
Research Paper
DOI 10.1007/s00158-004-0442-8
Struct Multidisc Optim 28, 87–98 (2004)

Topology optimization for minimum stress design
with the homogenization method

G. Allaire, F. Jouve and H. Maillot

Abstract This paper is devoted to minimum stress
design in structural optimization. The homogenization
method is extended to such a framework and yields
an efficient numerical algorithm for topology optimiza-
tion. The main idea is to use a partial relaxation of the
problem obtained by introducing special microstructures
which are sequential laminated composites. Indeed, the
so-called corrector terms of such microgeometries are ex-
plicitly known, which allows us to compute the relaxed
objective function. These correctors can be interpreted
as stress amplification factors, caused by the underlying
microstructure.
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1
Introduction

The homogenization method for topology optimization
in structural design is now well established (see the
books Allaire (2001), Bendsoe (1995), Cherkaev (2000),
or the numerical works Allaire et al. (1997), Allaire and
Kohn (1993), Bendsoe and Kikuchi (1988), and references
therein). However, the theory, as well as the numerical
practice, is mostly restricted to compliance, eigenfre-
quency or displacement field optimization (in the single
or multiple loadings case). The main problem is that op-
timal microstructures (which are crucial in the derivation
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of the relaxed objective function) are known only for spe-
cial objective functions, all related to the stored elastic
energy. This difficulty can be alleviated (at least from
a numerical point of view) by working with a subclass of
microstructures, possibly suboptimal but fully explicit.
The simplest class is that of sequential laminated com-
posites which have fully explicit homogenized properties.
This approach has been followed in Allaire et al. (2000),
Allaire and Jouve (2002) (see also Sect. 5.2.8 in Allaire
(2001)) and is called a partial relaxation of the problem.
The goal of this paper is to extend, from a numeri-

cal point of view, the homogenization method to another
type of objective functions corresponding to minimum
stress design. A typical example of such an objective func-
tions is

inf
Ω

∫
Ω

|σ|2 dx , (1)

where σ is the stress tensor in the elastic body Ω. There
are already some theoretical works that studied the re-
laxation of (1), either in the present elasticity context or
in conductivity (Grabovsky 1986; Lipton and Velo 2002;
Pedregal 2001; Tartar 1994), but they do not furnish
a fully explicit framework for numerical computations.
On the other hand, some papers, including Duysinx and
Bendsoe (1998), Lipton (2002), already provided numeri-
cal algorithms for some special types of microstructures.
The present paper pertains to the latter category. We
introduce a partial relaxation of the problem based on
the use of laminated microstructures. Compared to the
usual homogenization method, an additional difficulty
arises which is due to the microscopic fluctuations of the
stress tensor. Indeed, it is well known that microscopic
heterogeneities may cause stress concentrations, so that
the actual stress distribution is very different from the
macroscopic averaged stress. In the vocabulary of homog-
enization theory, the previous mechanical statement can
be phrased as: when the size ε of the heterogeneities goes
to zero, the stress tensor σε converges weakly (or in aver-
age) to the homogenized stress σ but not strongly or
pointwise. Therefore, when extending the objective func-
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tion (1) to composite materials (as the homogenization
method does), one must multiply the macroscopic stress
tensor by a stress amplification factor which takes into ac-
count the microscopic heterogeneities. In other words, the
relaxed or homogenized objective function is

inf
Ω

∫
Ω

|Pσ|2 dx , (2)

where the tensor P ≥ Id can be computed in terms of so-
called corrector terms. For general microstructures, it is
very difficult to compute these correctors. However, for
laminated composite materials, there exists an explicit
formula of the correctors (this is a classical result in me-
chanics Milton (2001) and a rigorous proof is due to Bri-
ane (1994)).
Note that there are many generalizations of the ho-

mogenization method which avoid the use of the full the-
ory of homogenization. Let us quote, for example, the
convexification method, fictitious or power-law materials
(also called SIMPmethod, see e.g. Bendsoe (1995), Bend-
soe and Sigmund (1999), Rozvany et al. (1995), Bendsoe
and Sigmund (2003), Zhou and Rozvany (1991)). How-
ever, even for such simplified heuristic methods, the prob-
lem of taking into account the microscopic stress concen-
trations has to be solved if one wants a clear mechanical
interpretation of the generalized objective function.
Finally let us make a brief comparison between our

work and that of Duysinx and Bendsoe (1998). In both
cases a local stress field is reconstructed which is different
from the averaged macroscopic stress (computed by a fi-
nite element method) and the minimal stress criterion is
evaluated with this local stress (and not the average one).
However, we emphasize two major differences between
the approach followed by Bendsoe and Duysinx and ours.
They used a pointwise maximum stress criteria whereas
we work with the simpler and smoother L2-norm crite-
ria (2). Although we can localize this criterion in a sub-
domain (see the numerical examples in Sect. 6), it is clear
that our choice of the L2-norm criteria is less sound from
a mechanical point of view. On the other hand, they were
limited to orthogonal rank-two laminates while we can
compute the stress amplification factor P for sequential
laminates of any rank. Clearly, our class of microstruc-
tures being much larger, we can find among them better
(near optimal ?) microstructures for minimizing the local
stress criterion.
The content of the paper is the following. In Sect. 2

the problem of minimum stress design is introduced in
the classical setting of shape optimization. Section 3 is de-
voted to recalling some useful results of homogenization
theory and proposes a partial relaxation of the problem.
Section 4 focuses on the computation of the correctors
(or stress amplification factors) in the case of laminated
composite materials. Section 5 gives the details of the pro-
posed partial relaxation and numerical algorithm. Finally
Sect. 6 is concerned with numerical examples.

2
Setting the problem

Although our main motivation is shape optimization (i.e.
punching holes in a given material B), we formulate the
problem as a two-phase optimization problem involving
a strong material B and a weak one A, mimicking holes.
This is common practice in the homogenization method
for shape optimization and it has the advantage of avoid-
ing many technical difficulties. Shape optimization cor-
responds to the degenerate limit A→ 0, but we shall not
try to justify it rigorously.
We consider a bounded domain Ω ∈ RN , with N = 2

or 3, occupied by two linearly elastic isotropic phases A
and B. Their Hooke’s laws, also denoted by A and B, are
given for any symmetric matrix ξ by

Aξ = 2µAξ+

(
κA−

2µA
N

)
(trξ) I2 ,

Bξ = 2µBξ+

(
κB−

2µB
N

)
(trξ) I2 ,

where 0<µA <µB are the shear moduli and 0<κA <κB
are the bulk moduli. It is convenient to introduce a Lamé
coefficient, proportional to the Poisson’s ratio, defined by

λA = κA−
2µA
N
, λB = κB−

2µB
N
.

Let χ ∈ L∞(Ω; {0, 1}) be the characteristic function of
phase A (i.e. taking the value 1 in A and 0 outside). We
define an overall Hooke’s law in Ω by

Aχ(x) = χ(x)A+(1−χ(x))B .

The corresponding displacement uχ of this structure is
computed as the unique solution inH10 (Ω)

N of



σχ =Aχe(uχ) in Ω

−divσχ = f in Ω

uχ = 0 on ∂Ω , (3)

where e(uχ) = (∇u+∇tu)/2 is the strain tensor, and f is
a given body force in L2(Ω)N .
For simplicity, we work with a model problem having

Dirichlet boundary conditions, but clearly more general
surface loadings or boundary conditions are allowed. We
address the following two-phase optimal design problem

inf
χ∈L∞(Ω;{0,1})

J(χ) , (4)

with an objective function J defined by

J(χ) =

∫
Ω

k(x)|σχ|
2dx , (5)
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where k(x) is a given piecewise-smooth non-negative
function (a weighting factor that can localize the objec-
tive function). More generally we can set

J(χ) =

∫
Ω

j(x, σχ)dx ,

with a smooth function j with quadratic growth in σ.
This allows us, for example, to minimize the equivalent
Von Mises stress intensity in Ω. Similarly, we could con-
sider a function j(x, e(uχ)) depending on the strain ten-
sor.
In general, (4) is expected to be an ill-posed prob-

lem which requires relaxation, i.e. for which there exist
only generalized optimal solutions (see e.g. Allaire (2001),
Grabovsky (1986), Kohn and Strang (1986), Murat and
Tartar (1985), Lipton and Velo (2002), Pedregal (2001),
Tartar (1994)). These generalized designs are defined as
composite materials obtained by mixing on a microscopic
scale the two phases A and B. Such composite materials
can be mathematically described thanks to homogeniza-
tion theory.

3
Homogenization and partial relaxation

We begin by recalling some basic facts from homoge-
nization theory. Let χε be a sequence of characteristic
functions in L∞(Ω; {0, 1}) (for example, a minimizing se-
quence for the optimal design problem (4)). The main re-
sult of homogenization theory (Murat and Tartar (1978),
or Theorem 1.2.16 of Allaire (2001)) tells us that, up to
a subsequence still indexed by ε, the following conver-
gences hold

χε⇀ θ weakly-* in L
∞(Ω; [0, 1]) ,

Aε = χεA+(1−χε)B
H
⇀A∗ in the sense of

homogenization. (6)

where (θ,A∗) parameterizes a composite material with
proportion 0 ≤ θ ≤ 1 of phase A and homogenized elas-
ticity tensor A∗ (corresponding to the microstructure or
geometric arrangement of the two phases). As a conse-
quence, the sequence of displacements uε (solution of (3)
with the characteristic function χε) satisfies

uε⇀u weakly inH
1
0 (Ω)

N ,

σε =Aεe(uε)⇀σ weakly in L
2
(
Ω,RN

2
)
, (7)

where u is the homogenized displacement, and σ the ho-
mogenized stress, solutions of the relaxed state equation

σ =A∗e(u) in Ω ,

−divσ = f in Ω ,

u= 0 on ∂Ω . (8)

Unfortunately, the weak convergence in (7) does not allow
one to pass to the limit in the objective function (5). In
general, we have

lim inf
ε→0

∫
Ω

k(x)|σε|
2dx≥

∫
Ω

k(x)|σ|2 dx ,

where the inequality is strict for most sequences. This is
in sharp contrast with all other previous applications of
the homogenization method for which the objective func-
tion usually does not depend on the stress nor on the
strain (as, for example, compliance, eigenfrequency, or
a least-square criterion of approximation of a target dis-
placement).
In order to pass to the limit in the objective function

(5), and thus to determine the relaxed formulation of (4),
we need to have a strong convergence result instead of the
weak one in (7). This can be obtained by introducing so-
called correctors terms. Homogenization theory (Murat
and Tartar (1978), or Sect. 1.3.6 of Allaire (2001)) states
that there exist a sequence Wε of fourth-order tensors
(called correctors) which satisfy

Wε⇀ I4 weakly in L
2
(
Ω,RN

4
)
,

AεWε⇀A
∗ weakly in L2

(
Ω,RN

4
)
,

(Wε)
tAεWε⇀A

∗ weakly in L1
(
Ω,RN

4
)
, (9)

where I4 is the fourth-order identity tensor. The main in-
terest of the corrector tensorWε is that it corrects the lack
of pointwise convergence of the strain and stress tensors,
namely

e(uε)−Wεe(u)→ 0 strongly in L
1
(
Ω,RN

2
)
,

σε−AεWεA
∗−1σ→ 0 strongly in L1

(
Ω,RN

2
)
. (10)

In the following,we shall use the notationPε=AεWεA
∗−1 ,

which is a sequence of tensors converging weakly to I4 in
L2(Ω,RN

4
). The main idea is now to rewrite the objective

function as

J(χε) =

∫
Ω

k(x)|Pεσ|
2dx+ rε , (11)

with a (hopefully) small remainder term

rε =

∫
Ω

k(x) (σε−Pεσ) · (σε+Pεσ) dx .

If one can prove that limε→0 rε = 0, then we obtain the
desired result

lim
ε→0
J(χε) =

∫
Ω

k(x)|Pσ|2 dx , (12)
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where P2 is the weak limit of P 2ε . Since Pε converges
weakly to I4, we have the following estimate (in the sense
of quadratic forms)

P ≥ I4 , (13)

which justifies our terminology of stress amplification
factor for this tensor P . (Note that Lipton (2002) wrote
|Pσ|2 = |σ|2+Sσ ·σ and called S the covariance tensor.)

Remark 1. Remark that the convergences in (10) hold

in the space L1(Ω,RN
2
) and not in L2(Ω,RN

2
) as is re-

quired to prove that limε→0 rε = 0. The reason is that,
in general, Wε and ∇u are merely L2 functions, so their
product belongs only to L1.
Thanks to a regularity result of Meyers (1963) (see

Theorem 1.3.41 of Allaire (2001) for its application in
the context of homogenization), one can improve slightly
the convergences in (10). Indeed, let p > 2 be the Meyers
exponent, i.e. the largest exponent such that the gradi-
ents of the solutions of (3) or (8) belong to Lp(Ω). (Such
an exponent does exist and depends only on A and B,
which are lower and upper bounds for any elasticity ten-
sor Aχ or A

∗ involved in the above partial differential
equations.) Then, convergences in (10) hold in the space

Lq(Ω,RN
2
) with q=min(2, p/2)> 1 (see Corollary 1.3.43

of Allaire (2001)). It may still happen that q < 2 and thus
this improved convergence is not enough to prove that
limε→0 rε = 0. In such a case, the best that we can hope is
to pass to the limit in a objective function similar to (11)
but with the exponent q < 2.

We are not able to prove (12) for any sequence of
characteristic functions χε (i.e. for any type of compos-
ite materials). Even if we could, the consequences of such
a result would be of limited practical interest since the
stress amplification factor P is not explicitly computable
in most instances. This is the reason why we restrict
ourselves to a special class of composites, namely the
sequential laminated composites. A sequential lam-
inate is defined by iteratively layering the two phases A
and B in different directions and proportions and at well-
separated length scales. A laminate is said to have core A
and matrix B when phase A is used only at the first lay-
ering iteration (at the smallest length scale) and onlyB is
layered with the previously obtained laminate at the next
iterations (see Fig. 1 for an example, and Allaire (2001),
Milton (2001) for further details).
A sequential laminate A∗, with core A and matrix B,

in proportions θ and (1− θ) respectively, is character-
ized by its lamination directions (ei)1≤i≤q (unit vectors
of RN ) and its lamination parameters (or relative densi-
ties) (mi)1≤i≤q, satisfying mi ≥ 0 and

∑q
i=1mi = 1. Its

Hooke’s law is explicitly given by

θ (A∗−B)−1 = (A−B)−1+(1− θ)
q∑
i=1

mifB(ei) , (14)

where fB(e) is defined by

fB(e)ξ : ξ =
1

µB

(
|ξe|2− (ξe · e)2

)
+

1

2µB+λB
(ξe · e)2 .

(15)

Furthermore, there also exists an explicit formula for the
corrector Pε and the stress intensity factor P of such se-
quential laminates (see Sect. 4 below). In particular, P ,
as A∗, depends only on the parameters θ, (ei)1≤i≤q and
(mi)1≤i≤q . The set of all Hooke’s laws A

∗ given by (14)
and corresponding P (with the same parameters) is de-
noted by APθ.
As a final ingredient, we recall here one of the results

of Briane (1994) concerning correctors for laminated com-
posites.

Lemma 1 (Briane). For any laminated composite,
there exist corrector tensors Wε and Pε, satisfying (9)
and (10), which furthermore are uniformly bounded in

L∞(Ω,RN
4
).

By using Lemma 1, we can improve the convergences
in (10), as is stated in the next result.

Proposition 1. Let χε be a sequence of characteristic
functions corresponding to a laminated composite. LetWε
and Pε be the corrector tensors, belonging to L

∞(Ω,RN
4
)

by Lemma 1. Then, the convergence (10) holds true in

L2(Ω,RN
2
) and the desired convergence (12) of the objec-

tive function holds true.

Proof. This is a simple adaptation of the classical proof
of (10) due to Murat and Tartar (1978) (see also Corollary
1.3.43 of Allaire (2001)). This classical argument shows
that, if un is a sequence of smooth functions that con-
verges strongly to u inH10 (Ω)

N , then

lim
ε→0
‖e(uε)−W

εe(un)‖
2
L2(Ω) ≤ C ‖e(u)− e(un)‖

2
L2(Ω) .

Fig. 1 A rank-2 sequential laminate with core A and ma-
trix B
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On the other hand, we have the following estimate

‖e(uε)−W
εe(u)‖L2(Ω) ≤ ‖e(uε)−W

εe(un)‖L2(Ω) +

‖W ε‖L∞(Ω) ‖e(u−un)‖L2(Ω) ≤

C
(
‖e(uε)−W

εe(un)‖L2(Ω)+‖e(u−un)‖L2(Ω)

)
.

Combining these two inequalities and letting n go to infin-
ity, we obtain the desired convergence (10) in L2(Ω,RN

2
)

instead of merely L1(Ω,RN
2
). This obviously implies

limε→0 rε = 0, and thus (12) holds true. �

Remark 2. All corrector results are stated in the space
L2(Ω). It is easily seen in some explicit examples that
the corrector tensorsWε and Pε are not enough to obtain
strong convergence in spaces Lp(Ω) with 2 < p ≤ +∞.
In other words, our computation of the local stress ten-
sors (even for laminates) is complete only for an objective
function of the type of (12). In general, there are other
correctors terms which may be important in the L∞-
norm but which vanish in the L2-norm. Therefore, we can
not extend our approach to objective functions involving
the maximum value of the stress.

We are now in a position to propose a relaxed formu-
lation of the original optimization problem (4). Once and
for all we fix the set of lamination directions (ei)1≤i≤q ,
which are the same at every point in Ω. Then, we pa-
rameterize a sequential laminate design by a density func-
tion θ(x) and the lamination functions (or relative densi-
ties) (mi(x))1≤i≤q with values in the constraint set

M=

{
mi ≥ 0 and

q∑
i=1

mi = 1

}
. (16)

We define the setLD of sequentially laminated designs by

LD = {(θ,mi) ∈ L
∞ (Ω; [0, 1]×M)} . (17)

For any design parameters (θ,mi) ∈ LD we can explicitly
compute an homogenized tensor A∗ by formula (14) and
a stress amplification factor P by the formulas of Sect. 4.
The proposed partial relaxation is

inf
(θ,mi)∈LD


J∗(θ,mi) =

∫
Ω

k(x)|Pσ|2dx


 , (18)

where σ is the solution of (8).
Clearly, (18) is an extension of the original problem (4)

since by taking θ = χ, a characteristic function, we obtain
A∗ =Aχ and P = I4, so we recover (4). Furthermore, any
laminated design (θ,mi) is attained as the limit (in the
sense of homogenization as described above) of a sequence
of classical designs (χε, Aε, Pε) with

J∗(θ,mi) = lim
ε→0
J(χε) .

In particular, this implies that we have not changed the
physical signification of the problem when passing from
(4) to (18). Therefore, (18) is called a partial relaxation
of (4). It is merely “partial” because we can not prove
the existence of a solution to (18). However, if the class of
sequential laminates is rich enough, (18) is a “more well-
posed” minimization problem than (4). Numerically, we
expect to have better properties (fast convergence, global
minima) for the partial relaxation (18) since its integrand
and its space of admissible designs have been smoothed
or averaged, at least partially, leading to better convex-
ity properties. As a possible justification of this partial
relaxation (18), let us simply recall that in the cases of
compliance or eigenfrequency optimization it coincides
with the full relaxation.
As usual, a nearly optimal classical design can easily

be recovered from an (almost) optimal composite design
by a suitable penalization process. Of course, the main
advantage of (18) is that it yields numerical algorithms
that act as topology optimization methods.

4
Correctors for laminated composites

In this section we describe the corrector associated with
the homogenization of a sequentially laminated compos-
ite with core A (the weak material) and matrix B. Briane
Briane (1994) gave such an explicit corrector in a con-
ductivity setting. His result was more general since any
number of phases was allowed and the ordering of lamina-
tions was arbitrary. Here we simply rephrase his result in
the elasticity case and for sequential laminates (we do not
reproduce his proofs).
Let e1, . . . , eq be q unit vectors (lamination directions)

in RN . For ε positive and arbitrarily small we define the
Hooke’s law of the rank-q laminate Aε by

A1 =A

Ak+1ε = χkεB+
(
1−χkε

)
Ak , 1≤ k ≤ q ,

Aq+1ε =Aε ,

where χkε (x) = χ
k( x
εk
) is the characteristic function of

the kth layer, with χk a [0, 1]N -periodic characteris-
tic function and εk(ε) a function going to zero with ε
and satisfying an assumption of separation of scales,
limε→0 ε

k(ε)/εk+1(ε) = 0 for 1≤ k ≤ q−1 (the scale k = 1
is thus the finest).
As is well known in the mechanical literature (see e.g.

Milton 2001) and was first proved rigorously in Briane
(1994), the strain tensor e(uε) in such a laminate is con-
stant in each phase layer, up to a term strongly converg-
ing to zero in L2. Hence, there exist q+1 constant ma-
trices ξ1, . . . , ξq+1 (independent of ε) such that the strain
tensor e(uε) can be obtained from the following induc-
tion formula (up to a term strongly converging to zero
in L2)
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

Ξ1ε = ξ

1 ,

Ξk+1ε = χkε ξ
k+1+

(
1−χkε

)
Ξkε , 1≤ k ≤ q ,

Ξq+1ε = e(uε) .

We explain below how to compute these constant ten-
sors ξk. Before that, let us remark that a similar structure
arises for the stress tensor σε = Aεe(uε) (again up to
a term strongly converging to zero in L2)

Σ1ε =Aξ

1 ,

Σk+1ε = χkεBξ
k+1+

(
1−χkε

)
Σkε , 1≤ k ≤ q ,

Σq+1ε = σε .

As proved in Briane (1994), the corrector Pε, introduced
in (10), is defined similarly by

C1ε = P

1 ,

Ck+1ε = χkεP
k+1+

(
1−χkε

)
Ckε , 1≤ k ≤ q ,

Cq+1ε = Pε ,

where the q+1 constant tensors Pk, 1 ≤ k ≤ q+1, can
be computed explicitly. Since Pεσ−σε goes to zero in
L2, the above inductive definitions of σε and Pε lead
to

P 1σ =Aξ1 , P kσ =Bξk , 2≤ k ≤ q+1 . (19)

Using (19), we can now give a precise formula for the
homogenized objective function J∗(θ,mi). Let θ

k be
the weak-∗ limit of χkε . The quantity |Pσ|

2 is given
by

j1 = |Aξ1|2 ,

jk+1 = θk|Bξk+1|2+
(
1− θk

)
jk , 1≤ k ≤ q ,

jq+1 = |Pσ|2 .

An important feature of the above formula for the
stress amplification factor P is its dependence with re-
spect to the order of the lamination directions (ej)1≤j≤q .
Indeed, enumerating these directions in a different order
yields a different value of P . This is in sharp contrast with
the lamination formula (14) which delivers the value of
the homogenized elasticity tensor A∗ and which is inde-
pendent of the ordering of the lamination directions.
Let us now explain how the strain tensors ξk, 1≤ k ≤

q+1 are computed. Since the laminate is characterized by
q separated scales (the first one being the smallest one),
each heterogeneous field representing the k first lamina-
tions can be seen, at the (k+1)th scale, as a homogeneous
mean field. Let ξk+1, 1≤ k≤ q, be the homogeneousmean
strain tensor resulting from the k first laminations with
the convention ξ1 = ξ1, ξq+1 = e(u). We denote by A

∗
k

the rank-k laminate given by the following lamination
formula(
1− (1− θ)Σki=1mi

)
(A∗k−B)

−1 =

(A−B)−1+(1− θ)Σki=1mifB(ei) . (20)

For every k, 1≤ k ≤ q, we have

ξk+1 = θkξk+1+(1− θk)ξk . (21)

From the continuity of the displacement u at the inter-
face between the regions occupied by A∗k−1 and B (this
interface being an hyperplane normal to the vector ek
at scale k) we deduce the existence of a constant vector
wk ∈ RN such that

ξk+1− ξk = wk	 ek =
1

2
(wk⊗ ek+ ek⊗wk) . (22)

Now let us note that the homogeneous mean stress result-
ing form the k first laminations and given by A∗kξk+1, 1≤

k ≤ q, is also equal to θkBξk+1+(1− θk)A∗k−1ξk. After
some tedious algebra we finally obtain

ξk+1 = e(u)+ (1− θk)wk	 ek−
q∑

i=k+1

θiwi	 ei , (23)

with

wk = qk
(
(A∗k−1−B)ξk+1

)
ek , (24)

where the symmetric matrix qk is implicitly given by the
following quadratic form

q−1k v ·v =
(
(1− θk)B+ θkA

∗
k−1

)
v	 ek : v	 ek , ∀v ∈ R

N .
(25)

5
Gradient algorithm for the partial relaxation

The advantage of dealing with generalized designs in LD,
instead of classical designs which are characteristic func-
tions, is that we can easily compute the derivative of
the objective function and build a gradient minimiza-
tion algorithm. This is a standard procedure (see e.g.
Allaire 2001) so we briefly outline it. Recall that the lam-
ination directions (ej)1≤j≤q are fixed (we assume that
the unit sphere SN−1 is sufficiently discretized by these
unit vectors). Thus the design parameters are the pro-
portion θ(x) of phase A and the lamination parameters
(or relative densities)

(
mi(x)

)
1≤i≤q

. For simplicity, the

integrand of the objective function is considered as a func-
tion of (x, e(u), θ,mi), which is always possible since σ =
A∗(θ,mi)e(u),

J∗(θ,mi) =

∫
Ω

j(x, e(u), θ,mi) dx .

For admissible increments δθ and δmi, the directional
derivative of J∗(θ,mi) is

δJ∗(θ,mi) =

∫
Ω

δθj δθ dx+

q∑
i=1

∫
Ω

δmij δmi dx , (26)
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where δθj =
∂j

∂θ
+
∂j

∂u

∂u

∂θ
, and δmij =

∂j

∂mi
+
∂j

∂u

∂u

∂mi
. As

usual we introduce an adjoint state p solution of
−div (A

∗e(p)) =−div

(
∂j

∂e(u)
(x, e(u), θ,mi)

)
in Ω

p= 0 on ∂Ω .

(27)

Then, δθj and δmij can be rewritten

δθj =
∂j

∂θ
−
∂A∗

∂θ
e(u) : e(p) ,

δmij =
∂j

∂mi
−
∂A∗

∂mi
e(u) : e(p) , (28)

with the partial derivatives

∂A∗

∂θ
= T−1

(
(A−B)−1+

q∑
i=1

mifB(ei)

)
T−1 ,

∂A∗

∂mi
=−θ(1− θ)T−1fB(ei)T

−1 ,

T = (A−B)−1+(1− θ)
q∑
i=1

mifB(ei) .

This gives the basis for a standard numerical gradient
method. Since (θ,mi) are constrained locally at each
point x (θ must stay in the range [0, 1], and the (mi)
must stay in the set M defined by (16)) the gradient
method must be combined with a projection step to sat-
isfy these constraints. Of course, cleverer optimization
schemes could be used.

Remark 3. For simplicity we focused on the case of a sin-
gle load optimization problem. There is obviously no dif-
ficulty in extending the previous analysis to multiple load
problems.

6
Numerical results

We have tested our numerical method on various 2-D
problems (see Figs. 2 and 3; 3-D would work as well in
principle) restricting ourselves to the following objective
function:

J∗(θ,mi) =

∫
Ω

j(x, e(u), θ,mi)dx=

∫
Ω

χω|Pσ|
2dx, (29)

where χω is the characteristic function of a subset ω of the
working domain ω.

Remark 4. Of course, the objective function (29) can
easily be generalized, for instance, if one wants to
minimize the equivalent Von Mises stress, by tak-

ing J∗(θ,mi) =

∫
Ω

χωAPσ · Pσdx where A is an ad

Fig. 2 Boundary conditions for the arch (left) and the
L-beam (right) problems

Fig. 3 Boundary conditions for the short (left) and the
medium (right) cantilever problems

hoc tensor. If we want to design mechanisms, we can
also introduce a target σ0 and minimize J

∗(θ,mi) =∫
Ω

χω
(
|Pσ|2−2σ0 ·σ+ |σ0|

2
)
dx.

The Young’s modulus EB of material B is normalized
to 1 and its Poisson’s ratio is fixed to 0.3. The Young’s
modulus EA of the weak material A is taken equal to
10−4 (with the same Poisson’s ratio 0.3). The algorithm
is initialized with a density θ0(x). Usually, we start with
a constant uniform value of θ0. This is the case for the
medium cantilever displayed on Fig. 4 where the fixed
overall volume fraction of material B is 30% and where
the number of laminations is q = 9 and ω = Ω. For the
same problem, we started from a non-uniform density

Fig. 4 Medium cantilever: optimal design for stress mini-
mization starting from a uniform density θ0 = 0.3 and ω =Ω.
q = 9
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Fig. 5 Medium cantilever: optimal design (right) for stress minimization starting from a density θ0 which was optimal for
compliance minimization (left), with q = 9 and ω =Ω

Fig. 6 Convergence history of the medium cantilever when
starting from the optimal design for compliance minimization
(see Fig. 5)

θ0(x) which was optimal for the compliance minimiza-
tion. The number of laminations is still q = 9, the volume
fraction of material B is 30% and ω = Ω. Both shapes
in Fig. 5 look similar, but the objective function has de-
creased (see Fig. 6) which proves that the optimal shape
is not the same for compliance or stress minimization.
Note also that the optimal shapes in Figs. 4 and 5 (right)
are the same, although they correspond to two different
initializations.
When we increase the number of laminations for the

same cantilever problem, one clearly obtains a nicer shape
that contains more composite (compare Fig. 4 with q = 9

Fig. 7 Medium cantilever: optimal design for q= 23 (left), and for fixed (mi) with q= 3, optimizing only with respect to θ (right).
In both cases, θ0 = 0.3 and ω =Ω

and Fig. 7 (right) with q = 23). On the other hand, with
q = 3, if we fix the values of the (mi = 1/3)1≤i≤3 and opti-
mize only with respect to the density θ, we obtain an op-
timal shape with many fewer composite zones (see Fig. 7
left).
The same phenomenon can be reproduced on an arch

problem (see Figs. 8 and 9). One can check on Fig. 10 that
the optimality of the composite shape increases with the
number q of laminations, although the minimum value of
J∗ does not change too much from q = 9 to q = 36.
We now investigate the influence of the choice of the

localization zone ω in the objective function (29). We
study the arch problem with three different choices of ω
which localizes j either in a neighbourhood of the high
stress zone or far from it (see Figs. 11, 12, 13). Surpris-
ingly, the size, topology and localization of ω do not seem
to be relevant parameters in the capture of the optimal
shape. This is due to the fact that instead of true void we
have a weak elastic phase A (EA = 10

−4) in our simula-
tions as is usual in the homogenization method. For min-
imum stress design this approximation seems to be ques-
tionable (although it is rigorously proved to be consistent
for compliance minimization, see Allaire (2001), Allaire
et al. (1997)). For example, in the case of Fig. 13, if A was
true void, an optimal solution would be obtained by any
shape that does not intersect the black squares (the stress
would be zero in these squares, thus yielding a minimal
zero value for the objective function). Instead we obtain
a different optimal composite shape which is stable when
decreasing the Young’s modulus of A (see Fig. 14). The
point is that in a weak phase (however weak it may be)
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Fig. 8 The arch: optimal designs with q = 36 (left) and q = 9 (right). In both cases, θ0 = 0.3 and ω =Ω

Fig. 9 The arch: optimal design when optimizing only with
respect to θ, with fixed (mi), q = 3, θ0 = 0.3 and ω =Ω

Fig. 10 The arch: convergence history for q = 36 (- - -), q = 9
(...) or optimizing only with respect to θ with fixed (mi) and
q = 3 (—). In all cases, θ0 = 0.3 and ω =Ω

Fig. 11 The arch: optimal design with q = 9, θ0 = 0.3. The subset ω is the black zone on the right

the stress is never zero as in void, and thus the structure
should be optimized to minimize it.
Note that we may decide that ω is not subject to opti-

mization and is, for instance, always filled with the strong
material B. Then j does not explicitly (but only implic-
itly through u) depend on the design variables θ and (mi),
i.e. ∂j∂θ =

∂j
∂mi
= 0 in (28). In this case, the minimization of

J∗ (and the optimization of A∗) only relies on the adjoint
state contribution, which is enough to recover an optimal
composite shape. This is the case, for example, in Fig. 11
where the same optimal shape is obtained if ω is filled
with the strongmaterialB which can not be removed dur-
ing the optimization process.
Another example is the L-beam (see Fig. 15). Remark

that there is a stress concentration at the re-entrant cor-
ner and that our algorithm is unable to change the shape
of the corner in order to reduce this stress concentration
(whatever the choice of ω may be).
Finally we observe that the optimal short cantilever

does not exactly correspond to the classical orthogonal
two-bar truss design which is optimal for compliance min-
imization (see Figs. 16 and 17 for different working do-
mains, design variables and volume of phase B).
All the results presented here are optimal composite

shapes, i.e. there is no penalization of intermediate densi-
ties in order to obtain a classical shape (black and white
design). As a matter of fact, the traditional penalization
procedures, which act on the density θ by forcing it to
be close to 0 or 1, do not work so well in practice on
stress minimization problems. This may well be related
to the so-called stress singularity problem as described in
Achtziger (2000), Cheng and Guo (1992), Pereira et al.
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Fig. 12 The arch: optimal design with q = 9, θ0 = 0.3. The subset ω is the black zone on the right

Fig. 13 The arch: optimal design with q = 9, θ0 = 0.3. The subset ω is the black zone on the right

Fig. 14 The arch: optimal design with q = 9, θ0 = 0.3, and
the same subset ω as in Fig. 13. The weak phase is weaker:
EA = 10

−5

Fig. 15 L-beam: optimal composite shape. q = 9, θ0 = 0.3
and ω =Ω

Fig. 16 Short cantilever: optimal design. q = 9, θ0 = 0.1 and
ω =Ω

(2004) (we thank one of the anonymous referee for point-
ing this issue to us). The problem is that for low values
of the density the stress may be not so small due to dis-
cretization errors. Therefore, we advocate a different pe-
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Fig. 17 Short cantilever: optimal design when optimizing
with respect to θ only with fixed (mi). q = 9, θ0 = 0.3 and
ω =Ω

nalization scheme which relies on microstructure reduc-
tion: after convergence to a composite optimal design, we
reduce the number of laminations or we fix arbitrarily the
values of the lamination parameters. This has the effect of
penalizing intermediate densities, as is clear from the re-
sults of Figs. 7 (left), 9, 17, where only the density θ was
subject to optimization.
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