaire et al., 1997), (Allaire et al., 1993),
(Bendsoe et al., 1988), (Jog et al., 1994), (Suzuki et al., 1991)).

2. Relaxed or homogenized formulation.

In this section we briefly recall the main results of (Allaire et al., 1993),
(Allaire et al., 1997) concerning the relaxation procedure. We begin with
a minimizing sequence for the objective function (3), i.e. a sequence of
increasingly optimal shapes, (we)e—o. This sequence can be regarded as
finer and finer mixtures of the original material Ay and void (holes) with
lengthscale € going to 0. Then, as a result of the homogenization theory,
in the limit there exists an effective behavior of this fine mixture, i.e. a
composite material of density f(z) € [0, 1] and Hooke’s law A(z) such that
the sequence of solutions of (1) converges to the solution of

{ o= A(z)e(u) e(u)=3(Vu+ Viu)
dive =0 in Q (4)
c-n=f on 012,

and the corresponding compliances also converge

11_{% c(we) =¢(6,A) = /80 fru= /QA(.Q?)_IO'.O',

where the stress o is solution of the homogenized equation (4). Remark
that, for a given value 8 of the density, there are many different possible
effective Hooke’s law A in a set (g, the so-called G-closure set at volume
fraction @, which is the set of all possible homogenized Hooke’s law with
density 6. We can thus pass to the limit in the objective function and obtain
the relaxed or homogenized functional

fim Blwe) = |, mmin . F(6,4),

where

7(8,4) = &6, A) + A/Qe)(x).
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The relaxed functional E(f, A) has to be minimized over all admissible
composite designes, i.e. over all density 8 and effective Hooke’s law A €
Gg. This problem is not entirely explicit since the precise characterization
of the G-closure set GGy is unknown ! However, by using the principle of
complementary energy, we can restrict the set Gy of admissible composites
to a smaller set of optimal composites, namely the so-called sequential
laminates which are explicitly known. Indeed, we rewrite the compliance as

{0,A)=  min / A(z) 0.0, (5)
dive=0 1N Q JQ
on=Ff ON 90

Then, the two minimizations, in (6, A) and in o, can be switched. Further-
more, a classical result of homogenization implies that the microstructure
can be optimized pointwise in the domain. Therefore, the relaxed formula-
tion becomes

min / min (A_la.a + /\0> . (6)
dive=0 in @ JQ 0<0<1, A€Gy
omn=f ONn 9Q

For a fixed stress o, the minimization of A='6.0 on Gy is a classical problem
in the theory of homogenization and composite materials. It amounts to
find the most rigid composite of given density 8 under the stress . In two
dimensions, the result is

min A 'o.0 = Agla.a + w

2
min g (ol tload? ()

where o1 and o, are the eigenvalues of the 2 by 2 symmetric matrix o.
Furthermore, optimality in (7) is achieved for a so-called rank-2 sequential
laminate aligned with the eigendirections of o (see (Allaire et al., 1993),
(Gibianski et al., 1984) for details). In three dimensions, the result is more
complicated, and we give it in the special case of Poisson’s ratio equal to
zero, i.e. 3k = 2 (the general case is not much different in essence)

min A 'o.0 = A610.0+
A€EGy

(8)

_6 .
0 ((|oy] + oa])? + o) i |ors] > [on] + |on

+{ i (o1 + loof +los))*  if |os| < o] + |ou|

where the eigenvalues of o are labeled in such a way that |oq| < |og| < |o3].
Furthermore, optimality in the first regime of (8) is achieved by a rank-
3 sequential laminate aligned with the eigendirections of o, while in the
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second regime it is achieved by a rank-2 sequential laminate aligned with
the two first eigendirections of o.

After this crucial step, the minimization in 6 can easily be done by hand,
which completes the explicit calculation of the relaxed formulation. From a
mathematical point of view, one can prove that the relaxed formulation (6)
admits a minimizer, that any minimizing sequence of the original problem
(3) converges (in the sense of homogenization) to a minimizer of (6), and
that the two infimum values of (6) and (3) are equal. However, in general
there is no uniqueness of the minimizer.

3. Numerical algorithm.

At this point, using homogenization theory and introducing a relaxed for-
mulation might appear to be just a trick for proving existence theorems.
In truth its importance goes much further, and it is at the root of new
numerical algorithms for computing optimal shapes. Indeed, it permits to
separate the original minimization (3) in two different tasks : first, opti-
mize locally the microstructure (the effective Hooke’s law A) with explicit
formula, second, minimize globally on the density #(z). This has the ef-
fect of transforming a difficult ”free-boundary” problem into a much easier
”sizing” optimization problem in a fixed domain. It has many advantages :
on the one hand, the computational cost is very low compared to tradi-
tional algorithms since the mesh is fixed (shapes are captured rather than
tracked), on the other hand, it behaves as a topology optimizer (the final
optimal shape may have a topology completely different from that of the
initial guess). The key features of this type of algorithms have been first
recognized by M. Bendsoe and N. Kikuchi (Bendsoe et al., 1988).

Let us describe more precisely our algorithm. It is an alternate direc-
tion algorithm : we start with an initial design (usually full material ev-
erywhere), then, at each iteration, we compute the stress o solution of a
linear elasticity problem with a Hooke’s law corresponding to the previous
design, and we update the design variables # and A in terms of ¢ by using
the explicit formula for the optimal laminated composite material in (7)
or (8). We iterate this process until convergence which is detected when
the density variation becomes smaller than some threshold. The elasticity
problem is solved by finite elements (piecewise linear for the displacement
and piecewise constant for the density and Hooke’s law in (Allaire et al.,
1997)). There are some numerical difficulties associated to this choice of
finite elements (checkerboard instabilities), but they can be easily cured
(see (Allaire et al., 1997), (Jog et al., 1994), (Sigmund, 1994)).

This algorithm converges smoothly in a relatively small number of iter-
ations (between 10 and 100, depending on the desired accuracy). Further-
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Figure 1. Boundary conditions for a suspension triangle.

Figure 2. Optimal suspension triangle; full 3-D solution (left) and plate reinforced so-
lution (right).

more, in practice it is insensitive to the choice of initial guess and convergent
under mesh refinement, suggesting that the numerical algorithm always
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picks up the same global minimum. However, as expected, it usually pro-
duces homogenized optimal designs that include large region of composite
materials with intermediate density. From a practical point of view, this is
an undesirable feature since the primal goal is to find an optimal shape,
i.e. a density taking only the values 0 or 1! The remedy is to introduce a
penalization technique that will get rid of composite materials. The strat-
egy is the following : after convergence has been reached on a homogenized
optimal design, we run a few more iterations (around 10) of our algorithm
during which we force the density to take values close to 0 or 1. More specif-
ically, denoting by 6, the true optimal density, the penalization procedure
amounts to update the density at the value 8,., = gos;r—g"ﬂl. There is no
specific reason to choose a cosinus-shape function for the penalized density,
except that it works fine and yields surprisingly nice shapes featuring fine
patterns instead of composite regions.

The success of this method is due to the fact that the relaxed design
is characterized not only by a density 6 but also by a microstructure A
which is hidden at the sub-mesh level. The penalization has the effect of
reproducing this microstructure at the mesh level (see figure 1). Of course
it is strongly mesh-dependent in the sense that the finer the mesh the more
complicated the resulting "almost optimal” structure.
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Figure 3.  Objective function versus iteration number.

Figure 2 depicts a three-dimensional numerical example, namely a sus-
pension triangle. The boundary conditions are indicated in a 2-D section
of the 3-D mesh (see Figure 1). It is a multiple loads optimization, which
means that the two arrows in Figure 1 correspond to two forces separately
exerted. A full 3-D optimal structure has been computed and compared
with a so-called ”plate reinforced” optimal shape obtained by enforcing a
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middle section of the structure full of material. The full 3-D shape has 40%
of material left from the original box (50% for the plate reinforced shape).
The process for computing such optimal shapes has been to compute first
composite optimal shapes and then to apply the penalization procedure.
The convergence is smooth and monotone, except when starting the penal-
ization (see Figure 3).
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