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Preface

These notes attempt to provide an elementary introduction to the one-dimen-

sional discrete-time branching random walk, and to exploit its spinal structure.

They begin with the case of the Galton–Watson tree for which the spinal struc-

ture, formulated in the form of the size-biased tree, is simple and intuitive.

Chapter 3 is devoted to a few fundamental martingales associated with the

branching random walk.

The spinal decomposition is introduced in Chapter 4, first in its more general

form, followed by two important examples. This chapter gives the most important

mathematical tool of the notes.

Chapter 5 forms, together with Chapter 4, the main part of the text. Exploit-

ing the spinal decomposition theorem, we study various asymptotic properties of

the extremal positions in the branching random walk and of the fundamental mar-

tingales.

The last part of the notes presents a brief account of results for a few related

and more complicated models.
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Gouéré for stimulating discussions, to Bastien Mallein and Michel Pain for great

assistance in the preparation of the present notes, and to Christian Houdré for
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Chapter 1

Introduction

We introduce branching Brownian motion as well as the branching random walk,

and present the elementary but very useful tool of the many-to-one formula. As a

first application of the many-to-one formula, we deduce the asymptotic velocity of

the leftmost position in the branching random walk. The chapter ends with some

examples of branching random walks and more general hierarchical fields.

1.1. Branching Brownian motion

Branching Brownian motion is a simple continuous-time spatial branching process

defined as follows. At time t = 0, a single particle starts at the origin, and moves

as a standard one-dimensional Brownian motion, whose lifetime, random, has the

exponential distribution of parameter 1. When the particle dies, it produces two

new particles (in other words, the original particle splits into two), moving as

independent Brownian motions, each having a mean 1 exponential random lifetime.

The particles are subject to the same splitting rule. And the system goes on

indefinitely. See Figure 1 below.

LetX1(t), X2(t), . . . , XN(t)(t) denote the positions of the particles in the system

at time t. Let

f(x) := 1{x≥0}.

We consider

u(t, x) := E
(N(t)∏

i=1

f(x+Xi(t))
)
.

1
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time

space

Figure 1: Branching Brownian motion

By conditioning on the lifetime of the initial ancestor, it is seen that

u(t, x) = e−tE[f(x+B(t))] +

∫ t

0

e−sE[u2(t− s, x+B(s))] ds

= e−tE[f(x+B(t))] + e−t
∫ t

0

er E[u2(r, x+B(t− r))] dr, (r := t− s)

where (B(s), s ≥ 0) denotes standard Brownian motion. We then arrive at the

so-called F-KPP equation (Fisher [113] who was interested in the evolution of a

biological population, Kolmogorov, Petrovskii and Piskunov [158])

(1.1)
∂u

∂t
=

1

2

∂2u

∂x2
+ u2 − u.

This equation holds for a large class of measurable functions f . The special form

of f we take here is of particular interest, since in this case,

u(t, x) = P
(

min
1≤i≤N(t)

Xi(t) ≥ −x
)
= P

(
max

1≤i≤N(t)
Xi(t) ≤ x

)
,

which is the distribution function of the maximal position of branching Brownian

motion at time t.

The F-KPP equation is known for its travelling wave solutions: let m(t) denote

the median of u, i.e., u(t, m(t)) = 1
2
, then

lim
t→∞

u(t, x+m(t)) = w(x),
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uniformly in x ∈ R, and w is a wave solution of the F-KPP equation (1.1) at speed

21/2, meaning that w(x− 21/2t) solves (1.1), or, equivalently,

1

2
w′′ + 21/2w′ + w2 − w = 0 .

It is proved by Kolmogorov, Petrovskii and Piskunov [158] that limt→∞
m(t)
t

= 21/2,

and by Bramson ([67] and [69]) that

(1.2) m(t) = 21/2t−
3

23/2
ln t+ C + o(1) , t→ ∞ ,

for some constant C.

There is a probabilistic interpretation of the travelling wave solution w: by

Lalley and Sellke [164], w can be written as

(1.3) w(x) = E
(
e−C1D∞ e−21/2x

)
,

where C1 > 0 is a constant, and D∞ > 0 is a random variable whose distribution

depends on the branching mechanism (in our description, it is binary branching).

The idea of this interpretation is also present in the work of McKean [180].

The connection, observed by McKean [180], between the branching system and

the F-KPP differential equation makes the study of branching Brownian motion

particularly appealing.1 As such, branching Brownian motion can be used to

obtain — or explain — results for the F-KPP equation. For purely probabilistic

approaches to the study of travelling wave solutions to the F-KPP equation, see

Neveu [204], Harris [124], Kyprianou [162]. More recently, physicists have been

much interested in the effect of noise on wave propagation; see discussions in

Section 6.2.

We study branching Brownian motion as a purely probabilistic object. More-

over, the Gaussian displacement of particles in the system does not play any es-

sential role, which leads us to study the more general model of branching random

walks.

1Another historical reference is a series of papers by Ikeda, Nagasawa and Watanabe ([141],
[142], [143]), who are interested in a general theory connecting probability with differential equa-
tions.
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1.2. Branching random walks

These notes are devoted to the (discrete-time, one-dimensional) branching random

walk, which is a natural extension of the Galton–Watson process in the spatial

sense. The distribution of the branching random walk is governed by a random

N -tuple Ξ := (ξi, 1 ≤ i ≤ N) of real numbers, where N is also random and can be

0; alternatively, Ξ can be viewed as a finite point process on R.

An initial ancestor is located at the origin. Its children, who form the first

generation, are scattered in R according to the distribution of the point process

Ξ. Each of the particles (also called individuals) in the first generation produces

its own children who are thus in the second generation and are positioned (with

respect to their parent) according to the same distribution of Ξ. The system goes

on indefinitely, but can possibly die if there is no particle at a generation. As usual,

we assume that each individual in the n-th generation reproduces independently of

each other and of everything else until the n-th generation. The resulting system

is called a branching random walk. See Figure 2 below.
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Figure 2: A branching random walk and its first four generations

We mention that several particles can share a same position.

It is clear that if we only count the number of individuals in each generation,

we get a Galton–Watson process, with N := #Ξ governing its reproduction distri-

bution.

Throughout, |x| denotes the generation of the particle x, and xi (for 0 ≤ i ≤ |x|)

denotes the ancestor of x in the i-th generation (in particular, x0 := ∅, x|x| := x).
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Let (V (x), |x| = n) denote the positions of the individuals in the n-th generation.

We are interested in the asymptotic behaviour of infx: |x|=n V (x).

Let us introduce the (log-)Laplace transform of the point process2

(1.4) ψ(t) := lnE
( ∑

x: |x|=1

e−tV (x)
)
∈ (−∞, ∞], t ∈ R.

We always assume that ψ(0) > 0, and that ψ(t) <∞ for some t > 0.

The assumption ψ(0) > 0, i.e., E(#Ξ) > 1, means that the associated Galton–

Watson tree is supercritical, so by Theorem 2.1 in Section 2.1, the system survives

with positive probability. However, ψ(0) is not necessarily finite.

The assumption inft>0 ψ(t) <∞ ensures that the leftmost particle has a linear

asymptotic velocity, as we will see in Theorem 1.3 in Section 1.4.

1.3. The many-to-one formula

Throughout this section, we fix t > 0 such that ψ(t) <∞.

Let S0 := 0 and let (Sn−Sn−1, n ≥ 1) be a sequence of independent and identi-

cally distributed (i.i.d.) real-valued random variables such that for any measurable

function h : R → [0, ∞),

E[h(S1)] =
E[

∑
|x|=1 e

−tV (x)h(V (x))]

E[
∑
|x|=1 e

−tV (x)]
,

i.e., E[h(S1)] =
E[

∑
u∈Ξ e−tuh(u)]

E[
∑

u∈Ξ e−tu]
if you prefer a formulation in terms of the point

process Ξ.

Theorem 1.1. (The many-to-one formula) Assume that t > 0 is such that

ψ(t) <∞. For any n ≥ 1 and any measurable function g : Rn → [0, ∞), we have

E
[ ∑

|x|=n

g(V (x1), . . . , V (xn))
]
= E

[
etSn+nψ(t)g(S1, . . . , Sn)

]
.

2For notational simplification, we often write from now on inf |x|=n(· · · ) or
∑
|x|=1(· · · ), instead

of infx: |x|=n(· · · ) or
∑

x: |x|=1(· · · ), with inf∅(· · · ) := ∞ and
∑

∅
(· · · ) := 0.
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Proof. We prove it by induction in n. For n = 1, this is the definition of the

distribution of S1. Assume the identity proved for n. Then, for n+1, we condition

on the branching random walk in the first generation; by the branching property,

this yields

E
[ ∑

|x|=n+1

g(V (x1), . . . , V (xn+1))
]

= (E⊗ Ẽ)
[ ∑

|y|=1

∑

|z̃|=n

g(V (y), V (y) + Ṽ (z̃1), . . . , V (y) + Ṽ (z̃n))
]
,

where Ẽ is expectation with respect to the branching random walk (Ṽ (z̃ )) which

is independent of (V (y), |y| = 1). By induction hypothesis, for any u ∈ R,

Ẽ
( ∑

|z̃|=n

g(u+ Ṽ (z̃1), . . . , u+ Ṽ (z̃n))
)
= Ẽ

(
etS̃n+nψ(t)g(u, u+ S̃1, . . . , u+ S̃n)

)
,

with the random walk (S̃j , j ≥ 1) independent of (V (y), |y| = 1), and distributed

as (Sj, j ≥ 1) under P. Since

E
[ ∑

|y|=1

h(V (y))
]
= E

[
etS1+ψ(t)h(S1)

]
,

it remains to note that (E ⊗ Ẽ)[etS1+tS̃n+(n+1)ψ(t)g(S1, S1 + S̃1, . . . , S1 + S̃n)] is

nothing else but E[etSn+1+(n+1)ψ(t)g(S1, S2, . . . , Sn+1)]. This implies the desired

identity for all n ≥ 1. �

Remark 1.2. Behind the innocent-looking new random walk (Sn) is a change-of-

probabilities setting, which we will study in depth in Chapter 4. �

1.4. Application: Velocity of the leftmost position

Now that we are equipped with the many-to-one formula, let us see how useful it

can be via a simple application. As we will prove deeper results in the forthcoming

chapters, our concern here is not to provide arguments in their full generality.

Rather, we focus, at this stage, on understanding of how the many-to-one formula

can help us in the study of the branching random walk.
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Among the most immediate questions about the branching random walk, is

whether there is an asymptotic velocity of the extreme positions. The answer is

as follows.

Theorem 1.3. Assume ψ(0) > 0. If ψ(t) <∞ for some t > 0, then almost surely

on the set of non-extinction,

(1.5) lim
n→∞

1

n
inf
|x|=n

V (x) = γ,

where

(1.6) γ := − inf
s>0

ψ(s)

s
∈ R.

Remark 1.4. If instead we want to know the velocity of sup|x|=n V (x), we only

need to replace the point process Ξ by −Ξ. �

Before proving Theorem 1.3, we need a simple lemma, stated as follows.

Lemma 1.5. For any k ≥ 1 and t > 0, we have

1

k
E
[
inf
|x|=k

V (x)
]
≥ −

ψ(t)

t
.

Proof. We have

1

k
E
[
− inf
|x|=k

tV (x)
]

≤
1

k
lnE

[
e− inf|x|=k tV (x)

]
(Jensen’s inequality)

≤
1

k
lnE

[ ∑

|x|=k

e−tV (x)
]
. (bounding max by sum)

It remains to note that E[
∑
|x|=k e

−tV (x)] = ekψ(t) by the many-to-one lemma or by

a direct computation. �

It is now time to prove Theorem 1.3.

Proof of Theorem 1.3. We prove the theorem under the additional condition that

#Ξ ≥ 1 a.s. (i.e., the system survives with probability one) and that ψ(0) <∞.

Let Xn := inf |x|=n V (x). It is easily seen that for any pair of positive integers

n and k, we have

Xn+k ≤ Xn + X̃k ,
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where X̃k is a random variable having the distribution of Xk, independent of Xn.

This property does not allow us to use Kingman’s subadditive ergodic theorem.

However, we can use an improved version (Liggett [166]) to deduce that Xn

n
→ α

a.s. and in L1, with α := infn≥1
E(Xn)
n

.

So we need to check that α = γ. By Lemma 1.5, we have α ≥ γ; so it remains to

check that α ≤ γ. Let ε > 0. It suffices to prove that for some integer L = L(ε) ≥ 1

and with positive probability,

lim sup
j→∞

1

jL
inf
|x|=jL

V (x) ≤ − inf
s>0

ψ(s)

s
+ ε .

Let t > 0 be such that

ψ(t)

t
> ψ′(t) > inf

s>0

ψ(s)

s
− ε.

[Let s∗ := inf{s > 0 : ψ(s)
s

= infu>0
ψ(u)
u

} > 0. If 0 < s∗ < ∞, then we only need

to take t ∈ (0, s∗); if s∗ = ∞, which means that infs>0
ψ(s)
s

is not reached but is

the limit when s→ ∞, then any t ∈ (0, ∞) will do.]

Write a := infs>0
ψ(s)
s

− ε. We construct a new Galton–Watson tree T̃ which

is a subtree of the original Galton–Watson tree T: the first generation of the new

Galton–Watson tree T̃ consists of all the vertices x in the L-th generation of T

such that V (x) ≤ −aL; more generally, for any integer n ≥ 1, if x is a vertex in

the n-th generation of T̃, its offpring in the (n + 1)-th generation of T̃ consists of

all the vertices y in the (n+ 1)L-th generation of T which are descendants of x in

T such that V (y)− V (x) ≤ −aL.

By construction, the new Galton–Watson tree T̃ has mean offspring m
T̃
:=

E[
∑
|x|=L 1{V (x)≤−aL}]. By the many-to-one formula,

m
T̃
= E

[
etSL+Lψ(t) 1{SL≤−aL}

]
.

Recall that ψ′(t) < ψ(t)
t
, so let us choose and fix b ∈ (ψ′(t), ψ(t)

t
), to see that

m
T̃
≥ e[ψ(t)−bt]L P(−bL ≤ SL ≤ −aL).

Since E(S1) = −ψ′(t) by our choice of t (which lies in (0, s∗)), we have −b <

E(S1) < −a by definition, so that P(−bL ≤ SL ≤ −aL) → 1, L → ∞, whereas

e[ψ(t)−bt]L → ∞, L→ ∞. Therefore, we can choose and fix L such that m
T̃
> 1.
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The new Galton–Watson tree T̃ being supercritical, it has positive probability

to survive (by Theorem 2.1 in Section 2.1). Upon the set of non-extinction, we

have inf |x|=jL V (x) ≤ −ajL = (− infs>0
ψ(s)
s

+ ε)jL, ∀j ≥ 1. This completes the

proof of Theorem 1.3. �

We close this section with a question. Theorem 1.3 tells us that the asymptotic

velocity of inf |x|=n V (x) is determined by the Laplace transform ψ. However, the

Laplace transform of a point process does not describe completely the law of the

point process. For example, it provides no information of the dependence structure

between the components. If ψ(0) < ∞, then there exists a real-valued random

variable ξ such that

ψ(t)− ψ(0) = lnE[e−tξ], t ≥ 0.

Let us consider the following model: The reproduction law of its associated Galton–

Watson process is the law of #Ξ; given the Galton–Watson tree, we assign, on

each of the vertices, i.i.d. random variables distributed as ξ. We call the resulting

branching random walk (Vξ(x)). According to Theorem 1.3, if 0 < ψ(0) <∞ and

if ψ(t) <∞ for some t > 0, then 1
n
inf |x|=n V (x) and 1

n
inf |x|=n Vξ(x) have the same

almost sure limit.

Question 1.6. Give an explanation for this identity without using Theorem 1.3.

1.5. Examples

We give here some examples of branching random walks, and more general hier-

archical fields. In the literature, the branching random walk bears various names,

all leading to equivalent or similar structure. Let us make a short list.

Example 1.7. (Mandelbrot’s multiplicative cascades) Mandelbrot’s multi-

plicative cascades are introduced by Mandelbrot [193], and studied by Kahane [150]

and Peyrière [210], in an attempt at understanding the intermittency phenomenon

in Kolmogorov’s turbulence theory. It can be formulated, for example, in terms

of a stochastically self-similar measure on a compact interval. In fact, the stan-

dard Cantor set consists in dividing, at each step, a compact interval into three
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identical sub-intervals and removing the middle one. Instead of splitting an in-

terval into three identical sub-intervals, we can use a possibly random number of

sub-intervals according to a certain finite-dimensional distribution (which is not

necessarily supported in a simplex, while the dimension can be random), and the

resulting lengths of sub-intervals form an example of Mandelbrot’s multiplicative

cascade. If we look at the logarithm of the lengths, we have a branching random

walk.

Mandelbrot’s multiplicative cascades also bear other names, such as random

recursive constructions (Mauldin and Williams [194]). A key ingredient is to study

fixed points of the so-called smoothing transforms (Durrett and Liggett [103],

Alsmeyer [20], Alsmeyer, Biggins and Meiners [21]). For surveys on these topics,

see Liu [168], Biggins and Kyprianou [58]. �

Example 1.8. (Gaussian free fields and log-correlated Gaussian fields)

The two-dimensional discrete Gaussian free field possesses a complicated struc-

ture of extreme values, but it turns out to be possible to compare it with that

of the branching random walk. By comparison to analoguous results for branch-

ing random walks, many deep results have been recently established for Gaussian

free fields and more general logarithmically correlated Gaussian fields (Bolthausen,

Deuschel and Giacomin [61], Madaule [183], Biskup and Louidor [60], Ding, Roy

and Zeitouni [96]). In parallel, in the continuous-time setting, following Kahane’s

pioneer work in [151], the study of Gaussian multiplicative chaos has witnessed

importance recent progress (Duplantier, Rhodes, Sheffield and Vargas [101], Gar-

ban, Rhodes and Vargas [116], Rhodes and Vargas [217]).

Via Dynkin’s isomorphism theorem, local times of Markov processes are closely

connected to (the square of) some Gaussian processes. As such, new lights have

been recently shed on the cover time of the two-dimensional torus by simple

random walk (Ding [95], Belius and Kistler [36]). �

Example 1.9. (Spatial branching models in physics) In [94], Derrida and

Spohn introduced directed polymers on trees, as a hierarchical extension of

Derrida’s Random Energy Model (REM) for spin glasses. In this setting, the

energy of a polymer, being the sum of i.i.d. random variables assigned on each



§1.6 Notes ] 11

edge of the tree, is exactly a branching random walk with i.i.d. displacements.

The continuous-time setting has also been studied in the literature (Bovier and

Kurkova [66]).

Directed polymers on trees also provide an interesting example of random envi-

ronment for random walks. The tree-valued random walk in random environment

is an extension of Lyons’s biased random walk on trees ([171], [172]), in the sense

that the random walk is randomly biased. Chapter 7 will be devoted to this model.

The F-KPP equation has always enjoyed much popularity in the physics lit-

erature. For example, in particle physics, high energy evolution of the quantum

chromodynamics (QCD) amplitudes is known to obey the F-KPP equation (Mu-

nier and Peschanski [201]). In Section 6.2, we are going to discuss on branching

random walks with selection, in connection with the slowdown phenomenon in the

wave propagation of the F-KPP equation studied by physicists. For a substantial

review on the physics literature of the F-KPP equation, see van Saarloos [228]. �

1.6. Notes

As mentioned in the preface, the lecture notes of J. Berestycki [43] and Zeitouni [235]

give a general and excellent account of, respectively, branching Brownian motion,

and branching random walks with applications to Gaussian free fields.

The many-to-one formula presented in Section 1.3 can be very conveniently

used in computing the first moment. There is a corresponding formula, called the

many-to-few formula, suitable for computing higher-order moments; see Harris and

Roberts [127].

Theorem 1.3 in Section 1.4 is proved by Hammersley [120] in the context of

the first-birth problem in the Bellman–Harris process, by Kingman [156] for the

positive branching random walk, and by Biggins [49] for the branching random

walk.

We assume throughout that ψ(t) < ∞ for some t > 0. Without this assump-

tion, the behaviour of the minimal position in the branching random walk has a

different nature. See for example the discussions in Gantert [114].

The list of examples in Section 1.5 should be very, very long (I am trying
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to say that the present list is very, very incomplete); see Biggins [54] for a list of

references dealing with the branching random walk under other names. Let me

add a couple of recent and promising examples: Arguin [26] delivers a series of

lectures on work in progress on characteristic polynomials of unitary matrices, and

on the Riemann zeta function on the critical line, whereas Äıdékon [11] successfully

applies branching random walk techniques to Conformal Loop Ensembles (CLE).



Chapter 2

Galton–Watson trees

We recall a few elementary properties of supercritical Galton–Watson trees, and

introduce the notion of size-biased trees. As an application, we give in Section 2.3

the beautiful conceptual proof by Lyons, Pemantle and Peres [175] of the Kesten–

Stigum theorem for the branching process.

The goal of this brief chapter is to give an avant-goût of the spinal decomposi-

tion theorem, in the simple setting of the Galton–Watson tree. If you are already

familiar with any form of the spinal decomposition theorem, this chapter can be

skipped.

2.1. The extinction probability

Consider a Galton–Watson process, also referred to as a Bienaymé–Galton–Watson

process, with each particle (or: individual) having i children with probability pi

(for i ≥ 0;
∑∞

j=0 pj = 1), starting with one initial ancestor. To avoid trivial

discussions, we assume throughout that p0 + p1 < 1.

Let Zn denote the number of particles in the n-th generation. By definition, if

Zn = 0 for a certain n, then Zj = 0 for all j ≥ n. We write

q := P{Zn = 0 eventually}, (extinction probability)

m := E(Z1) =

∞∑

i=0

ipi ∈ (0, ∞]. (mean number of offspring of each individual)

13
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Theorem 2.1. (i) The extinction probability q is the smallest root of the equation

f(s) = s for s ∈ [0, 1], where f(s) :=
∑∞

i=0 s
ipi, 0

0 := 1.

(ii) In particular, q = 1 if m ≤ 1, and q < 1 if 1 < m ≤ ∞.

Proof. By definition, f(s) = E(sZ1), and E(sZn |Zn−1) = f(s)Zn−1 . So E(sZn) =

E(f(s)Zn−1), which leads to E(sZn) = fn(s) for any n ≥ 1, where fn denotes the

n-th fold composition of f . In particular, P(Zn = 0) = fn(0).

Since {Zn = 0} ⊂ {Zℓ = 0} for all n ≤ ℓ, we have

q = P
(⋃

n

{Zn = 0}
)
= lim

n→∞
P(Zn = 0) = lim

n→∞
fn(0).

The function f : [0, 1] → R is increasing and strictly convex, with f(0) = p0 ≥ 0

and f(1) = 1. It has at most two fixed points. Note that m = f ′(1−). See Figure

3.

s

f(s)

1

1q < 1

•

•
p0

0

Case m > 1

s

f(s)

1

q = 1

•

p0

0

Case m ≤ 1

Figure 3: Generating function of the reproduction law

If m ≤ 1, then p0 > 0, and f(s) > s for all s ∈ [0, 1). So fn(0) → 1. In other

words, q = 1 is the unique root of f(s) = s.

If m ∈ (1, ∞], then fn(0) converges increasingly to the unique root of f(s) = s,

s ∈ [0, 1). In particular, q < 1. �

It follows that in the subcritical case (i.e., m < 1) and in the critical case

(m = 1), there is extinction with probability 1, whereas in the supercritical case

(m > 1), the system survives with positive probability.

If m <∞, we can define

Mn :=
Zn
mn

, n ≥ 0.
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Since (Mn) is a non-negative martingale with respect to the natural filtration of

(Zn), we have Mn → M∞ a.s., where M∞ is a non-negative random variable. By

Fatou’s lemma, E(M∞) ≤ lim infn→∞E(Mn) = 1. It is, however, possible that

M∞ = 0. So it is important to know whether P(M∞ > 0) is positive.

If there is extinction, then trivially M∞ = 0. In particular, by Theorem 2.1,

we have M∞ = 0 a.s. if m ≤ 1. What happens if m > 1?

Lemma 2.2. Assume m <∞. Then P(M∞ = 0) is either q or 1.

Proof. We already know thatM∞ = 0 a.s. if m ≤ 1. So let us assume 1 < m <∞.

By definition, Zn+1 =
∑Z1

i=1 Z
(i)
n (notation:

∑
∅

:= 0), where Z
(i)
n , i ≥ 1,

are copies of Zn, independent of each other and of Z1. Dividing both sides by

mn and letting n → ∞, it follows that mM∞ has the law of
∑Z1

i=1M
(i)
∞ , where

M
(i)
∞ , i ≥ 1, are copies of M∞, independent of each other and of Z1. Hence

P(M∞ = 0) = E[P(M∞ = 0)Z1] = f(P(M∞ = 0)), i.e., P(M∞ = 0) is a root of

f(s) = s, so P(M∞ = 0) = q or 1. �

Theorem 2.3. (Kesten and Stigum [155]) Assume 1 < m <∞. Then

E(M∞) = 1 ⇔ P(M∞ > 0 | non-extinction) = 1 ⇔ E(Z1 ln+ Z1) <∞,

where ln+ x := lnmax{x, 1}.

Theorem 2.3 says that E(M∞) = 1 ⇔ P(M∞ = 0) = q ⇔
∑∞

i=1 pi i ln i <∞.

The proof of Theorem 2.3 is postponed to Section 2.3. We will see that the

condition E(Z1 ln+ Z1) <∞, apparently technical, is quite natural.

2.2. Size-biased Galton–Watson trees

In order to introduce size-biased Galton–Watson trees, let us view the tree as a

random element in a probability space (Ω, F , P), using the standard formalism.

Let U := {∅} ∪
⋃∞
k=1(N

∗)k, where N
∗ := {1, 2, . . .}. For elements u and v of

U , let uv be the concatenated element, with u∅ = ∅u = u.

A tree ω is a subset of U satisfying the following properties: (i) ∅ ∈ ω; (ii)

if uj ∈ ω for some j ∈ N
∗, then u ∈ ω; (iii) if u ∈ ω, then uj ∈ ω if and only if

1 ≤ j ≤ Nu(ω) for some non-negative integer Nu(ω).
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In words, Nu(ω) is the number of children of the vertex u. Vertices of ω are

labeled by their line of descent: the vertex u = i1 . . . in ∈ U stands for the in-th

child of the in−1-th child of . . . of the i1-th child of the initial ancestor ∅. See

Figure 4.

•
∅

•
1

•
2

•
13

•
12

•
11

•
22

•
21

•
121

•
122

•
211

•
212

•
213

•
214

Figure 4: Vertices of a tree as elements of U

Let Ω be the space of all trees, endowed with a σ-field F defined as follows.

For u ∈ U , let Ωu := {ω ∈ Ω : u ∈ ω} be the subspace of Ω consisting of all the

trees containing u as a vertex. [In particular, Ω∅ = Ω.] Let F := σ{Ωu, u ∈ U }.

Let T : Ω → Ω be the identity application.

Let (pk, k ≥ 0) be a probability, i.e., pk ≥ 0 for all k ≥ 0, and
∑∞

k=0 pk = 1.

There exists a probability P on (Ω, F ) (Neveu [203]) such that the law of T under

P is the law of the Galton–Watson tree with reproduction distribution (pk).

Let Fn := σ{Ωu, u ∈ U , |u| ≤ n}, where |u| is the length of u (or the

generation of the vertex u in the language of trees). Note that F is the smallest

σ-field containing all the Fn.

For any tree ω ∈ Ω, let Zn(ω) be the number of individuals in the n-th gener-

ation, i.e., Zn(ω) := #{u ∈ U : u ∈ ω, |u| = n}. It is easily checked that for any

n, Zn is a random variable taking values in N := {0, 1, 2, . . .}.

Assume now m < ∞. Since (Mn) is a non-negative martingale, we can define

Q to be the probability on (Ω, F ) such that for any n,

Q|Fn
=Mn •P|Fn

,

where P|Fn
and Q|Fn

are the restrictions of P and Q on Fn, respectively.
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For any n, Q(Zn > 0) = E[1{Zn>0}Mn] = E[Mn] = 1, which yields Q(Zn >

0, ∀n) = 1: there is almost sure non-extinction of the Galton–Watson tree T under

the new probability Q. The Galton–Watson tree T under Q is called a size-biased

Galton–Watson tree. We intend to give a description of its paths.

We start with a lemma. Let N := N∅. If N ≥ 1, we write T1, T2, . . ., TN for

the N subtrees rooted at each of the N individuals in the first generation.

Lemma 2.4. Let k ≥ 1. If A1, A2, . . ., Ak are elements of F , then

Q(N = k, T1 ∈ A1, . . . , Tk ∈ Ak)

=
kpk
m

1

k

k∑

i=1

P(A1) · · ·P(Ai−1)Q(Ai)P(Ai+1) · · ·P(Ak).(2.1)

Proof. By the monotone class theorem, we may assume, without loss of generality,

that A1, A2, . . ., Ak are elements of Fn, for some n. Write Q(2.1) for Q(N =

k, T1 ∈ A1, . . . , Tk ∈ Ak). Then

Q(2.1) = E
(Zn+1

mn+1
1{N=k, T1∈A1,...,Tk∈Ak}

)
.

On {N = k}, we can write Zn+1 =
∑k

i=1 Z
(i)
n , where Z

(i)
n is the number of

individuals in the n-th generation of the subtree rooted at the i-th individual in

the first generation. Hence

Q(2.1) =
1

mn+1
P(N = k)

k∑

i=1

E
{
Z(i)
n 1{T1∈A1,...,Tk∈Ak}

∣∣∣N = k
}
.

We have P(N = k) = pk, and

E{Z(i)
n 1{T1∈A1,...,Tk∈Ak} |N = k} = E[Zn 1{T∈Ai}]

∏

j 6=i

P(Aj),

which is mnQ(Ai)
∏

j 6=iP(Aj). The lemma is proved. �

It follows from Lemma 2.4 that the root ∅ of the size-biased Galton–Watson

tree has the biased distribution, i.e., having k children with probability kpk
m
; among

the individuals in the first generation, one of them is chosen randomly according to
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the uniform distribution: the subtree rooted at this vertex is a size-biased Galton–

Watson tree, whereas the subtrees rooted at all other vertices in the first generation

are usual Galton–Watson trees, and all these subtrees are independent.

We iterated the procedure, and obtain a decomposition of the size-biased

Galton–Watson tree into an (infinite) spine and i.i.d. copies of the usual Galton–

Watson tree: The root ∅ =: w0 has the biased distribution, i.e., having k children

with probability kpk
m
. Among the children of the root, one of them is chosen ran-

domly according to the uniform distribution, as the element of the spine in the

first generation; let us denote this element by w1. We attach subtrees rooted at

all other children; they are independent copies of the usual Galton–Watson tree.

The vertex w1 has the biased distribution. Among the children of w1, we choose

at random one of them as the element of the spine in the second generation, de-

noted by w2. Independent copies of the usual Galton–Watson tree are attached as

subtrees rooted at all other children of w1, whereas w2 has the biased distribution.

The system goes on indefinitely. See Figure 5.

•

GW

•

GW

•

GW

w0 = ∅

•

GW

•

GW

w1

•

GW

•

GW

w2

w3

Figure 5: A size-biased Galton–Watson tree

Having the application of the next section in mind, let us connect the size-

biased Galton–Watson tree to the branching process with immigration. The latter

starts with no individual (say), and is governed by a reproduction law and an

immigration law. At generation n (for n ≥ 1), Yn new individuals are added into

the system, while all individuals regenerate independently and following the same

reproduction law; we assume that (Yn, n ≥ 1) is a collection of i.i.d. random
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variables following the same immigration law, and independent of everything else

up to that generation.

The size-biased Galton–Watson tree tells us that (Zn− 1, n ≥ 0) under Q is a

branching process with immigration, whose immigration law is that of N̂ −1, with

P(N̂ = k) := kpk
m
, for k ≥ 1.

2.3. Application: The Kesten–Stigum theorem

We start with a dichotomy theorem for branching processes with immigration.

Theorem 2.5. (Seneta [219]) Let Zn be the number of individuals in the n-th

generation of a branching process with immigration (Yn). Assume that 1 < m <∞,

where m denotes the expectation of the reproduction law.

(i) If E(ln+ Y1) <∞, then limn→∞
Zn

mn exists and is finite almost surely.

(ii) If E(ln+ Y1) = ∞, then lim supn→∞
Zn

mn = ∞, a.s.

Proof. (ii) Assume E(ln+ Y1) = ∞. By the Borel–Cantelli lemma (Durrett [102],

Theorem 2.5.9), lim supn→∞
lnYn
n

= ∞ a.s. Since Zn ≥ Yn, it follows that for any

c > 1, lim supn→∞
Zn

cn
= ∞, a.s.

(i) Assume now E(ln+ Y1) <∞. By the law of large numbers, limn→∞
ln+ Yn
n

= 0

a.s., so for any c > 0,
∑

k
Yk
ck
<∞ a.s.

Let Y be the σ-field generated by (Yn). Clearly,

E(Zn+1 |Fn, Y ) = mZn + Yn+1 ≥ mZn,

thus ( Zn

mn ) is a submartingale (conditionally on Y ), and E( Zn

mn |Y ) =
∑n

k=0
Yk
mk .

In particular, on the set {
∑∞

k=0
Yk
mk < ∞}, we have supnE(

Zn

mn |Y ) < ∞, so

limn→∞
Zn

mn exists and is finite. Since P(
∑∞

k=0
Yk
mk <∞) = 1, the result follows. �

We recall an elementary result (Durrett [102], Theorem 5.3.3). Let (Fn) be a

filtration, and let F∞ be the smallest σ-field containing all Fn. Let P and Q be

probabilities on (Ω, F∞). Assume that for any n, Q|Fn
≪ P|Fn

. Let ξn :=
dQ|Fn

dP|Fn

,

and let ξ := lim supn→∞ ξn which is P-a.s. finite. Then

Q(A) = E(ξ 1A) +Q(A ∩ {ξ = ∞}), ∀A ∈ F∞.
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It follows easily that

Q ≪ P ⇔ ξ <∞, Q-a.s. ⇔ E(ξ) = 1,(2.2)

Q ⊥ P ⇔ ξ = ∞, Q-a.s. ⇔ E(ξ) = 0.(2.3)

Proof of Theorem 2.3. If
∑∞

i=1 pi i ln i < ∞, then E(ln+ N̂) < ∞. By Theorem

2.5, limn→∞Mn exists Q-a.s. and is finite Q-a.s. In view of (2.2), this means

E(M∞) = 1; in particular, P(M∞ = 0) < 1, thus P(M∞ = 0) = q (Lemma 2.2).

If
∑∞

i=1 pi i ln i = ∞, then E(ln+ N̂) = ∞. By Theorem 2.5, limn→∞Mn exists

Q-a.s. and is infinite Q-a.s. Hence E(M∞) = 0 (by (2.3)), i.e., P(M∞ = 0) = 1.�

2.4. Notes

The material of this chapter is borrowed from Lyons, Pemantle and Peres [175],

and the presentation adapted from Chapter 1 of my lecture notes [221].

Section 2.1 collects a few elementary properties of Galton–Watson processes.

For more detailed discussions, we refer to the books by Asmussen and Hering [31],

Athreya and Ney [32], Harris [128].

The formalism described in Section 2.2 is due to Neveu [203]; the idea of

viewing Galton–Watson trees as tree-valued random variables finds its root in

Harris [128].

The technique of size-biased Galton–Watson trees, which goes back at least to

Kahane and Peyrière [152], has been used by several authors in various contexts. Its

presentation in Section 2.2, as well as its use to prove the Kesten–Stigum theorem,

comes from Lyons, Pemantle and Peres [175]. Size-biased Galton–Watson trees

can actually be exploited to prove the corresponding results of the Kesten–Stigum

theorem in the critical and subcritical cases. See [175] for more details.

Seneta’s dichotomy theorem for branching processes with immigration (Theo-

rem 2.5) was discovered by Seneta [219]; its short proof presented in Section 2.3

is borrowed from Asmussen and Hering [31], pp. 50–51.



Chapter 3

Branching random walks and
martingales

The Galton–Watson branching process counts the number of particles in each

generation of a branching process. In this chapter, we produce an extension, in

the spatial sense, by associating each individual of the branching process with a

random variable. This results in a branching random walk. We present several

martingales that are naturally related to the branching random walk, and study

some elementary properties.

3.1. Branching random walks: basic notation

Let us briefly recall the definition of the branching random walk, introduced in

Chapter 1: At time n = 0, one particle is at position 0. At time n = 1, the particle

dies, giving birth to a certain number of children distributed according to a given

point process Ξ. At time n = 2, all these particles die, each producing children

positioned (with respect to their birth places) according to the same point process

Ξ, independently of each other and of everything up to then. The system goes on

indefinitely as long as there are particles alive.

Let T denote the genealogical tree of the system, and (V (x), x ∈ T) the posi-

tions of the individuals in the system. As before, |x| stands for the generation of

x, and xi (for 0 ≤ i ≤ |x|) for the ancestor of x in the i-th generation. We write

[[∅, x]] := {x0 := ∅, x1, . . . , x|x|} to denote the set of vertices (including ∅ and x)

21
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in the unique shortest path connecting the root ∅ to x.

For two vertices x and y of T, we write x < y (or y > x) if y is a descendant of

x, and x ≤ y (or y ≥ x) if either x < y or x = y.

For any x ∈ T\{∅}, we denote by
←
x its parent, and by brot(x) the set of the

brothers of x, which can be possibly empty; so y ∈ brot(x) indicates y is different

from x but having the same parent as x.

As before, the (log-)Laplace transform of the point process Ξ plays an important

role:

ψ(β) := lnE
( ∑

x∈T: |x|=1

e−βV (x)
)
= lnE

(∑

u∈Ξ

e−βu
)
∈ (−∞, ∞], β ∈ R,

where |x| = 1 indicates that x is in the first generation of the branching random

walk. We regularly write
∑
|x|=1(· · · ) instead of

∑
x∈T: |x|=1(· · · ).

We always assume that ψ(0) > 0. The genealogical tree T is a Galton–Watson

process (often referred to as the associated or underlying Galton–Watson process),

which is supercritical under the assumption ψ(0) > 0. In particular, according to

Theorem 2.1 in Section 2.1, our system survives with positive probability.

Quite frequently, we are led to work on the set of non-extinction, so it is con-

venient to introduce the new probability

P∗( · ) := P( · | non-extinction).

We close this section with the following result.

Lemma 3.1. Assume that ψ(0) > 0. If ψ(t) ≤ 0 for some t > 0, then1

lim
n→∞

inf
|x|=n

V (x) = ∞, P∗-a.s.

Proof. Let t > 0 be such that ψ(t) ≤ 0. Without loss of generality, we assume

t = 1 (otherwise, we consider tV (x) in place of V (x)). Let

Wn :=
∑

|x|=n

e−nψ(1)−V (x), n ≥ 0,

1If P{
∑
|x|=1 1{V (x)>0} > 0} > 0, then the condition that ψ(t) ≤ 0 for some t > 0 is also

necessary to have inf |x|=n V (x) → ∞, P∗-a.s. See Biggins [52].
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which is a non-negative martingale, so it converges, when n→ ∞, to a non-negative

random variable, say W∞. We have E[W∞] ≤ 1 by Fatou’s lemma.

Let Y := lim supn→∞ e− inf|x|=n V (x). Since e− inf|x|=n V (x) ≤
∑
|x|=n e

−V (x) ≤ Wn

(recalling that ψ(1) ≤ 0 by assumption), we have E(Y ) ≤ E[W∞] ≤ 1.

It remains to check that Y = 0 a.s. (which is equivalent to saying that Y = 0

P∗-a.s.), or equivalently, lim infn→∞ inf |x|=n V (x) = ∞ a.s.

Looking at the subtrees rooted at each of the vertices in the first generation,

we immediately get

Y = sup
|x|=1

[e−V (x)Y (x)],

where (Y (x)) are independent copies of Y , and independent of (V (x), |x| = 1)

given (x, |x| = 1). In particular, E(Y ) = E[sup|x|=1 e
−V (x)Y (x)].

The system is supercritical by assumption, so with positive probability, the

maximum expression sup|x|=1 e
−V (x)Y (x) involves at least two terms. Thus, if

E(Y ) > 0, then we would have

E
[
sup
|x|=1

e−V (x)Y (x)
]
< E

[ ∑

|x|=1

e−V (x)Y (x)
]
= E

[ ∑

|x|=1

e−V (x)
]
E(Y ) = eψ(1)E(Y ),

which would lead to a contradiction because ψ(1) ≤ 0 by assumption. Therefore,

Y = 0 a.s. �

3.2. The additive martingale

Assume ψ(1) <∞. Let

Wn :=
∑

|x|=n

e−nψ(1)−V (x), n ≥ 0.

Clearly, (Wn, n ≥ 0) is a martingale with respect to the natural filtration of the

branching random walk, and is called an additive martingale (Neveu [204]).

Since Wn is a non-negative martingale, we have

Wn →W∞, a.s.,

for some non-negative random variable W∞. Fatou’s lemma says that E(W∞) ≤ 1.

An important question is whether the limit W∞ is degenerate. By an argument
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as in the proof of Lemma 2.2 of Section 2.1, we can check (Biggins and Grey [55])

that P{W∞ = 0} is either q or 1. Therefore, P{W∞ > 0} > 0 is equivalent to

saying that W∞ > 0, P∗-a.s., and also means P{W∞ = 0} = P{extinction}.

Here is Biggins’s martingale convergence theorem, which is a spatial extension

of the Kesten–Stigum theorem. We write

ψ′(1) := −E
[ ∑

|x|=1

V (x)e−ψ(1)−V (x)
]
,

whenever E[
∑
|x|=1 |V (x)|e

−V (x)] <∞, and we simply say “if ψ′(1) ∈ R”. A similar

remark applies to the forthcoming “ψ′(β) ∈ R”.

Theorem 3.2. (Biggins martingale convergence theorem) Assume ψ(0) >

0. If ψ(1) <∞ and ψ′(1) ∈ R, then

E(W∞) = 1 ⇔ W∞ > 0, P∗-a.s.

⇔ E(W1 ln+W1) <∞ and ψ(1) > ψ′(1).

Proof. Postponed to Section 4.8. �

For any β ∈ R with ψ(β) < ∞, by considering βV instead of V , the Biggins

theorem has the following general form: Let β ∈ R be such that ψ(β) < ∞, and

let W
(β)
n :=

∑
|x|=n e

−nψ(β)−βV (x) which is a non-negative martingale and which

converges a.s. to, say, W
(β)
∞ .

Theorem 3.3. (Biggins [50]) Assume ψ(0) > 0. Let β ∈ R be such that ψ(β) <

∞ and that ψ′(β) := −E{
∑
|x|=1 V (x)e−ψ(β)−βV (x)} ∈ R, then

E[W (β)
∞ ] = 1 ⇔ P(W (β)

∞ = 0) < 1

⇔ E[W
(β)
1 ln+W

(β)
1 ] <∞ and βψ′(β) < ψ(β).

Theorem 3.3 reduces to the Kesten–Stigum theorem (Theorem 2.3 in Section

2.1) when β = 0, and is equivalent to Theorem 3.2 if β 6= 0.
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3.3. The multiplicative martingale

Let (V (x)) be a branching random walk such that ψ(0) > 0. The basic assumption

in this section is: ψ(1) = 0, ψ′(1) ≤ 0.2

Assume that Φ(s) := E(e−sξ
∗
), s ≥ 0, for some non-negative random variable

ξ∗ with P(ξ∗ > 0) > 0 (so Φ(s) < 1 for any s > 0), such that3

(3.1) Φ(s) = E
[ ∏

|x|=1

Φ(se−V (x))
]
, ∀s ≥ 0.

[Notation:
∏

∅
:= 1.] For the existence4 of such a function Φ under our assumption

(ψ(0) > 0, ψ(1) = 0 and ψ′(1) ≤ 0), see Liu [167].

[An equivalent way to state (3.1) is as follows: ξ∗ has the same distribution as
∑
|x|=1 ξ

∗
xe
−V (x), where (ξ∗x) are independent copies of ξ∗, independent of (V (x)).]

For any t > 0, let

M (t)
n :=

∏

|x|=n

Φ(te−V (x)), n ≥ 0,

which is a martingale, called multiplicative martingale (Neveu [204]). Since M
(t)
n ,

taking values in [0, 1], is bounded, there exists a random variable M
(t)
∞ ∈ [0, 1]

such that

M (t)
n →M (t)

∞ , a.s.,

and in Lp for any 1 ≤ p <∞. In particular, E[M
(t)
∞ ] = Φ(t).

Let us collect a few elementary properties of the limiting random variableM
(t)
∞ .

Proposition 3.4. Assume ψ(0) > 0, ψ(1) = 0 and ψ′(1) ≤ 0. Let Φ be a Laplace

transform satisfying (3.1). Then

(i) M
(t)
∞ = [M

(1)
∞ ]t, ∀t > 0.

(ii) M
(1)
∞ > 0 a.s.

2It is always possible, by means of a simple translation, to make a branching random walk
satisfy ψ(1) = 0 as long as ψ(1) < ∞. The condition ψ′(1) ≤ 0 is more technical: It is to
guarantee the existence of the forthcoming function Φ; see the paragraph below.

3In Proposition 3.4 and Lemma 3.5 below, we simply say that Φ is a Laplace transform
satisfying (3.1).

4In fact, it is also unique, up to a multiplicative constant in the argument. See Biggins and
Kyprianou [56].
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(iii) M
(1)
∞ < 1, P∗-a.s.

(iv) ln 1

M
(1)
∞

has Laplace transform Φ.

The proof of Proposition 3.4 relies on the following result. A function L is said

to be slowly varying at 0 if for any a > 0, lims→0
L(as)
L(s)

= 1.

Lemma 3.5. Assume ψ(0) > 0, ψ(1) = 0 and ψ′(1) ≤ 0. Let Φ be a Laplace

transform satisfying (3.1). Then the function

L(s) :=
1− Φ(s)

s
> 0, s > 0,

is slowly varying at 0.

Proof of Lemma 3.5. Assume L is not slowly varying at 0. So there would be

0 < a < 1 and a sequence (sk) with sk ↓ 0 such that L(ska)
L(sk)

→ b 6= 1. By integration

by parts, L is also the Laplace transform of a measure on [0, ∞); so the function

s 7→ L(s) is non-increasing. In particular, b > 1, and for any a′ ∈ (0, a],

lim inf
k→∞

L(a′sk)

L(sk)
≥ b > 1.

On the other hand, writing x(1), x(2), . . ., x(Zn) for the vertices in the n-th

generation, then for any s > 0,

L(s) = E
[
s−1

(
1−

∏

|x|=n

Φ(se−V (x))
)]

(by (3.1))

= E
[ Zn∑

j=1

1− Φ(se−V (x(j)))

s

j−1∏

i=1

Φ(se−V (x(i)))
]

(
∏

∅
:= 1)

= E
[ Zn∑

j=1

e−V (x(j)) L(se−V (x(j)))

j−1∏

i=1

Φ(se−V (x(i)))
]
, ( 1−Φ(r)

r
= L(r))(3.2)

i.e.,

1 = E
[ Zn∑

j=1

e−V (x(j)) L(se
−V (x(j)))

L(s)

j−1∏

i=1

Φ(se−V (x(i)))
]
.

For s = sk, by Fatou’s lemma,

1 ≥ E
[ Zn∑

j=1

e−V (x(j)) lim inf
k→∞

L(ske
−V (x(j)))

L(sk)

j−1∏

i=1

Φ(ske
−V (x(i)))

]
.
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Since Φ is continuous with Φ(0) = 1, this yields

1 ≥ E
[ Zn∑

j=1

e−V (x(j))
(
b1
{e−V (x(j))≤a}

+ 1
{a<e−V (x(j))≤1}

)]

= E
[ ∑

|x|=n

e−V (x)
(
b1{e−V (x)≤a} + 1{a<e−V (x)≤1}

)]

= (b− 1)E
[ ∑

|x|=n

e−V (x) 1{e−V (x)≤a}

]
+ E

[ ∑

|x|=n

e−V (x) 1{e−V (x)≤1}

]
.

Since E[
∑
|x|=n e

−V (x)] = eψ(1) = 1, this means:

E
[ ∑

|x|=n

e−V (x) 1{e−V (x)>1}

]
≥ (b− 1)E

[ ∑

|x|=n

e−V (x) 1{e−V (x)≤a}

]
.

Applying the many-to-one formula (Theorem 1.1 in Section 1.3) to t = 1 gives

P{e−Sn > 1} ≥ (b− 1)P{e−Sn ≤ a}, i.e.,

P{Sn < 0} ≥ (b− 1)P{Sn ≥ − ln a}.

If ψ′(1) < 0, then E(S1) = −ψ′(1) > 0 whereas 0 < a < 1, we have P{Sn<0}
P{Sn≥− lna}

→ 0,

n → ∞. Thus b ≤ 1, which contradicts the assumption b > 1. As a consequence,

L is slowly varying at 0 in case ψ′(1) < 0.

It remains to treat the case ψ′(1) = 0. Consider the sequence of functions

(fk, k ≥ 1) on [0, ∞) defined by fk(y) := exp(−L(sky)
L(sk)

), y ≥ 0. Since each fk takes

values in [0, 1] and is non-decreasing, Helly’s selection principle (Kolmogorov and

Fomin [157], p. 372, Theorem 5)5 says that there exists a subsequence of (sk), still

denoted by (sk) by an abuse of notation, such that for all y > 0, exp(−L(sky)
L(sk)

)

converges to a limit, say e−g(y).

By (3.2) (and Fatou’s lemma as before), for any y > 0,

g(y) ≥ E
[ Zn∑

j=1

e−V (x(j)) g(ye−V (x(j)))
]
= E

[ ∑

|x|=1

e−V (x)g(ye−V (x))
]
,

5In [157], Helly’s selection principle is stated for functions on a compact interval. We apply it
to each of the intervals [0, n], and then conclude by a diagonal argument (i.e., taking the diagonal
elements in a double array).



28 [Chapter 3. Branching random walks and martingales

which is E[g(ye−S1)] by the many-to-one formula (Theorem 1.1 in Section 1.3).

This implies that (g(ye−Sn), n ≥ 0) is a non-negative supermartingale, which con-

verges a.s. to, say Gy. Since E(S1) = −ψ′(1) = 0, we have lim supn→∞ e−Sn = ∞

a.s., and lim infn→∞ e−Sn = 0 a.s. So by monotonicity of g, g(∞) = Gy = g(0+):

g is a constant. Since g(a) = b > 1 = g(1), this leads to a contradiction. �

Proof of Proposition 3.4. (i) We claim that

(3.3)
∑

|x|=n

[Φ(te−V (x))− 1] → lnM (t)
∞ , P∗-a.s.

Indeed, since u− 1 ≥ ln u for any u ∈ (0, 1], we have, P∗-almost surely,

∑

|x|=n

[Φ(te−V (x))− 1] ≥
∑

|x|=n

ln Φ(te−V (x)) = lnM (t)
n → lnM (t)

∞ ,

giving the lower bound in (3.3). For the upper bound, let ε > 0. By Lemma 3.1

(Section 3.1), inf |x|=n V (x) → ∞ P∗-a.s., so for P∗-almost surely all sufficiently

large n, Φ(te−V (x)) − 1 ≤ (1 − ε) lnΦ(te−V (x)), for all x with |x| = n, which leads

to: ∑

|x|=n

[Φ(te−V (x))− 1] ≤ (1− ε)
∑

|x|=n

lnΦ(te−V (x)),

and the latter converges to (1− ε) lnM
(t)
∞ , P∗-a.s. This justifies (3.3).

Recall that Φ(s)− 1 = s L(s). Thus, on the set of non-extinction,

1

t

∑
|x|=n[Φ(te

−V (x))− 1]
∑
|x|=n[Φ(e

−V (x))− 1]
− 1 =

∑

|x|=n

Φ(e−V (x))− 1∑
|y|=nΦ(e

−V (y))− 1

(L(te−V (x))

L(e−V (x))
− 1

)
.

We now look at the expressions on the left- and right-hand sides: Since L is

slowly varying at 0 (Lemma 3.5), whereas inf |x|=n V (x) → ∞ P∗-a.s. (Lemma 3.1

of Section 3.1), thus the expression on the right-hand side tends to 0 P∗-almost

surely; the expression on the left-hand side converges P∗-almost surely to 1
t
lnM

(t)
∞

lnM
(1)
∞

(see (3.3)). Therefore, P∗-a.s.,

1

t

lnM
(t)
∞

lnM
(1)
∞

= 0,
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i.e., M
(t)
∞ = [M

(1)
∞ ]t, P∗-a.s. Since M

(t)
∞ = 1 (for all t) on the set of extinction, we

have M
(t)
∞ = [M

(1)
∞ ]t.

(iv) By (i), we have E[M
(t)
∞ ] = E{[M

(1)
∞ ]t}. On the other hand, we have already

seen that E[M
(t)
∞ ] = Φ(t). Thus Φ(t) = E{[M

(1)
∞ ]t}, ∀t > 0; thus Φ is the Laplace

transform of − lnM
(1)
∞ .

(ii) By assumption, Φ is the Laplace transform of a non-degenerate random

variable, so (ii) follows from (iv).

(iii) By definition (3.1) of Φ, we have Φ(∞) = lims→∞E[
∏
|x|=1Φ(se

−V (x))],

which, by dominated convergence, is E[Φ(∞)N ], where N :=
∑
|x|=1 1. Therefore,

Φ(∞) satisfies Φ(∞) = f(Φ(∞)), with f denoting the generating function of N .

By Theorem 2.1 in Section 2.1, Φ(∞) is either P{extinction}, or 1.

By definition, Φ is the Laplace transform of ξ∗ with P{ξ∗ > 0} > 0; so Φ(∞) <

1, which means that Φ(∞) = P{extinction}. On the other hand, (iv) tells us that

P{M
(1)
∞ = 1} = Φ(∞). So P{M

(1)
∞ = 1} = P{extinction}. Since {M

(1)
∞ = 1}

contains the set of extinction, the two sets coincide almost surely. �

3.4. The derivative martingale

Assuming ψ(1) = 0 and ψ′(1) = 0, we see that

Dn :=
∑

|x|=n

V (x)e−V (x), n ≥ 0,

is a martingale, called the derivative martingale.

The derivative martingale is probably themost important martingale associated

with branching random walks. We postpone our study of (Dn) to Chapter 5. In

particular, we are going to see, in Theorem 5.2 (Section 5.2), that under some

general assumptions upon the law of the branching random walk, Dn converges a.s.

to a non-negative limit. Furthermore, this non-negative limit is shown, in Theorem

5.29 (Section 5.6), to be closely related to the limit of the additive martingale, after

a suitable normalisation.

Section 5.4 will reveal a crucial role played by the derivative martingale in the

study of extreme values in branching random walks.
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3.5. Notes

Most of the material in this chapter can be found in Biggins and Kyprianou [58].

Lemma 3.1 in Section 3.1 is due to Liu [167] and Biggins [52]. The main idea

of our proof is borrowed from Biggins [52].

The Biggins martingale convergence theorem (Theorem 3.2 in Section 3.2) is

originally proved by Biggins [50] under a slightly stronger condition. The theorem

under the current condition can be found in Lyons [173].

In the case where the limit W∞ in the Biggins martingale convergence theorem

is non-degenerate, it is interesting to study its law. See, for example, Biggins and

Grey [55] and Liu [169] for absolute continuity, and Liu [168] and Buraczewski [80]

for precise tail estimates.

If the almost sure convergence of the non-negative martingale (W
(β)
n ) is obvious

for any given β ∈ R (such that ψ(β) < ∞), it is far less obvious whether or not

the convergence holds uniformly in β. This problem is dealt with by Biggins [51].

The rate of convergence for the additive martingale is studied by several authors;

see for example Iksanov and Meiners [145], Iksanov and Kabluchko [144].

The importance of multiplicative martingales studied in Section 3.3 is stressed

by Neveu [204]. These martingales are defined in terms of solution of the equa-

tion (3.1). The study of existence and uniqueness of (3.1) has a long history,

going back at least to Kesten and Stigum [155], and has since been a constant

research topic in various contexts (fixed points of smoothing transforms, stochas-

tically self-similar fractals, multiplicative cascades, etc). Early contributions are

from Doney [98], Mandelbrot [193], Kahane and Peyrière [152], Biggins [50], Hol-

ley and Liggett [130], Durrett and Liggett [103], Mauldin and Williams [194],

Falconer [106], Guivarc’h [119], to name but a few. The 1990-2000 decade saw

results established in the generality we are interested in, almost simultaneously by

Liu [167], Biggins and Kyprianou [56], Lyons [173], Kyprianou [160]. We refer to

[58] for a detailed survey, as well as to Alsmeyer, Damek and Mentemeier [22] and

Buraczewski et al. [81] together with the references therein for recent extensions

in various directions.

Multiplicative martingales are also particularly useful in the study of branching
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Brownian motion and the F-KPP equation; see the lecture notes of Berestycki [43].

The proof of Lemma 3.5 in case ψ′(1) < 0 is borrowed from [56], and in case

ψ′(1) = 0 from [160].

Derivative martingales, introduced in Section 3.4, are studied for branching

Brownian motion by Lalley and Sellke [164], Neveu [204], Kyprianou [162], and for

the branching random walk by Liu [168], Kyprianou [160], Biggins and Kypria-

nou [57], Äıdékon [8]. Although not mentioned here, it is closely related to mul-

tiplicative martingales; see Liu [168], and Harris [124] in the setting of branching

Brownian motion.

Joffe [149] studies another interesting martingale naturally associated with the

branching random walk in the case of i.i.d. random variables attached to edges of

a Galton–Watson tree.

The martingales considered in this chapter are sums, or products, over particles

in a same generation. Just as important as considering stopping times in martin-

gale theory, it is often interesting to consider sums over particles belonging to some

special random collections, called stopping lines. The basic framework is set up in

Jagers [148] and Chauvin [84]; for a sample of interesting applications, see Biggins

and Kyprianou [56], [57], [58], Kyprianou [161], Maillard [186], Olofsson [205].
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Chapter 4

The spinal decomposition
theorem

This chapter is devoted to an important tool in the study of branching random

walks: the spinal decomposition. In particular, it gives a probabilistic explana-

tion for the presence of the one-dimensional random walk (Sn) appearing in the

many-to-one formula (Theorem 1.1 in Section 1.3). We establish a general spinal

decomposition theorem for branching random walks. In order to do so, we need to

introduce the notions of spines and changes of probabilities, which are the main

topics of the first two sections. Two special cases of the spinal decomposition

theorem are particularly useful; they are presented, respectively, in Example 4.5

(Section 4.6) for the size-biased branching random walk, and in Example 4.6 (Sec-

tion 4.7) where the branching random walk is above a given level along the spine.

The power of the spinal decomposition theorem will be seen via a few case studies

in the following chapters. Here, we prove in Section 4.8, as a first application, the

Biggins martingale convergence theorem for the branching random walk, already

stated in Section 3.2 as Theorem 3.2.

4.1. Attaching a spine to the branching random

walk

The spinal decomposition theorem describes the distribution of the paths of the

branching random walk. This description is formulated by means of a particular

33
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infinite ray (see below for details) — called spine — on the associated Galton–

Watson tree, and of a new probability. For the sake of clarity, we present spinal

decompositions via three steps. In the first step, the notion of spine is introduced.

In the second step, we construct a new probability. In the third and last step, the

spinal decomposition theorem is presented.

The branching random walk V := (V (x), x ∈ T) can be considered as a random

variable taking values in the space of marked trees, while the associated supercrit-

ical Galton–Watson tree T is a random variable taking values in the space of

rooted trees. We now attach to (V (x), x ∈ T) an additional random infinite ray

w = (wn, n ≥ 0), called spine. By an infinite ray (sometimes also referred to as

an infinite path), we mean w0 := ∅ and
←
wn = wn−1 (recalling that

←
x is the parent

of x) for any n ≥ 1, i.e., each wn is a child of wn−1. In particular, |wn| = n, ∀n ≥ 0.

In the rest of the chapter, for n ≥ 0, we write

Fn := σ{V (x), x ∈ T, |x| ≤ n},

which is the σ-field generated by the branching random walk in the first n gener-

ations. Let

F∞ := σ{V (x), x ∈ T},

which contains all the information given by the branching random walk. In general,

the spine w is not F∞-measurable: There is extra randomness in w.

4.2. Harmonic functions and Doob’s h-transform

Let (V (x)) be a branching random walk such that E[
∑
|x|=1 e

−V (x)] = 1. Let

(Sn − Sn−1, n ≥ 1) be a sequence of i.i.d. real-valued random variables; the law of

S1 − S0 is as follows: for any Borel function g : R → [0, ∞),

(4.1) E[g(S1 − S0)] = E
[ ∑

|x|=1

g(V (x))e−V (x)
]
.

For a ∈ R, let Pa denote the probability such that Pa(S0 = a) = 1 and that

Pa(V (∅) = a) = 1, and Ea the expectation with respect to Pa.
1 We often refer to

1If a = 0, we write P and E in place of P0 and E0, respectively. A similar remark applies to

the forthcoming probabilities Q
(h)
a and Qa.
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(Sn) as an associated random walk.

Let D ⊂ R be a Borel set of R, such that2

(4.2) Pa(S1 ∈ D) > 0, ∀a ∈ D.

Let h : D → (0, ∞) be a positive harmonic function associated with (Sn), i.e.,

(4.3) h(a) = Ea[h(S1) 1{S1∈D}], ∀a ∈ D.

We now define the random walk (Sn) (under Pa) conditioned to stay in D, in

the sense of Doob’s h-transform: it is a Markov chain with transition probabilities

given by

(4.4) p(h)(u, dv) := 1{v∈D}
h(v)

h(u)
Pu(S1 ∈ dv), u ∈ D.

4.3. Change of probabilities

Assume ψ(1) = 0, i.e., E[
∑
|x|=1 e

−V (x)] = 1. Let (Sn) be an associated random

walk in the sense of (4.1).

Let D ⊂ R be a Borel set satisfying (4.2), and let a ∈ D. Let h : D → (0, ∞) be

a positive harmonic function in the sense of (4.3). Define

(4.5) M (h)
n :=

∑

|x|=n

h(V (x))e−V (x) 1{V (y)∈D, ∀y∈[[∅, x]]}, n ≥ 0,

where [[∅, x]] denotes, as before, the set of vertices in the unique shortest path

connecting the root ∅ to x. We mention that M
(h)
n has nothing to do with the

multiplicative martingale studied in Section 3.3.

Lemma 4.1. Let a ∈ D. The process (M
(h)
n , n ≥ 0) is a martingale with respect to

the expectation Ea and to the filtration (Fn).

Proof. By definition,

M
(h)
n+1 =

∑

|z|=n

∑

x: |x|=n+1,
←
x=z

h(V (x))e−V (x) 1{V (y)∈D, ∀y∈[[∅, x]]}

=
∑

|z|=n

1{V (y)∈D, ∀y∈[[∅, z]]}

∑

x: |x|=n+1,
←
x=z

h(V (x))e−V (x) 1{V (x)∈D}.

2Very often, we take D := R, in which case (4.2) is automatically satisfied.
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Therefore,

Ea(M
(h)
n+1 |Fn) =

∑

|z|=n

1{V (y)∈D, ∀y∈[[∅, z]]}EV (z)

( ∑

|x|=1

e−V (x)h(V (x)) 1{V (x)∈D}

)
.

By the many-to-one formula (Theorem 1.1 in Section 1.3), for any b ∈ D,

Eb

( ∑

|x|=1

h(V (x))e−V (x) 1{V (x)∈D}

)
= e−bEb

(
h(S1) 1{S1∈D}

)

= e−b h(b). (by (4.3))

As a consequence, Ea(M
(h)
n+1 |Fn) =M

(h)
n . �

Since (M
(h)
n , n ≥ 0) is a non-negative martingale with Ea(M

(h)
n ) = h(a)e−a, for

all n, it follows from Kolmogorov’s extension theorem that there exists a unique

probability measure Q
(h)
a on F∞ such that

(4.6) Q(h)
a (A) =

∫

A

M
(h)
n

h(a)e−a
dPa, ∀A ∈ Fn, ∀n ≥ 0.

In words, M
(h)
n

h(a)e−a is the Radon–Nikodym derivative with respect to the restriction

of Pa on Fn, of the restriction of Q
(h)
a on Fn.

We end this section with the following simple result which is not needed in

establishing the spinal decomposition theorem in the next sections, but which is

sometimes useful in the applications of the theorem.

Note thatM
(h)
n > 0, Q

(h)
a -a.s. Note that the Pa-martingale (M

(h)
n , n ≥ 0) being

non-negative, there exists M
(h)
∞ ≥ 0 such that M

(h)
n → M

(h)
∞ , Pa-a.s.

Lemma 4.2. Assume ψ(1) = 0. Let a ∈ D. If there exists a σ-field G ⊂ F such

that

(4.7) lim inf
n→∞

Q(h)
a (M (h)

n |G ) <∞, Q
(h)
a -a.s.,

the Pa-martingale (M
(h)
n , n ≥ 0) is uniformly integrable. In particular, Ea(M

(h)
∞ ) =

h(a)e−a.



§4.4 The spinal decomposition theorem ] 37

Proof. We claim that 1

M
(h)
n

is a Q
(h)
a -supermartingale (warning: it is a common

mistake to claim that 1

M
(h)
n

is a Q
(h)
a -martingale; see discussions in Harris and

Roberts [126]): Let n ≥ j and A ∈ Fj ; we have

Q(h)
a

( 1

M
(h)
n

1A

)
= P{M (h)

n > 0, A} ≤ P{M
(h)
j > 0, A} = Q(h)

a

( 1

M
(h)
j

1A

)
,

which impliesQ
(h)
a [ 1

M
(h)
n

|Fj] ≤
1

M
(h)
j

, and proves the claimed supermartingale prop-

erty.

Since this supermartingale is non-negative, there exists a (finite) random vari-

able L
(h)
∞ ≥ 0 such that 1

M
(h)
n

→ L
(h)
∞ , Q

(h)
a -a.s.

If (4.7) is satisfied, then by the conditional Fatou’s lemma,

Q(h)
a

( 1

L
(h)
∞

|G
)
<∞, Q

(h)
a -a.s.

In particular, 1

L
(h)
∞

<∞, Q
(h)
a -a.s., so supn≥0M

(h)
n <∞, Q

(h)
a -a.s.

For u > 0,

Ea[M
(h)
n 1

{M
(h)
n >u}

] = Q(h)
a {M (h)

n > u} ≤ Q(h)
a

{
sup
n≥0

M (h)
n > u

}
,

which tends to 0 as u → ∞, uniformly in n. So (M
(h)
n , n ≥ 0) is uniformly

integrable under Pa. �

4.4. The spinal decomposition theorem

We assume that ψ(1) = 0, i.e., E[
∑
|x|=1 e

−V (x)] = 1. Let D ⊂ R be a Borel set

satisfying (4.2), and let a ∈ D. Let h : D → (0, ∞) be a positive harmonic function

in the sense of (4.3).

For any b ∈ D, let Ξ̂
(h)
b := (ξ̂i, 1 ≤ i ≤ N̂) be such that for any sequence

(vi, i ≥ 1) of real numbers,

P
(
ξ̂i ≤ vi, ∀1 ≤ i ≤ N̂

)

= E
[
1{ξi+b≤vi, ∀1≤i≤N}

∑N
j=1 h(ξj + b)e−(ξj+b) 1{ξj+b∈D}

h(b)e−b

]
.(4.8)
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It is immediately seen that N̂ ≥ 1 almost surely.

We introduce the following new system,3 which is a branching random walk

with a spine w(h) = (w
(h)
n , n ≥ 0):

— Initially, there is one particle w
(h)
0 := ∅ at position V (w

(h)
0 ) = a.

— At time 1, the particle w
(h)
0 dies, giving birth to new particles

distributed as Ξ̂
(h)

V (w
(h)
0 )

; the particle w
(h)
1 is chosen among the children y

of w
(h)
0 with probability proportional to h(V (y))e−V (y) 1{h(V (y))∈D}, while

all other particles (if any) are normal particles.

— More generally, at each time n ≥ 1, all particles die, while giving

birth independently to sets of new particles. The children of normal

particles z are distributed as ΞV (z). The children of the particle w
(h)
n−1 are

distributed as Ξ̂
(h)

V (w
(h)
n−1)

; the particle w
(h)
n is chosen among the children y

of w
(h)
n−1 with probability proportional to h(V (y))e−V (y) 1{h(V (y))∈D}; all

other particles (if any) in the n-th generation are normal.

— The system goes on indefinitely.

See Figure 6.

•

•

w
(h)
0 = ∅

•

•

•
w

(h)
1

•
w

(h)
2

w
(h)
3

PV (y)

PV (z)

PV (v)

PV (x)

PV (u)

PV (s)

y

z

x

v

u

s

Figure 6: The new system with the spine w(h) = (w
(h)
n ) boldfaced

We note that while it is possible for a normal particle to produce no child if

P(N = 0) > 0, the particles in the spine w are ensured to have at least one child

3Notation: the law of Ξr is defined as the law of (ξi + r, 1 ≤ i ≤ N).
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because N̂ ≥ 1, a.s. Moreover, by the definition of Ξ̂
(h)
b , for any n, there exists at

least a child y of w
(h)
n−1 such that h(V (y))e−V (y) 1{V (y)∈D} > 0, so there is almost

surely no extinction of the new system.

Let us denote by B
(h)
a the law of the new system. It is a probability measure

on the product space between the space of all marked trees (where the branching

random walk lives), and the space of all infinite rays (where the spine w(h) lives),

though we do not need to know anything particular about this product space. By

an abuse of notation, the projection of B
(h)
a on the space of marked trees is still

denoted by B
(h)
a . The following theorem tells us that B

(h)
a describes precisely the

law of the branching random walk (V (x)) under the probability Q
(h)
a .

Theorem 4.3. (The spinal decomposition theorem) Assume ψ(1) = 0. Let

D ⊂ R be a Borel set satisfying (4.2). For any a ∈ D, and any positive harmonic

function h on D, the law of the branching random walk (V (x)) under Q
(h)
a is B

(h)
a ,

where Q
(h)
a is the probability defined in (4.6).

Along the spine w(h) = (w
(h)
n ), the probabilistic behaviour of the branching

random walk under the new probability Q
(h)
a is particularly simple, as seen in the

following theorem. Let, as before, (Sn) be an associated random walk in the sense

of (4.1).

Theorem 4.4. (Along the spine) Assume ψ(1) = 0. Let D ⊂ R be a Borel set

satisfying (4.2). Let a ∈ D, and let h be a positive harmonic function on D. Let

Q
(h)
a be the probability defined in (4.6).

(i) For any n ≥ 0 and any vertex x ∈ T with |x| = n,

(4.9) Q(h)
a (w(h)

n = x |Fn) =
h(V (x))e−V (x) 1{V (y)∈D, ∀y∈[[∅, x]]}

M
(h)
n

,

where M
(h)
n :=

∑
|z|=n h(V (z))e−V (z) 1{V (y)∈D, ∀y∈[[∅, z]]} as in (4.5).

(ii) The process (V (w
(h)
n ), n ≥ 0) under Q

(h)
a is distributed as the random walk

(Sn, n ≥ 0) under Pa conditioned to stay in D (in the sense of (4.4)).

We mention that since Q
(h)
a (M

(h)
n > 0) = 1, the ratio on the right-hand side of

(4.9) is Q
(h)
a -almost surely well-defined.
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Theorem 4.4 (ii) has the following equivalent statement: For any n ≥ 1 and

any measurable function g : Rn → [0, ∞),

(4.10)

E
Q

(h)
a
[g(V (w

(h)
i ), 0 ≤ i ≤ n)] = Ea

[
g(Si, 0 ≤ i ≤ n)

h(Sn)

h(a)
1{Si∈D, ∀i∈[0, n]∩Z}

]
.

Theorems 4.3 and 4.4 are proved in the next section.

4.5. Proof of the spinal decomposition theorem

This section is devoted to the proof of Theorems 4.3 and 4.4.

Proof of Theorem 4.3. We assume ψ(1) = 0 and fix D, a and h as stated in the

theorem.

Following Neveu [203], we encode our genealogical tree T with U := {∅} ∪
⋃∞
n=1(N

∗)n. Let (φx, x ∈ U ) be a family of non-negative Borel functions. If E
B
(h)
a

stands for expectation with respect to B
(h)
a , we need to show that for any integer

n,

E
B
(h)
a

{ ∏

|x|≤n

φx(V (x))
}
= E

Q
(h)
a

{ ∏

|x|≤n

φx(V (x))
}
,

or, equivalently (by definition of Q
(h)
a ),

(4.11) E
B
(h)
a

{ ∏

|x|≤n

φx(V (x))
}
= Ea

{ M
(h)
n

h(a)e−a

∏

|x|≤n

φx(V (x))
}
.

For brevity, let us write

hD(x) :=
h(V (x))e−V (x)

h(a)e−a
1{V (y)∈D, ∀y∈[[∅, x]]} 1{x∈T}.

If we are able to prove that for any z ∈ U with |z| = n,

(4.12) E
B
(h)
a

{
1
{w

(h)
n =z}

∏

|x|≤n

φx(V (x))
}
= Ea

{
hD(z)

∏

|x|≤n

φx(V (x))
}
,

then this will obviously yield (4.11) by summing over |z| = n.

So it remains to check (4.12). For x ∈ U , let Tx be the subtree rooted at x,

and brot(x) the set of the brothers of x. A vertex y of Tx corresponds to the
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vertex xy of T where xy is the element of U obtained by concatenation of x and

y. By the construction of B
(h)
a , a branching random walk emanating from a vertex

y /∈ (w
(h)
n , n ≥ 0) has the same law as the original branching random walk under P.

By decomposing the product inside E
B
(h)
a
{· · · } along the path [[∅, z]], we observe

that

E
B
(h)
a

{
1
{w

(h)
n =z}

∏

|x|≤n

φx(V (x))
}

= E
B
(h)
a

{
1
{w

(h)
n =z}

n∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}
,

where zk is the ancestor of z at generation k (with zn = z), and for any t ∈ R and

x ∈ U , Φx(t) := E{
∏

y∈Tx
φxy(t+V (y))1{|y|≤n−|x|}}. [The function Φx has nothing

to do with the function Φ in Section 3.3.] Similarly,

Ea

{
hD(z)

∏

|x|≤n

φx(V (x))
}
= Ea

{
hD(z)

n∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}
.

Therefore, the proof of (4.12) is reduced to showing the following: For any n and

|z| = n, and any non-negative Borel functions (φzk ,Φx)k,x,

E
B
(h)
a

{
1
{w

(h)
n =z}

n∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}

= Ea

{
hD(z)

n∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}
.(4.13)

We prove (4.13) by induction. For n = 0, (4.13) is trivially true. Assume that

the equality holds for n − 1 and let us prove it for n. By the definition of B
(h)
a ,

given that w
(h)
n−1 = zn−1, the probability to choose w

(h)
n = z among the children of

w
(h)
n−1 is proportional to hD(z). Therefore, if we write

Ψ(z) := φz(V (z))
∏

x∈brot(z)

Φx(V (x)),

G
(h)
n−1 := σ{w

(h)
k , V (w

(h)
k ), brot(w

(h)
k ), (V (y))

y∈brot(w
(h)
k )
, 1 ≤ k ≤ n− 1},
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then

E
B
(h)
a

{
1
{w

(h)
n =z}

Ψ(z)
∣∣∣G (h)

n−1

}

= 1
{w

(h)
n−1=zn−1}

E
B
(h)
a

{ hD(z)

hD(z) +
∑

x∈brot(z) hD(x)
Ψ(z)

∣∣∣G (h)
n−1

}

= 1
{w

(h)
n−1=zn−1}

E
B
(h)
a

{ hD(z)

hD(z) +
∑

x∈brot(z) hD(x)
Ψ(z)

∣∣∣ (w(h)
n−1, V (w

(h)
n−1))

}
.

By assumption, the point process generated by w
(h)
n−1 = zn−1 has Radon–Nikodym

derivative
hD(z)+

∑
x∈brot(z) hD(x)

hD(zn−1)
with respect to the point process generated by zn−1

under Pa. Thus, on {w
(h)
n−1 = zn−1},

E
B
(h)
a

{ hD(z)

hD(z) +
∑

x∈brot(z) hD(x)
Ψ(z)

∣∣∣ (w(h)
n−1, V (w

(h)
n−1))

}

= Ea

{ hD(z)

hD(zn−1)
Ψ(z)

∣∣∣V (zn−1)
}

=: RHS(4.14).(4.14)

This implies

E
B
(h)
a

{
1
{w

(h)
n =z}

Ψ(z)
∣∣∣G (h)

n−1

}
= 1

{w
(h)
n−1=zn−1}

RHS(4.14).

Let LHS(4.13) denote the expression on the left-hand side of (4.13). Then

LHS(4.13) = E
B
(h)
a

{
1
{w

(h)
n =z}

Ψ(z)
n−1∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}

= E
B
(h)
a

{
1
{w

(h)
n−1=zn−1}

RHS(4.14)

n−1∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}
,

which, by the induction hypothesis, is

= Ea

{
hD(zn−1) RHS(4.14)

n−1∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}

= Ea

{
hD(z)

n∏

k=0

φzk(V (zk))
∏

x∈brot(zk)

Φx(V (x))
}
,
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where the last equality follows from the fact that RHS(4.14) is also the conditional

Ea-expectation of hD(z)
hD(zn−1)

φz(V (z))
∏

x∈brot(z)Φx(V (x)) given V (zk), brot(zk) and

(V (x), x ∈ brot(zk)), 0 ≤ k ≤ n− 1. This yields (4.13), and completes the proof

of Theorem 4.3. �

Proof of Theorem 4.4. We assume ψ(1) = 0 and fix D, a and h as stated in the

theorem.

Let (φx, x ∈ U ) be a family of Borel functions and z ∈ U a vertex with

|z| = n. Write again hD(x) :=
h(V (x))e−V (x)

h(a)e−a 1{V (y)∈D, ∀y∈[[∅, x]]}. By (4.12) (identifying

E
B
(h)
a

with E
Q

(h)
a

by Theorem 4.3),

E
Q

(h)
a

{
1
{w

(h)
n =z}

∏

|x|≤n

φx(V (x))
}
= Ea

{
hD(z)

∏

|x|≤n

φx(V (x))
}
,

which, by the definition of Q
(h)
a , is

= E
Q

(h)
a

{h(a)e−a hD(z)
M

(h)
n

∏

|x|≤n

φx(V (x))
}
,

where M
(h)
n is the martingale defined in (4.5). This shows that

(4.15) Q(h)
a (w(h)

n = z |Fn) =
h(a)e−a hD(z)

M
(h)
n

,

proving part (i) of the theorem.

To prove part (ii), we take n ≥ 1 and a measurable function g : Rn+1 → [0, ∞).

Write E
Q

(h)
a
[g] for E

Q
(h)
a
[g(V (w

(h)
i ), 0 ≤ i ≤ n)]. Then

E
Q

(h)
a
[g] = E

Q
(h)
a

( ∑

|x|=n

g(V (xi), 0 ≤ i ≤ n) 1
{w

(h)
n =x}

)
.

By (4.15), we get

E
Q

(h)
a
[g] = E

Q
(h)
a

( ∑

|x|=n

g(V (xi), 0 ≤ i ≤ n)
h(a)e−a hD(x)

M
(h)
n

)

= Ea

( ∑

|x|=n

g(V (xi), 0 ≤ i ≤ n) hD(x)
)
,
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the last identity being a consequence of the definition of Q
(h)
a . Plugging in the

definition of hD yields

E
Q

(h)
a
[g] = Ea

( ∑

|x|=n

g(V (xi), 0 ≤ i ≤ n)
h(V (x))e−V (x)

h(a)e−a
1{V (y)∈D, ∀y∈[[∅, x]]}

)

= Ea

(
g(Si, 0 ≤ i ≤ n)

h(Sn)

h(a)
1{Si∈D, ∀i∈[0, n]∩Z}

)
, (many-to-one)

yielding part (ii) of Theorem 4.4. �

4.6. Example: Size-biased branching random walks

We present an important example of the spinal decomposition for branching ran-

dom walks.

Example 4.5. (Size-biased branching random walks) Assume ψ(1) = 0. We

take D = R, so that (4.2) is automatically satisfied. Let h(u) := 1, u ∈ R, which

is trivially harmonic. The martingale M
(h)
n defined in (4.5) is nothing else but the

additive martingale4

Mn =Wn =
∑

|x|=n

e−V (x).

The change of probabilities in (4.6) becomes: for a ∈ R,

Qa(A) =

∫

A

Wn

e−a
dPa, ∀A ∈ Fn, ∀n ≥ 0.

The new point process Ξ̂b (for b ∈ R) in (4.8) becomes: For any sequence (vi, i ≥ 1)

of real numbers,

P
(
ξ̂i ≤ vi, ∀1 ≤ i ≤ N̂

)
= E

[
1{ξi+b≤vi, ∀1≤i≤N}

N∑

j=1

e−ξj
]
.

The spinal decomposition theorem tells us that for any a ∈ R, under Qa, the

branching random walk can be provided with a spine (wn) such that:

4Since the harmonic function is a constant in Example 4.5, we drop the superscript h inM
(h)
n ,

Q
(h)
a , Ξ̂

(h)
b , w(h), etc.
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— Each spine particle wn gives birth to a set of new particles accord-

ing to the distribution of Ξ̂V (wn); we choose the particle wn+1 among

the children y of wn with probability proportional to e−V (y); all other

particles are normal particles.

— Children of a normal particle z are normal, and are distributed

as ΞV (z).

The law of the branching random walk under Qa is often referred to as the

law of the size-biased branching random walk. It is clear that if V (x) = 0

for all x, then the description of the law of the size-biased branching random walk

coincides with the description of the law of the size-biased Galton–Watson tree in

Section 2.2.

By Theorem 4.4 in Section 4.4,

(4.16) Qa(wn = x |Fn) =
e−V (x)

Wn
,

for any n and any vertex x such that |x| = n, and underQa, (V (wn)−V (wn−1), n ≥

1) is a sequence of i.i.d. random variables whose common distribution is that of S1

under P0. �

4.7. Example: Above a given value along the spine

We now give another important example of the spinal decomposition theorem.

Example 4.6. (Branching random walk above a given value along the

spine) Assume ψ(1) = 0. Fix α ≥ 0.

Let (Sn) be an associated random walk in the sense of (4.1). Let R be the

renewal function associated with (Sn), as in Appendix A.1. Define the function

h : [−α, ∞) → (0, ∞) by

(4.17) h(u) := R(u+ α), u ∈ [−α, ∞).

Lemma 4.7 below says that h is a positive harmonic function on D := [−α, ∞) in

the sense of (4.3), so the spine decomposition theorem applies in this situation.
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Along the spine, the process (V (w
(h)
n ), n ≥ 0) under Q

(h)
a is distributed as the

random walk (Sn, n ≥ 0) under Pa conditioned to be ≥ −α (in the sense of (4.4)).

We mention that even though the branching random walk stays above −α along

the spine, it can certainly hit (−∞, −α) off the spine.

Let us complete the presentation of Example 4.6 with the following lemma.

Lemma 4.7. Let α ≥ 0 and let h be as in (4.17). Then

h(a) = Ea[h(S1) 1{S1≥−α}], ∀a ≥ −α.

Proof. It boils down to checking that

(4.18) R(b) = E[R(S1 + b) 1{S1≥−b}], ∀b ≥ 0.

Let τ+ := inf{k ≥ 1 : Sk ≥ 0}, which is well-defined almost surely, since

E(S1) = 0. If S̃1 is a random variable independent of (Si, i ≥ 1), then

E[R(S1 + b) 1{S1≥−b}] = E
[ τ+−1∑

j=0

1{Sj≥−S̃1−b, S̃1≥−b}

]

= E
[ ∞∑

j=0

1{τ+>j} 1{Sj≥−S̃1−b, S̃1≥−b}

]
.

On the event {τ+ > j}∩{Sj ≥ −S̃1− b}, we automatically have S̃1 ≥ −b (because

Sj ≥ −S̃1 − b while Sj < 0). Therefore,

E[R(S1 + b) 1{S1≥−b}] = E
[ ∞∑

j=0

1{Sj≥−S̃1−b, Si<0, ∀i≤j}

]

=
∞∑

j=0

P{Sj ≥ −S̃1 − b, Si < 0, ∀i ≤ j}.

For any j, P{Sj ≥ −S̃1 − b, Si < 0, ∀i ≤ j} = P{Sj+1 ≥ −b, Si < 0, ∀i ≤ j}.

By splitting {Sj+1 ≥ −b} as {Sj+1 ≥ 0} ∪ {−b ≤ Sj+1 < 0}, this leads to:

E[R(S1 + b) 1{S1≥−b}]

=
∞∑

j=0

P{Sj+1 ≥ 0, Si < 0, ∀i ≤ j}+
∞∑

j=0

P{−b ≤ Sj+1 < 0, Si < 0, ∀i ≤ j}.
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The first sum on the right-hand side is equal to 1: it suffices to note that {Sj+1 ≥

0, Si < 0, ∀i ≤ j} = {τ+ = j + 1} and that
∑∞

j=0P{τ+ = j + 1} = 1. Therefore,

(4.19) E[R(S1 + b) 1{S1≥−b}] = 1 +

∞∑

j=0

P{−b ≤ Sj+1 < 0, Si < 0, ∀i ≤ j}.

On the other hand, by definition,

R(b) = E
[ ∞∑

j=0

1{τ+>j, Sj≥−b}

]
,

which yields that

R(b) = 1 +

∞∑

j=1

P{τ+ > j, Sj ≥ −b} = 1 +

∞∑

j=0

P{τ+ > j + 1, Sj+1 ≥ −b}.

Since {τ+ > j + 1, Sj+1 ≥ −b} = {−b ≤ Sj+1 < 0, Si < 0, ∀i ≤ j}, this yields

R(b) = 1 +
∑∞

j=0P{−b ≤ Sj+1 < 0, Si < 0, ∀i ≤ j}, which, in view of (4.19), is

equal to E[R(S1 + b) 1{S1≥−b}]. This proves (4.18). �

4.8. Application: The Biggins martingale conver-

gence theorem

We apply the spinal decomposition theorem to prove the Biggins martingale con-

vergence theorem (Theorem 3.2 in Section 3.2), of which we recall the statement:

Assume ψ(0) > 0, ψ(1) < ∞ and ψ′(1) ∈ R. Let Wn :=
∑
|x|=n e

−nψ(1)−V (x), and

let W∞ be the a.s. limit of Wn. Then

E(W∞) = 1 ⇔ W∞ > 0, P∗-a.s.

⇔ E(W1 ln+W1) <∞ and ψ(1) > ψ′(1).(4.20)

Proof of the Biggins martingale convergence theorem. Let Q be the probability on

F∞ such that Q|Fn
= Wn •P|Fn

for all n ≥ 0.

(i) Assume that the last condition in (4.20) fails.

We claim that in this case, lim supn→∞Wn = ∞ Q-a.s.; thus by (2.3) of Section

2.3, E(W∞) = 0.
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To prove our claim, let us distinguish two possibilities.

First possibility: ψ(1) ≤ ψ′(1). Under Q, (V (wn)− V (wn−1), n ≥ 1) are i.i.d.

(see Example 4.5 in Section 4.6), so by the law of large numbers, when n→ ∞,

V (wn)

n
→ EQ[V (w1)] = E[

∑

|x|=1

V (x)e−V (x)−ψ(1)] = −ψ′(1), Q-a.s.

In other words, −V (wn)−nψ(1)
n

→ ψ′(1)− ψ(1), Q-a.s.

If ψ′(1) > ψ(1), this yields −V (wn)− nψ(1) → ∞, Q-a.s. If ψ′(1) = ψ(1), the

associated random walk (−V (wn)−nψ(1), n ≥ 1) being oscillating (under Q), we

have lim supn→∞[−V (wn)− nψ(1)] = ∞, Q-a.s.

So as long as ψ(1) ≤ ψ′(1), we have lim supn→∞[−V (wn)− nψ(1)] = ∞, Q-a.s.

Since Wn ≥ e−V (wn)−nψ(1), we get lim supn→∞Wn = ∞ Q-a.s., as claimed.

Second possibility: E(W1 ln+W1) = ∞. In this case, we argue that (recalling

that
←
y is the parent of y)

Wn+1 =
∑

|x|=n

e−V (x)−(n+1)ψ(1)
∑

|y|=n+1:
←
y=x

e−[V (y)−V (x)]

≥ e−V (wn)−(n+1)ψ(1)
∑

|y|=n+1:
←
y=wn

e−[V (y)−V (wn)].

Write

(4.21) W (wn) :=
∑

|y|=n+1:
←
y=wn

e−[V (y)−V (wn)].

SinceW (wn), n ≥ 0, are i.i.d. under Q, with EQ[ln+W (w0)] = E[W1 ln+W1] = ∞,

it is a simple consequence of the Borel–Cantelli lemma that

lim sup
n→∞

lnW (wn)

n
= ∞, Q-a.s.

On the other hand, V (wn)
n

→ −ψ′(1), Q-a.s. (law of large numbers), this yields

again lim supn→∞Wn = ∞ Q-a.s., as claimed.

(ii) We now assume that the condition on the right-hand side of (4.20) is

satisfied, i.e., ψ′(1) < ψ(1) and E[W1 ln+W1] <∞. Let G be the σ-field generated
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by wn and V (wn) as well as the offspring of wn, for all n ≥ 0. Then EQ(Wn |G ) is

= e−V (wn)−nψ(1) +
n−1∑

k=0

e−V (wk)−nψ(1)
∑

|x|=k+1:
←
x=wk, x 6=wk+1

e−[V (x)−V (wk)] e[n−(k+1)]ψ(1)

=
n−1∑

k=0

e−V (wk)−(k+1)ψ(1)
∑

|x|=k+1:
←
x=wk

e−[V (x)−V (wk)] −
n−1∑

i=1

e−V (wi)−iψ(1).

With our notation in (4.21), this reads as:

EQ(Wn |G ) =

n−1∑

k=0

e−V (wk)−(k+1)ψ(1)W (wk)−

n−1∑

k=1

e−V (wk)−kψ(1).

SinceW (wn), n ≥ 0, are i.i.d. under Q with EQ[ln+W (w0)] = E(W1 ln+W1) <∞,

it follows from the strong law of large numbers that

ln+W (wn)

n
=

1

n

n∑

i=1

ln+W (wi)−
1

n

n−1∑

i=1

ln+W (wi) → 0, Q-a.s.

On the other hand, e−V (wk)−(k+1)ψ(1) and e−V (wk)−kψ(1) decay exponentially fast

(because −V (wk)
k

→ ψ′(1) < ψ(1), Q-a.s., as k → ∞). It follows that EQ[Wn |G ]

converges Q-a.s. (to a finite limit). By Lemma 4.2 (Section 4.3), this yields

E(W∞) = 1, which obviously implies P(W∞ = 0) < 1. Since we already know

that P(W∞ = 0) is either 1 or q, this implies that P(W∞ = 0) = q: the Biggins

martingale convergence theorem is proved. �

4.9. Notes

The change of probabilities technique used in the spinal decomposition theorem

(Sections 4.3 and 4.4) has a long history, and has been employed by many people

in various contexts. It goes back at least to Kahane and Peyrière [152].

A version of the spinal decomposition theorem associated with a function h

which is not necessary harmonic can be found in Äıdékon, Hu and Zindy [14]. It is

also possible to allow the harmonic function h to change from a certain generation

on; see Addario-Berry, Devroye and Janson [2] for such an example for the Galton–

Watson process.
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The law of the size-biased branching random walk described in Example 4.5

(Section 4.6) is due to Lyons [173]. See also Waymire and Williams [232] for a

formulation in a different language. The analogue for branching Brownian motion

can be found in Chauvin and Rouault [85]; for more general diffusions, see Liu,

Ren and Song [170].

The spinal decomposition for the branching random walk above a given level

along the spine in Example 4.6 (Section 4.7) is borrowed from Biggins and Kypri-

anou [57]. Its analogue for branching Brownian motion is in Kyprianou [162]. The

proof of Lemma 4.7 is due to Tanaka [226].

An extension of the spinal decomposition theorem for multiple spines, often con-

venient to compute higher-order moments, is proved by Harris and Roberts [127].

The short proof of the Biggins martingale convergence theorem in Section 4.8,

via size-biased branching random walks, follows from Lyons [173].



Chapter 5

Applications of the spinal
decomposition theorem

Armed with the spinal decomposition theorem, we are now able to establish, in

this chapter, some deep results for extreme values in the branching random walk.

Among these results, a particularly spectacular one is the Äıdékon theorem for

the limit distribution of the leftmost position (Section 5.4). We give a complete

proof of the Äıdékon theorem by means of the peeling lemma (Theorem 5.14 in

Section 5.3) for the spine, a very useful tool which is exploited in a few other

situations in this chapter. Most of the applications of the spinal decomposition

theorem presented here have been obtained in recent years, highlighting the state

of the art of the study of branching random walks.

5.1. Assumption (H)

Let (V (x), x ∈ T) be a branching random walk whose law is governed by a point

process Ξ := (ξ1, . . . , ξN), where the random variable N can be 0. Let ψ be the

log-Laplace transform defined by

ψ(t) := lnE
( ∑

|x|=1

e−tV (x)
)
∈ (−∞, ∞], t ∈ R.

Throughout this chapter, we assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1).

While ψ(0) > 0 clearly indicates that we work on the supercritical regime,

let us say a few words about the assumption ψ(1) = 0 = ψ′(1). Assume for the

51
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moment that there exists t > 0 such that ψ(t) <∞. Let ζ := sup{s > 0 : ψ(s) <

∞} ∈ (0, ∞]. If we can find t∗ ∈ (0, ζ) satisfying

(5.1) ψ(t∗) = t∗ ψ′(t∗),

then the log-Laplace transform of the branching random walk Ṽ (x) := t∗ V (x) +

ψ(t∗) |x|, x ∈ T, satisfies ψ(1) = 0 = ψ′(1).

So as long as (5.1) has a solution, there is no loss of generality to assume that

ψ(1) = 0 = ψ′(1). It is, however, possible that no t∗ > 0 satisfies (5.1), in which

case, the results in this chapter do not apply. Loosely speaking, the existence of t∗

fails if and only if the law of inf i ξi is bounded from below and E(
∑

i 1{ξi=suppmin}) ≥

1, with suppmin denoting the minimum of the support of the law of inf i ξi (i.e., the

essential infimum of inf i ξi). In particular, for a branching random walk with

Gaussian displacements, t∗ exists. For an elementary but complete discussion on

the existence of solutions to (5.1) under the assumption ψ(0) < ∞, see the arXiv

version of Jaffuel [146], or Bérard and Gouéré [41] assuming that #Ξ is bounded.

If t > 0 is such that ψ(t) = 0, the value of t is often referred to as a “Malthusian

parameter” in various contexts (Jagers [147], Nerman [202], Bertoin [47], etc.),

because it governs the growth rate (in the exponential scale) of the system. Under

our assumption, 1 is the unique Malthusian parameter.

The assumption ψ(1) = 0 = ψ′(1) is fundamental for various universality be-

haviours of the branching random walk we are going to study in this chapter.

Recall that the one-dimensional random walk associated with (V (x), x ∈ T),

denoted by (Sn, n ≥ 0), is such that for any Borel function g : R → [0, ∞),

E[g(S1)] = E
[ ∑

|x|=1

g(V (x))e−V (x)
]
.

For the majority of the results in the chapter, we also assume

(5.2) E
[ ∑

|x|=1

V (x)2e−V (x)
]
<∞.

Condition (5.2) simply says that E[S2
1 ] <∞. Moreover, the assumption ψ′(1) = 0

means that E[S1] = 0.
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Finally, we often also assume that

(5.3) E[X ln2
+X ] <∞, E[X̃ ln+ X̃ ] <∞,

where ln+ y := max{0, ln y} and ln2
+ y := (ln+ y)

2 for any y ≥ 0, and1

(5.4) X :=
∑

|x|=1

e−V (x), X̃ :=
∑

|x|=1

V (x)+ e−V (x).

Assumption (5.3), despite its somehow exotic looking, is believed to be optimal for

most of the results in this chapter (for example, for the derivative martingale to

have a positive limit; see Conjecture 5.9 in Section 5.2 for more details).

Summarizing, here is the fundamental assumption of the chapter:

Assumption (H). ψ(0) > 0, ψ(1) = 0 = ψ′(1), (5.2) and (5.3).

The following elementary lemma tells us that under assumption (5.3), we have

(5.5) E[X ln2
+ X̃ ] <∞, E[X̃ ln+X ] <∞.

Lemma 5.1. Let ξ and η be an arbitrary pair of non-negative random variables

such that E[ξ ln2
+ ξ] <∞ and that E[η ln+ η] <∞. Then

E[ξ ln2
+ η] <∞, E[η ln+ ξ] <∞.

Proof. The second inequality follows from the simple observation that η ln+ ξ ≤

max{ξ ln+ ξ, η ln+ η}, whereas the first from the existence of a constant c1 > 0

such that for all sufficiently large a and b,

a ln2 b ≤ c1 (a ln
2 a + b ln b),

which is easily seen to hold by discussing on whether b ≤ a2 or b > a2. �

5.2. Convergence of the derivative martingale

In this section, we study the derivative martingale defined by

Dn :=
∑

|x|=n

V (x)e−V (x), n ≥ 0.

1Notation: u+ := max{u, 0} for any u ∈ R.
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If ψ(1) = 0 = ψ′(1), then (Dn) is indeed a martingale. Recall that P∗( · ) :=

P( · | non-extinction).

Theorem 5.2. (i) If ψ(0) > 0, ψ(1) = 0 = ψ′(1) and 2 E[
∑
|x|=1 V (x)

2
− e
−V (x)] <

∞, then (Dn, n ≥ 0) converges a.s. to a non-negative limit, denoted by D∞.

(ii) Under Assumption (H), we have D∞ > 0, P∗-a.s.

Discussion 5.3. Even though the martingale Dn can be negative, we trivially see

that its almost sure limit D∞ is necessarily non-negative: indeed, since ψ(1) = 0,

Lemma 3.1 of Section 3.1 tells us that inf |x|=n V (x) → ∞, P∗-a.s., hence Dn ≥

0 P∗-almost surely for all sufficiently large index n (how large depends on the

underlying ω). So Theorem 5.2 (i) reveals the almost sure convergence of (Dn).�

Discussion 5.4. Let us now turn to Theorem 5.2 (ii). Assume for the moment

that ψ(0) > 0, ψ(1) = 0 = ψ′(1) and E[
∑
|x|=1 V (x)

2 e−V (x)] < ∞. The first part

of the theorem ensures the almost sure existence of D∞. For any x ∈ T, we write

Dn,x :=
∑
|y|=n:y≥x[V (y)− V (x)]e−[V (y)−V (x)]; then

(5.6) D∞,x := lim
n→∞

Dn,x

exists a.s. as well, and is a.s. non-negative. For any x ∈ T with |x| = 1, we have

Dn ≥
∑

|y|=n, y≥x

V (y)e−V (y) = e−V (x)Dn,x + V (x)e−V (x)
∑

|y|=n, y≥x

e−[V (y)−V (x)].

We let n → ∞. Since ψ(1) = 0 = ψ′(1), it follows from the Biggins martingale

convergence theorem (Theorem 3.2 in Section 3.2) that
∑
|y|=n, y≥x e

−[V (y)−V (x)] → 0

a.s., so that

D∞ ≥ e−V (x)D∞,x.

Since both D∞ and D∞,x are non-negative, this implies that {D∞ = 0} ⊂ {D∞,x =

0}. In the literature, a property is called inherited (Peres [208] Chapter 3, Lyons

and Peres [178] Chapter 5), if it is satisfied by all finite trees and is such that

whenever a tree has this property, so do all the subtrees rooted at the children of

the root. It is easily checked that any inherited property has probability either 0

2Notation: u− := max{−u, 0} for any u ∈ R.
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or 1 given non-extinction. In particular, P{D∞ = 0 | non-extinction} is either 0 or

1.

Theorem 5.2 (ii) says that P{D∞ = 0 | non-extinction} = 0 under the addi-

tional assumption (5.3). �

The rest of the section is devoted to the proof of Theorem 5.2. Let us fix

α ≥ 0. The idea is to use the spinal decomposition theorem in Example 4.6 of

Section 4.7, associated with the positive harmonic function h on [−α, ∞). So it

may be convenient to recall some basic ingredients in Example 4.6: (Sn) is the

associated one-dimensional random walk, thus

E[F (S1 − S0)] = E
[ ∑

|x|=1

F (V (x))e−V (x)
]
,

for any measurable function F : R → R+, whereas R is the renewal function asso-

ciated with (Sn) as in (A.2) of Appendix A.1, and the positive harmonic function

h is defined as

h(u) := R(u+ α), u ∈ [−α, ∞).

Let b ∈ [−α, ∞). The new probability Q
(α)
b (denoted by Q

(h)
b in Example 4.6 of

Section 4.7) on F∞ is such that

Q
(α)
b (A) =

∫

A

D
(α)
n

h(b)e−b
dPb, ∀A ∈ Fn, ∀n ≥ 0,

where

D(α)
n :=

∑

|x|=n

h(V (x))e−V (x) 1{V (y)≥−α, ∀y∈[[∅, x]]}, n ≥ 0,

is a martingale under Pb.

Recall that limn→∞
R(u)
u

= cren ∈ (0, ∞) (see (A.4) of Appendix A.1), so there

exist constants c2 > 0 and c3 > 0 such that

(5.7) c2 (1 + u+ α) ≤ h(u) ≤ c3 (1 + u+ α), ∀u ≥ −α.

This inequality will be in use several times in the proof of Theorem 5.2.

Since (D
(α)
n , n ≥ 0) is a non-negative martingale under P = P0, it admits a

finite P-almost sure limit, denoted by D
(α)
∞ , when n → ∞. Let us first prove the

following result.
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Lemma 5.5. Let α ≥ 0. Under Assumption (H), D
(α)
n → D

(α)
∞ in L1(P).

Proof of Lemma 5.5. The main idea is already used in the proof of the Biggins

martingale convergence theorem in Section 4.8, though the situation is a little more

complicated here.

Let G
(α)
∞ be the σ-field generated by w

(α)
n and V (w

(α)
n ) as well as the offspring

of w
(α)
n , for all n ≥ 0. By Lemma 4.2 of Section 4.3, it suffices to show that

lim inf
n→∞

EQ(α)[D(α)
n |G (α)

∞ ] <∞, Q(α)-a.s.

Using the martingale property of D
(α)
n for the subtrees rooted at the brothers

of the spine, we arrive at (recalling that brot(w
(α)
j ) is the set of brothers of w

(α)
j ):

EQ(α)[D(α)
n |G (α)

∞ ]

= h(V (w(α)
n ))e−V (w

(α)
n ) +

n∑

k=1

∑

x∈brot(w
(α)
j )

h(V (x))e−V (x) 1{V (xj)≥−α, ∀j≤k} .

We let n→ ∞. The term h(V (w
(α)
n ))e−V (w

(α)
n ) is easily treated: Since (V (w

(α)
n ), n ≥

0) under Q(α) is a centred random walk conditioned to stay non-negative, we have

V (w
(α)
n ) → ∞, Q(α)-a.s., therefore h(V (w

(α)
n ))e−V (w

(α)
n ) → 0, Q(α)-a.s. On the

other hand, we simply use (5.7) to say that h(V (x)) 1{V (xj)≥−α, ∀j≤k} is bounded

by c3 [1 + (α+ V (x))+]. Therefore,

lim inf
n→∞

EQ(α)[D(α)
n |G (α)

∞ ] ≤ c3

∞∑

k=1

∑

x∈brot(w
(α)
j )

[1 + (α + V (x))+]e
−V (x).

It remains to show that the right-hand side is Q(α)-a.s. finite. Using the trivial

inequality 1+ (α+V (x))+ ≤ [1+α+V (w
(α)
k−1)]+ [V (x)−V (w

(α)
k−1)]+, we only need

to check that Q(α)-almost surely,

∞∑

k=1

[1 + α + V (w
(α)
k−1)]e

−V (w
(α)
k−1)

∑

x∈brot(w
(α)
j )

e−[V (x)−V (w
(α)
k−1)] < ∞,(5.8)

∞∑

k=1

e−V (w
(α)
k−1)

∑

x∈brot(w
(α)
j )

[V (x)− V (w
(α)
k−1)]+ e−[V (x)−V (w

(α)
k−1)] < ∞.(5.9)
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Recall the definitions: X =
∑
|x|=1 e

−V (x) and X̃ =
∑
|x|=1 V (x)+ e−V (x) (see

(5.4)). Recall from (5.7) that h(u) 1{u≥−α} ≤ c3 [1 + (u+ α)+]. Let b ≥ −α. Since

1 + (u+ α)+ ≤ [1 + b+ α] + (u− b)+, we have

D
(α)
1 =

∑

|x|=1

h(V (x))e−V (x) 1{V (x)≥−α}

≤ c3
∑

|x|=1

e−V (x) {[1 + b+ α] + [V (x)− b]+}.

Therefore, for any z ∈ R and b ≥ −α,

Q
(α)
b

{ ∑

|x|=1

e−[V (x)−b] > z
}

=
1

h(b)e−b
Eb

[
D

(α)
1 1{

∑
|x|=1 e

−[V (x)−b]>z}

]

≤
c3
c2

ebEb

[ ∑

|y|=1

e−V (y)(1 +
(V (y)− b)+
1 + b+ α

) 1{
∑
|x|=1 e

−[V (x)−b]>z}

]

= c4E[X 1{X>z}] +
c4

1 + b+ α
E[X̃ 1{X>z}],(5.10)

with c4 :=
c3
c2
. For later use, we note that the same argument gives that for z ∈ R

and b ≥ −α,

Q
(α)
b

{ ∑

|x|=1

(V (x)− b)+ e−[V (x)−b] > z
}

≤ c4E[X 1{X̃>z}] +
c4

1 + b+ α
E[X̃ 1{X̃>z}].(5.11)

We take z := eλb in (5.10), where λ ∈ (0, 1) is a fixed real number. Writing

f1(z) := E[X 1{X>z}] and f2(z) := E[X̃ 1{X>z}] for all z ∈ R, it follows from the

Markov property (applied at time k − 1) that

Q(α)
{ ∑

x∈brot(w
(α)
k )

e−[V (x)−V (w
(α)
k−1)] > eλV (w

(α)
k−1)

}

≤ c4EQ(α)

[
f1(e

λV (w
(α)
k−1)) +

f2(e
λV (w

(α)
k−1))

1 + V (w
(α)
k−1) + α

]
.

We now estimate the expectation term on the right-hand side. Recall from the

spinal decomposition theorem that under Q(α), (V (w
(α)
i ), i ≥ 0) is a random walk
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conditioned to stay in [−α, ∞) in the sense of Doob’s h-transform (see (4.4) of

Section 4.2), so

EQ(α)

[
f1(e

λV (w
(α)
k−1)) +

f2(e
λV (w

(α)
k−1))

1 + V (w
(α)
k−1) + α

]

=
1

h(0)
E
[(
f1(e

λSk−1) +
f2(e

λSk−1)

1 + Sk−1 + α

)
h(Sk−1) 1{min0≤i≤k−1 Si≥−α}

]

=
1

h(0)
E
[(
X 1{Sk−1≤

1
λ
lnX} +

X̃ 1{Sk−1≤
1
λ
lnX}

1 + Sk−1 + α

)
h(Sk−1) 1{min0≤i≤k−1 Si≥−α}

]
,

where the random walk (Si, i ≥ 0) is taken to be independent of the pair (X, X̃).

Applying again (5.7) yields that

EQ(α)

[
f1(e

λV (w
(α)
k−1)) +

f2(e
λV (w

(α)
k−1))

1 + V (w
(α)
k−1) + α

]

≤
c3
h(0)

E
[(

(1 +
lnX

λ
+ α)X 1{Sk−1≤

1
λ
lnX}

+X̃ 1{Sk−1≤
1
λ
lnX}

)
1{min0≤i≤k−1 Si≥−α}

]
.

Recall from Lemma A.5 (Appendix A.2) that
∑∞

ℓ=0P{Sℓ ≤ y − z, min0≤i≤ℓ Si ≥

−z} ≤ c5 (1+ y)(1+min{y, z}) for some constant c5 > 0 and all y ≥ 0 and z ≥ 0.

This implies

∞∑

k=1

EQ(α)

[
f1(e

λV (w
(α)
k−1)) +

f2(e
λV (w

(α)
k−1))

1 + V (w
(α)
k−1) + α

]

≤
c6
h(0)

E[X (1 + ln+X)2 + X̃ (1 + ln+X)],

which is finite under assumption (5.3) (using also the second part of its consequence

(5.5)). We have thus proved that

∞∑

k=1

Q(α)
{ ∑

x∈brot(w
(α)
k )

e−[V (x)−V (w
(α)
k−1)] > eλV (w

(α)
k−1)

}
<∞.

By the Borel–Cantelli lemma, for any λ ∈ (0, 1), Q(α)-almost surely for all suffi-

ciently large k, ∑

x∈brot(w
(α)
k )

e−[V (x)−V (w
(α)
k−1)] ≤ eλV (w

(α)
k−1).
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Since V (w
(α)
k−1) ≥ (k−1)(1/2)−ε for any ε > 0 and Q(α)-almost surely all sufficiently

large k (this is a known property of conditioned random walks; see Biggins [53]),

we obtain (5.8).

The proof of (5.9) is along the same lines, except that we use (5.11) instead of

(5.10), and E[X (1 + ln+ X̃)2 + X̃ (1 + ln+ X̃)] <∞ instead of E[X (1 + ln+X)2 +

X̃ (1 + ln+X)] <∞. This completes the proof of Lemma 5.5. �

We have now all the necessary ingredients to prove Theorem 5.2.

Proof of Theorem 5.2. (i) Assume ψ(0) > 0, ψ(1) = 0 = ψ′(1). Assume also

E[
∑
|x|=1 V (x)

2
−e
−V (x)] < ∞. We only need to prove the almost sure convergence

of Dn (see Discussion 5.3).

Fix ε > 0. Recall that P∗( · ) := P( · | non-extinction). Since ψ(1) = 0, it

follows from Lemma 3.1 of Section 3.1 that

(5.12) inf
|x|=n

V (x) → ∞, inf
x∈T

V (x) > −∞, P∗-a.s.

We can thus fix α = α(ε) ≥ 0 such that P{infx∈T V (x) > −α} ≥ 1− ε.

Consider D
(α)
n :=

∑
|x|=n h(V (x))e−V (x) 1{V (y)≥−α, ∀y∈[[∅, x]]}, which is a non-ne-

gative martingale. On the one hand, it converges a.s. to D
(α)
∞ ; on the other hand,

on the set {infx∈T V (x) > −α}, D
(α)
n coincides with

∑
|x|=n h(V (x))e−V (x), which,

P∗-a.s., is equivalent to cren (Dn + αWn) (when n → ∞) under the assumption

E[
∑
|x|=1 V (x)

2
− e
−V (x)] < ∞ (see (A.5) in Appendix A.1). Since Wn → 0 a.s., we

obtain that with probability at least 1 − ε, Dn converges to a finite limit. This

yields the almost sure convergence of Dn.

(ii) Let us now work under Assumption (H). According to Discussion 5.4, we

only need to check that P{D∞ > 0} > 0.

Let α = 0 and consider D
(0)
n :=

∑
|x|=n h(V (x))e−V (x) 1{V (y)≥0, ∀y∈[[∅, x]]}. By

Lemma 5.5, D
(0)
n → D

(0)
∞ in L1, so E(D

(0)
∞ ) = 1. In particular, P{D

(0)
∞ > 0} > 0.

On the other hand, h(u) ≤ c3 (1+u) for u ≥ 0 (see (5.7); recalling that α = 0),

so D
(0)
n ≤ c3 (Wn +

∑
|x|=n V (x)+e

−V (x)), which converges a.s. to c3 (0 + D∞) =

c3D∞, we obtain D
(0)
∞ ≤ c3D∞; hence P{D∞ > 0} > 0. �

One may wonder whether or not the assumptions in Theorem 5.2 are optimal,

respectively, for the a.s. convergence of Dn, and for the positivity of the limit. No
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definitive answer is, alas, available so far. Concerning the a.s. convergence of Dn,

we ask:

Question 5.6. Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). Does Dn converge almost

surely?

The answer to Question 5.6 should be negative. A correct formulation of the

question is: how to weaken the conditions in Theorem 5.2 to ensure almost sure

convergence of Dn?

For the a.s. positivity ofD∞, it looks natural to wonder whether the assumption

E[
∑
|x|=1 V (x)

2 e−V (x)] < ∞ could be weakened to E[
∑
|x|=1 V (x)2− e

−V (x)] < ∞ in

Lemma 5.5, which leads to the following question:

Question 5.7. Does Theorem 5.2 (ii) hold if we assume E[
∑
|x|=1 V (x)2− e

−V (x)] <

∞ instead of E[
∑
|x|=1 V (x)2 e−V (x)] <∞?

I feel that the answer to Question 5.7 should be negative as well.

If E[
∑
|x|=1 V (x)

2 e−V (x)] < ∞, assumption (5.3) is likely to be also necessary

to ensure the positivity of D∞. Let us recall the following

Theorem 5.8. (Biggins and Kyprianou [57]) Assume ψ(0) > 0, ψ(1) =

0 = ψ′(1) and E[
∑
|x|=1 V (x)

2 e−V (x)] < ∞. If either E[
X ln2+X

ln+ ln+ ln+X
] = ∞ or

E[ X̃ ln+ X̃

ln+ ln+ ln+ X̃
] = ∞, then D∞ = 0, P∗-a.s.

The presence of ln+ ln+ ln+ terms in Theorem 5.8, originating in [57] from

the oscillations of the branching random walk along the spine (which is a one-

dimensional centred random walk conditioned to stay non-negative), is expected

to be superfluous. This leads to the following

Conjecture 5.9. Assume ψ(0) > 0, ψ(1) = 0 = ψ′(1), E[
∑
|x|=1 V (x)

2 e−V (x)] <

∞. Then (5.3) is a necessary and sufficient condition for P{D∞ > 0} > 0.

According to Discussion 5.3, P∗{D∞ > 0} is either 0 or 1, so P{D∞ > 0} > 0

means D∞ > 0, P∗-a.s.

We mention that a necessary and sufficient condition for the positivity of D∞ is

obtained by Biggins and Kyprianou [58] in terms of the asymptotic behaviour near
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the origin of the Laplace transform of the fixed point of the associated smoothing

transform (defined in (3.1) of Section 3.3). The analogue of Conjecture 5.9 for

branching Brownian motion is proved by Ren and Yang [213].

[N.B.: Since the preparation of the first draft of these notes, Conjecture 5.9

has been solved, in the affirmative, by Chen [88].]

We close this section with a couple of remarks.

Remark 5.10. Under Assumption (H), the derivative martingale has a P∗-a.s.

positive limit, whereas the additive martingale tends P∗-a.s. to 0, so the advan-

tage of using the derivative martingale3 while applying the spinal decomposition

theorem is clear: It allows us to have a probability measure which is absolutely

continuous with respect to P. �

Remark 5.11. Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). Theorem 5.2 (i) tells us

that if E[
∑
|x|=1 V (x)2− e

−V (x)] <∞, then Dn → D∞ a.s. The derivative martingale

Dn sums over all the particles in the n-th generation. Sometimes, however, it

is useful to know whether the convergence still holds if we sum over particles

belonging to some special random collections. This problem is studied in Biggins

and Kyprianou [57]. Their result applies when these special random collections are

the so-called stopping lines. Let us record here a particularly useful consequence:

Let4

(5.13) Z [A] :=
{
x ∈ T : V (x) ≥ A, max

0≤i<|x|
V (xi) < A

}

then under the assumptions of Theorem 5.2 (i), i.e., if ψ(0) > 0, ψ(1) = 0 = ψ′(1)

and E[
∑
|x|=1 V (x)2− e

−V (x)] <∞, then as A→ ∞,

∑

x∈Z [A]

V (x)e−V (x) → D∞, a.s.

Moreover,
∑

x∈Z [A] e
−V (x) → 0 a.s. �

3Strictly speaking, we use its approximation D
(α)
n in order to get a positive measure.

4In Biggins and Kyprianou [57], the set Z [A] is called a “very simple optional line”.
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5.3. Leftmost position: Weak convergence

We work under Assumption (H) (see Section 5.1).

One of the main concerns of this chapter is to prove Theorem 5.15 in Section

5.4, saying that if the law of the underlying point process Ξ is non-lattice, then

on the set of non-extinction, inf |x|=n V (x) −
3
2
lnn converges weakly to a non-

degenerate limiting distribution. As a warm up to the highly technical proof of

this deep result, we devote this section to explaining why 3
2
lnn should be the

correct centering term. Recall that P∗( · ) := P( · | non-extinction).

Theorem 5.12. Under Assumption (H),

1

lnn
inf
|x|=n

V (x) →
3

2
, in probability, under P∗.

The proof of the theorem relies on the following preliminary lemma, which is

stated uniformly in z ∈ [0, 3
2
lnn] for an application in Subsection 5.4.2. For the

proof of Theorem 5.12, only the case z = 0 is needed.

Let C > 0 be the constant in Lemma A.10 (Appendix A.2).

Lemma 5.13. Under Assumption (H),

lim inf
n→∞

inf
z∈[0, 3

2
lnn]

ez P
{
∃x ∈ T : |x| = n,

min
1≤i≤n

V (xi) ≥ 0,
3

2
lnn− z ≤ V (x) ≤

3

2
lnn− z + C

}
> 0.

We first admit Lemma 5.13, and proceed to the proof of the theorem.

Proof of Theorem 5.12. The proof is carried out in two steps.

First step. For any ε > 0,

(5.14) P∗
{

inf
|x|=n

V (x) ≥ (
3

2
− ε) lnn

}
→ 1, n→ ∞.

To prove (5.14), we fix a constant α > 0, and use the many-to-one formula
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(Theorem 1.1 in Section 1.3) to see that

E
( ∑

|x|=n

1{V (x)≤( 3
2
−ε) lnn, V (xi)≥−α, ∀1≤i≤n}

)

= E
[
eSn 1{Si≤(

3
2
−ε) lnn, Si≥−α, ∀1≤i≤n}

]

≤ n
3
2
−εP

(
Si ≤ (

3

2
− ε) lnn, Si ≥ −α, ∀1 ≤ i ≤ n

)
.

As long as n is sufficiently large such that (3
2
− ε) lnn ≥ 1, we have P{Si ≤

(3
2
− ε) lnn, Si ≥ −α, ∀1 ≤ i ≤ n} ≤ c7

(lnn)2

n3/2 with c7 = c7(α, ε) (by Lemma A.1

of Appendix A.2). It follows that

lim
n→∞

E
( ∑

|x|=n

1{V (x)≤( 3
2
−ε) lnn, V (xi)≥−α, ∀1≤i≤n}

)
= 0.

Since infx∈T V (x) > −∞ a.s. (see (5.12)), (5.14) follows. It is worth noting that

(5.14) holds without assumption (5.3).

Second step. For any ε > 0,

(5.15) P∗
{

inf
|x|=n

V (x) ≤ (
3

2
+ ε) lnn

}
→ 1, n→ ∞.

By Lemma 5.13, there exists δ > 0 such that for all sufficiently large n, say

n ≥ n0,

P
{

inf
|x|=n

V (x) ≤
3

2
lnn+ C

}
≥ δ.

Let ε > 0. Let ℓ ≥ 1 be an integer such that (1 − δ)ℓ ≤ ε. The system surviving

P∗-a.s., there exist A > 0 and an integer n1 ≥ 1 such that P∗(
∑
|x|=n1

1{V (x)≤A} ≥

ℓ) ≥ 1 − ε. By considering all the subtrees rooted at the vertices x of generation

n1 with V (x) ≤ A, we see that for all n ≥ n0,

P∗
{

inf
|x|=n+n1

V (x) ≤
3

2
lnn+ C + A

}
≥ 1− (1− δ)ℓ − ε ≥ 1− 2ε,

which yields (5.15). �

We now turn to the proof of Lemma 5.13, by applying the spinal decomposition

theorem to the size-biased branching random walk as seen in Example 4.5 of Section

4.6: Let Wn :=
∑
|x|=n e

−V (x) be the additive martingale, and let Q be such that

Q(A) =

∫

A

Wn dP, ∀A ∈ Fn, ∀n ≥ 0.



64 [Chapter 5. Applications of the spinal decomposition theorem

Under Q, (V (wn)) is a centred random walk.

Let L ≥ 0 and 0 ≤ K ≤ z ≤ 3
2
lnn− L. Let

(5.16) a
(n)
i = a

(n)
i (z, L, K) :=

{
−z +K if 0 ≤ i ≤ ⌊n

2
⌋,

3
2
lnn− z − L if ⌊n

2
⌋ < i ≤ n.

We consider5

Z
z,L,K
n :=

{
x : |x| = n, V (xi) ≥ a

(n)
i , ∀0 ≤ i ≤ n,

V (x) ≤
3

2
lnn− z + C

}
.(5.17)

In Z z,L,K
n , we add an absorbing barrier, killing all vertices until generation

n whose spatial value is below −z+K as well as all vertices between generation n
2

and generation n whose spatial value is below 3
2
lnn − z − L. See Figure 7 below

for an example of vertex x ∈ Z z,L,K
n .

i

V (xi)

0 n
2

n

3
2
lnn− z − L

3
2
lnn− z + C

−(z −K)

Figure 7: Absorbing barrier in Z z,L,K
n

Let #Z z,L,K
n denote the cardinality of Z z,L,K

n . By definition,

E(#Z
z,L,K
n ) = EQ

[#Z z,L,K
n

Wn

]
= EQ

[ ∑

|x|=n

1{x∈Z
z,L,K
n }

Wn

]
.

Since Q{wn = x |Fn} = e−V (x)

Wn
for any x ∈ T with |x| = n, we have

E(#Z
z,L,K
n ) = EQ

[ ∑

|x|=n

1{x∈Z
z,L,K
n } e

V (x) 1{wn=x}

]
= EQ

[
eV (wn) 1{wn∈Z

z,L,K
n }

]
.

5We prepare for a general result, see the so-called peeling lemma for the spine, stated as
Theorem 5.14 below, which will be applied to various situations. For the proof of Lemma 5.13,
we simply take L = 0 and later K = z; for the proof of Theorem 5.12, we moreover take z = 0.
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By definition, 3
2
lnn− z − L ≤ V (wn) ≤

3
2
lnn− z + C on {wn ∈ Z z,L,K

n }, so

n3/2 e−z−LQ(wn ∈ Z
z,L,K
n ) ≤ E(#Z

z,L,K
n ) ≤ n3/2 e−z+C Q(wn ∈ Z

z,L,K
n ).

The spinal decomposition theorem stating that the process (V (wn))n≥0 under Q

has the law of (Sn)n≥0 under P, we obtain, by Lemma A.10 (Appendix A.2) for

the lower bound and by Lemma A.4 (Appendix A.2) for the upper bound, that for

n ≥ n0,

Q
(
wn ∈ Z

z,L,K
n

)
= P

{
Si ≥ a

(n)
i , ∀0 ≤ i ≤ n, Sn ≤

3

2
lnn− z + C

}

∈
[
c8

1 + z −K

n3/2
, c9

1 + z −K

n3/2

]
,(5.18)

with c8 = c8(L) > 0 and c9 = c9(L) > 0. In particular,

E(#Z
z,L,K
n ) ≥ c8 (1 + z −K) e−z−L.

Unfortunately, the second moment of #Z z,L,K
n turns out to be large. As before,

the idea is to restrict ourselves to a suitably chosen subset of Z z,L,K
n . Let, for n ≥ 2,

L ≥ 0 and 0 ≤ K ≤ z ≤ 3
2
lnn− L,

(5.19) β
(n)
i :=

{
i1/7 if 0 ≤ i ≤ ⌊n

2
⌋,

(n− i)1/7 if ⌊n
2
⌋ < i ≤ n.

[The power 1/7 is chosen arbitrarily; anything lying in (0, 1
6
) will do the job; it

originates from Lemma A.6 of Appendix A.2.] Consider

Y
z,L,K
n :=

{
|x| = n :

∑

y∈brot(xi+1)

[1 + (V (y)− a
(n)
i )+] e

−(V (y)−a
(n)
i ) ≤ ̺ e−β

(n)
i ,

∀0 ≤ i ≤ n− 1
}
,(5.20)

with brot(xi+1) denoting, as before, the set of brothers of xi+1, which is possibly

empty.

The following peeling lemma for the spine allows to throw away negligible events

and to control the second moment in various settings. The constant C > 0, in the

definition of Z z,L,K
n (see (5.17)), was chosen at the beginning of the section to be

the one in Lemma A.10 (Appendix A.2) in order to guarantee the lower bound in

(5.18). The peeling lemma for the spine, stated below, provides an upper bound

for Q(wn ∈ Z z,L,K
n \Y z,L,K

n ), and does not have any special requirement for C > 0.
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Theorem 5.14. (The peeling lemma) Let L ≥ 0 and C > 0. For any ε > 0,

we can choose the constant ̺ > 0 in (5.20) to be sufficiently large, such that for all

sufficiently large n, and all 0 ≤ K ≤ z ≤ 3
2
lnn− L,

Q
(
wn ∈ Z

z,L,K
n \Y z,L,K

n

)
≤ ε

1 + z −K

n3/2
,

where Z z,L,K
n and Y z,L,K

n are defined in (5.17) and (5.20), respectively.

The proof of the peeling lemma is postponed until Section 5.8.

We are now able to prove Lemma 5.13.

Proof of Lemma 5.13. Let C > 0 be the constant in Lemma A.10 of Appendix

A.2. Let n0 satisfy (5.18). Let n ≥ n0 and let 0 ≤ K ≤ z ≤ 3
2
lnn. Let Z z,0,K

n be

as in (5.17) with L = 0, and Y z,0,K
n as in (5.20) with L = 0.

By (5.18), c8
1+z−K
n3/2 ≤ Q(wn ∈ Z z,0,K

n ) ≤ c9
1+z−K
n3/2 . On the other hand, by

the peeling lemma (Theorem 5.14), it is possible to choose the constant ̺ > 0 in

the event Y z,0,K
n defined in (5.20) such that Q(wn ∈ Z z,0,K

n \Y z,0,K
n ) ≤ c8

2
1+z−K
n3/2 ,

uniformly in z ∈ [0, 3
2
lnn]. As such,

(5.21)
c8
2

1 + z −K

n3/2
≤ Q(wn ∈ Z

z,0,K
n ∩ Y

z,0,K
n ) ≤ c9

1 + z −K

n3/2
,

from which it follows that

E[ζn(z)] ≥ c10 (1 + z −K) e−z,

where

ζn(z) := #(Z z,0,K
n ∩ Y

z,0,K
n ).

[The constant c10 depends on the fixed parameter C.]

We now estimate the second moment of ζn(z). Using again the probability Q,

we have,

E[ζn(z)
2] = EQ

[
#(Z z,0,K

n ∩ Y
z,0,K
n )

∑

|x|=n

1{x∈Z
z,0,K
n ∩Y

z,0,K
n }

Wn

]

= EQ

[
#(Z z,0,K

n ∩ Y
z,0,K
n ) eV (wn) 1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

]
.
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Accordingly,

E[ζn(z)
2] ≤ n3/2 e−z+C EQ

[
#(Z z,0,K

n ∩ Y
z,0,K
n ) 1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

]

≤ n3/2 e−z+C EQ

[
(#Z

z,0,K
n ) 1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

]
.

Decomposing #Z z,0,K
n along the spine yields that

#Z
z,0,K
n = 1{wn∈Z

z,0,K
n } +

n∑

i=1

∑

y∈brot(wi)

#(Z z,0,K
n (y)),

where brot(wi) is, as before, the set of brothers of wi, and Z z,0,K
n (y) := {x ∈

Z z,0,K
n : x ≥ y} the set of descendants x of y at generation n such that x ∈ Z z,0,K

n .

By the spinal decomposition theorem, conditioning on G∞, the σ-field generated by

wj and V (wj) as well as the offspring of wj, for all j ≥ 0, we have, for y ∈ brot(wi),

EQ

[
#Z

z,0,K
n (y) |G∞

]
= ϕi,n(V (y)),

where, for r ∈ R,

ϕi,n(r) := E
[ ∑

|x|=n−i

1
{r+V (xj)≥a

(n)
j+i, ∀0≤j≤n−i, r+V (x)≤ 3

2
lnn−z+C}

]

= E
[
eSn−i1

{r+Sj≥a
(n)
j+i, ∀0≤j≤n−i, r+Sn−i≤

3
2
lnn−z+C}

]

≤ n3/2 eC−z−rP
(
r + Sj ≥ a

(n)
j+i, ∀0 ≤ j ≤ n− i,

r + Sn−i ≤
3

2
lnn− z + C

)
,(5.22)

and (Sj) is the associated random walk, the last identity being a consequence of

the many-to-one formula (Theorem 1.1 in Section 1.3). Therefore, using (5.18),

E[ζn(z)
2] ≤ c9 (1 + z −K) e−z+C

+n3/2 e−z+C
n∑

i=1

EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

∑

y∈brot(wi)

ϕi,n(V (y))
]
.

Assume that we are able to show that for some c11 > 0 and all sufficiently large n,

(5.23)

n∑

i=1

EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

∑

y∈brot(wi)

ϕi,n(V (y))
]
≤ c11

1 + z −K

n3/2
.
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Then E[ζn(z)
2] ≤ (c9+ c11) (1+ z−K) eC−z, for all large n. We already know that

E[ζn(z)] ≥ c10 e
−z, which implies P(ζn(z) > 0) ≥ {E[ζn(z)]}2

E[ζn(z)2]
≥ c12 (1 + z −K) e−z,

for some constant c12 > 0. Since {ζn(z) > 0} ⊂ {∃x : |x| = n, min1≤i≤n V (xi) ≥

−z+K, 3
2
lnn−z ≤ V (x) ≤ 3

2
lnn−z+C}, this will complete the proof of Lemma

5.13 by simply taking K = z.

It remains to check (5.23). We bound ϕi,n(r) differently depending on whether

i ≤ ⌊n
2
⌋ + 1 or i > ⌊n

2
⌋+ 1. In the rest of the proof, we treat n

2
as an integer.

First case: i ≤ n
2
+ 1. The j = 0 term gives ϕi,n(r) = 0 for r < −z +K. For

r ≥ −z+K, we use (5.22) and Lemma A.4 of Appendix A.2 (the probability term

in Lemma A.4 being non-decreasing in λ, the lemma applies even if i is close to
n
2
):

(5.24) ϕi,n(r) ≤ n3/2eC−z−r c13
r + z −K + 1

n3/2
= eC c13 e

−r−z(r + z −K + 1).

Writing EQ[n, i] := EQ[1{wn∈Z
z,0,K
n ∩Y

z,0,K
n }

∑
y∈brot(wi)

ϕi,n(V (y))] and c14 := eCc13,

EQ[n, i] ≤ c14 EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

×
∑

y∈brot(wi)

1{V (y)≥−z+K}e
−V (y)−z(V (y) + z −K + 1)

]
.

Obviously, 1{V (y)≥−z+K}(V (y) + z − K + 1) ≤ (V (y) + z − K)+ + 1, so we have∑
y∈brot(wi)

1{V (y)≥−z+K}e
−V (y)−z(V (y)+ z−K +1) ≤

∑
y∈brot(wi)

e−V (y)−z [(V (y)+

z−K)++1], which, on {wn ∈ Z z,0,K
n ∩Y z,0,K

n }, is bounded by e−K ̺ e−(i−1)
1/7

(by

definition of Y z,0,K
n in (5.20)). This yields that

EQ[n, i] ≤ c14̺e
−K−(i−1)1/7Q(wn ∈ Z

z,0,K
n ∩ Y

z,0,K
n )

≤
c14̺c9(1 + z −K)

n3/2
e−K−(i−1)

1/7

,

by (5.21). As a consequence (and using −K ≤ 0)

(5.25)
∑

1≤i≤n
2
+1

EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

∑

y∈brot(wi)

ϕi,n(V (y))
]
≤ c15

1 + z −K

n3/2
.

Second (and last) case: n
2
+1 < i ≤ n. This time, we bound ϕi,n(r) slightly

differently. Let us go back to (5.22). Since i > n
2
+ 1, we have a

(n)
j+i =

3
2
lnn − z
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for all 0 ≤ j ≤ n − i (recalling that L = 0), thus ϕi,n(r) = 0 for r < 3
2
lnn − z,

whereas for r ≥ 3
2
lnn− z, we have, by Lemma A.1 of Appendix A.2,

ϕi,n(r) ≤ n3/2 e−z+C−r
c16

(n− i+ 1)3/2
(r −

3

2
lnn+ z + 1).

This is the analogue of (5.24). From here, we can proceed as in the first case:

Writing again EQ[n, i] := EQ[1{wn∈Z
z,0,K
n ∩Y

z,0,K
n }

∑
y∈brot(wi)

ϕi,n(V (y))] for brevity,

we have

EQ[n, i] ≤
c16e

C n3/2

(n− i+ 1)3/2
EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

×
∑

y∈brot(wi)

e−V (y)−z [(V (y)−
3

2
lnn+ z)+ + 1]

]

≤
c16e

C n3/2

(n− i+ 1)3/2
̺ e−(n−i+1)1/7

n3/2
Q(wn ∈ Z

z,0,K
n ∩ Y

z,0,K
n )

≤
c17 (1 + z −K)

(n− i+ 1)3/2 n3/2
e−(n−i+1)1/7 ,

where the last inequality comes from (5.21). Consequently,

∑

n
2
+1<i≤n

EQ

[
1{wn∈Z

z,0,K
n ∩Y

z,0,K
n }

∑

y∈brot(wi)

ϕi,ℓ(V (y))
]
≤ c18

1 + z −K

n3/2
.

Together with (5.25), this yields (5.23). Lemma 5.13 is proved. �

5.4. Leftmost position: Limiting law

Let (V (x)) be a branching random walk. We write

Mn := inf
|x|=n

V (x), n ≥ 0.

The main result of this section is Theorem 5.15 below, saying that under suitable

general assumptions, Mn, centred by a deterministic term, converges weakly to a

non-degenerate law.

Recall that (V (x), |x| = 1) is distributed according to a point process denoted

by Ξ. We say that the law of Ξ is non-lattice if there exist no a > 0 and b ∈ R

such that a.s., {V (x), |x| = 1} ⊂ aZ+ b.
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Theorem 5.15. (Aı̈dékon [8]) Under Assumption (H), if the distribution of Ξ

is non-lattice, then there exists a constant Cmin ∈ (0, ∞) such that for any u ∈ R,

lim
n→∞

P
(
Mn −

3

2
lnn > u

)
= E[e−C

min euD∞ ],

where D∞ is the almost sure limit of the derivative martingale (Dn).

We recall from Theorem 5.2 (Section 5.2) that under the assumptions of The-

orem 5.15, D∞ > 0 a.s. on the set of non-extinction. In words, Theorem 5.15 tells

us that −Mn + 3
2
lnn converges weakly to a Gumbel random variable6 with an

independent random shift of size ln(CminD∞).

While the assumption that the law of Ξ is non-lattice might look somehow pe-

culiar in Theorem 5.15, it is in fact necessary. Without this condition, it is possible

to construct an example of branching random walk such that for any deterministic

sequence (an), Mn − an does not converge in distribution; see Lifshits [165].

The rest of the section is devoted to the proof of this deep result. Since the

proof is rather technical, we split it into several steps.

5.4.1. Step 1. The derivative martingale is useful

The presence of D∞ in Theorem 5.15 indicates that the derivative martingale plays

a crucial role in the asymptotic behaviour of Mn. The first step in the proof of

Theorem 5.15 is to see how the derivative martingale comes into our picture. More

concretely, this step says that in the proof of Theorem 5.15, we only need to study

the tail probability of Mn −
3
2
lnn instead of its weak convergence; our main tool

here is the derivative martingale, summing over some conveniently chosen stopping

lines.

The basis in the first step in the proof of Theorem 5.15 is the following tail

estimate.

Proposition 5.16. (Key estimate: Tail estimate for minimum) Under As-

sumption (H), if the distribution of Ξ is non-lattice, we have, for some constant

6A (standard) Gumbel random variable ξ has distribution function P{ξ ≤ u} = exp(−e−u),
u ∈ R.
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ctail ∈ (0, ∞),

(5.26) P
{
Mn −

3

2
lnn ≤ −z

}
∼ ctail ze

−z , n→ ∞, z → ∞,

the exact meaning of (5.26) being that

(5.27) lim
z→∞

lim sup
n→∞

∣∣∣ 1

ze−z
P
{
Mn −

3

2
lnn ≤ −z

}
− ctail

∣∣∣ = 0.

Let us see why Proposition 5.16 implies Theorem 5.15. Let, as in (5.13),

Z [A] :=
{
x ∈ T : V (x) ≥ A, max

0≤i<|x|
V (xi) < A

}
.

For any u ∈ R, we have

(5.28) P
(
Mn −

3

2
lnn > u

)
“ = ” E

{ ∏

x∈Z [A]

[1− Φ|x|,n(V (x)− u)]
}
,

where

Φk,n(r) := P
{
Mn−k <

3

2
lnn− r

}
, n ≥ 1, 1 ≤ k ≤ n, r ∈ R.

By (5.26), Φk,n(z) “ ≈ ” ctail ze
−z , so that

P
(
Mn −

3

2
lnn > u

)
“ ≈ ” E

{ ∏

x∈Z [A]

[1− ctail (V (x)− u)eu−V (x)]
}
.

On the right-hand side, the parameter n disappears, only A stays. We now let

A→ ∞.

By Remark 5.11 (Section 5.2),
∏

x∈Z [A][1−ctail (V (x)−u)e
u−V (x)] → e−ctail e

uD∞

a.s., so by the dominated convergence theorem, we have E{
∏

x∈Z [A][1−ctail (V (x)−

u)eu−V (x)]} → E[e−ctail e
uD∞ ], A→ ∞. This will yield Theorem 5.15.

The argument presented is only heuristic for the moment. For example, in

(5.28), we will run into trouble if |x| > n for some x ∈ Z [A]. Now let us write a

rigorous proof.

Proof of Theorem 5.15. Fix u ∈ R and ε > 0. By the key estimate (Proposition

5.16), we can choose and fix a sufficiently large A such that

(5.29) lim sup
n→∞

∣∣∣e
z

z
P
{
Mn ≤

3

2
lnn− z

}
− ctail

∣∣∣ ≤ ε

2
, ∀z ≥ A− u.
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We also fix A0 = A0(A, ε) > A sufficiently large such that P(YA,A0) > 1−ε, where

YA,A0 :=
{

sup
x∈Z [A]

|x| ≤ A0, sup
x∈Z [A]

V (x) ≤ A0

}
.

Instead of having an identity in (5.28), we use an upper bound and a lower

bound, both of which are rigorous: writing F n(u) := P(Mn−
3
2
lnn > u), then for

all n > A0,

F n(u) ≤ E
{
1YA,A0

∏

x∈Z [A]

[1− Φ|x|,n(V (x)− u)]
}
+ ε,

F n(u) ≥ E
{
1YA,A0

∏

x∈Z [A]

[1− Φ|x|,n(V (x)− u)]
}
.

By (5.29), there exists a sufficiently large integer n0 ≥ 1 such that

∣∣∣e
z

z
Φk,n(z)− ctail

∣∣∣ ≤ ε, ∀n ≥ n0, 0 ≤ k ≤ A0, z ∈ [A− u, A0 − u].

Therefore,

F n(u) ≤ E
{
1YA,A0

∏

x∈Z [A]

[1− (ctail − ε)(V (x)− u)e−[V (x)−u)]]
}
+ ε

≤ E
{ ∏

x∈Z [A]

[1− (ctail − ε)(V (x)− u)e−[V (x)−u)]]
}
+ ε,

and, similarly,

F n(u) ≥ E
{
1YA,A0

∏

x∈Z [A]

[1− (ctail + ε)(V (x)− u)e−[V (x)−u)]]
}
− ε

≥ E
{ ∏

x∈Z [A]

[1− (ctail + ε)(V (x)− u)e−[V (x)−u)]]
}
− 2ε,

where, in the last inequality, we use the fact that P(YA,A0) ≥ 1−ε. Letting n→ ∞

gives that

lim sup
n→∞

F n(u) ≤ E
{ ∏

x∈Z [A]

[1− (ctail − ε)(V (x)− u)e−[V (x)−u)]]
}
+ ε,

lim inf
n→∞

F n(u) ≥ E
{ ∏

x∈Z [A]

[1− (ctail + ε)(V (x)− u)e−[V (x)−u)]]
}
− 2ε.
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On the right-hand sides, we let A→ ∞. We have already noted that E{
∏

x∈Z [A][1−

c (V (x)− u)eu−V (x)]} → E[e−ce
uD∞ ] for any given constant c > 0, hence

lim sup
n→∞

F n(u) ≤ E[e−(ctail−ε) e
uD∞ ] + ε,

lim inf
n→∞

F n(u) ≥ E[e−(ctail+ε) e
uD∞ ]− 2ε.

As ε > 0 can be arbitrarily small, the proof of Theorem 5.15 will be complete once

Proposition 5.16 is established. �

Remark 5.17. In this step, we did not use the assumption of non-lattice of the dis-

tribution of Ξ (which was, however, necessary for the validity of the key estimate).

�

5.4.2. Step 2. Proof of the key estimate

Our aim is now to prove the key estimate (Proposition 5.16), of which we recall

the statement: for some 0 < ctail <∞,

(5.26) P
{
Mn −

3

2
lnn ≤ −z

}
∼ ctail ze

−z , n→ ∞, z → ∞.

We prove this with the aid of several technical estimates, whose proofs (and some-

times, statements) are postponed to the forthcoming subsections for the sake of

the clarity. Let L ≥ 0 and 0 ≤ K ≤ z ≤ 3
2
lnn− L. Recall (a

(n)
i , 0 ≤ i ≤ n) from

(5.16):

a
(n)
i = a

(n)
i (z, L, K) :=

{
−z +K if 0 ≤ i ≤ ⌊n

2
⌋,

3
2
lnn− z − L if ⌊n

2
⌋ < i ≤ n.

Consider, for all x ∈ T with |x| = n,

(5.30) En(x) :=
{
V (xi) ≥ a

(n)
i , ∀0 ≤ i ≤ n, V (x) ≤

3

2
lnn− z

}
.

In order not to burden our notation, we do not write explicitly the dependence in

(z, K, L) of the event En.

Letm(n) be a vertex chosen uniformly in the set {x ∈ T : |x| = n, V (x) =Mn},

which is the set of particles achieving the minimum Mn. So m
(n) is well-defined as

long as the system survives until generation n.

Our first preliminary result is as follows.
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Lemma 5.18. For any ε > 0, there exist L0 > 0 and n0 ≥ 2 such that for all

L ≥ L0, n ≥ n0 and all 0 ≤ K ≤ z ≤ 3
2
lnn− L, we have

(5.31) P
(
Mn −

3

2
lnn ≤ −z, En(m

(n))c
)
≤ eK−z + ε(1 + z −K)e−z,

and moreover,

P
(
Mn −

3

2
lnn ≤ −z, min

0≤i≤n
2

V (m
(n)
i ) ≥ −z +K, En(m

(n))c
)

≤ ε(1 + z −K)e−z,(5.32)

where m
(n)
i is the ancestor of m(n) in the i-th generation.

Since both eK−z and ε(1+z−K)e−z can be much smaller than ze−z (for n→ ∞

and then z → ∞, as long as K is a fixed constant, and ε > 0 very small), Lemma

5.18 tells us that in the study of P(Mn −
3
2
lnn ≤ −z), we can limit ourselves to

the event En(m
(n)).

Lemma 5.18 is proved in Subsection 5.4.3.

We start with our proof of the key estimate, Proposition 5.16. Let ε > 0. By

inequality (5.31) in Lemma 5.18,

(5.33)
∣∣∣P

(
Mn −

3

2
lnn ≤ −z

)
− ΦEn

n (z)
∣∣∣ ≤ eK−z + ε(1 + z −K)e−z,

where

ΦEn
n (z) := P

(
En(m

(n))
)
= P

(
Mn −

3

2
lnn ≤ −z, En(m

(n))
)
,

the second identity being a consequence of the obvious fact that En(x) ⊂ {Mn −
3
2
lnn ≤ −z} for any x ∈ T with |x| = n. For further use, we note that if instead

of (5.31), we use inequality (5.32) in Lemma 5.18, then we also have
∣∣∣P

(
Mn −

3

2
lnn ≤ −z, min

0≤i≤n
2

V (m
(n)
i ) ≥ −z +K

)
− ΦEn

n (z)
∣∣∣

≤ ε(1 + z −K)e−z.(5.34)

We now study ΦEn
n (z). Since m(n) is uniformly chosen among vertices in gen-

eration n realizing the minimum, we have

ΦEn
n (z) = E

[ ∑

x∈T: |x|=n

1{m(n)=x} 1En(x)

]

= E
[∑

x∈T: |x|=n 1{V (x)=Mn} 1En(x)∑
|x|=n 1{V (x)=Mn}

]
.(5.35)
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We now use the spinal decomposition theorem as in Example 4.5 of Section

4.6: Qa(A) = Ea[
Wn

e−a 1A] for A ∈ Fn and n ≥ 1; Qa(wn = x |Fn) =
e−V (x)

Wn
for any

n and any vertex x ∈ T such that |x| = n; (V (wn) − V (wn−1), n ≥ 1), is, under

Qa, a sequence of i.i.d. random variables whose common distribution is that of S1

under P0. Accordingly, working under Q = Q0,

ΦEn
n (z) = EQ

[∑
x∈T: |x|=n

1
Wn

1{V (x)=Mn} 1En(x)∑
x∈T: |x|=n 1{V (x)=Mn}

]
(def. of Q)

= EQ

[∑
x∈T: |x|=n e

V (x) 1{wn=x} 1{V (x)=Mn} 1En(x)∑
x∈T: |x|=n 1{V (x)=Mn}

]
,

where the second equality follows from Q(wn = x |Fn) =
e−V (x)

Wn
(see (4.16)). This

leads to:

ΦEn
n (z) = EQ

[ eV (wn) 1{V (wn)=Mn}∑
x∈T: |x|=n 1{V (x)=Mn}

1En(wn)

]
.

At this stage, it is convenient to introduce another event En,b = En,b(z), and

claim that in the Q-expectation expression, we can integrate only on the En,b: let

b ≥ 1 be an integer, and let

(5.36) En,b :=
n−b⋂

i=0

{
min

x∈T: |x|=n, x>y
V (x) >

3

2
lnn− z, ∀y ∈ brot(wi)

}
,

where brot(wi) denotes as before the set of brothers of wi. Since En,b involves wn,

it is well-defined only under Q. Another simple observation is that on En,b∩{Mn ≤
3
2
lnn−z}, any particle at the leftmost position at generation n must be separated

from the spine after generation n− b.

Here is our second preliminary result.

Lemma 5.19. For any η > 0 and L ≥ 0, there exist K0 > 0, b0 ≥ 1 and n0 ≥ 2

such that for all n ≥ n0, b0 ≤ b < n and K0 ≤ K ≤ z ≤ 3
2
lnn− L,

Q
(
En(wn)\En,b

)
≤
η (1 + z −K)

n3/2
.

Lemma 5.19 is proved in Subsection 5.4.4.
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We continue with our proof of the key estimate (Proposition 5.16). Write

Φ
En, En,b
n (z) := EQ

[ eV (wn) 1{V (wn)=Mn}∑
x∈T: |x|=n 1{V (x)=Mn}

1En(wn)∩En,b

]
.

[It is the same Q-integration as for ΦEn
n (z) except that we integrate also on En,b.]

By definition,

0 ≤ ΦEn
n (z)− Φ

En, En,b
n (z) ≤ EQ

[
eV (wn) 1En(wn)\En,b

]
≤ e

3
2
lnn−zQ

(
En(wn)\En,b

)
.

By Lemma 5.19, there exist K0 > 0, b0 ≥ 1 and n0 ≥ 2 such that for b ≥ b0, n ≥ n0

and z ≥ K ≥ K0,

(5.37) 0 ≤ ΦEn
n (z)− Φ

En, En,b
n (z) ≤ η (1 + z −K) e−z.

Let us look at Φ
En, En,b
n (z). On the event En(wn), we have Mn ≤ 3

2
lnn− z, so

on the event En(wn) ∩ En,b, any particle at the leftmost position at generation n

must be a descendant of wn−b. Hence, on En(wn) ∩ En,b,
∑

x∈T: |x|=n 1{V (x)=Mn} =∑
x∈T: |x|=n, x>wn−b

1{V (x)=Mn} (this is why En,b was introduced). As such,

Φ
En, En,b
n (z) = EQ

[ eV (wn) 1{V (wn)=Mn}∑
x∈T: |x|=n, x>wn−b

1{V (x)=Mn}

1En(wn)∩En,b

]
.

We use the spinal decomposition theorem in Example 4.5 of Section 4.6: by ap-

plying the branching property at the vertex wn−b, we have, for n > 2b (so that
n
2
< n− b),

Φ
En, En,b
n (z) = EQ

[
F̂L,b(V (wn−b)) 1{V (wi)≥a

(n)
i , ∀0≤i≤n−b}

1En,b

]
,

where, for u ≥ a
(n)
n−b :=

3
2
lnn− z − L,

F̂L,b(u) := EQu

[ eV (wb) 1{V (wb)=Mb}∑
x∈T: |x|=b 1{V (x)=Mb}

1
{min0≤j≤b V (wj)≥a

(n)
n−b, V (wb)−

3
2
lnn≤−z}

]
.

We do not need the event En,b any more (which served only to take out the de-

nominator
∑

x∈T: |x|=n, x>wn−b
1{V (x)=Mn}), so let us get rid of it by introducing

Φ̂En
n (z) := EQ

[
F̂L,b(V (wn−b)) 1{V (wi)≥a

(n)
i , ∀0≤i≤n−b}

]
,
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which is the same Q-expectation as for Φ
En, En,b
n (z), but without the factor 1En,b

.

We have

Φ̂En
n (z)− Φ

En, En,b
n (z) = EQ

[
1
{V (wi)≥a

(n)
i , ∀0≤i≤n−b}

1E c
n,b
F̂L,b(V (wn−b))

]
.

By definition, F̂L,b(u) is bounded by e
3
2
lnn−zQu(min0≤j≤b V (wj) ≥ 3

2
lnn − z −

L, V (wb)−
3
2
lnn ≤ −z), so that

Φ̂En
n (z)− Φ

En, En,b
n (z) ≤ e

3
2
lnn−z EQ

[
1
{V (wi)≥a

(n)
i , ∀0≤i≤n−b}

1E c
n,b

×

×QV (wn−b)

(
min
0≤j≤b

V (wj) ≥
3

2
lnn− z − L, V (wb)−

3

2
lnn ≤ −z

)]
,

which, by the branching property at the vertex wn−b again, yields

Φ̂En
n (z)− Φ

En, En,b
n (z) ≤ e

3
2
lnn−zQ

(
En(wn)\En,b

)
.

By Lemma 5.19, this yields (for b ≥ b0, n ≥ n0 and K0 ≤ K ≤ z ≤ 3
2
lnn− L)

(5.38) 0 ≤ Φ̂En
n (z)− Φ

En, En,b
n (z) ≤ η (1 + z −K) e−z.

We now study Φ̂En
n (z). It is more convenient to make a transformation of the

function F̂L,b by setting, for v ≥ 0,

FL,b(v) := n−3/2 ez+L F̂L,b(v +
3

2
lnn− z − L)

= EQv

[ eV (wb) 1{V (wb)=Mb}∑
x∈T: |x|=b 1{V (x)=Mb}

1{min0≤j≤b V (wj)≥0, V (wb)≤L}

]
.

Then

Φ̂En
n (z) = n3/2 e−z−LEQ

[
FL,b(V (wn−b)−

3

2
lnn+ z + L) 1

{V (wi)≥a
(n)
i , ∀0≤i≤n−b}

]
.

By the spinal decomposition theorem, (V (wi)) under Q is a centred random walk.

We apply Proposition 5.22 (see Subsection 5.4.5 below) to the function FL,b (which

is easily checked to satisfy the assumptions in Proposition 5.22) and in its notation:

lim
n→∞

Φ̂En
n (z) = CL,b e

−z R(z −K),
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where CL,b := e−L C+C−(
π

2σ2
)1/2

∫∞
0
FL,b(u)R−(u) du ∈ (0, ∞). Combining this

with (5.33), (5.37) and (5.38) gives that, for L ≥ L0, b ≥ b0 and K0 ≤ K ≤ z ≤
3
2
lnn− L,

lim sup
n→∞

∣∣∣P
(
Mn −

3

2
lnn ≤ −z

)
− CL,b e

−z R(z −K)
∣∣∣

≤ eK−z + ε(1 + z −K)e−z + 2η(1 + z −K) e−z.

Recall that limz→∞
R(z−K)

z
= cren ∈ (0, ∞) (see (A.4) and (A.5) in Appendix A.1).

This yields that for L ≥ L0 and b ≥ b0 = b0(η, L),

lim sup
z→∞

lim sup
n→∞

∣∣∣
P(Mn −

3
2
lnn ≤ −z)

z e−z
− CL,b cren

∣∣∣ ≤ ε+ 2η.

In particular,

(5.39) lim sup
z→∞

lim sup
n→∞

P(Mn −
3
2
lnn ≤ −z)

z e−z
<∞.

It remains to prove that limL→∞ limb→∞ CL,b exists, and lies in (0, ∞). Consider

dL,b := lim inf
z→∞

lim inf
n→∞

Φ
En, En,b
n (z)

z e−z
, dL,b := lim sup

z→∞
lim sup
n→∞

Φ
En, En,b
n (z)

z e−z
.

We have proved that for L ≥ L0, η > 0 and all b ≥ b0(η, L),

CL,b cren − η ≤ dL,b ≤ dL,b ≤ CL,b cren.

We let b→ ∞. Since Φ
En, En,b
n (z) is non-decreasing in b, we can define

dL := lim
b→∞

dL,b, dL := lim
b→∞

dL,b,

to see that

lim sup
b→∞

CL,b ≤
dL
cren

≤
dL
cren

≤ lim inf
b→∞

CL,b.

This implies that for L ≥ L0,

lim
b→∞

CL,b =
dL
cren

=
dL
cren

.
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Since Φ
En, En,b
n (z) is also non-decreasing in L, the limit limL→∞ dL exists as well,

which yields the existence of the limit

c̃tail := lim
L→∞

lim
b→∞

CL,b.

Moreover, (5.39) implies c̃tail <∞.

It is also easy to see that c̃tail > 0. Indeed, by (5.34), and taking K = z, we

get for L ≥ L0 and b ≥ b0 = b0(η, L),

lim sup
z→∞

lim sup
n→∞

∣∣∣
P(Mn −

3
2
lnn ≤ −z, min0≤i≤n

2
V (m

(n)
i ) ≥ 0)

e−z
−CL,b cren

∣∣∣ ≤ ε+2η.

[Note that the normalising function becomes e−z, instead of z e−z.] And we know

that c̃tail = limL→∞ limb→∞CL,b exists. By Lemma 5.13, there exists c19 > 0,

independent of L and b, such that

lim sup
z→∞

lim sup
n→∞

P(Mn −
3
2
lnn ≤ −z, min0≤i≤n

2
V (m

(n)
i ) ≥ 0)

e−z
≥ c19,

which yields c̃tail ≥
c19
cren

> 0.

Proposition 5.16 is proved with ctail := c̃tail cren ∈ (0, ∞). �

5.4.3. Step 3a. Proof of Lemma 5.18

Before proceeding to the proof of Lemma 5.18, let us prove a preliminary estimate.

Lemma 5.20. There exist constants c20 > 0 and c21 > 0 such that for all suffi-

ciently large n, all L ≥ 0, u ≥ 0 and z ≥ 0,

Pu

(
∃x ∈ T : |x| = n, min

1≤i≤n
V (xi) ≥ 0, V (x) ≃

3

2
lnn− z,

min
n
2
≤j≤n

V (xj) ≃
3

2
lnn− z − L

)
≤ c20 (1 + u)e−c21 L−u−z,(5.40)

where a ≃ b is short for |a− b| ≤ 1.

Proof of Lemma 5.20. There is nothing to prove if 3
2
lnn − z − L < −1; so we

assume 3
2
lnn− z − L ≥ −1.
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For brevity, we write p(5.40) for the probability expression on the left-hand side

of (5.40), and α = α(n, z, L) := 3
2
lnn−z−L ≥ −1. Let ℓ ∈ [3

4
n, n) be an integer.

We observe that

{∃x ∈ T : |x| = n, min
n
2
≤j≤n

V (xj) ≃ α}

⊂
ℓ⋃

j=n
2

{∃x ∈ T : |x| = n, V (xj) ≃ α} ∪
n⋃

j=ℓ+1

{∃x ∈ T : |x| = j, V (xj) ≃ α}.

[Note that in the last event, |x| becomes j, not n any more: this trick goes back at

least to Kesten [154].] By the many-to-one formula (Theorem 1.1 in Section 1.3),

and in its notation,

p(5.40) ≤
ℓ∑

j=n
2

Eu

(
eSn−u 1{min1≤i≤n

2
Si≥0, Sn≃

3
2
lnn−z, Sj≃α, minn

2≤k≤n Sk≥α−1}

)
+

+

n∑

j=ℓ+1

Eu

(
eSj−u 1{min1≤i≤n

2
Si≥0, Sj≃α, minn

2≤k≤j Sk≥α−1}

)

≤ e
3
2
lnn−z+1−u

ℓ∑

j=n
2

Pu(E
(n)
j ) + eα+1−u

n∑

j=ℓ+1

Pu(Ẽ
(n)
j ),

where

E
(n)
j :=

{
min
1≤i≤n

2

Si ≥ 0, min
n
2
≤k≤n

Sk ≥ α− 1, Sj ≃ α, Sn ≃
3

2
lnn− z

}
,

Ẽ
(n)
j :=

{
min
1≤i≤n

2

Si ≥ 0, min
n
2
≤k≤j

Sk ≥ α− 1, Sj ≃ α
}
.

Let j ∈ [n
2
, n). By the Markov property at time j,

Pu(E
(n)
j ) ≤ Pu(Ẽ

(n)
j )×P

(
min

1≤i≤n−j
Si ≥ −2, |Sn−j − (

3

2
lnn− z − α)| ≤ 2

)
.

[Recall that α = 3
2
lnn−z−L by our notation, so 3

2
lnn−z−α is simply L, whereas

eα+1−u = n3/2 e−z−L+1−u.] The last probability expression P(· · · ) on the right-hand

side is, according to Lemma A.2 (see Appendix A.2), bounded by c22
L+5

(n−j)3/2
. So

p(5.40) ≤ c23 n
3/2 e−z−u

[ ℓ∑

j=n
2

L+ 5

(n− j)3/2
Pu(Ẽ

(n)
j ) + e−L

n∑

j=ℓ+1

Pu(Ẽ
(n)
j )

]
.
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We still need to study Pu(Ẽ
(n)
j ) for j ∈ [n

2
, n). In order to cover also the case

−1 ≤ α ≤ 1, we first write the trivial inequality

Pu(Ẽ
(n)
j ) ≤ P

(
min
1≤i≤n

2

Si ≥ −u− 2, min
n
2
≤k≤j

Sk ≥ α− u− 1, Sj ≃ α− u
)
.

[It is an inequality because, instead of min1≤i≤n
2
Si ≥ −u, we write min1≤i≤n

2
Si ≥

−u−2.] We use two different strategies depending on the value of j: if j ∈ [3
4
n, n],

then we are entitled7 to use Lemma A.4 of Appendix A.2, to see that Pu(Ẽ
(n)
j ) ≤

c24
u+3
j3/2

, which is bounded by c24
u+3
n3/2 because j ≥ n

2
; if j ∈ [n

2
, 3

4
n), we simply say

that (recalling that α ≥ −1) Pu(Ẽ
(n)
j ) ≤ P(min1≤i≤j Si ≥ −u − 2, Sj ≃ α − u),

which, by Lemma A.2 again, is bounded by c25
(u+3)(α+4)

j3/2
. Consequently,

p(5.40) ≤ c23 n
3/2 e−z−u

[( 3
4
n−1∑

j=n
2

L+ 5

(n− j)3/2
c25

(u+ 3)(α + 4)

j3/2
+

+
ℓ∑

j= 3
4
n

L+ 5

(n− j)3/2
c24

u+ 3

n3/2

)
+ e−L

n∑

j=ℓ+1

c24
u+ 3

n3/2

]

≤ c26 (u+ 3)e−z−u
[
(L+ 5)

(α + 4

n1/2
+

1

(n− ℓ)1/2

)
+ e−L (n− ℓ)

]
.

Recall that α = 3
2
lnn − z − L ≤ 3

2
lnn; so α + 4 ≤ 9 lnn. Recall also that

L ≤ 3
2
lnn + 1 by assumption. Since the inequality we have just proved holds

uniformly in ℓ ∈ [3
4
n, n), we choose ℓ := n − ⌊c27 e

c28 L⌋, where c27 and c28 are

sufficiently small constants, to conclude. �

Remark 5.21. Applying Lemma 5.20 to z + k (with k ≥ 0) instead of z, and

summing over integer values of k and L gives that for some constant c29 > 0, all

sufficiently large n, and all u ≥ 0 and z ≥ 0,

Pu

(
∃x : |x| = n, min

1≤i≤n
V (xi) ≥ 0, V (x) ≤

3

2
lnn− z

)

≤ c29 (1 + u)e−u−z.(5.41)

7This is why we assume j ≥ 3
4n; otherwise, we would not be able to apply this lemma when

j is close to n
2 .
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On the other hand, for any r > 0,

P
(
inf
y∈T

V (y) ≤ −r
)
≤

∞∑

j=1

E
[ ∑

|y|=j

1{V (y)≤−r, mini: 0≤i<j V (yi)>−r}

]
.

By the many-to-one formula (Theorem 1.1 in Section 1.3), the right-hand side is

=
∞∑

j=1

E
[
eSj1{Sj≤−r, min1≤i<j Si>−r}

]
≤ e−r

∞∑

j=1

P
{
Sj ≤ −r, min

1≤i<j
Si > −r

}
= e−r.

Hence, for r ∈ R,

(5.42) P
(
inf
y∈T

V (y) ≤ −r
)
≤ e−r.

[The inequality holds trivially if r ≤ 0.] Taking r := z, we see that

P
(
Mn ≤

3

2
lnn− z

)
≤ e−z +P

(
Mn ≤

3

2
lnn− z, inf

y∈T
V (y) > −z

)

= e−z +Pz

(
Mn ≤

3

2
lnn, inf

y∈T
V (y) > 0

)
.

The last probability expression on the right-hand side is bounded by c29 (1+ z)e
−z

(see (5.41)). Consequently, there exists a constant c30 > 0 such that for all suffi-

ciently large n and all z ∈ R (the case z < 0 being trivial),

(5.43) P
(
Mn ≤

3

2
lnn− z

)
≤ c30 (1 + z+) e

−z,

which is in agreement with (5.39). �

We now have all the ingredients for the proof of Lemma 5.18.

Proof of Lemma 5.18. For the first inequality (5.31), it suffices to prove that

P
(
∃x ∈ T : |x| = n, V (x)−

3

2
lnn ≤ −z, En(x)

c
)
≤ eK−z + ε(1 + z −K)e−z,

for n ≥ n0, L ≥ L0 and 0 ≤ K ≤ z ≤ 3
2
lnn − L. Recall that En(x) :=

{min0≤i≤n V (xi) ≥ −z + K, minn
2
≤j≤n V (xj) ≥ 3

2
lnn − z − L}, for |x| = n, as

defined in (5.30).
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Taking r := z −K in (5.42), we see that the proof of Lemma 5.18 is reduced

to showing the following:

(5.44) p(5.44) ≤ ε(1 + z −K)e−z,

where

p(5.44) := P
(
∃x ∈ T : |x| = n, min

1≤i≤n
V (xi) ≥ −z +K,

V (x)−
3

2
lnn ≤ −z, min

n
2
≤j≤n

V (xj) <
3

2
lnn− z − L

)
.

Also, we realize that the second inequality (5.32) in the lemma is a consequence

of (5.44). So the rest of the proof of the lemma is devoted to verifying (5.44).

We have

p(5.44) = Pz−K

(
∃x ∈ T : |x| = n, min

1≤i≤n
V (xi) ≥ 0,

V (x)−
3

2
lnn ≤ −K, min

n
2
≤j≤n

V (xj) <
3

2
lnn− L−K

)

≤
∞∑

ℓ=K

∞∑

k=max{L+K, ℓ}

Pz−K

(
∃x ∈ T : |x| = n, min

1≤i≤n
V (xi) ≥ 0,

V (x) ≃
3

2
lnn− ℓ, min

n
2
≤j≤n

V (xj) ≃
3

2
lnn− k

)
,

where, as before, a ≃ b is short for |a− b| ≤ 1. By Lemma 5.20, this yields

p(5.44) ≤

∞∑

ℓ=K

∞∑

k=max{L+K, ℓ}

c20 (1 + z −K)e−c21 (k−ℓ)−(z−K)−ℓ.

Without loss of generality, we can assume c21 < 1; otherwise, we replace it by

min{c21,
1
2
}. This gives, with a change of indices ℓ′ := ℓ−K and k′ := k−K, that

p(5.44) ≤ c20 (1 + z −K) e−z
∞∑

k′=L

k′∑

ℓ′=0

e−c21 (k
′−ℓ′)−ℓ′.

But,
∑∞

k′=L

∑k′

ℓ′=0 e
−c21 (k′−ℓ′)−ℓ′ ≤

∑∞
k′=L e

−c21 k′
∑∞

ℓ′=0 e
−(1−c21)ℓ′ , which we write

as c31
∑∞

k′=L e
−c21 k′, with c31 :=

∑∞
ℓ′=0 e

−(1−c21)ℓ′ < ∞. Since
∑∞

k′=L e
−c21 k′ can be

made as small as possible for all L ≥ L0 as long as L0 is chosen to be sufficiently

large, this completes the proof of Lemma 5.18. �
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5.4.4. Step 3b. Proof of Lemma 5.19

Let Z z,L,K
n and Y z,L,K

n be as in (5.17) and (5.20), respectively. Fix η > 0 and

L ≥ 0. By the peeling lemma (Theorem 5.14 in Section 5.3), for all sufficiently

large n, and all 0 ≤ K ≤ z ≤ 3
2
lnn− L,

Q
(
wn ∈ Z

z,L,K
n \Y z,L,K

n

)
≤
η (1 + z −K)

2n3/2
.

Since En(wn) ⊂ {wn ∈ Z z,L,K
n } (the two sets are almost identical, the only differ-

ence being that on En(wn), we have V (wn) ≤
3
2
lnn−z, whereas on {wn ∈ Z z,L,K

n },

we have V (wn) ≤
3
2
lnn− z + C), it remains to prove that

(5.45) Q
(
En(wn), E

c
n,b, wn ∈ Y

z,L,K
n

)
≤
η (1 + z −K)

2n3/2
.

We make the following simple observation: On the event {wn ∈ Y z,L,K
n } (for

the definition of Y z,L,K
n , see (5.20)), for any k ≤ n and y ∈ brot(wk), we have

e−[V (y)−a
(n)
k ] ≤ ̺ e−β

(n)
k ≤ ̺, so

(5.46) V (y) ≥ a
(n)
k − ln ̺.

Let Gn := σ{wi, V (wi), brot(wi), (V (y))y∈brot(wi), 1 ≤ i ≤ n} be the σ-field

generated by the spine and its children in the first n generations. Clearly, En(wn)

and {wn ∈ Y z,L,K
n } are both Gn-measurable. We have

(5.47) Q
(
E
c
n,b |Gn

)
= 1−

n−b∏

k=1

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))],

where

Ψk,n,z(r) := P
(
Mn−k ≤

3

2
lnn− z − r

)
.

We first look at the situation k ≤ n
2
(so a

(n)
k = −z +K). Since lnn ≤ ln(n −

k) + ln 2, it follows from (5.43) that

Ψk,n,z(r) ≤ c32 (1 + (r + z)+) e
−r−z ≤ c33Ke−K [1 + (r − a

(n)
k )+] e

−(r−a
(n)
k ).

Let y ∈ brot(wk). We have noted in (5.46) that on {wn ∈ Y z,L,K
n }, V (y) −

a
(n)
k ≥ − ln ̺, so it is possible to choose and fix K1 sufficiently large such that
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for K ≥ K1, c33Ke−K [1 + (V (y) − a
(n)
k )+] e

−[V (y)−a
(n)
k ] ≤ 1

2
. By the elementary

inequality 1−u ≥ e−c34 u for some c34 > 0 and all u ∈ [0, 1
2
], we see that for k ≤ n

2
,

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))]

≥
∏

y∈brot(wk)

{1− c33Ke−K [1 + (V (y)− a
(n)
k )+] e

−[V (y)−a
(n)
k ]},

≥ exp
(
− c34c33Ke−K

∑

y∈brot(wk)

[1 + (V (y)− a
(n)
k )+] e

−[V (y)−a
(n)
k ]

)
.

On {wn ∈ Y z,L,K
n }, we have, for k ≤ n

2
,

∑

y∈brot(wk)

[1 + (V (y)− a
(n)
k )+] e

−[V (y)−a
(n)
k ] ≤ ̺ e−β

(n)
k = ̺ e−k

1/7

,

which yields (writing c35 := c34c33̺), on {wn ∈ Y z,L,K
n },

n
2∏

k=1

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))] ≥ exp
(
− c35Ke−K

n
2∑

k=1

e−k
1/7

)

≥ exp
(
− c36Ke−K

)

≥ (1− η)1/2,(5.48)

for all sufficiently large K (η ∈ (0, 1) being fixed), where c36 := c35
∑∞

k=1 e
−k1/7 .

We still need to take care of the product
∏n−b

k=n
2
+1. Recall that Ψk,n,z(r) =

P(Mn−k ≤ 3
2
lnn − z − r). Let n

2
< k ≤ n − b (so a

(n)
k = 3

2
lnn − z − L), and

let y ∈ brot(wk). On {wn ∈ Y z,L,K
n }, we have observed in (5.46) that V (y) ≥

a
(n)
k − ln ̺ = 3

2
lnn − z − L − ln ̺, i.e., 3

2
lnn − z − V (y) ≤ L + ln ̺ which is a

given constant (recalling that L ≥ 0 is fixed). Since n − k ≥ b, this yields that

Ψk,n,z(V (y)) can be as small as possible (on {wn ∈ Y z,L,K
n }) if b is chosen to be

large; in particular, Ψk,n,z(V (y)) ≤ 1
2
, so again

n−b∏

k=n
2
+1

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))] ≥ exp
(
− c34

n−b∑

k=n
2
+1

∑

y∈brot(wk)

Ψk,n,z(V (y))
)
.

By (5.42),

Ψk,n,z(r) ≤ P
(
inf
x∈T

V (x) ≤
3

2
lnn− z − r

)
≤ e

3
2
lnn−z−r.
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Consequently, on {wn ∈ Y z,L,K
n }, for n

2
< k ≤ n− b,

∑

y∈brot(wk)

Ψk,n,z(V (y)) ≤
∑

y∈brot(wk)

e
3
2
lnn−z−V (y)

= eL
∑

y∈brot(wk)

e−(V (y)−a
(n)
k )

≤ eL ̺ e−(n−k)
1/7

,

which yields that, on {wn ∈ Y z,L,K
n },

n−b∏

k=n
2
+1

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))] ≥ exp
(
− c34e

L ̺

n−b∑

k=n
2
+1

e−(n−k)
1/7

)
,

which is greater than (1 − η)1/2 if b is sufficiently large (recalling that L ≥ 0 and

η ∈ (0, 1) are fixed). Together with (5.48), we see that for K and b sufficiently

large,
n−b∏

k=1

∏

y∈brot(wk)

[1−Ψk,n,z(V (y))] ≥ 1− η.

Going back to (5.47) yields that for K and b sufficiently large,

Q
(
En(wn), E

c
n,b, wn ∈ Y

z,L,K
n

)
≤ ηQ

(
En(wn), wn ∈ Y

z,L,K
n

)
≤ ηQ

(
En(wn)

)
.

Since Q(En(wn)) = P(min0≤i≤n Si ≥ −z+K, minn
2
≤j≤n Sj ≥

3
2
lnn− z−L, Sn ≤

3
2
lnn − z), which is bounded by c68 (L + 1)2 1+z−K

n3/2 by Lemma A.4 of Appendix

A.2 (where c68 is the constant in Lemma A.4). Consequently,

Q
(
En(wn), E

c
n,b, wn ∈ Y

z,L,K
n

)
≤ η c68 (L+ 1)2

1 + z −K

n3/2
,

for fixed 0 < η < 1, L ≥ 0 and all sufficiently large n, b < n and K (satisfying

K ≤ z ≤ 3
2
lnn−L). Since η can be arbitrarily small, we should have worked with

η
2c68 (L+1)2

in place of η to obtain (5.45). Lemma 5.19 is proved. �

5.4.5. Step 4. The role of the non-lattice assumption

We have already stated that Theorem 5.15 fails without the assumption that the

law of Ξ is non-lattice. Concretely, this assumption is needed in Proposition 5.22

below, which is the last technical estimate in our proof of Theorem 5.15.
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Loosely speaking, the branching random walk with absorption along the path

[[∅, m(n)]], behaves like a centred random walk conditioned to stay above 0 during

the first n
2
steps and above 3

2
lnn + O(1) during the last n

2
steps. Proposition

5.22 below describes the distribution of such a random walk. Throughout this

subsection, let (Sj) denote a centred random walk with σ2 := E(S2
1) ∈ (0, ∞).

Let R be the renewal function defined in the sense of (A.1) (see Appendix A.1).

Let R− be the renewal function associated with the random walk (−Sn). Write

Sn := min
0≤i≤n

Si, n ≥ 0.

Proposition 5.22. (Random walk above a barrier) Let (rn) be a sequence

of positive real numbers such that rn
n1/2 → 0, n → ∞. Let (λn) be such that 0 <

lim infn→∞ λn < lim supn→∞ λn < 1. Let a ≥ 0. Let F : R+ → R+ be a Riemann-

integrable function such that there exists a non-increasing function F1 : [0, ∞) → R

satisfying |F | ≤ F1 and
∫∞
0
uF1(u) du <∞. If the distribution of S1 is non-lattice,

then

lim
n→∞

n3/2E
[
F (Sn − y) 1{Sn≥−a}

1{minλnn≤i≤n Si≥y}

]

= C+C−(
π

2σ2
)1/2R(a)

∫ ∞

0

F (u)R−(u) du,(5.49)

uniformly in y ∈ [0, rn], where C+ and C− are the constants in (A.7) of Appendix

A.2.

Proof. By considering the positive and negative parts, we clearly can assume that

F ≥ 0. Since the limit on the right-hand side of (5.49) does not depend on (λn),

we can also assume without loss of generality (using monotonicity) that λn = λ

for all n and some λ ∈ (0, 1).

We now argue that only functions F with compact support need to be taken

care of. Let ε > 0. Let M ≥ 1 be an integer. By assumption, F ≤ F1 and F1 is

non-increasing; so (notation: u ≃ v is again short for |u− v| ≤ 1)

E
[
F (Sn − y) 1{Sn−y>M} 1{Sn≥−a}

1{minλn≤i≤n Si≥y}

]

≤

∞∑

k=M

F1(k − 1)P
(
Sn ≃ y + k, Sn ≥ −a, min

λn≤i≤n
Si ≥ y

)
,
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which is bounded by
∑∞

k=M F1(k− 1) c37
(k+2)(a+1)

n3/2 (Lemma A.4 of Appendix A.2).

By assumption,
∫
R+
xF1(x) dx <∞, so

∑∞
k=M(k+2)F1(k−1) → 0 if M → ∞; in

particular, for any ε > 0, we can choose the integer M ≥ 1 sufficiently large such

that n3/2 E[F (Sn − y) 1{Sn−y>M} 1{Sn≥−a}
1{minλn≤i≤n Si≥y}] < ε.

So we only need to treat function F with compact support. By assumption, F

is Riemann-integrable, so by approximating F with step functions, we only need

to prove the proposition for F (u) := 1[0, χ](u) (where χ > 0 is a fixed constant).

For such F , denoting by E(5.49) the expectation on the left-hand side of (5.49),

E(5.49) = P
(
Sn ≥ −a, min

λn≤i≤n
Si ≥ y, Sn ≤ y + χ

)
.

Applying the Markov property at time λn gives

E(5.49) = E
[
f(5.50)(Sλn) 1{Sλn≥−a}

]
,

where, for u ≥ 0,

(5.50) f(5.50)(u) = f(5.50)(u, n, y, χ) := Pu

(
S(1−λ)n ≥ y, S(1−λ)n ≤ y + χ

)
.

For notational simplification, we write n1 := (1−λ)n. Since (Sn1 −Sn1−i, 0 ≤ i ≤

n1) is distributed as (Si, 0 ≤ i ≤ n1), we have f(5.50)(u) = P{S−n1
≥ (−Sn1) + (y −

u) ≥ −χ}, where S−j := min0≤i≤j(−Si).

Let τn1 := min{j : 0 ≤ j ≤ n1, −Sj = S−n1
}. In words, τn1 is the first time

(−Si) hits its minimum during [0, n1]. We have

f(5.50)(u) =

n1∑

j=0

P
(
τn1 = j, S−n1

≥ (−Sn1) + (y − u) ≥ −χ
)
.

Applying the Markov property at time j yields that

(5.51) f(5.50)(u) =

n1∑

j=0

E
[
g(5.52)(u− y, S−j + χ, n1 − j) 1{−Sj=S

−
j ≥−χ}

]
,

where, for z ≥ 0, v ≥ 0 and ℓ ≥ 0,

(5.52) g(5.52)(z, v, ℓ) := P
(
z − v ≤ −Sℓ ≤ z, S−ℓ ≥ 0

)
.
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Write ψ(u) := u e−u
2/2 1{u≥0}. Recall our notation σ

2 := E(S2
1). By Theorem 1

of Caravenna [82] (this is where the non-lattice assumption is needed; the lattice

case is also studied in [82], see Theorem 2 there), for ℓ→ ∞,

P
(
z − v ≤ −Sℓ ≤ z

∣∣∣S−ℓ ≥ 0
)
=

v

σℓ1/2
ψ(

z

σℓ1/2
) + o(

1

ℓ1/2
),

uniformly in z ≥ 0 and in v in any compact subset of [0, ∞). Multiplying both

sides by P(S−ℓ ≥ 0), which is equivalent to C−
ℓ1/2

(see (A.7) in Appendix A.2), we

get, for ℓ→ ∞,

(5.53) g(5.52)(z, v, ℓ) = C−
v

σℓ
ψ(

z

σℓ1/2
) + o(

1

ℓ
),

uniformly in z ≥ 0 and in v ∈ [0, χ]. In particular, since ψ is bounded, there exists

a constant c38 = c38(χ) > 0 such that for all z ≥ 0, ℓ ≥ 0 and v ∈ [0, χ],

g(5.52)(z, v, ℓ) ≤
c38
ℓ + 1

.

We now return to (5.51) and continue our study of f(5.50)(u). We split the sum
∑n1

j=0 into
∑jn

j=0+
∑n1

j=jn+1, where jn := ⌊n1/2⌋. Since n1 := (1−λ)n by definition,

we have jn < n1 for all sufficiently large n. As such,

f(5.50)(u) = f
(1)
(5.50)(u) + f

(2)
(5.50)(u),

where

f
(1)
(5.50)(u) :=

jn∑

j=0

E
[
g(5.52)(u− y, S−j + χ, n1 − j) 1{−Sj=S

−
j ≥−χ}

]
,

f
(2)
(5.50)(u) :=

n1∑

j=jn+1

E
[
g(5.52)(u− y, S−j + χ, n1 − j) 1{−Sj=S

−
j ≥−χ}

]
.

We let n → ∞. Note that ψ is uniformly continuous and bounded on [0, ∞). By

(5.53), as long as y = o(n1/2),

f
(1)
(5.50)(u) =

C−
σn1

(1 + o(1))ψ(
u

σn
1/2
1

)

jn∑

j=0

E
[
(S−j + χ) 1{−Sj=S

−
j ≥−χ}

]

+o
(1
n

) jn∑

j=0

P
(
− Sj = S−j ≥ −χ

)
.
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Since
∑∞

j=0E[(S
−
j + χ) 1{−Sj=S

−
j ≥−χ}

] =
∫ χ
0
R−(t) dt and

∑∞
j=0P(−Sj = S−j ≥

−χ) = R−(χ), this yields, for y = o(n1/2),

(5.54) f
(1)
(5.50)(u) =

C−
σn1

ψ(
u

σn
1/2
1

)

∫ χ

0

R−(t) dt+ o
(1
n

)
.

To treat f
(2)
(5.50)(u), we simply use the inequality g(5.52)(z, v, ℓ) ≤

c38
ℓ+1

(for z ≥ 0,

ℓ ≥ 0 and v ∈ [0, χ]), to see that

f
(2)
(5.50)(u) ≤ c38

n1∑

j=jn+1

1

n1 − j + 1
P
(
S−j ≥ −χ, −Sj ≤ 0

)
,

which, by Lemma A.1 of Appendix A.2, is bounded by c39
∑n1

j=jn+1
1

(n1−j+1) j3/2
,

which is o( 1
n
). Together with (5.54), we get, as n→ ∞,

f(5.50)(u) =
C−

σ(1− λ)n
ψ(

u

σ[(1− λ)n]1/2
)

∫ χ

0

R−(t) dt+ o
(1
n

)
,

uniformly in u ≥ 0 and y ∈ [0, rn]. Since E(5.49) = E[f(5.50)(Sλn) 1{Sλn≥−a}
], and

P(Sℓ ≥ −a) ∼ C+R(a)

ℓ1/2
, ℓ→ ∞ (see (A.7) in Appendix A.2), this yields

E(5.49) =
C−

σ(1− λ)n

∫ χ

0

R−(t) dt
C+R(a)

(λn)1/2
Ea

[
ψ(

Sλn − a

σ[(1− λ)n]1/2
)
∣∣∣Sλn ≥ 0

]

+o
( 1

n3/2

)
.

Under the conditional probability Pa( · |Sλn ≥ 0), Sℓ

σ ℓ1/2
converges weakly (as ℓ →

∞) to the Rayleigh distribution, whose density is ψ (see [83]). Hence

lim
n→∞

Ea

[
ψ(

Sλn − a

σ[(1− λ)n]1/2
)
∣∣∣Sλn ≥ 0

]
=

∫ ∞

0

ψ(
λ1/2

(1− λ)1/2
t)ψ(t) dt,

which is equal to λ1/2(1 − λ)(π
2
)1/2. Since

∫ χ
0
R−(t) dt =

∫∞
0
R−(t)F (t) dt with

F := 1[0, χ], this yields Proposition 5.22. �

5.5. Leftmost position: Fluctuations

Consider a branching random walk under Assumption (H). Theorem 5.12 in Section

5.3 says that under P∗( · ) := P( · | non-extinction),

1

lnn
inf
|x|=n

V (x) →
3

2
, in probability.



§5.5 Leftmost position: Fluctuations ] 91

[Of course, Theorem 5.15 in Section 5.4 tells us that a lot more is true if the law

of the underlying point process is non-lattice.] It is nice that the minimal position

has such a strong universality. The aim of this section, however, is to show that

we cannot go further. In fact, we are going to see that P∗-almost surely, for any8

ε > 0, there exists an exceptional subsequence along which inf |x|=n V (x) goes below

(1
2
+ ε) lnn.

Theorem 5.23. Under Assumption (H), we have, under P∗,

lim
n→∞

1

lnn
inf
|x|=n

V (x) =
3

2
, in probability,(5.55)

lim sup
n→∞

1

lnn
inf
|x|=n

V (x) =
3

2
, a.s.(5.56)

lim inf
n→∞

1

lnn
inf
|x|=n

V (x) =
1

2
, a.s.(5.57)

Of course, in Theorem 5.23, the convergence in probability, (5.55), is just a

restatement of Theorem 5.12 made for the sake of completeness. Only (5.56) and

(5.57) are new.

The lower bound in (5.57) can be strengthened as follows.

Theorem 5.24. Under Assumption (H), we have

lim inf
n→∞

(
inf
|x|=n

V (x)−
1

2
lnn

)
= −∞ , P∗-a.s.

The proof of Theorem 5.24 relies on the following estimate. Let C > 0 be the

constant in Lemma A.10 (Appendix A.2).

Lemma 5.25. Under Assumption (H),

lim inf
n→∞

P
{
∃x : n ≤ |x| ≤ 2n,

1

2
lnn ≤ V (x) ≤

1

2
lnn+ C

}
> 0.

Proof of Lemma 5.25. The proof is similar to the proof of Lemma 5.13 presented

in Section 5.3 (in the special case z = 0, which simplifies the writing), by a second

moment method and using the peeling lemma (Theorem 5.14 in Section 5.3), but

this time we count all the generations k between n et 2n (instead of just generation

8Actually, it also holds if ε = 0. See Theorem 5.24 below.
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k = n in Lemma 5.13). This explains the factor 1
2
instead of 3

2
, because

∑2n
k=n

1
n3/2 ∼

1
n1/2 , where

1
n3/2 comes from the probability estimate in (5.18) or (5.21). We feel

free to omit the details, and refer the interested reader to [17]. �

Proof of Theorem 5.24. Let χ > 0. The system being supercritical, the assumption

ψ′(1) = 0 ensures P{inf |x|=1 V (x) < 0} > 0. Therefore, there exists an integer

L = L(χ) ≥ 1 such that

c40 := P
{

inf
|x|=L

V (x) ≤ −χ
}
> 0.

Let nk := (L+ 2)k, k ≥ 1, so that nk+1 ≥ 2nk + L, ∀k. For any k, let

Tk := inf
{
i ≥ nk : inf

|x|=i
V (x) ≤

1

2
lnnk + C

}
,

where C > 0 is the constant in Lemma 5.25. If Tk < ∞, let xk be such that9

|xk| = Tk and that V (x) ≤ 1
2
lnnk + C. Let

Ak := {Tk ≤ 2nk} ∩
{

inf
y>xk: |y|=|xk|+L

[V (y)− V (xk)] ≤ −χ
}
,

where y > xk means, as before, that y is a descendant of xk. For any pair of

positive integers j < ℓ,

(5.58) P
{ ℓ⋃

k=j

Ak

}
= P

{ ℓ−1⋃

k=j

Ak

}
+P

{ ℓ−1⋂

k=j

A
c
k ∩ Aℓ

}
.

On {Tℓ <∞}, we have

P{Aℓ |FTℓ} = 1{Tℓ≤2nℓ}P
{

inf
|x|=L

V (x) ≤ −χ
}
= c41 1{Tℓ≤2nℓ}.

Since ∩ℓ−1k=jA
c
k is FTℓ-measurable, we obtain:

P
{ ℓ−1⋂

k=j

A
c
k ∩ Aℓ

}
= c41P

{ ℓ−1⋂

k=j

A
c
k ∩ {Tℓ ≤ 2nℓ}

}

≥ c41P{Tℓ ≤ 2nℓ} − c41P
{ ℓ−1⋃

k=j

Ak

}
.

9If the choice of xk is not unique, we can choose for example the one with the smallest
Harris–Ulam index.
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Recall that P{Tℓ ≤ 2nℓ} ≥ c42 (Lemma 5.25; for large ℓ, say ℓ ≥ j0). Combining

this with (5.58) yields that

P
{ ℓ⋃

k=j

Ak

}
≥ (1− c41)P

{ ℓ−1⋃

k=j

Ak

}
+ c42c41, j0 ≤ j < ℓ.

Iterating the inequality leads to:

P
{ ℓ⋃

k=j

Ak

}
≥ (1− c41)

ℓ−j P{Aj}+ c42c41

ℓ−j−1∑

i=0

(1− c41)
i ≥ c42c41

ℓ−j−1∑

i=0

(1− c41)
i.

This yields P{
⋃∞
k=j Ak} ≥ c42, ∀j ≥ j0. Consequently, P(lim supk→∞Ak) ≥ c42.

On the event lim supk→∞Ak, there are infinitely many vertices x such that

V (x) ≤ 1
2
ln |x|+ C − χ. Therefore,

P
{
lim inf
n→∞

(
inf
|x|=n

V (x)−
1

2
lnn

)
≤ C − χ

}
≥ c42.

The constant χ > 0 being arbitrary, we obtain:

P
{
lim inf
n→∞

(
inf
|x|=n

V (x)−
1

2
lnn

)
= −∞

}
≥ c42.

Let 0 < ε < 1. Let J1 ≥ 1 be an integer such that (1 − c42)
J1 ≤ ε. Under P∗,

the system survives almost surely; so there exists a positive integer J2 sufficiently

large such that P∗{
∑
|x|=J2

1 ≥ J1} ≥ 1−ε. By applying what we have just proved

to the subtrees of the vertices at generation J2, we obtain:

P∗
{
lim inf
n→∞

(
inf
|x|=n

V (x)−
1

2
lnn

)
= −∞

}
≥ 1− (1− c42)

J1 − ε ≥ 1− 2ε.

Sending ε to 0 completes the proof of Theorem 5.24. �

Proof of Theorem 5.23. We first check (5.57). Its upper bound being a straight-

forward consequence of Theorem 5.24, we only need to check the lower bound,

namely, lim infn→∞
1

lnn
inf |x|=n V (x) ≥ 1

2
, P∗-a.s.

Fix any k > 0 and a < 1
2
. By the many-to-one formula (Theorem 1.1 in Section

1.3),

E
( ∑

|x|=n

1{V (x)>−k} 1{V (x)≤a lnn}

)
= E

(
eSn1{Sn>−k}

1{Sn≤a lnn}

)

≤ naP
(
Sn > −k, Sn ≤ a lnn

)
,
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which, by Lemma A.1 of Appendix A.2, is bounded by a constant multiple of

na (lnn)2

n3/2 , and which is summable in n if a < 1
2
. Therefore, as long as a < 1

2
, we

have ∑

n≥1

∑

|x|=n

1{V (x)>−k} 1{V (x)≤a lnn} <∞, P-a.s.

By Lemma 3.1 of Section 3.1, inf |x|=n V (x) → ∞ P∗-a.s.; thus inf |x|≥0 V (x) > −∞

P∗-a.s. Consequently, lim infn→∞
1

lnn
inf |x|=n V (x) ≥ a, P∗-a.s., for any a < 1

2
.

This yields the desired lower bound in (5.57).

It remains to prove (5.56). Its lower bound follows immediately from Theorem

5.12 (convergence in probability implying almost sure consequence along a subse-

quence), so we only need to show the upper bound: lim supn→∞
1

lnn
inf |x|=n V (x) ≤

3
2
, P∗-a.s. This, however, is not the best known result. A much more precise result

can be stated, see Theorem 5.26 below under a slightly stronger condition. �

Theorem 5.26. (Hu [132]) Under Assumption (H), if E[
∑
|x|=1(V (x)+)

3e−V (x)] <

∞,10 then

lim sup
n→∞

1

ln ln lnn

(
inf
|x|=n

V (x)−
3

2
lnn

)
= 1 P∗-a.s.

Theorem 5.23 says that lim infn→∞ [inf |x|=n V (x) − 1
2
lnn] = −∞, P∗-a.s., but

its proof fails to give information about how this “lim inf ” expression goes to −∞.

Here is a natural question.

Question 5.27. Is there a deterministic sequence (an) with limn→∞ an = ∞ such

that

−∞ < lim inf
n→∞

1

an

(
inf
|x|=n

V (x)−
1

2
lnn

)
< 0, P∗-a.s.?

I suspect that the answer to Question 5.27 is “no”. If so, it would be interesting

to answer the following question.

Question 5.28. Let (an) be a non-decreasing sequence such that limn→∞ an = ∞.

Give an integral criterion on (an) to determine whether

lim inf
n→∞

1

an

(
min
|x|=n

V (x)−
1

2
lnn

)

is 0 or −∞, P∗-a.s.

10Recall that a+ := max{a, 0}.
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[N.B.: Since the preparation of the first draft of these notes, Questions 5.27 and

5.28 have been completely solved under Assumption (H) by Hu [131] in terms of

an integral test for min|x|=n V (x); in particular, lim infn→∞
1

ln lnn
(min|x|=n V (x) −

1
2
lnn) = −1, P∗-a.s.]

5.6. Convergence of the additive martingale

Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). The Biggins martingale convergence

theorem (Theorem 3.2 in Section 3.2) tells us that Wn → 0, P∗-a.s. It is natural

(see Biggins and Kyprianou [58]) to ask at which rateWn goes to 0. This is usually

called the Seneta–Heyde norming problem, referring to the Seneta–Heyde theorem

for Galton–Watson processes (Seneta [218], Heyde [129]).

Our answer is as follows.

Theorem 5.29. Under Assumption (H), we have, under P∗,

lim
n→∞

n1/2Wn =
( 2

πσ2

)1/2
D∞ , in probability,

where D∞ > 0, P∗-a.s., is the random variable in Theorem 5.2, and

σ2 := E
[ ∑

|x|=1

V (x)2 e−V (x)
]
∈ (0, ∞).

One may wonder whether it is possible to strengthen convergence in probability

in Theorem 5.29 into almost sure convergence. The answer is no.

Proposition 5.30. Under Assumption (H), we have

lim sup
n→∞

n1/2Wn = ∞, P∗-a.s.

Proof. By definition, Wn ≥ exp[− inf |x|=n V (x)]. So the proposition follows imme-

diately from (5.57) in Theorem 5.23 (Section 5.5). �

Proposition 5.30 leads naturally to the following question.

Question 5.31. What is the rate at which the upper limits of n1/2Wn go to infinity

P∗-almost surely?
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Questions 5.27 and 5.31 are clearly related via Wn ≥ exp[− inf |x|=n V (x)]. It

is, however, not clear whether answering one of the questions will necessarily lead

to answering the other.

Conjecture 5.32. Under Assumption (H), we have

lim inf
n→∞

n1/2Wn =
( 2

πσ2

)1/2
D∞ , P∗-a.s.,

where σ2 := E[
∑
|x|=1 V (x)

2e−V (x)].

[N.B.: Again, since the preparation of the first draft of these notes, things have

progressed: Question 5.31 and Conjecture 5.32 have been settled by Hu [131]. More

precisely, Question 5.31 is completely solved in terms of an integral test, whereas

the answer to Conjecture 5.32 is in the affirmative under an integrability condition

which is slightly stronger than Assumption (H).]

5.7. The genealogy of the leftmost position

We now look at the sample path of the branch in the branching random walk

leading to the minimal position11 at time n. Intuitively, it should behave like a

Brownian motion on [0, n], starting at 0 and ending around 3
2
lnn, and staying

above the line i 7→
3
2
lnn

n
i for 0 ≤ i ≤ n. If we normalise this sample path with the

same scaling as Brownian motion, then we would expect it to behave asymptotically

like a normalised Brownian excursion. This is rigorously proved by Chen [87].

More precisely, let |m(n)| = n be such that V (m(n)) = min|x|=n V (x), and

for 0 ≤ i ≤ n, let m
(n)
i be the ancestor of m(n) in the i-th generation. Let

σ2 := E(
∑
|x|=1 V (x)2e−V (x)) as before.

Recall that a normalised Brownian excursion can be formally defined as a stan-

dard Brownian bridge conditioned to be non-negative; rigorously, if (B(t), t ≥ 0) is

a standard Brownian motion, writing g := sup{t ≤ 1 : B(t) = 0} and d := inf{t ≥

1 : B(t) = 0}, then ( |B(g+(d−g)t)|

(d−g)1/2
, t ∈ [0, 1]) is a normalised Brownian excursion.

11If there are several minima, one can, as before, choose any one at random according to the
uniform distribution.
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Theorem 5.33. (Chen [87]) Under Assumption (H),

(V (m(n)
⌊nt⌋)

(σ2 n)1/2
, t ∈ [0, 1]

)

converges weakly to the normalised Brownian excursion, in D([0, 1], R), the space

of all càdlàg functions on [0, 1] endowed with the Skorokhod topology.

For any vertex x with |x| ≥ 1, let us write

(5.59) V (x) := max
1≤i≤|x|

V (xi) ,

which stands for the maximum value of the branching random walk along the path

connecting the root and x. How small can V (x) be when |x| → ∞? If we take x

to be a vertex on which the branching random walk reaches the minimum value at

generation n, then we have seen in the previous paragraph that V (x) is of order

of magnitude n1/2. Can we do better?

The answer is yes. Recall that ψ(t) := lnE(
∑
|x|=1 e

−tV (x)), t ∈ R.

Theorem 5.34. (Fang and Zeitouni [107], Faraud et al. [111]) Under As-

sumption (H),

lim
n→∞

1

n1/3
min
|x|=n

V (x) =
(3π2σ2

2

)1/3
, P∗-a.s.,

where P∗( · ) := P( · | non-extinction) as before.

Theorem 5.34, which will be useful in Section 7.3, can be proved by means of a

second-moment argument using the spinal decomposition theorem, using Mogul-

skii [198]’s small deviation estimates for sums of independent random variables.

The theorem was originally proved in [107] and [111] under stronger moment as-

sumptions. For a proof under Assumption (H), see Mallein [190], who actually

does not need the finiteness assumption of E[X̃ ln+ X̃ ] in (5.3).

5.8. Proof of the peeling lemma

This section is devoted to the proof of the peeling lemma (Theorem 5.14 in Section

5.3). Fix L ≥ 0 and ε > 0. Let 0 ≤ K ≤ z ≤ 3
2
lnn− L.
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Let c75 = c75(ε) > 0 be the constant in Lemma A.6 of Appendix A.2. Recall

the definition from (5.17): Z z,L,K
n = {|x| = n : V (xi) ≥ a

(n)
i , 0 ≤ i ≤ n, V (x) ≤

3
2
lnn − z + C}, where a

(n)
i is defined in (5.16). Let β

(n)
i be as in (5.19). By the

many-to-one formula (Theorem 1.1 in Section 1.3),

Q
(
wn ∈ Z

z,L,K
n ; ∃j ≤ n− 1, V (wj) ≤ a

(n)
j+1 + 2β

(n)
j+1 − c75

)

= P
(
Si ≥ a

(n)
i , 0 ≤ i ≤ n; Sn ≤

3

2
lnn− z + C;

∃j ≤ n− 1, Sj ≤ a
(n)
j+1 + 2β

(n)
j+1 − c75

)
,

which is bounded by (L + 1)2 ε 1+z−K
n3/2 , for all sufficiently large n (Lemma A.6 of

Appendix A.2). Since (L + 1)2 ε can be as small as possible (L being fixed), it

remains to show the existence of ̺ such that

Q
(
wn ∈ Z

z,L,K
n ; V (wj) > a

(n)
j+1 + 2β

(n)
j+1 − c75, 0 ≤ j ≤ n− 1;

∃k ≤ n,
∑

y∈brot(wk)

[1 + (V (y)− a
(n)
k )+] e

−V (y)+a
(n)
k > ̺ e−β

(n)
k

)

≤ ε
1 + z −K

n3/2
.

On the event {V (wk−1) > a
(n)
k + 2β

(n)
k − c75}, we have

(5.60) e−β
(n)
k ≥ e−c75/2 e−[V (wk−1)−a

(n)
k ]/2,

and also

(5.61) V (wk−1) ≥ a
(n)
k ,

if moreover wn ∈ Z z,L,K
n (which guarantees V (wk−1) ≥ a

(n)
k−1, and a

(n)
k−1 differs from

a
(n)
k−1 only if k = n

2
, in which case 2β

(n)
k − c75 = 2(n

2
)1/7 − c75 ≥ 0 for n ≥ n0). On

the other hand, by the elementary inequality 1 + (r + s)+ ≤ (1 + r+)(1 + s+) for

all r, s ∈ R, we have

∑

y∈brot(wk)

[1 + (V (y)− a
(n)
k )+] e

−V (y)+a
(n)
k

≤ [1 + (V (wk−1)− a
(n)
k )+] e

−V (wk−1)+a
(n)
k Λ(wk),
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where, for all x ∈ T with |x| ≥ 1,

Λ(x) :=
∑

y∈brot(x)

[1 + (∆V (y))+] e
−∆V (y),

and ∆V (y) := V (y) − V (
←
y ) (recalling that

←
y is the parent of y). Therefore,

on the event {
∑

y∈brot(wk)
[1 + (V (y) − a

(n)
k )+] e

−V (y)+a
(n)
k > ̺ e−β

(n)
k } ∩ {V (wk) >

a
(n)
k+1 + 2β

(n)
k+1 − c75}, we have

̺ e−c75/2 e−[V (wk−1)−a
(n)
k ]/2 ≤ ̺ e−β

(n)
k (by (5.60))

< [1 + (V (wk−1)− a
(n)
k )+] e

−[V (wk−1)−a
(n)
k ] Λ(wk),

which implies that (writing c43 := ̺ e−c75/2)

Λ(wk) ≥ c43
e[V (wk−1)−a

(n)
k ]/2

1 + (V (wk−1)− a
(n)
k )+

≥ c44c43 e
[V (wk−1)−a

(n)
k ]/3,

where c44 := infx≥0
ex/6

1+x
> 0. The inequality can be rewritten as V (wk−1) ≤

a
(n)
k + 3 ln Λ(wk)

̺1
, where ̺1 := c44c43 = c44 e

−c75/2 ̺. Since V (wk−1) ≥ a
(n)
k (see

(5.61)), we also have Λ(wk) ≥ ̺1.

The proof of the lemma is reduced to showing the following: there exists ̺ > 0

such that with ̺1 := c44 e
−c75/2 ̺,

(5.62)
n∑

k=1

Q
(
wn ∈ Z

z,L,K
n ; Ak,n

)
≤ ε

1 + z −K

n3/2
,

where

Ak,n :=
{
V (wk−1) ≤ a

(n)
k + 3 ln

Λ(wk)

̺1
, Λ(wk) ≥ ̺1

}
.

We decompose
∑n

k=1 into the sum of
∑ 3

4
n

k=1 and
∑n

k= 3
4
n+1, and prove that both

are bounded by ε 1+z−K
n3/2 (so at the end, we should replace ε by ε

2
).

First situation: 1 ≤ k ≤ 3
4
n. We have

Q(wn ∈ Z
z,L,K
n ; Ak,n) = EQ

[
ψk,n(V (wk)) 1{Ak,n; V (wi)≥a

(n)
i , 0≤i≤k}

]
,

where

ψk,n(r) := Qr

(
V (wj) ≥ a

(n)
k+j, 0 ≤ j ≤ n− k; V (wn−k) ≤

3

2
lnn− z + C

)

= Pr

(
Sj ≥ a

(n)
k+j, 0 ≤ j ≤ n− k; Sn−k ≤

3

2
lnn− z + C

)
,
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where the last identity follows from the many-to-one formula (Theorem 1.1 in

Section 1.3).

Since k ≤ 3
4
n, ψk,n(r) ≤ c45

1+(r−a
(n)
k )+

n3/2 with c45 = c45(L, C) (by applying

Lemma A.1 of Appendix A.2 if n
2
< k ≤ 3

4
n, and Lemma A.4 if k ≤ n

2
; noting

that the probability expression in Lemma A.4 is non-decreasing in λ, so the lemma

applies even if k ≤ n
2
is close to n

2
). Hence

3
4
n∑

k=1

Q(wn ∈ Z
z,L,K
n ; Ak,n)

≤
c45
n3/2

3
4
n∑

k=1

EQ

[
[1 + (V (wk)− a

(n)
k )+] 1{Ak,n; V (wi)≥a

(n)
i , 0≤i≤k}

]
.

Note that 1 + (V (wk)− a
(n)
k )+ ≤ [1 + (V (wk−1)− a

(n)
k )+] + (∆V (wk))+, where

∆V (y) := V (y)− V (
←
y ) as before. The proof of

∑ 3
4
n

k=1Q(Ak,n) ≤ ε 1+z−K
n3/2 will be

complete once we establish the following estimates: there exists ̺ > 0 such that

with ̺1 := c44 e
−c75/2 ̺,

(5.63)

3
4
n∑

k=1

[I(5.63)(k) + II(5.63)(k)] ≤ ε (1 + z −K),

where

I(5.63)(k) := EQ

[
[1 + (V (wk−1)− a

(n)
k )+] 1{Ak,n; V (wi)≥a

(n)
i , 0≤i≤k}

]
,

II(5.63)(k) := EQ

[
(∆V (wk))+ 1

{Ak,n; V (wi)≥a
(n)
i , 0≤i≤k}

]
.

Recall that Ak,n := {V (wk−1) ≤ a
(n)
k + 3 ln Λ(wk)

̺1
, Λ(wk) ≥ ̺1}. By the spinal

decomposition theorem, (V (wi), 0 ≤ i < k) is independent of (Λ(wk), ∆V (wk)).

We first study I(5.63)(k). On Ak,n, we have V (wk−1) − a
(n)
k ≤ 3 ln Λ(wk)

̺1
. We
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condition on Λ(wk), and observe that uniformly in r ≥ ̺1,

n
2∑

k=1

Q
(
V (wk−1) ≤ a

(n)
k + 3 ln

r

̺1
; V (wi) ≥ a

(n)
i , 0 ≤ i ≤ k

)

=

n
2∑

k=1

Q
(
V (wk−1) ≤ −z +K + 3 ln

r

̺1
; V (wi) ≥ −z +K, 0 ≤ i ≤ k

)

≤

∞∑

k=1

Pz−K

(
Sk−1 ≤ 3 ln

r

̺1
; Si ≥ 0, 0 ≤ i ≤ k − 1

)
,

which is bounded by c46 (1+z−K)(1+ln r
̺1
) according to Lemma A.5 of Appendix

A.2. On the other hand, for r ≥ ̺1 and n
2
< k ≤ 3

4
n,

Q
(
V (wk−1) ≤ a

(n)
k + 3 ln

r

̺1
; V (wi) ≥ a

(n)
i , 0 ≤ i ≤ k

)

= Pz−K

(
Sk−1 ≤

3

2
lnn−K − L+ 3 ln

r

̺1
; Si ≥ 0, 0 ≤ i ≤

n

2
,

Sj ≥
3

2
lnn−K − L,

n

2
< j ≤ k

)
,

which, by the Markov property at time n
2
, is

Ez−K

[
1{Si≥0, 0≤i≤

n
2
} f(5.64)(Sn

2
)
]
,

where, for u ≥ 0,

f(5.64)(u) := Pu

(
Sk−1−n

2
≤

3

2
lnn−K − L+ 3 ln

r

̺1
;

Sℓ ≥
3

2
lnn−K − L, 0 < ℓ ≤ k −

n

2

)
.(5.64)

By Lemma A.5 of Appendix A.2, for u ≥ 3
2
lnn−K − L and r ≥ ̺1,

3
4
n∑

k=n
2
+1

f(5.64)(u) ≤ c47 (1 + 3 ln
r

̺1
)[1 + (u−

3

2
lnn+K + L)].



102 [Chapter 5. Applications of the spinal decomposition theorem

Consequently, for z ≤ 3
2
lnn− L,

3
4
n∑

k=n
2
+1

Q
(
V (wk−1) ≤ a

(n)
k + 3 ln

r

̺1
; V (wi) ≥ a

(n)
i , 0 ≤ i ≤ k

)

≤ c47 (1 + 3 ln
r

̺1
)Ez−K

[
1{Si≥0, 0≤i≤

n
2
} [1 + (Sn

2
−

3

2
lnn+K + L)+]

]

≤ c47 (1 + 3 ln
r

̺1
)E

[
1{Si≥−z+K, 0≤i≤

n
2
} [1 + (Sn

2
)+]

]
,

which is bounded by c48 (1+3 ln r
̺1
)(1+z−K) according to Lemma A.3 of Appendix

A.2.

Summarizing, we have

3
4
n∑

k=1

I(5.63)(k) ≤ c49 (1 + z −K)EQ

[
(1 + ln

Λ(wk)

̺1
)2 1{Λ(wk)≥̺1}

]

≤ c49 (1 + z −K)EQ

[
(1 + ln+Λ(wk))

2 1{Λ(wk)≥̺1}

]
,

if ̺1 ≥ 1. Since Λ(wk) is distributed as Λ(w1) (under Q), which is bounded by

X + X̃ with the notation of (5.4) at the beginning of the chapter, we have

3
4
n∑

k=1

I(5.63)(k) ≤ c49 (1 + z −K)EQ

[
(1 + ln+(X + X̃))2 1{X+X̃≥̺1}

]

= c49 (1 + z −K)E
[
X(1 + ln+(X + X̃))2 1{X+X̃≥̺1}

]

≤ ε (1 + z −K),(5.65)

if we choose ̺1 := c44 e
−c75/2 ̺ sufficiently large (because E[X(1+ ln+(X + X̃))2] <

∞; see (5.3) and (5.5)), i.e., if we choose ̺ sufficiently large.

We now turn to II(5.63)(k), and use the same argument, except that we condition

on the pair (∆V (wk), Λ(wk)), to see that

3
4
n∑

ℓ=1

II(5.63)(k) ≤ c50 (1 + z −K)EQ

[
(∆(wk))+ (1 + ln+Λ(wk)) 1{Λ(wk)≥̺1}

]
.

The random vector (∆(wk), Λ(wk)) under Q is distributed as (∆(w1), Λ(w1)). We

have noted that Λ(w1) ≤ X+X̃; on the other hand, ∆(w1) = V (w1). SinceQ(w1 =
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x |F1) =
e−V (x)

X
for any x ∈ T with |x| = 1, where F1 is the σ-field generated by

the first generation of the branching random walk, we have EQ(V (w1)+ |F1) =
1
X

∑
|x|=1 V (x)+e

−V (x) = X̃
X
; hence

EQ

[
(∆(wk))+ (1 + ln+Λ(wk)) 1{Λ(wk)≥̺1}

]

≤ EQ

[
V (w1)+ (1 + ln+(X + X̃)) 1{X+X̃≥̺1}

]

= EQ

[X̃
X

(1 + ln+(X + X̃)) 1{X+X̃≥̺1}

]

= E
[
X̃ (1 + ln+(X + X̃)) 1{X+X̃≥̺1}

]
,

which is smaller than ε
c50

if ̺1 := c44 e
−c75/2 ̺ is sufficiently large, since E[X̃ (1 +

ln+(X + X̃))] < ∞ (again by (5.3) and (5.5)). As a consequence, if the constant

̺ is chosen sufficiently large, then

3
4
n∑

k=1

II(5.63)(k) ≤ ε (1 + z −K),

which, combined with (5.65), yields
∑ 3

4
n

k=1Q(wn ∈ Z z,L,K
n ; Ak,n) ≤ ε 1+z−K

n3/2 .

Second (and last) situation: 3
4
n < k ≤ n. For notational simplification, we

write

Vj := V (wj),

Uj := V (wn)− V (wn−j) = Vn − Vn−j,

Λj := Λ(wj), 0 ≤ j ≤ n.

By the spinal decomposition theorem, (Uj , 1 ≤ j ≤ n−k) and Λk are independent

(under Q), and so are (Uj , 1 ≤ j ≤ n− k; Un−k+1; Λk) and (Vi, 0 ≤ i ≤ k − 1).

We use some elementary argument. Let 3
4
n < k ≤ n. By definition, a

(n)
k =

a
(n)
n = 3

2
lnn− z −L, so on the event {wn ∈ Z z,L,K

n }, we have Vk−1 − a
(n)
k = (Vn −

Un−k+1)−a
(n)
k ≥ (a

(n)
n −Un−k+1)−a

(n)
k = −Un−k+1, which yields Λk ≥ ̺1 e

−Un−k+1/3.

Also, on the event {wn ∈ Z z,L,K
n }, for 0 ≤ j < n

2
(so that a

(n)
n−j =

3
2
lnn − z − L),

Uj = Vn − Vn−j ≤ (3
2
lnn − z + C) − a

(n)
n−j = L + C. Moreover, since V (wn) =

Vk−1+Un−k+1, the condition
3
2
lnn− z−L ≤ V (wn) ≤

3
2
lnn− z+C on the event
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{wn ∈ Z z,L,K
n } reads 3

2
lnn − z − L − Un−k+1 ≤ Vk−1 ≤

3
2
lnn − z + C − Un−k+1.

As such, we have (
wn ∈ Z

z,L,K
n ; Ak,n

)
⊂ A

(1)
k,n ∩A

(2)
k,n,

where

A
(1)
k,n := {Vi ≥ a

(n)
i , 0 ≤ i ≤ k − 1;

3

2
lnn− z − L− Un−k+1 ≤ Vk−1 ≤

3

2
lnn− z + C − Un−k+1},

A
(2)
k,n := {Λk ≥ ̺1 (e

−Un−k+1/3 ∨ 1); Uj ≤ L+ C, 0 ≤ j <
n

2
}.

[We have already noted that the inequality Λk ≥ ̺1 holds trivially on Ak,n.] Since
3
4
n < k ≤ n, we have n

2
≥ n− k + 1, so A

(2)
k,n ⊂ A

(3)
k,n, where

A
(3)
k,n := {Λk ≥ ̺1 (e

−Un−k+1/3 ∨ 1); Uj ≤ L+ C, 0 ≤ j < n− k + 1}.

Let Gk,n := σ(Uj, 1 ≤ j ≤ n− k; Un−k+1; Λk). We have already observed that

(Vi, 0 ≤ i ≤ k − 1) is independent of Gk,n. Since A
(3)
k,n ∈ Gk,n, this yields

Q(wn ∈ Z
z,L,K
n ; Ak,n |Gk,n) ≤ 1

A
(3)
k,n

Q(A
(1)
k,n |Gk,n) = 1

A
(3)
k,n
fk,n(Un−k+1),

where, for r ≤ L+ C,

fk,n(r) := Q
(
Vi ≥ a

(n)
i , 0 ≤ i ≤ k − 1;

3

2
lnn− z − L− r ≤ Vk−1 ≤

3

2
lnn− z + C − r

)
.

By the spinal decomposition theorem, (Vi, 0 ≤ i ≤ k−1) under Q is distributed as

(Si, 0 ≤ i ≤ k − 1) under P, so we are entitled to apply Lemma A.4 of Appendix

A.2 to see that for r ≤ L+ C,

fk,n(r) ≤ c51
(L+ C + 1)(z −K + L+ C + 1)(2L+ 2C − r + 1)

(k − 1)3/2

≤ c52
(z −K + 1)(L+ C − r + 1)

n3/2
,

with c52 = c52(L, C). Consequently,

Q(wn ∈ Z
z,L,K
n ; Ak,n) ≤ c52

z −K + 1

n3/2
EQ

[
(L+ C − Un−k+1 + 1) 1

A
(3)
k,n

]
.
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On the event A
(3)
k,n, we have Λk ≥ ̺1 e

−Un−k+1/3 = ̺1 e
−(Un−k+∆k)/3, where ∆k =

∆(wk) := V (wk)− V (wk−1); so −Un−k ≤ ∆k + 3 ln Λk

̺1
≤ (∆k)+ + 3 ln Λk

̺1
, whereas

−Un−k+1 ≤ 3 ln Λk

̺1
. Therefore,

EQ

[
(L+ C − Un−k+1 + 1) 1

A
(3)
k,n

]
≤ EQ

[
(L+ C + 3 ln

Λk
̺1

+ 1) ×

1{Λk≥̺1} 1{−Un−k≤(∆k)++3 ln
Λk
̺1
}
1{Uj≤L+C, 0≤j≤n−k}

]
.

On the right-hand side, (Uj , 0 ≤ j ≤ n − k) is independent of (Λk, ∆k) by the

spinal decomposition. By Lemma A.5 of Appendix A.2 (applied to (−Si), which

is also a centred random walk),

n∑

k= 3
4
n+1

Q
(
− Un−k ≤ x, −Uj ≥ −(L+ C), 0 ≤ j ≤ n− k

)
≤ c53 (x+ 1),

for some constant c53 = c53(L, C) > 0, all x ≥ 0 and n ≥ 1. Consequently,

n∑

k= 3
4
n+1

EQ

[
(L+ C − Un−k+1 + 1) 1

A
(3)
k,n

]

≤ c53EQ

[
(L+ C + 3 ln

Λk
̺1

+ 1) ((∆k)+ + 3 ln
Λk
̺1

+ 1) 1{Λk≥̺1}

]

≤ c54EQ

[
(1 + ln+ Λk) ((∆k)+ + ln+ Λk + 1) 1{Λk≥̺1}

]
,

for some c54 = c54(L, C) if ̺1 ≥ 1. We have already seen that it is possible to

choose ̺1 sufficiently large such that the term EQ[· · · ], which does not depend on

k, is bounded by ε
c54c52

. As a consequence,

n∑

k= 3
4
n+1

Q(wn ∈ Z
z,L,K
n ; Ak,n) ≤ ε

z −K + 1

n3/2
,

as desired. This completes the proof of the peeling lemma. �

5.9. Notes

The existence of t∗ > 0 satisfying (5.1) in Section 5.1 is a basic assumption

in obtaining the universality results presented in this chapter. In the literature,



106 [Chapter 5. Applications of the spinal decomposition theorem

discussions on (5.1) are spread in a few places; see Comets [89] (quoted in Mörters

and Ortgiese [196]), the appendices in Jaffuel [146] (in the ArXiv version, but not

in the published version) and Bérard and Gouéré [41]. When (5.1) has no solution,

the asymptotic behaviour of the branching random walk depends strongly on the

distribution of the governing point process Ξ; for study of the leftmost position,

see Bramson [68], Dekking and Host [90], Amini, Devroye, Griffiths and Olver [23].

Theorem 5.2 (i) in Section 5.2 is due to Biggins and Kyprianou [57]. Theorem

5.2 (ii) and Lemma 5.5, first proved by Biggins and Kyprianou [57] under slightly

stronger assumptions, are borrowed from Äıdékon [8]. The idea used in the proof

of Lemma 5.5 goes back to Lyons [173] in his elegant proof (Section 4.8) of the

Biggins martingale convergence theorem.

Theorem 5.12 in Section 5.3 is proved independently by Hu and Shi [137] and

by Addario-Berry and Reed [4], both under stronger conditions, while a shorter

proof is presented in [16]. Addario-Berry and Reed [4] also prove an analogous

result for the mean of the minimal position, and obtain, moreover, an exponential

tail estimate for the difference between the minimal position and its mean. Precise

moderate deviation probabilities are obtained by Hu [132]. Previous important

work includes the slow lnn rate appearing in McDiarmid [179] who, under addi-

tional assumptions, obtains the upper bound in Theorem 5.12 without getting the

optimal value 3/2, and tightness in Bramson and Zeitouni [71]; also, convergence

in a special case (including the example of Gaussian displacements), centered at

the mean, is proved by Bachmann [33].

The proof of Theorem 5.15 in Section 5.4 is adapted from Äıdékon [8], with

some simplification which I have learned from Chen [87]; in particular, by placing

the absorbing barrier starting at level −z +K instead of at the origin, we do not

need to study the number of negative excursions. This simplification is also found

in the recent work of Bramson, Ding and Zeitouni [70], where a more compact proof

is presented, with a particularly interesting new ingredient: instead of counting the

number of certain vertices at generation n as we do in (5.35), the authors count at

generation n − ℓ, with ℓ independent of n but going to infinity after the passage

n→ ∞. This allows for a nice-looking law of large numbers instead of the fraction

in (5.35). Also, discussions are provided on the lattice case.
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After the publication of [8], a new version has been added by the author on

ArXiv with some simple modifications so that Theorem 5.15 remains valid even

when #Ξ is possibly infinite.

Weak convergence for the minimum of general log-correlated Gaussian fields (in

any dimension), centered at the mean, is established by Ding, Roy and Zeitouni [96].

The idea of the first step (Subsection 5.4.1) in the proof of Theorem 5.15,

expressing that it suffices to study tail behaviour instead of weak convergence, is

already used in the study of branching Brownian motion by Bramson [67] and

[69]. This idea can be exploited in other problems (see for example an important

application in the recent work of Arguin, Bovier and Kistler [27] in the proof of

weak convergence of positions in a branching random walk viewed from the leftmost

particle, and the lecture notes of Berestycki [43] for several other applications).

When (5.1) fails (so that Theorem 5.15 does not apply), the limiting law of the

leftmost position is studied by Barral, Hu and Madaule [34].

The analogue of Theorem 5.15 for branching Brownian motion was previously

known to Lalley and Sellke [164] (and is recalled in (1.3) of Section 1.1), while the

convergence in distribution of Mn − (3 lnn)/2, for branching Brownian motion, to

a travelling-wave solution of the KPP equation, is proved in the celebrated work

of Bramson [69] (a fact which is also recalled in Section 1.1).

The original proof of Theorem 5.23 (Section 5.5) in [137] requires some

stronger integrability conditions. The lim inf part, (5.57), as well as Theorem

5.24, are from [17]. For the analogous results for branching Brownian motion, see

Roberts [215].

Theorem 5.29 (Section 5.6) can be found in [17]; it improves a previous result

of [137]. For the particular model of i.i.d. Gaussian random variables on the edges of

rooted regular trees, this is also known to Webb [233]. Convergence of the additive

martingale in the near-critical regime is studied by Alberts and Ortgiese [18] and

Madaule [182].

The statement of the peeling lemma, slightly more general than in Äıdékon [8]

(where only the case K = 0 is studied because the absorbing barrier is placed in

a different place), is borrowed from Chen [87]. Our proof, presented in Section

5.8, follows closely the arguments in [8], except that no family of Palm measures
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is used.

There is a big number of recent results on the extremal process in the branching

random walks: it converges weakly to a limiting process which is a decorated

Poisson point processes. See Arguin, Bovier and Kistler [27], [28], [29] and [30],

Äıdékon et al. [12], Maillard [184] for branching Brownian motion; Madaule [181]

for branching random walks. See also Gouéré [117] for an analysis based on [27],

[28], [29] and [12], and Subag and Zeitouni [225] for a general view of decorated

Poisson point processes. Several predictions by Brunet and Derrida [75] and [76]

concerning the limiting decorated Poisson point process (notably about spacings

and distribution at infinity) for the branching Brownian motion still need to be

proved rigorously. For a “spatial” version of convergence of the extremal process,

see Bovier and Hartung [65]. For the study of extremes in models with a time-

inhomogeneous branching mechanism, see Fang and Zeitouni [108]–[109], Maillard

and Zeitouni [187], Mallein [188]–[189], Bovier and Hartung [63]–[64].



Chapter 6

Branching random walks with
selection

We have studied so far various asymptotic properties of the branching random walk

by means of the spinal decomposition theorem. We are now facing at two very

short chapters where the branching random walk intervenes in more complicated

models; these topics are close to my current research work. No proof is given,

though most of the ingredients needed in the proofs have already been seen by us

in the previous chapters.

The present chapter is devoted to a few models of branching random walks in

presence of certain selection criteria.

6.1. Branching random walks with absorption

Branching processes were introduced by Galton andWatson in the study of survival

probability for families in Great Britain. In the supercritical case of the Galton–

Watson branching process, when the system survives, the number of individuals in

the population grows exponentially fast, a phenomenon that is not quite realistic

in biology. From this point of view, it sounds natural to impose a criterion of

selection, according to which only some individuals in the population are allowed

to survive, while others (as well as their descendants) are eliminated from the

system.

In this section, we consider branching random walks in the presence of an

109
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absorbing barrier: any individual lying above the barrier gets erased (= absorbed).

Let (V (x)) denote a supercritical branching random walk, i.e., ψ(0) > 0, where

ψ(t) := lnE(
∑
|x|=1 e

−tV (x)), t ∈ R. The governing point process is still denoted

by Ξ. We think of V (x) as representing the weakness of the individual x: when-

ever the value of V (x) goes above a certain slope, the individual x is removed

from the system. Throughout the section, we assume ψ(1) = 0 = ψ′(1), i.e.,

E(
∑
|x|=1 e

−V (x)) = 1 and E(
∑
|x|=1 V (x)e

−V (x)) = 0.

Let ε ∈ R denote the slope of the absorbing barrier. So the individual x

gets removed whenever V (x) > ε|x| (or whenever one of its ancestors has been

removed). Recall that an infinite ray (xi) is a sequence of vertices such that

x0 := ∅ < x1 < x2 < . . . with |xi| = i, i ≥ 0. Let psurv(ε) denote the survival

probability, i.e., the probability that there exists an infinite ray (xi) such that

V (xi) ≤ εi for all i ≥ 0.

Theorem 6.1. (Biggins, Lubachevsky, Shwartz and Weiss [59]) Under As-

sumption (H), psurv(ε) > 0 if ε > 0, and psurv(ε) = 0 if ε ≤ 0.

Proof. The case ε > 0 follows from Lemma 5.13 of Section 5.3, whereas the case

ε ≤ 0 from Remark 5.21 of Subsection 5.4.3. �

Since Assumption (H) implies that 1
n
min|x|=n V (x) → 0 almost surely on the

set of non-extinction, the statement of Theorem 6.1 is of no surprise.

It is not hard to see psurv(ε) → 0 when ε tends to 0, so it looks natural to ask

its rate of decay. This is a question raised by Pemantle [207].

Theorem 6.2. (Gantert et al. [115]) Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1).

If ψ(1 + δ) <∞, ψ(−δ) <∞ and E[(#Ξ)1+δ] <∞ for some δ > 0, then

(6.1) psurv(ε) = exp
(
− (1 + o(1))

πσ

(2ε)1/2

)
, ε ↓ 0,

where σ2 := E(
∑
|x|=1 V (x)

2e−V (x)).

The proof of Theorem 6.2 relies on a second-moment argument by applying the

spinal decomposition theorem; see [115]. The assumption of finiteness of ψ(1+ δ),

ψ(−δ) and E[(#Ξ)1+δ] for some δ > 0 is not necessary; in fact, the truncating
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procedure in the second-moment argument used in [115] is not optimal. It is,

however, not clear whether Assumption (H) suffices for the validity of Theorem

6.2. The same remark applies to most of the theorems in this chapter.

Theorem 6.2 also plays a crucial role in the study of branching random walks

with competition, briefly described in the next section.

We now turn to the case ε = 0. Theorem 6.1 tells us that in this case, there

is extinction of the system; only finitely many individuals appear in the system.

What can be said of the total number of individuals in the system? This question

was originally raised by Aldous [19].

More precisely, let

Z := {x ∈ T : V (y) ≤ 0, ∀y ∈ [[∅, x]]},

where, as before, [[∅, x]] is the shortest path on the tree connecting x to the root

∅.

It is conjectured by Aldous [19] that under suitable integrability assumptions,

one would have E(#Z ) <∞ but E[(#Z ) ln2+(#Z )] = ∞.

The conjecture is proved by Addario-Berry and Broutin [1], while Äıdékon, Hu

and Zindy in [14], improving a previous result of Äıdékon [7], give the precise tail

probability of #Z . Under the assumption ψ(1) = 0, we can define the associated

one-dimensional random walk (Sn) as in (4.1) of Section 4.2; let R be the renewal

function of (Sn), as in (A.2) of Appendix A.1. Recall that Ξ is the point process

governing the law of the branching random walk, and that under Pu (for u ∈ R),

the branching random walk starts with a particle at position u.

Theorem 6.3. (Aı̈dékon, Hu and Zindy [14]) Assume ψ(0) > 1 and ψ(1) =

0 = ψ′(1). If for some δ > 0, ψ(1 + δ) < ∞, ψ(−δ) < ∞ and E[(#Ξ)2+δ] < ∞,

then there exists a constant c ∈ (0, ∞) such that for any u ≥ 0,

Pu(#Z > n) ∼ c
R(u)

n(lnn)2
, n→ ∞.

Let us have another look at Theorem 6.1, which tells us that the slope ε = 0

is critical in some sense. Is it possible to refine the theorem by studying a barrier

that is not a straight line?
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The question is studied by Jaffuel [146]. Let (ai, i ≥ 0) be a sequence of real

numbers. We are interested in the probability that there exists an infinite ray (xi)

with V (xi) ≤ ai for all i ≥ 0, which we call again the survival probability. What

is the “critical barrier” for the survival probability to be positive?

In view of Theorem 5.34 in Section 5.7, one is tempted to think that the “critical

barrier” should more or less look like ai “≈” a∗ i
1/3 for large i, with a∗ := (3π

2σ2

2
)1/3.

It turns out that i1/3 is indeed the correct order of magnitude for the critical barrier,

but the constant a∗ is incorrect.

Theorem 6.4. (Jaffuel [146]) Assume ψ(0) > 1 and ψ(1) = 0 = ψ′(1). If

ψ(1 + δ) <∞ and E[(#Ξ)1+δ] <∞ for some δ > 0, then the probability

P(∃ infinite ray (xi) : V (xi) ≤ a i1/3, ∀i ≥ 0)

is positive if a > ac and vanishes if a < ac, where ac :=
3
2
(3π2σ2)1/3.

We observe that ac > a∗. So for all a ∈ (a∗, ac), by Theorem 5.34 in Section 5.7,

almost surely on the set of non-extinction, for all large n, there exist (xi, 0 ≤ i ≤ n)

with ∅ =: x0 < x1 < . . . < xn and |xi| = i, 0 ≤ i ≤ n, such that V (xi) ≤ a i1/3,

0 ≤ i ≤ n, but no infinite ray satisfying the condition exists.

Theorem 6.4 does not tell us what happens if a = ac.

Conjecture 6.5. Assume ψ(0) > 1 and ψ(1) = 0 = ψ′(1). Under suitable inte-

grability assumptions, we have

P(∃ infinite ray (xi) : V (xi) ≤ ac i
1/3, ∀i ≥ 0) > 0,

where ac :=
3
2
(3π2σ2)1/3.

6.2. The N-BRW

Starting from the 1990s, physicists have been interested in the slowdown phe-

nomenon in the wave propagation of the F-KPP differential equation (Breuer,
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Huber and Petruccione [72]). Instead of the standard F-KPP equation1

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) ,

with initial condition u(0, x) = 1{x<0}, Brunet and Derrida [73] and Kessler, Ner

and Sander [153] introduced the cut-off version of the F-KPP equation:

∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) 1{u≥ 1

N
} ,

and discovered that the solution to the equation with cut-off has a wave speed

that is slower than the standard speed by a difference of order (lnN)−2 when N

is large.2

Later on, Brunet and Derrida [74] introduced a related F-KPP equation with

white noise:
∂u

∂t
=

1

2

∂2u

∂x2
+ u(1− u) +

(u(1− u)

N

)1/2 ·

W ,

where
·

W is the standard space-time white noise. [There is a duality between the

noisy F-KPP equation and an appropriate reaction-diffusion system, see Doering,

Mueller and Smereka [97].] Once again, Brunet and Derrida found that the solution

to the noisy F-KPP equation has a wave speed that is delayed, compared to the

standard speed, by a quantity of order (lnN)−2 when N is large. This has been

mathematically proved by Mueller, Mytnik and Quastel [199] and [200].

On the other hand, the following so-called N-BRW was introduced by Brunet,

Derrida, Mueller and Munier ([77], [78] and [79]): in the branching random walk

(V (x)), at each generation, only the N individuals having the smallest spatial val-

ues survive. The positions of the individuals in the resulting N -BRW are denoted

by (V N(x)). See Figure 8 for an example with N = 3.

In order to avoid trivial discussions, we assume that there are no leaves in the

branching random walks, i.e., #Ξ ≥ 1 with probability one. Since N is fixed, it is

1We have replaced u by 1−u (thus considering the tail distribution, instead of the distribution
function, of the maximum of branching Brownian motion) in the F-KPP equation (1.1) of Section
1.1.

2The notation is unfortunate, because N in this chapter has nothing to do with the random
variable #Ξ.
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Figure 8: An N -BRW with N = 3: first four generations

not hard to check that

vN := lim
n→∞

1

n
max
|x|=n

V N(x) = lim
n→∞

1

n
min
|x|=n

V N(x) ,

exists a.s., and is deterministic. Several predictions are made by these authors (see

[78] in particular), for example, concerning the velocity vN :

(6.2) vN =
π2σ2

2(lnN)2

(
1−

(6 + o(1)) ln lnN

lnN

)
, N → ∞ ,

where, as before, σ2 := E(
∑
|x|=1 V (x)2e−V (x)). [Of course, what is of particular

interest in the conjectured precision (6+o(1)) ln lnN
lnN

is the universality of the main

term.] All these predictions remain open, including a very interesting one con-

cerning the genealogy of the particles in a suitable scale that would converge to

the Bolthausen–Sznitman coalescent, though there is strong evidence that they are

true in view of the recent progress made by Berestycki, Berestycki and Schweins-

berg [45].

However, the following result is remarkably proved by Bérard and Gouéré [40]

by means of a rigorous argument. Recall that Ξ := (ξ1, . . . , ξ#Ξ) is the point

process governing the law of the branching random walk.

Theorem 6.6. (Bérard and Gouéré [40]) Assume that #Ξ = 2 and that ξ1 are

ξ2 are i.i.d. If ψ(1) = 0 = ψ′(1), and if ψ(1 + δ) < ∞ and ψ(−δ) < ∞ for some

δ > 0, then

vN = (1 + o(1))
π2σ2

2(lnN)2
, N → ∞ .

The proof of Theorem 6.6 is technical, requiring several delicate couplings be-

tween the N -BRW and the usual branching random walk at an appropriate scale.
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We describe below a heuristic argument to see why vN should behave asymptoti-

cally like π2σ2

2(lnN)2
.

The basic idea is that the following two properties are “alike”:

(a) A branching random walk, with an absorbing barrier of slope ε > 0 and

starting with N particles at the origin, survives;

(b) An N -BRW moves at speed ≤ ε.

In (a), the survival probability is 1 − (1 − psurv(ε))
N , where psurv(ε) is as in

Theorem 6.1 (Section 6.1). This suggests that vN would behave like ε = ε(N)

where ε is defined by

psurv(ε) “ ≈ ”
1

N
.

Solving the equation by means of Theorem 6.2 (Section 6.1), we obtain:

ε ∼
π2σ2

2(lnN)2
,

which gives Theorem 6.6.

Bérard and Gouéré in [40] succeed in making the heuristic argument rigorous.

Unfortunately, the heuristic argument probably fails to lead to what is conjectured

in (6.2). In other words, a deeper understanding of the N -BRW will be required

for a proof of (6.2).

6.3. The L-BRW

Let L > 0. The following so-called L-BRW was introduced by Brunet, Derrida,

Mueller and Munier [78]: in the branching random walk (V (x)), at each generation,

only the individuals whose spatial positions are within distance L to the minimal

position are kept, while all others are removed from the system. We denote by

(V (L)(x)) the positions of the individuals in the L-BRW. Consider

v(L) := lim
n→∞

1

n
max
|x|=n

V (L)(x) = lim
n→∞

1

n
min
|x|=n

V (L)(x),

whenever it exists. It would be interesting to know how v(L) behaves as L → ∞.

To the best of my knowledge, no non-trivial result is known in the literature.
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Question 6.7. Study v(L) as L→ ∞.

We can define the corresponding model for branching Brownian motion, called

the L-BBM, and define the velocity of the system, vBBM(L). In [78], the authors

argue that vBBM(L) should behave more or less like the velocity of the N -BBM

(i.e., the analogue of the N -BRW for branching Brownian motion) if we take L to

be of order lnN . The following result is rigorously proved.

Theorem 6.8. (Pain [206]) For the L-BBM, vBBM(L) exists for all L > 0, and

vBBM(L) = −21/2 + (1 + o(1))
π2

81/2L2
, L→ ∞.

The main term, −21/2, is simply the velocity of the minimal position in branch-

ing Brownian motion (see Section 1.1). So Theorem 6.8 is in agreement with

Theorem 6.6 via the heuristics of [78].

6.4. Notes

Although the study of branching diffusions with absorption goes back to Sev-

ast’yanov [220] and Watanabe [231], it is the work of Kesten [154] on branching

Brownian motion with an absorbing barrier that is the most relevant to the topic

in Section 6.1.

Theorem 6.1 is proved by Biggins et al. [59] under stronger assumptions, ex-

cluding the case ε = 0.

Theorem 6.2 is proved in [115]; see also [41] for a different proof, which moreover

gives some additional precision on the o(1) expression in (6.1). For branching

Brownian motion, (much) more is known, see Äıdékon and Harris [13], Berestycki,

Berestycki and Schweinsberg [44] and [45], Harris, Hesse and Kyprianou [125].

A related problem of survival probability for the branching random walk with

absorption concerns the critical slope ε = 0 and the situation that the system

survives in the first n steps. This is studied in depth in Äıdékon and Jaffuel [15].

The corresponding problem for branching Brownian motion with absorption is

investigated in the pioneering work of Kesten [154], and improved by Harris and

Harris [122]. For links with the one-sided F-KPP equation, see Harris, Harris and
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Kyprianou [123]. For physics literature, see Derrida and Simon [93], [222], where

many interesting predictions are made.

The analogue of Theorem 6.3 for branching Brownian motion is proved by

Maillard [185], who is moreover able to obtain an accurate evaluation for the

density of #Z at infinity.

The analogue of Theorem 6.4 for branching Brownian motion is proved by

Roberts [216], with remarkable precision. In particular, the analogue of Conjecture

6.5 for branching Brownian motion is proved in [216].

In addition of Theorem 6.6 (Section 6.2) proved by Bérard and Gouéré [40],

other rigorous results concerning the N -BRW (or the analogue for branching Brow-

nian motion) are obtained by Durrett and Remenik [104], Maillard [186], Bérard

and Maillard [42], Mallein [191]–[192], and by Berestycki and Zhao [46] in higher

dimensions. In particular, the weak convergence of the empirical measure of the

N -BBM (the analogue of the N -BRW for branching Brownian motion) is proved

in [104].

For both N -BBM and L-BBM, deviation properties are studied in [92].
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Chapter 7

Biased random walks on
Galton–Watson trees

This chapter is a brief presentation of the randomly biased random walk on trees

in its slow regime. The model has been introduced by Lyons and Pemantle [174],

as an extension of Lyons’s deterministically biased random walk on trees ([171],

[172]).

7.1. A simple example

Before introducing the general model, let us start with a simple example.

Example 7.1. Consider a rooted regular binary tree, and add a parent
←
∅ to the

root ∅.1 The resulting tree is a planted tree (in the sense of [100]). We give a

random colour to each of the vertices of the tree; a vertex is coloured red with

probability pred, and blue with probability pblue, with pred > 0 and pblue > 0 such

that pred + pblue = 1.

A random walker performs a discrete-time random walk on the tree, starting

from the root ∅. At each step, the walk stays at a vertex for a unit of time, then

moves to one of the neighbours (either the parent, or one of the two children). The

transition probabilities are a↑red (moving to the parent), a
(1)
red and a

(2)
red (moving to

either of the children) if the site where the walker stays currently is red, or a↑blue,

1The root ∅ is a vertex of the tree, but
←
∅ is not considered as a vertex of the tree.
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a
(1)
blue and a

(2)
blue if the site is blue. We assume that a↑red, a

(1)
red, a

(2)
red, a

↑
blue, a

(1)
blue and

a
(2)
blue are positive numbers such that

a↑red + a
(1)
red + a

(2)
red = 1 = a↑blue + a

(1)
blue + a

(2)
blue .

The parent
←
∅ of the root is reflecting: Each time the walk is at

←
∅, it automat-

ically comes back to ∅ in the next step. �

The usual questions arise naturally: Is the random walk recurrent or tran-

sient? What can be said about its position after n steps? What is the maximal

displacement in the first n steps?

7.2. The slow movement

Let T be a supercritical Galton–Watson tree; we add a parent
←
∅ to the root ∅. For

any x ∈ T, let
←
x denote the parent of x (recalling that

←
∅ is not considered as a ver-

tex of T), and x(1), . . ., x(N(x)) the children of x. Let ω := (ω(x), x ∈ T) be a family

of i.i.d. random vectors, with ω(x) = (ω(x, y), y ∈ {
←
x} ∪ {x(1), . . . , x(N(x))}). We

assume that with probability one, ω(∅, y) > 0 for y ∈ {
←
∅} ∪ {∅(1), . . . , ∅(N(x))},

and that ω(∅,
←
∅) +

∑N(x)
i=1 ω(∅, ∅(i)) = 1. In Example 7.1, ω(∅) (or any ω(x),

for x ∈ T) is a three-dimensional random vector and takes two possible values

(a↑red, a
(1)
red, a

(2)
red) and (a↑blue, a

(1)
blue, a

(2)
blue) with probability pred and pblue, respectively.

For each given ω (which, in Example 7.1, means that all the colours are known),

let (Xn, n ≥ 0) be a Markov chain with X0 = ∅ and with transition probabilities

Pω(Xn+1 =
←
x |Xn = x) = ω(x,

←
x),

Pω(Xn+1 = x(i) |Xn = x) = ω(x, x(i)), 1 ≤ i ≤ N(x) ,

and Pω(Xn+1 = y |Xn = x) = 0 if y /∈ {
←
x} ∪ {x(1), . . . , x(N(x))}.

We use P to denote the probability with respect to the environment, and

P := P⊗ Pω the annealed probability, i.e., P( · ) :=
∫
Pω( · )P(dω).

A convenient way to study the effect of ω on the behaviour of (Xn) is via the

following process (V (x), x ∈ T) defined by V (∅) := 0 and

V (x) =

|x|−1∑

i=0

ln
ω(xi, xi−1)

ω(xi, xi+1)
, x ∈ T\{∅} , (x−1 :=

←
∅)
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where xi denotes, as before, the ancestor of x in the i-th generation (for 0 ≤ i ≤

|x|). It is immediately seen that (V (x), x ∈ T) is a branching random walk studied

in the previous chapters! Let Ξ := (ξ1, · · · , ξN) be the point process governing

the law of the branching random walk, i.e., (V (x), |x| = 1) is distributed as Ξ.

Example 7.2. If Ξ = (ξ1, . . . , ξN) = (lnλ, . . . , lnλ), where λ > 0 is a fixed

parameter, the resulting process (Xn, n ≥ 0) is Lyons’s λ-biased random walk on

Galton–Watson trees ([171], [172]). �

Let, as before, ψ(t) := lnE(
∑
|x|=1 e

−V (x)), t ∈ R. Throughout the chapter, we

assume ψ(0) > 0, and ψ(1) = 0 = ψ′(1).

Theorem 7.3. (Lyons and Pemantle [174]) Assume ψ(0) > 0, and ψ(1) =

0 = ψ′(1). The biased random walk (Xn, n ≥ 0) is P-almost surely recurrent.

Proof. There is nothing to prove if the Galton–Watson tree T is finite. So let us

work on the set of non-extinction of T. Write Tx := inf{i ≥ 0 : Xi = x}, the first

hitting time of vertex x, and T+
∅ := inf{i ≥ 1 : Xi = ∅}, the first return time to

the root, with inf ∅ := ∞.

Let x ∈ T with |x| = n ≥ 1. For any 0 ≤ k ≤ n, write ak := Pω{Tx < T∅ |X0 =

xk}. Then a0 = 0, an = 1, and for 1 ≤ k < n,

ak =
ω(xk, xk+1)

ω(xk, xk+1) + ω(xk, xk−1)
ak+1 +

ω(xk, xk−1)

ω(xk, xk+1) + ω(xk, xk−1)
ak−1.

Solving the system of linear equations leads to

Pω{Tx < T∅ |X0 = x1} = a1 =
eV (x1)

∑n
i=1 e

V (xi)
.

In particular,2

Pω{Tx < T+
∅
} = ω(∅, x1)Pω{Tx < T∅ |X0 = x1} =

ω(∅,
←
∅)∑n

i=1 e
V (xi)

.

Let τn := inf{i ≥ 0 : |Xi| = n}. Then for n ≥ 1,

(7.1) Pω{τn < T+
∅
} ≤

∑

x∈T: |x|=n

Pω{Tx < T+
∅
} ≤ ω(∅,

←
∅)

∑

x∈T: |x|=n

1∑n
i=1 e

V (xi)
,

2This simple formula tells us that V plays the role of potential: The higher the potential
value is on the path {x1, . . . , xn}, the harder it is for the biased random walk to reach x.
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which yields Pω{τn < T+
∅ } ≤

∑
x∈T: |x|=n e

−V (x). Consequently, Pω{τn < T+
∅ } → 0

(as n → ∞) almost surely on the set of non-extinction (by the Biggins martin-

gale convergence theorem, Theorem 3.2 in Section 3.2). The recurrence follows

immediately. �

If ψ(0) > 0 and ψ(1) = 0 = ψ′(1), the biased random walk is null recurrent

(Faraud [110]; under some additional integrability conditions). Theorem 7.4 below

tells us that the biased random walk is very slow.

Let (m(s), s ∈ [0, 1]) be a standard Brownian meander under P, and letm(s) :=

supu∈[0, s]m(u). Recall that the standard Brownian meander can be realized as

m(s) := |B(g+s(1−g))|

(1−g)1/2
, s ∈ [0, 1], where (B(t), t ∈ [0, 1]) is a standard Brownian

motion, with g := sup{t ≤ 1 : B(t) = 0}.

Theorem 7.4. ([139]) Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). If ψ(1+ δ) <∞,

ψ(−δ) <∞ and E[(#Ξ)1+δ] <∞ for some δ > 0, then for all u ≥ 0,

lim
n→∞

P

(σ2 |Xn|

(ln n)2
≤ u

∣∣∣non-extinction
)
=

∫ u

0

1

(2πr)1/2
P
(
η ≤

1

r1/2

)
dr ,

where σ2 := E(
∑
|x|=1 V (x)

2e−V (x)) ∈ (0, ∞) as before, and η := sups∈[0, 1][m(s)−

m(s)].

We mention that
∫∞
0

1
(2πr)1/2

P(η ≤ 1
r1/2

) dr = 1 because E( 1
η
) = (π

2
)1/2, see

[140]. Very recently, Pitman [212] obtains an analytical expression for the distri-

bution function of η, by means of a result of Biane and Yor [48]; it is proved that

η has the Kolmogorov–Smirnov distribution: for x > 0,

P(η ≤ x) =

∞∑

k=−∞

(−1)ke−2k
2x2 =

(2π)1/2

x

∞∑

j=0

exp
(
−

(2j + 1)2π2

8x2

)
.

Since the biased random walk on trees can be viewed as a random walk in

random environment on trees, Theorem 7.4 is the analogue on trees of Sinai [223]’s

result for one-dimensional random walk in random environment. We mention that

like in Sinai’s case, there is a localization result for the biased random walk on

trees; see [139].
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7.3. The maximal displacement

Assume that ψ(0) > 1, ψ(1) = 0 = ψ′(1), and that #Ξ ≥ 1 a.s. Let as before

τn := inf{i ≥ 0 : |Xi| = n}. By (7.1),

Pω{τn < T+
∅
} ≤

∑

x∈T: |x|=n

e−V (x),

with V (x) := max1≤i≤|x| V (xi). By Theorem 5.34 in Section 5.7 (under its assump-

tions), we have, with a∗ := (3π
2σ2

2
)1/3 and σ2 := E(

∑
|x|=1 V (x)2e−V (x)),

lim inf
n→∞

1

n1/3
lnPω{τn < T+

∅
} ≥ −a∗, P-a.s.

Let Lk :=
∑k

i=1 1{Xi=∅}, which stands for the number of visits at the root ∅ in

the first k steps. Then for any j ≥ 1 and all ε > 0,

Pω{Lτn ≥ j} = [Pω{τn > T+
∅
}]j ≤

[
1− e−(1+ε)a∗n

1/3
]j

≤ exp
(
− j e−(1+ε)a∗n

1/3
)
,

P-almost surely for all sufficiently large n (say n ≥ n0(ω); n0(ω) does not depend

on j). Taking j := ⌊e(1+2ε)a∗n1/3
⌋, we see that

∑

n

Pω{Lτn ≥ ⌊e(1+2ε)a∗n1/3

⌋} <∞, P-a.s.

This implies, by the Borel–Cantelli lemma, that

lim sup
n→∞

lnLτn
n1/3

≤ a∗, P-a.s.

It is known, and not hard, to check that

lim
k→∞

lnLk
ln k

= 1 , P-a.s.,

which yields that

lim sup
n→∞

ln τn
n1/3

≤ a∗, P-a.s.

Note that for all n and j, {τn ≤ k} = {max1≤i≤k |Xi| ≥ n}. This implies that

lim inf
n→∞

1

(lnn)3
max
1≤i≤n

|Xi| ≥
1

a3∗
=

2

3π2σ2
, P-a.s.

It turns out that (lnn)3 is the correct order of magnitude for max1≤i≤n |Xi|,

but the constant 2
3π2σ2

is not optimal. Let Ξ denote again a point process having

the law of (V (x), |x| = 1).
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Theorem 7.5. (Faraud et al. [111]) Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1).

If ψ(1+ δ) <∞, ψ(−δ) <∞ and E[(#Ξ)1+δ] <∞ for some δ > 0, then P-almost

surely on the set of non-extinction,

lim
n→∞

1

(lnn)3
max
1≤i≤n

|Xi| =
8

3π2σ2
.

Theorems 7.4 and 7.5 together reveal a multifractal structure in the sample path

of the biased random walk. Loosely speaking, the biased random walk typically

stays at a distance of order (lnn)2 to the root after n steps, but at some exceptional

times during the first n steps, the biased random walk makes a displacement of

order (lnn)3 to the root. It would be interesting to quantify this phenomenon and

to connect, in some sense, the two theorems.

Let Gn := sup{i ≤ n : Xi = ∅}, the last passage time at the root before n.

Conjecture 7.6. Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). Under suitable inte-

grability assumptions, P-almost surely on the set of non-extinction,

lim sup
n→∞

1

(lnn)3
max

Gn≤i≤n
|Xi| > 0.

7.4. Favourite sites

For any vertex x ∈ T, let

Ln(x) :=
n∑

i=1

1{Xi=x} , n ≥ 1,

which is the site local time at position x of the biased random walk. Consider, for

any n ≥ 1, the set of the favourite sites (or: most visited sites) at time n:

An :=
{
x ∈ T : Ln(x) = max

y∈T
Ln(y)

}
.

The study of favourite sites was initiated by Erdős and Révész [105] for the

symmetric simple random walk on Z (see a list of ten open problems presented in

Chapter 11 of Révész [214]) who conjectured for the latter process that the family

of favourite sites is tight, and that #An ≤ 2 almost surely for all sufficiently large
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n. The second conjecture received a partial answer from Tóth [227], and is believed

to be true. The first conjecture was disproved by Bass and Griffin [35], who proved

that inf{|x|, x ∈ An} → ∞ almost surely for the symmetric simple random walk

on Z; later, it was proved to be also the case ([134]) for Sinai’s one-dimensional

random walk in random environment.

Theorem 7.7. ([138]) Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). If ψ(1+ δ) <∞,

ψ(−δ) < ∞ and E[(#Ξ)1+δ] < ∞ for some δ > 0, then there exists a finite

non-empty set U , depending only on the environment, such that

lim
n→∞

P(An ⊂ U | non-extinction) = 1.

In particular, the family of most visited sites is tight under P.

Theorem 7.7 tells us that as far as the tightness question for favourite sites

is concerned, the biased random walk on trees behaves very differently from the

recurrent nearest-neighbour random walk on Z (whether the environment is ran-

dom or deterministic). Il also gives a non-trivial example of null recurrent Markov

chain whose favourite sites are tight.

We close this brief chapter with a question.

Question 7.8. Assume ψ(0) > 0 and ψ(1) = 0 = ψ′(1). Under suitable integra-

bility assumptions, is it true that lim supn→∞ supx∈An
|x| <∞ P-almost surely?

7.5. Notes

This chapter has shown only a tiny branch (on which I sit) of a big tree in the

forest of probability on trees. For a better picture of the forest, the book [178] and

the lectures notes [208] are ideal references.

Theorem 7.3 in Section 7.2 is a special case of a general result of Lyons and

Pemantle [174], who give a recurrence/transience criterion for random walks on

general trees (not only Galton–Watson trees). For a proof using Mandelbrot’s

multiplicative cascades, see Menshikov and Petritis [195].

The biased random walk on trees is often viewed as a random walk in random

environment on trees. The elementary proof of Theorem 7.3 presented here is
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indeed essentially borrowed from Solomon [224] for one-dimensional random walks

in random environment. For more elaborated techniques and a general account of

random walks in random environment, see the lecture notes of Zeitouni [234].

Related to discussions in Section 7.4, local time of generations (instead of site

local times as in Section 7.4) for the randomly biased random walk is investigated

by Andreoletti and Debs in [24] and [25], and site local time in the sub-diffusive

regime by Hu [133].

There is huge literature on random walks on trees. Let me attempt to make a

rather incomplete list of works: they are here either because they are connected

to the material presented in this chapter, or because they concern velocity and

related questions.

I only include results for biased random walks on supercritical Galton–Watson

trees, referred to simply as “biased random walks” below.

It is already pointed out that a general recurrence/transience criterion is avail-

able from Lyons and Pemantle [174].

(a) In the transient case, a general result of Gross [118] shows the existence of

the velocity. A natural question to answer is what can be said about the velocity,

and whether or not the velocity is positive.

(a1) For the λ-biased random walk (on trees), transience means λ < E(#Ξ),

the answer of positivity of the velocity depends on whether or not there are leaves

on trees.

When #Ξ ≥ 1 P-a.s., the tree is leafless, the velocity of the biased random walk

is positive (Lyons, Pemantle and Peres [177]). For simple random walk (i.e., λ = 1),

the value of the velocity is explicitly known (Lyons, Pemantle and Peres [176]). For

other values of λ, there is a simple and nice upper bound (Chen [86], Virág [230]).

More recently, Äıdékon [9] deduces an analytical expression for the velocity. A

famous conjecture (Lyons, Pemantle and Peres [177]) is that the velocity is non-

increasing in λ ∈ [0, E(#Ξ)). This monotonicity is established by Ben Arous,

Hu, Olla and Zeitouni [39] for λ in the neighbourhood of E(#Ξ), by Ben Arous,

Fribergh and Sidoravicius [38] for λ in the neighbourhood of 0, and by Äıdékon [10]

for λ ∈ [0, 1
2
] using his analytical expression obtained in [9]. Another interesting

question concerns the smoothness of the velocity as a function of λ: the function
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is proved in [177] to be continuous on [0, 1), but it is not known if it is continuous

on [1, E(#Ξ)). In the sub-ballistic case (i.e., with zero velocity), a quenched

invariance principle is proved by Peres and Zeitouni [209].

When P(#Ξ = 0) > 0, the tree has leaves. It is proved in [177] that the velocity

is positive if and only if λ > f ′(q), where f is the moment generating function of

the reproduction law of the Galton–Watson tree as in Section 2.1, and q is the

extinction probability. In the sub-ballistic case, the escape rate is studied by Ben

Arous, Fribergh, Gantert and Hammond [37], who also prove a cyclic phenomenon

(tightness but no weak convergence).

Regardless of existence of leaves, an annealed invariance principle is proved by

Piau [211].

(a2) We now turn to the randomly biased random walk.

When #Ξ ≥ 1 P-a.s., Äıdékon gives in [5] a criterion for the positivity of the

velocity, and in [6] a simple upper bound for the velocity in case it is positive, which

coincides with the aforementioned upper bound of Chen [86] and Virág [230] when

there is no randomness in the bias. In the sub-ballistic case, the escape rate is also

studied in [5]. Deviation properties are studied in [6].

Assume now P(#Ξ = 0) > 0. In the sub-ballistic case, weak convergence is

proved by Hammond [121] (contrasting with the λ-biased random walk).

(b) For recurrent randomly biased random walk, the maximal displacement is

studied in [135] (the sub-diffusive regime) and in [136] (the slow regime studied in

this chapter). Faraud [110] establishes a quenched invariance principle, extending

the aforementioned result of Peres and Zeitouni [209] for the λ-biased random walk

in the very delicate null recurrent case.

Deviations properties, in both quenched and annealed settings, are studied by

Dembo, Gantert, Peres and Zeitouni [91] for the λ-biased random walk (leafless,

recurrent or transient), and by Äıdékon [6] for the randomly biased random walk

(leafless, transient).

For a general account of the biased random walk on trees, see (again) [178].
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Appendix A

Sums of i.i.d. random variables

Let (Sn − Sn−1, n ≥ 1) be a sequence of independent and identically real-valued

random variables such that E(S1 − S0) = 0 and that P(S1 − S0 6= 0) > 0. We

assume S0 = 0, P-a.s.

A.1. The renewal function

The material in this paragraph is well-known; see, for example, Feller [112].

Define the function R : [0, ∞) → (0, ∞) by R(0) := 1 and

(A.1) R(u) := E
{ τ+−1∑

j=0

1{Sj≥−u}

}
, u > 0,

where τ+ := inf{k ≥ 1 : Sk ≥ 0} (which is well-defined almost surely, since

E(S1) = 0).

The function R is the renewal function associated with (Sn), because it can

be written as

(A.2) R(u) =
∞∑

k=0

P{H−k ≥ −u} =
∞∑

k=0

P{|H−k | ≤ u}, u ≥ 0,

where H−0 > H−1 > H−2 > . . . are the strictly descending ladder heights of (Sn),

i.e.,

(A.3) H−k := Sθ−k
, k ≥ 0,

129
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with θ−0 := 0 and θ−k := inf{i > θ−k−1 : Si < min0≤j≤θ−k−1
Sj} for k ≥ 1. By the

renewal theorem,

(A.4)
R(u)

u
→ cren ∈ [0, ∞), u → ∞,

where cren := 1
E(|H−1 |)

. Morever (Doney [99]), if E{[(S1)−]
2} < ∞ (where u− :=

max{−u, 0} for u ∈ R), then

(A.5) 0 < cren <∞.

A.2. Random walks to stay above a barrier

Throughout this part, we assume, moreover, that E(S2
1) ∈ (0, ∞).

We list a few elementary probability estimates for (Sn) to stay above a barrier;

these estimates are useful in various places of the notes. They are collected or

adapted from the appendices of [8], [16] and [17], but many of them can probably

be found elsewhere in the literature in one form or another. For a survey on general

ballot-type theorems, see Addario-Berry and Reed [3].

Sometimes we work under Pv (for v ∈ R), meaning that Pv(S0 = v) = 1 (so

P0 = P); the corresponding expectation is denoted by Ev.

Let us write

Sn := min
0≤i≤n

Si, n ≥ 0.

By Stone’s local limit theorem, there exist constants c55 > 0 and c56 > 0 such that

(A.6) sup
r∈R

P{r ≤ Sn ≤ r + h} ≤ c55
h

n1/2
, ∀n ≥ 1, ∀h ≥ c56.

It is known (Kozlov [159]) that there exist positive constants C+ and C− such that

for a ≥ 0 and n→ ∞,

(A.7) P
{

min
0≤i≤n

Si ≥ −a
}
∼
C+R(a)

n1/2
, P

{
max
0≤i≤n

Si ≤ −a
}
∼
C−R−(a)

n1/2
,

where R− is the renewal function associated with (−Sn). Furthermore, it is possible

to have a bound in (A.7) which is valid uniformly in a (Kozlov [159]):

(A.8) lim sup
n→∞

n1/2 sup
a≥0

1

a + 1
P
{
Sn ≥ −a

}
<∞.
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With the notation x ∧ y := min{x, y}, we claim that there exists c57 > 0 such

that for a ≥ 0, b ≥ −a and n ≥ 1,

(A.9) P
{
b ≤ Sn ≤ b+ c56, Sn ≥ −a

}
≤ c57

[(a + 1) ∧ n1/2] [(b+ a+ 1) ∧ n1/2]

n3/2
,

where c56 > 0 is the constant in (A.6). We only need to prove it for all sufficiently

large n; for notational simplification, we treat n
3
as an integer. By the Markov

property at time n
3
,

P
{
b ≤ Sn ≤ b+ c56, Sn ≥ −a

}

≤ P
{
S n

3
≥ −a

}
sup
x≥−a

P
{
b− x ≤ S 2n

3
≤ b− x+ c56, S 2n

3
≥ −a− x

}
.

By (A.8), P{S n
3
≥ −a} ≤ c58

(a+1)∧n1/2

n1/2 . It remains to check that

sup
x≥−a

P
{
b− x ≤ S 2n

3
≤ b− x+ c56, S 2n

3
≥ −a− x

}
≤ c62

(b+ a+ 1) ∧ n1/2

n
.

Let S̃j := S 2n
3
−j − S 2n

3
. Then P{b − x ≤ S 2n

3
≤ b − x + c56, S 2n

3
≥ −a − x} ≤

P{−b + x − c56 ≤ S̃ 2n
3
≤ −b + x, min1≤i≤ 2n

3
S̃i ≥ −a − b − c56}. By the Markov

property, this leads to: for x ≥ −a,

P
{
b− x ≤ S 2n

3
≤ b− x+ c56, S 2n

3
≥ −a− x

}

≤ P
{

min
1≤i≤n

3

S̃i ≥ −a− b− c56

}
sup
y∈R

P
{
− b+ x− c56 − y ≤ S̃n

3
≤ −b+ x− y

}
.

The first probability expression on the right-hand side is bounded by c60
(b+a+1)∧n1/2

n1/2

(by (A.8)), whereas the second by c61
n1/2 (by (A.6)). So (A.9) is proved.

Lemma A.1. There exists c62 > 0 such that for a ≥ 0, b ≥ −a and n ≥ 1,

P
{
Sn ≥ −a, Sn ≤ b

}
≤ c62

[(a+ 1) ∧ n1/2] [(b+ a+ 1)2 ∧ n]

n3/2
.

Proof. It is a straightforward consequence of (A.9). �

Lemma A.2. There exists c63 > 0 such that for u > 0, a ≥ 0, b ≥ 0 and n ≥ 1,

P
{
Sn ≥ −a, b− a ≤ Sn ≤ b− a+ u

}
≤ c63

(u+ 1)(a+ 1)(b+ u+ 1)

n3/2
.
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Proof. The inequality follows immediately from Lemma A.1 if u = c56, and thus

holds also for u < c56, whereas the case u > c56 boils down to the case u = c56

by splitting [b − a, b − a + u] into intervals of lengths ≤ c56, the number of these

intervals being less than ( u
c56

+ 1).

[When a = 0, both Lemmas A.1 and A.2 boil down to a special case of Lemma

20 of Vatutin and Wachtel [229].] �

Lemma A.3. There exists c64 > 0 such that for a ≥ 0,

sup
n≥1

E
[
|Sn| 1{Sn≥−a}

]
≤ c64 (a+ 1).

Proof. We need to check that for some c65 > 0, E[Sn 1{Sn≥−a}
] ≤ c65 (a + 1),

∀a ≥ 0, ∀n ≥ 1.

Let τ−a := inf{i ≥ 1 : Si < −a}. Then E[Sn 1{Sn≥−a}
] = −E[Sn 1{τ−a ≤n}],

which, by the optional sampling theorem, is equal to E[(−Sτ−a ) 1{τ−a ≤n}]. As a

consequence, we have supn≥1E[Sn 1{Sn≥−a}
] = E[(−Sτ−a )].

It remains to check that E[(−Sτ−a )−a] ≤ c66 (a+1) for some c66 > 0 and all a ≥

0. [In fact, assuming E(|S1|
3) <∞, it is even true that supa≥0 E[(−Sτ−a )−a] <∞;

see Mogulskii [197].] By a well-known trick (Lai [163]) using the sequence of strictly

descending ladder heights, it boils down to proving that E[(−S̃τ̃−a )−a] ≤ c67 (a+1)

for some c67 > 0 and all a ≥ 0, where S̃1, S̃2 − S̃1, S̃3 − S̃2, . . . are i.i.d. negative

random variables with E(S̃1) > −∞, and τ̃−a := inf{i ≥ 1 : S̃i < −a}. This,

however, is a special case of (2.6) of Borovkov and Foss [62]. �

Lemma A.4. Let 0 < λ < 1. There exists c68 > 0 such that for a ≥ 0, b ≥ 0,

0 ≤ u ≤ v and n ≥ 1,

P
{
Sn ≥ −a, min

λn<i≤n
Si ≥ b− a, Sn ∈ [b− a+ u, b− a+ v]

}

≤ c68
(v + 1)(v − u+ 1)(a+ 1)

n3/2
.(A.10)

Proof. We treat λn as an integer. Let P(A.10) denote the probability expression

on the left-hand side of (A.10). Applying the Markov property at time λn, we

see that P(A.10) = E[1{Sλn≥−a, Sλn≥b−a}f(Sλn)], where f(r) := P{Sn−λn ≥ b − a −
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r, Sn−λn ∈ [b − a − r + u, b − a − r + v]} (for r ≥ b − a). By Lemma A.2,

f(r) ≤ c63
(v+1)(v−u+1)(a+r−b+1)

n3/2 (for r ≥ b− a). Therefore,

P(A.10) ≤
c63(v + 1)(v − u+ 1)

n3/2
E[(Sλn + a− b+ 1) 1{Sλn≥−a, Sλn≥b−a}].

The expectation E[· · · ] on the right-hand side is bounded by E[ |Sλn| 1{Sλn≥−a}
] +

a+ 1, so it suffices to apply Lemma A.3. �

Lemma A.5. There exists a constant c69 > 0 such that for any y ≥ 0 and z ≥ 0,

∞∑

k=0

P
{
Sk ≤ y − z, Sk ≥ −z

}
≤ c69 (y + 1)(min{y, z} + 1).

Proof. The proof requires to apply Lemma A.1, with some care. We distinguish

two possible situations.

First situation: y < z. Let τ−y := inf{i ≥ 0 : Si ≤ y}. Then

∞∑

k=0

P{Sk ≤ y − z, Sk ≥ −z} = Ez

[ ∞∑

k=0

1{Sk≤y, Sk≥0}

]

= Ez

[ ∞∑

k=τ−y

1{Sk≤y, Sk≥0}

]
.

Applying the strong Markov property at time τ−y gives

∞∑

k=0

P{Sk ≤ y − z, Sk ≥ −z} ≤ E
[ ∞∑

i=0

1{Si≤y, Si≥−y}

]

=

∞∑

i=0

P(Si ≤ y, Si ≥ −y).

For i ≤ ⌊y2⌋, we simply argue that the probability on the righ-hand side is bounded

by one. For i ≥ ⌊y2⌋+1, we apply Lemma A.1 to see that the probability is bounded

by c70
(y+1)3

i3/2
. Consequently,

∞∑

k=0

P{Sk ≤ y − z, Sk ≥ −z} ≤ (⌊y2⌋+ 1) +

∞∑

i=⌊y2⌋+1

c70
(y + 1)3

i3/2
,

which is bounded by c71 (y + 1)2, as desired.
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Second and last situation: y ≥ z. For k ≤ ⌊y2⌋, we simply say P{Sk ≤

y−z, Sk ≥ −z} ≤ P{Sk ≥ −z}, which is bounded by c72
z+1

(k+1)1/2
. For k ≥ ⌊y2⌋+1,

we apply Lemma A.1 and obtain: P{Sk ≤ y − z, Sk ≥ −z} ≤ c62
(y+1)2(z+1)

k3/2
. As

such,

∞∑

k=0

P{Sk ≤ y − z, Sk ≥ −z} ≤

⌊y2⌋∑

k=0

c72 (1 + z)

(k + 1)1/2
+

∞∑

k=⌊y2⌋+1

c63 (y + 1)2(z + 1)

k3/2
,

which is bounded by c73 (y + 1)(z + 1). �

Lemma A.6. Let ε > 0 and c74 > 0. There exist constants c75 > 0 and c76 > 0

such that for all u ≥ 0, v ≥ 0, a ≥ 0 and integers n ≥ 1,

Pv

{
∃0 ≤ i ≤ n : Si ≤ ki − c75, min

0≤j≤n
Sj ≥ 0, min

n
2
<j≤n

Sj ≥ a, Sn ≤ a+ u
}

≤ (1 + u)2(1 + v)
( ε

n3/2
+ c76

(n1/7 + a)2

n2−(1/7)

)
,

where ki := c74 i
1/7 for 0 ≤ i ≤ ⌊n

2
⌋, and ki := a+ c74 (n− i)1/7 for ⌊n

2
⌋ < i ≤ n.

Proof. Again, we treat n
2
as an integer. We start with the trivial observation that

{Si ≤ i1/7 − c75} ⊂ {Si ≤ i1/7}, regardless of the forthcoming constant c75.

Let, for 0 ≤ i ≤ n,

Ei :=
{
Si ≤ ki, min

0≤j≤n
Sj ≥ 0, min

n
2
<j≤n

Sj ≥ a, Sn ≤ a+ u
}
.

[We note that the first condition in Ei is Si ≤ ki, and not Si ≤ ki − c75 as in the

statement of the lemma.] We distinguish two possible situations.

First situation: i ≤ n
2
, in which case ki = c74 i

1/7. We estimate P(Ei) for

1 ≤ i ≤ n
2
. Applying the Markov property at time i, and using Lemma A.4

(there is no problem in applying Lemma A.4 even when i is close to n
2
, because

the probability expression in Lemma A.4 is non-decreasing in λ), we get

P(Ei) ≤ c77
(u+ 1)2

n3/2
Ev

[
(Si + 1) 1{Si≤c74 i1/7, Si≥0}

]
,

which, by Lemma A.1, is bounded by c78
(u+1)2

n3/2

(i1/7+1)3(v+1)

i3/2
. Consequently, there

exists a constant i0 sufficiently large, which does not depend on the forthcoming
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constant c75, such that

(A.11)

n
2∑

i=i0

P(Ei) ≤
ε (u+ 1)2(v + 1)

2n3/2
,

with
∑n

2
i=i0

:= 0 if n
2
< i0.

Second and last situation: i > n
2
, in which case ki = a + c74 (n − i)1/7 by

definition. We still apply the Markov property at time i: using Lemma A.1, it is

seen that

P(Ei) ≤
c79 (u+ 1)2

(n− i+ 1)3/2
Ev

[
(Si − a + 1) 1{Si≤a+c74 (n−i)1/7, Si≥0, minn

2≤j≤i Sj≥a}

]

≤
c80 (u+ 1)2

(n− i+ 1)(3/2)−(1/7)
Pv

(
Si ≤ a+ c74 (n− i)1/7, Si ≥ 0,

min
n
2
≤j≤i

Sj ≥ a
)
.

When i ≥ 2n
3
, this yields P(Ei) ≤ c81 (u+ 1)2(v + 1) (n−i+1)(3/7)−(3/2)

n3/2 by Lemma

A.4. Therefore, choosing i1 sufficiently large (not depending on the forthcoming

constant c75), we have

(A.12)

n−i1∑

i= 2n
3

P(Ei) ≤
ε (u+ 1)2(v + 1)

2n3/2
.

When n
2
< i < 2n

3
, we simply use

P(Ei) ≤
c80 (u+ 1)2

(n− i+ 1)(3/2)−(1/7)
Pv

(
a ≤ Si ≤ a + c74 (n− i)1/7, Si ≥ 0

)
,

and the probability expression on the right-hand side is bounded by [1 + c74 (n −

i)1/7]Pv(a ≤ Si ≤ a + c74 (n − i)1/7, Si ≥ 0). Using Lemma A.2 gives then

P(Ei) ≤ c82
(u+1)2(v+1) n1/7 (n1/7+a)2

n3 ; as such,

2n
3
−1∑

i=n
2
+1

P(Ei) ≤ c83
(u+ 1)2(v + 1) (n1/7 + a)2

n2−(1/7)
.

Combining this with inequalities in (A.11) and (A.12), we obtain:

n−i1∑

i=i0

P(Ei) ≤
ε (u+ 1)2(v + 1)

n3/2
+ c83

(u+ 1)2(v + 1) (n1/7 + a)2

n2−(1/7)
.
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We choose c75 > c74 (max{i0, i1})
1/7 so that for i < i0 or for n − i1 < i ≤ n, the

event {a ≤ Si ≤ ki − c75} is empty. The lemma is proved.

We note that the choice of 1
7
in the lemma is arbitrary; any value in (0, 1

6
) is

fine. �

Lemma A.7. There exists a constant C0 > 0 such that for any 0 < a1 ≤ a2 <∞,

lim inf
n→∞

n1/2 inf
u∈[a1 n1/2, a2 n1/2]

P
{
u ≤ Sn < u+ C0

∣∣∣Sn ≥ 0
}
> 0.

Proof. The lemma follows immediately from a conditional local limit theorem

(Caravenna [82]): if the distribution of S1 is non-lattice (i.e., not supported in any

aZ + b, with a > 0 and b ∈ R), then for any h > 0, P{r ≤ Sn ≤ r + h |Sn ≥

0} = hr+
nE(S2

1 )
exp(− r2

2nE(S2
1 )
)+o( 1

n1/2 ), n→ ∞, uniformly in r ∈ R (notation recalled:

r+ := max{r, 0}); if the distribution of S1 is lattice, and is supported in a + bZ

with b > 0 being the largest such value (called the “span” in the literature), then

P{Sn = an + bℓ |Sn ≥ 0} = b(an+bℓ)+
nE(S2

1 )
exp(− (an+bℓ)2

2nE(S2
1 )
) + o( 1

n1/2 ), n → ∞, uniformly

in ℓ ∈ Z. �

Lemma A.8. Let C0 > 0 be the constant in Lemma A.7. For all 0 < a1 ≤ a2 <∞,

lim inf
n→∞

n inf
u∈[a1 n1/2, a2 n1/2]

P
{
Sn ≥ 0, u ≤ Sn < u+ C0

}
> 0.

Proof. This is a consequence of Lemma A.7 and (A.7). �

Lemma A.9. Let C0 > 0 be the constant in Lemma A.7. For all 0 < a1 ≤ a2 <∞

and a3 > 0,

lim inf
n→∞

inf
v∈[0, a3 n1/2]

n

v + 1
inf

u∈[a1 n1/2, a2 n1/2]
P
{
Sn ≥ −v, u ≤ Sn < u+ C0

}
> 0.

Proof. Since {Sn ≥ −v} ⊃ {Sn ≥ 0} for v ≥ 0, and in view of Lemma A.8, we

only need to treat the case v ∈ [v0, a3 n
1/2] for any given v0 > 0. Let (H−k , k ≥ 0)

(resp. (θ−k , k ≥ 0)) be the strictly descending ladder heights (resp. ladder epochs)

of (Sn), as in (A.3). We have

P{Sn ≥ −v, u ≤ Sn < u+ C0}

≥

∞∑

k=1

P{θ−k ≤
n

2
, H−k ≥ −v, θ−k+1 > n, Sn ≥ −v, u ≤ Sn < u+ C0}.
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For any k, applying the strong Markov property at time θ−k and Lemma A.8, we

see that for some c84 > 0 and n0 > 0 (depending on (a1, a2, a3) but not on v0) and

all n ≥ n0, the probability expression on the right-hand side is

≥ P{θ−k ≤
n

2
, H−k ≥ −v} ×

c84
n
;

hence

P{Sn ≥ −v, u ≤ Sn < u+ C0} ≥
c84
n

∞∑

k=1

P{θ−k ≤
n

2
, H−k ≥ −v}

≥
c84
n
k0P{θ−k0 ≤

n

2
, H−k0 ≥ −v},

for any k0 ≥ 1. Since
|H−k |

k
→ 1

cren
∈ (0, ∞) a.s. (for k → ∞; see (A.4) and (A.5)),

and θ−k is the first time the random walk (Si) hits (−∞, H−k ], it follows from

Donsker’s theorem that we can choose v0 sufficiently large and δ > 0 sufficiently

small, such that with the choice of k0 := ⌊δv⌋, we have, for all v ∈ [v0, a3 n
1/2]

and all sufficiently large n, P{H−k0 ≥ −v} ≥ 2
3
and P{θ−k0 ≤ n

2
} ≥ 2

3
, so that

P{θ−k0 ≤
n
2
, H−k0 ≥ −v} ≥ 2

3
+ 2

3
− 1 = 1

3
. The lemma follows. �

Lemma A.10. There exists a constant C > 0 such that for all a1 > 0, a2 > 0

and 0 < λ < 1, there exist an integer n0 ≥ 1 and a constant c85 > 0 such that the

following inequality holds:

(A.13) P
{
S⌊λn⌋ ≥ −v, min

⌊λn⌋<j≤n
Sj ≥ u, Sn ≤ u+ C

}
≥ c85

v + 1

n3/2
,

for all n ≥ n0, all u ∈ [0, a1 n
1/2] and all v ∈ [0, a2 n

1/2].

Proof. We treat λn and n1/2 as integers. Let C0 > 0 be the constant in Lemma

A.7, and we take C := 2C0. Let P(A.13) denote the probability on the left-hand

side of (A.13). Writing αk := 2a1 n
1/2 + kC0 for k ≥ 0, we have

P(A.13) ≥

n1/2∑

k=0

P
{
Sλn ≥ −v, αk ≤ Sλn < αk+1, min

λn<j≤n
(Sj − Sλn) ≥ u− αk,

Sn − Sλn ≤ u+ 2C0 − αk+1

}

=
n1/2∑

k=0

P
{
Sλn ≥ −v, αk ≤ Sλn < αk+1

}

×P
{
S(1−λ)n ≥ u− αk, S(1−λ)n ≤ u+ C0 − αk

}
.
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[In the last identity, we have used the fact that u+2C0−αk+1 = u+C0−αk.] We

need to treat the two probability expressions on the right-hand side. The first is

easy: by Lemma A.9, there exists a constant c86 > 0 such that for all sufficiently

large n,

min
0≤k≤n1/2

P
{
Sλn ≥ −v, αk ≤ Sλn < αk+1

}
≥ c86

v + 1

n
.

To treat the second probability expression on the right-hand side, we write Ŝj :=

S(1−λ)n−j − S(1−λ)n, to see that

P
{
S(1−λ)n ≥ u− αk, S(1−λ)n ≤ u+ C0 − αk

}

≥ P
{

min
1≤j≤(1−λ)n

Ŝj ≥ 0, −u− C0 + αk ≤ Ŝ(1−λ)n ≤ −u + αk

}
,

which, by Lemma A.8, is greater than c87
n

for some c87 > 0 and all sufficiently large

n, uniformly in 0 ≤ k ≤ n1/2. Consequently, for all sufficiently large n,

P(A.13) ≥
n1/2∑

k=0

c86
v + 1

n

c87
n
,

which is greater than c88
v+1
n3/2 for some constant c88 > 0. �
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Statist. 46, 159–189.
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nian motion seen from its tip. Probab. Theory Related Fields 157, 405–451.
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[77] Brunet, É., Derrida, B., Mueller, A.H. and Munier, S. (2006). Noisy traveling
waves: Effect of selection on genealogies. Europhys. Lett. 76, 1–7.



BIBLIOGRAPHY 145
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105–150.

[152] Kahane, J.-P. and Peyrière, J. (1976). Sur certaines martingales de Mandel-
brot. Adv. Math. 22, 131–145.

[153] Kessler, D.A., Ner, Z. and Sander, L.M. (1998). Front propagation: precur-
sors, cutoffs and structural stability. Phys. Rev. E 58, 107–114.

[154] Kesten, H. (1978). Branching Brownian motion with absorption. Stoch. Proc.
Appl. 37, 9–47.

[155] Kesten, H. and Stigum, B.P. (1966). A limit theorem for multidimensional
Galton–Watson processes. Ann. Math. Statist. 37, 1211-1223.

[156] Kingman, J.F.C. (1975). The first birth problem for an age-dependent
branching process. Ann. Probab. 3, 790–801.

[157] Kolmogorov, A.N. and Fomin, S.V. (1970). Introductory Real Analysis.
Dover, New York.

[158] Kolmogorov, A.N., Petrovskii, I. and Piskunov, N. (1937). Étude de
l’équation de la diffusion avec croissance de la quantité de matière et son ap-
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