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In this document, you will ultimately �nd all the proofs of the results given in the lecture.
For the time being, you will either �nd the proof or a pointer to a book where you can �nd them.

Please inform me if there is a missing proof!

1 Statistical Setting

1.1 Bayes Predictor

Claim 1. The minimizer of E
[
ℓ0/1(Y, f(X))

]
is given by

f∗(X) =


+1 if P (Y = +1|X) ≥ P (Y = −1|X)

⇔ P (Y = +1|X) ≥ 1/2

−1 otherwise

Proof. We start by noticing that

argmin
f∈F

E [ℓ(Y, f(X))] = argmin
f∈F

EX

[
EY |X [ℓ(Y, f(X))]

]
so that we can focus on

EY |X [ℓ(Y, f(X))]

where f(X) is constant.
By de�nition,

EY |X [ℓ(Y, f(X))] = P (Y = 1|X) ℓ(1, f(X)) + P (Y = −1|X) ℓ(−1, f(X))

=

{
P (Y = 1|X) if f(X) = −1

P (Y = −1|X) if f(X) = 1

which implies

f∗(X) =

{
+1 if P (Y = +1|X) ≥ P (Y = −1|X)

−1 otherwise

.
The last element of the theorem is obtain by noticing that P (Y = +1|X) ≥ P (Y = −1|X) ⇔

P (Y = +1|X) ≥ 1/2.
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Claim 2. The minimizer of E
[
ℓ2(Y, f(X))

]
is given by

f∗(X) = E [Y |X]

Proof. We start by noticing that

argmin
f∈F

E [ℓ(Y, f(X))] = argmin
f∈F

EX

[
EY |X [ℓ(Y, f(X))]

]
so that we can focus on

EY |X [ℓ(Y, f(X))] = EY |X
[
(Y − f(X))2

]
where f(X) is constant.

Now using the de�nition of the conditional expectation, we obtain then

EY |X [ℓ(Y, f(X))] = EY |X
[
(Y − f(X))2

]
= EY |X

[
(Y − E [Y |X] + E [Y |X]− f(X))2

]
= EY |X

[
(Y − E [Y |X])2

]
+ EY |X

[
(E [Y |X]− f(X))2

]
+ 2EY |X [(Y − E [Y |X])(E [Y |X]− f(X))]

= EY |X
[
(Y − E [Y |X])2

]
+ (E [Y |X]− f(X))2

which is thus minimized by f⋆(X) = E [Y |X].

1.2 Training Error Optimism

Let

Rn(f) =
1

n

n∑
i=1

ℓ(Yi, f(Xi))

and

f̂S = argmin
f∈S

Rn(f)

.

Claim 3.

Rn(f̂S) ≤ Rn(f
⋆
S) andE

[
Rn(f̂S)

]
≤ R(f⋆

S)

Proof. The �rst part is nothing but the de�nition of f̂S combined with the fact that f⋆
S also

belongs to S.
The second part relies on the fact that for a non random function

E [Rn] = E

[
1

n

n∑
i=1

ℓ(Yi, f(Xi))

]
= E [ℓ(Y, f(X))] = R(f)

2



2 Cross Validation

2.1 Leave One Out Formula

Claim 4. For the least squares linear regression,

f̂−i(Xi) =
f̂(Xi)− hiiYi

1− hii

with hii the ith diagonal coe�cient of the hat (projection) matrix.

Proof. By construction,

f̂−i(Xi) = XΦ

i
⊤
β̂−i = Xi

⊤(XΦ

(n)−i
⊤
XΦ

(n)−i)
−1XΦ

(n)−i
⊤Y(n)−i

Now XΦ

(n)−i
⊤
XΦ

(n)−i = X(n)
Φ⊤XΦ

(n) −XΦ

i Xi
⊤ and XΦ

(n)−i
⊤
Y (n)−i = X(n)

Φ⊤Y(n) −XΦ

i Yi

Using (M + uv⊤)−1 = M−1 − M−1uv⊤M−1

1+u⊤M−1v
with M = Xt

(n)X(n), u = −v = Xi yields:

f̂−i(Xi) = XΦ

i
⊤
(
M−1 +

M−1XΦ

i X
Φ

i
⊤
M−1

1−XΦ

i
⊤
M−1XΦ

i

)(
X(n)

Φ⊤Y(n) −XΦ

i Yi

)

using hii = XΦ

i
⊤
M−1XΦ

i

= f̂(Xi) +
hii

1− hii
f̂(Xi)− hiiYi −

h2
ii

Y i

f̂−i(Xi) =
f̂(Xi)− hiiYi

1− hii

2.2 Weighted Loss and Bayes Estimator

We assume here that the loss ℓ(Y, f(X)) = C(Y )ℓ0/1(Y, f(X)) in a multiclass setting.

Claim 5. The minimizer of E [(Y, f(X))] is given by

f∗(X) = argmax
k

C(k)P (Y = k|X)

Proof. As in the binary ℓ0/1 setting, we can condition with X

EY |X [ℓ(Y, f(X))] =
∑
k

C(k)ℓ0/1(k, f(X))P (Y = k|X)

=
∑

k ̸=f(X)

C(k)P (Y = k|X)

= −C(f(X))P
(
Y = f (⃗(X))|X

)
+
∑

kC(k)P (Y = k|X)

which is minimized by taking f(X) equal to the k with the largest C(k)P (Y = k|X).
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3 Probabilistic Point of View

3.1 Classi�cation Risk Analysis with a Probabilistic Point of View

Claim 6. If f̂ = sign(2p̂+1 − 1) then

E
[
ℓ0,1(Y, f̂(X))

]
− E

[
ℓ0,1(Y, f⋆(X))

]
≤ E

[
∥Ŷ |X − Y |X∥1

]
≤
(
E
[
2KL(Y |X, Ŷ |X

])1/2
Proof. Let us denote p1(X) = P (Y = 1|X).

Step 1: Let f̃(X) = sign(2p̃1(X)− 1)

E
[
ℓ0/1(Y, f̃(X))

]
= EX

[
p1(X)1f̃(X)=−1 + (1− p1(X))1f̃(X)=1

]
= EX

[
(1− p1(X)) + (2p1(X)− 1)1f̃(X)=−1

]
Step 2:

E
[
ℓ0/1(Y, f̃(X))

]
− E

[
ℓ0/1(Y, f̃⋆(X))

]
= EX

[
(2p1(X)− 1)(1f̃(X)=−1 − 1f⋆(X)=−1)

]
using the de�nition of f⋆ = sign(2p(X − 1)

= EX

[
|2p1(X)− 1|1f⋆(X) ̸=f̃(X)

]
and using the fact that f⋆(X) ̸= f̃(X) implies that p̂(X) and p(X) are not on the same side with
respect to 1/2

≤ 2EX [|p1(X)− p̂1(X)|]) = EX [∥p(X)− p̂(X)∥1]

using ∥P −Q∥1 ≤
√
2KL(P,Q) and Jensen

≤ EX

[√
2KL(p(X), p̂(X))

]
≤
(
EX [2KL(p(X), p̂(X))]

)1/2

3.2 Logistic Likelihood and Convexity

Claim 7. The maximum likelihood estimate of the logistic model is given by

b̂eta = argmin
β

1

n

n∑
i=1

log
(
1 + e−Yi(Xi

⊤β)
)

and the minimized function is convex in β.
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Proof.

− 1

n

n∑
i=1

(
1Yi=1 log(h(Xi

⊤β)) + 1Yi=−1 log(1− h(Xi
⊤β))

)
= − 1

n

n∑
i=1

(
1Yi=1 log

eXi
⊤β

1 + eX
⊤
i β

+ 1Yi=−1 log
1

1 + eXi
⊤β

)

= − 1

n

n∑
i=1

(
1Yi=1 log

1

1 + e−X⊤
i β

+ 1Yi=−1 log
1

1 + eXi
⊤β

)

=
1

n

n∑
i=1

log
(
1 + e−Yi(Xi

⊤β)
)

Now let g(β) = log(1 + e−Y (X)⊤β), a brute force computation yields

∇g(β) = Y
e−Y X⊤β

1 + e−Y X⊤β
X

∇2g(β) =
e−Y X⊤β

1 + e−Y X⊤β

1

1 + e−Y X⊤β
XX⊤

and thus ∇2g(β) is sdp which implies the convexity of g and hence of the likelihood of the
logistic.

4 Optimization Point of View

4.1 Classical Convexi�cation

Claim 8. The following three losses

� Logistic loss: ℓ′(Y, f(X)) = log2(1 + e−Y f(X)) (Logistic / NN)

� Hinge loss: ℓ′(Y, f(X)) = (1− Y f(X))+ (SVM)

� Exponential loss: ℓ′(Y, f(X)) = e−Y f(X) (Boosting. . . )

satisfy

ℓ′(Y, f(X)) = l(Y f(X))

with l a decreasing convex function, di�erentiable at 0 and such that l′(0) < 0.
Furthermore ℓ(Y, f(X)) ≥ ℓ0/1(Y, f(X))

Proof. For the logistic loss, l(z) = log2(1 + e−z). So that l is di�erentiable everywhere

l′(z) = − 1

log(2)

e−z

1 + e−z

l′′(z) =
1

log(2)

e−z

(1 + e−z)2
.

Thus l′(z) < 0 and l is decreasing with l′(0) < 0. Now l′′(z) > 0 and thus l is convex.
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For the hinge loss, l(z) = max(0, 1− z). This is a decreasing function, l is di�erentiable at 0
with l′(0) = −1 and l is convex as the maximum of two a�ne (thus convex) functions.

For the exponential loss, l(z) = e−z. So that l is di�erentiable everywhere

l′(z) = −e−z

l′′(z) = e−z.

Thus l′(z) < 0 and l is decreasing with l′(0) < 0. Now l′′(z) > 0 and thus l is convex.

For the three losses, by construction, l(0) = 1 and l(z) ≥ 0 thus ℓ′(Y, f(X)) = l(Y f (⃗(X))) ≥
1 when Y f (⃗(X)) ≤ 0 and ℓ′(Y, f(X)) ≥ 0 otherwise. We obtain thus that ℓ(Y, f(X)) ≥
ℓ0/1(Y, f(X)).

4.2 Classi�cation Risk Analysis with an Optimization Point of View

Claim 9. The minimizer of

E [ℓ′(Y, f(X))] = E [l(Y f(X))]

is the Bayes classi�er f⋆ = sign(2η(X)− 1)
Furthermore it exists a convex function Ψ such that

Ψ
(
E
[
ℓ0/1(Y, sign(f(X))

]
− E

[
ℓ0/1(Y, f⋆(X)

])
≤ E [ℓ′(Y, f(X)]− E [ℓ′(Y, f⋆(X))]

Proof. By de�nition,

E [l(Y f)|X] = η(X)l(f) + (1− η(X))l(−f)

Let H(f, η) = ηl(f) + (1− η)l(−f), the optimal value for f̃ satis�es

δH(f̃ , η) = −ηδl(f̃) + (1− η)δl(−f̃) ∋ 0.

With a slight abuse of notation, we denote by δl(f̃) and δl(−f̃) the two subgradients such
that

ηδl(f̃)− (1− η)δl(−f̃) = 0

Now we discuss the sign of f̃ :

� If f̃ > 0, δl(−f̃) < δl(f̃) and thus η > (1− η), i.e. 2η − 1 > 0.

� Conversely, if f̃ < 0 then 2η − 1 < 0

Thus sign(f̃) = sign(2η − 1) i.e. the minimizer of E [l(yf)|X] is f∗(X) = sign(2η(X)− 1)
We de�neH(η) = inff H(f, η) = inff (ηl(f) + (1− η)l(−f)). By construction, H is a concave

function satisfying H(1/2 + x) = H(1/2− x).
Furthermore, one verify that if we consider the minimimum over the wrong sign classi�ers,

inff,f(2η−1)<0H(f, η) = l(0).
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Indeed,

inf
f,f(2η−1)<0

H(f, η)

= inf
f,f(2η−1)<0

(ηl(f) + (1− η)l(−f))

≥ inf
f,f(2η−1)<0

(η(l(0) + l′(0)f) + (1− η)(l(0)− l′(0)f))

≥ l(0) + inf
f,f(2η−1)<0

l′(0)f(2η − 1) = l(0)

Furthermore,

E [ℓ′(Y, f(X)] = EX [H(f, η(X)]

E [ℓ′(Y, f⋆(X))] = EX [H(η(X)]

We de�ne then

Ψ(θ) = l(0)−H

(
1 + θ

2

)
which is thus a convex function satisfying Ψ(0) = 0 and Ψ(θ) > 0 for θ > 0.

Recall that

E
[
ℓ0/1(Y, sign(f(X)))

]
− E

[
ℓ0/1(Y, f⋆(X))

]
= EX

[
|2η(X)− 1|1f⋆(X) ̸=sign(f(X))

]
Using Jensen inequality, we derive

Ψ
(
E
[
ℓ0/1(Y, sign(f(X)))

]
− E

[
ℓ0/1(Y, f⋆(X))

])
≤ EX

[
Ψ
(
|2η(X)− 1|1f⋆(X) ̸=sign(f(X))

)]
Using Ψ(0) = 0 and the symmetry of H,

Ψ
(
E
[
ℓ0/1(Y, sign(f(X)))

]
− E

[
ℓ0/1(Y, f⋆(X))

])
≤ EX

[(
l(0)−H

((
1 + |2η(X)− 1|

2

)))
1f⋆(X )̸=sign(f(X))

]
≤ EX

[
(l(0)−H(η(X)))1f⋆(X )̸=sign(f(X))

]
≤ EX

[
(l(0)−H(η(X)))1f(X)(2η(X)−1)<0

]
Using the property of the wrong sign classi�ers

Ψ
(
E
[
ℓ0/1(Y, sign(f(X)))

]
− E

[
ℓ0/1(Y, f⋆(X))

])
≤ EX

[
(H(f, η(X))−H(f⋆, η(X)))1f(X)(2η(X)−1)<0

]
≤ EX [(H(f, η(X))−H(f⋆, η(X)))]

≤ E [ℓ′(Y, f(X))]− E [ℓ′(Y, f⋆(X))]
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4.3 SVM, distance and norm of β

Claim 10. The distance between X⊤β + β(0) = 1 and X⊤β + β(0) = −1 is given by

2

∥β∥
.

Proof. For any X ′, the distance between X ′ and the hyperplane X⊤β + γ = 0 is given by

|X ′⊤β − γ|
∥β∥

.

Applying this result to the hyperplane transpXβ+β(0) = 1 and any point in the hyperplane
transpX ′β + β(0) = −1 yields the result.

4.4 SVM and Hinge Loss

Claim 11. The two problems

min
1

2
∥β∥2 + C

n∑
i=1

si with

{
∀i, Yi(Xi

⊤β + β(0)) ≥ 1− si

∀i, si ≥ 0

and

min
1

2
∥β∥2 + C

n∑
i=1

max(0, 1− Yi(Xi
⊤β + β(0)))︸ ︷︷ ︸

Hinge Loss

yeilds the same solution for β.

Proof. We may write

min
β,s

1

2
∥β∥2 + C

n∑
i=1

si with

{
∀i, Yi(Xi

⊤β + β(0)) ≥ 1− si

∀i, si ≥ 0

⇔min
β

min
s

1

2
∥β∥2 + C

n∑
i=1

si with

{
∀i, Yi(Xi

⊤β + β(0)) ≥ 1− si

∀i, si ≥ 0

Now for any β,

min
s

1

2
∥β∥2 + C

n∑
i=1

si with

{
∀i, Yi(Xi

⊤β + β(0)) ≥ 1− si

∀i, si ≥ 0
=

1

2
∥β∥2 + C

n∑
i=1

max(0, 1− Yi(Xi
⊤β + β(0)))

hence the result.

4.5 Constrained Optimization, Lagrangian and Dual

Claim 12.

max
λ∈Rp, µ∈(R+)q

L(x, λ, µ) =

{
f(x) if x is feasible

+∞ otherwise

min
x

max
λ∈Rp, µ∈(R+)q

L(x, λ, µ) = min
x

f(x) with

{
hj(x) = 0, j = 1, . . . p

gi(x) ≤ 0, i = 1, . . . q
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Proof. The second part is a direct consequence of the �rst one.
For the �rst part,

� if x is feasible hi(x) = 0 and gj(x) ≤ 0 thus

L(x, λ, µ) = f(x) +

p∑
j=1

λjhj(x) +

q∑
i=1

µigi(x)

≤ f(x) = L(x, 0, 0)

and thus maxλ∈Rp, µ∈(R+)q L(x, λ, µ) = f(x).

� if x is not feasible either

� ∃i, hi(x) ̸= 0 and thus using λi = κ sign(hi(x)), λi′ = 0 for i′ ̸= i and µ = 0

L(x, λ, µ) = f(x) + κ sign(hi(x))hi(x)

goes to +∞ when κ goes to ∞
� or ∃j, gj(x) > 0 and thus using λ = 0, µj = κ and µj′ = 0 for j′ ̸= j

L(x, λ, µ) = f(x) + κgj(x)

goes to +∞ when κ goes to ∞

which implies maxλ∈Rp, µ∈(R+)q L(x, λ, µ) = +∞.

Claim 13.

Q(λ, µ) ≤ f(x), for all feasible x

max
λ∈Rp, µ∈(R+)q

Q(λ, µ) ≤ min
x feasible

f(x)

Proof. The second part is a direct consequence of the �rst one.
By de�nition,

Q(λ, µ) = min
x

L(x, λ, µ)

≤ min
x feasible

L(x, λ, µ)

≤ min
x feasible

f(x)

where we have used that for x feasible L(x, λ, µ) ≤ f(x).

4.6 Duality, weak, strong and Slater's condition

Claim 14. Weak duality:

q∗ ≤ p∗

max
λ∈Rp, µ∈(R+)q

min
x

L(x, λ, µ) ≤ min
x

max
λ∈Rp, µ∈(R+)q

L(x, λ, µ)

Proof. This is a direct consequence of Claim 13.
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Claim 15. If f is convex, hj a�ne and gi convex then the Slater's condition, it exists a
feasible point such that hj(x) = 0 for all j and gi(x) < 0 for all i is su�cient to imply the strong
duality:

max
λ∈Rp, µ∈(R+)q

min
x

L(x, λ, µ) = min
x

max
λ∈Rp, µ∈(R+)q

L(x, λ, µ)

Proof. The simplest proof can be found in Boyd and Vandenberghe 2004.

4.7 Karush-Kuhn-Tucker Claim

Claim 16. If f is convex, hj a�ne and gi convex, all are di�erentiable and strong duality holds
then x∗ is a solution of the primal problem if and only if the KKT condition

� Stationarity:

∇xL(x∗, λ, µ) = ∇f(x∗) +
∑
j

λj∇h(x∗) +
∑
i

µi∇g(x∗) = 0

� Primal admissibility:

hj(x
∗) = 0 and gi(x

∗) ≤ 0

� Dual admissibility:

µi ≥ 0

� Complementary slackness:

µigi(x
∗) = 0

holds.

Proof. Assume �rst that all the KKT conditions are satis�ed then

f(x∗) = L(x∗, λ, µ)

= min
x

L(x∗, λ, µ)

≤ max
λ,µ

Q(λ, µ) ≤ f(x∗)

and thus f(x∗) = maxλ,µQ(λ, µ) ≤ minx feasible f(x). Thus x∗ is a minimizer of the primal
problem.

Let x∗ is a solution of the primal problem and (λ∗, µ∗) be a solution of the dual. If the strong
duality holds:

f(x∗) = Q(λ∗, µ∗)

= min
x

L(x, λ∗, µ∗) ≤ L(x∗, λ∗, µ∗)

≤ f(x∗)
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where we have used the property that the minimizer of a convex corresponds to a 0 of the
(sub)di�erential. Hence all the inequalities are equalities. In particular, x∗ is a minimizer of
L(x, λ∗, µ∗). We obtain thus the stationarity condition:

∇xL(x∗, λ, µ) = ∇f(x∗) +
∑
j

λj∇hj(x
∗) +

∑
i

µi∇gi(x
∗) = 0

By construction, x∗ is admissible and µ ≥ 0. This implies the admissibility conditions:

hj(x
∗) = 0 and gi(x

∗) ≤ 0

µi ≥ 0.

The complementary slackness condition is obtained by noticing that

L(x∗, λ∗, µ∗) = f(x∗)

which implies ∑
i

µigi(x
∗) = 0

hence the result.

4.8 SVM, KKT and Dual

Claim 17. For the SVM, the KKT conditions are given by

� Stationarity:

∇βL(β, β(0), s, α, µ) = β −
∑
i

αiYiXi = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑
i

αi = 0

∇siL(β, β(0), s, α, µ) = C − αi − µi = 0

� Primal and dual admissibility:

(1− si − Yi(Xi
⊤β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

� Complementary slackness:

αi(1− si − Yi(Xi
⊤β + β(0))) = 0 and µisi = 0

Proof. The Lagrangian of the SVM is given by

L(β, β(0), s, α, µ) =
1

2
∥β∥2 + C

n∑
i=1

si +
∑
i

αi(1− si − Yi(Xi
⊤β + β(0)))−

∑
i

µisi.

We can compute the stationarity condition and obtain immediately:

∇βL(β, β(0), s, α, µ) = β −
∑
i

αiYiXi = 0

∇β(0)L(β, β(0), s, α, µ) = −
∑
i

αi = 0

∇siL(β, β(0), s, α, µ) = C − αi − µi = 0

The remaining conditions are straightforward.
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Claim 18. The SVM problem satisfy Slater's constraints.

Proof. It su�ces to verify that β = 0, β(0) = 0 and s = 2 is a feasible vector for which the
inequalities in the constraints are strict.

Claim 19. The solution of the SVM satisfy

� β∗ =
∑

i αiYiXi and 0 ≤ αi ≤ C.

� If αi ̸= 0, Xi is called a support vector and either

� si = 0 and Yi(Xi
⊤β + β(0)) = 1 (margin hyperplane),

� or αi = C (outliers).

� β(0)∗ = Yi −Xi
⊤β∗ for any support vector with 0 < αi < C.

Proof. As the SVM satis�es the Slater's constraints. The optimal β∗, β(0)∗, s of the primal
problem and the optimal α and µ of the dual satsify the KKT optimality condition.

The formula for β∗ is thus a direct consequence of ∇βL(β, β(0), s, α, µ) = 0.
If we use ∇siL(β∗, β(0)∗, s, α, µ) = 0, we have αi = C − µi which leads to 0 ≤ αi ≤ C as

αi ≥ 0 and µi ≥ 0 by the dual admissibility condition.
By the complementary slackness condition, αi ̸= 0 implies Yi(Xi

⊤β∗ + β(0)∗) = 1− si thus

� either si = 0 and Yi(Xi
⊤β∗ + β(0)∗) = 1,

� or si ̸= 0 which implies ci = 0 and thus αi = C (outliers).

For any support vector with 0 < αi < C, Xi
⊤β∗ + β(0)∗ = Yi hence β(0)∗ = Yi −Xi

⊤β∗.

Claim 20. The dual of the SVM

Q(α, µ) = min
β,β(0),s

L(β, β(0), s, α, µ)

is given by

� if
∑

i αiYi ̸= 0 or ∃i, αi + µi ̸= C,

Q(α, µ) = −∞

� if
∑

i αiYi = 0 and ∀i, αi + µi = C,

Q(α, µ) =
∑
i

αi −
1

2

∑
i,j

αiαjYiYjXi
⊤Xj

Proof. The dual of the SVM is de�ned as

Q(α, µ) = min
β,β(0),s

L(β, β(0), s, α, µ)

= min
β,β(0),s

1

2
∥β∥2 + C

n∑
i=1

si +
∑
i

αi(1− si − Yi(Xi
⊤β + β(0)))−

∑
i

µisi

= min
β,β(0),s

1

2
∥β∥2 −

∑
i

αiYiXi
⊤β −

∑
i

αiYiβ
(0) +

∑
i

(C − αi − µi)si +
∑
i

αi

12



We obtain immediately that this minimum is equal to −∞ as soon as
∑

i αiYi ̸= 0 or C −
αi − µi ̸= 0.

Assume now that
∑

i αiYi = 0 and C − αi − µi = 0, we obtain

Q(α, µ) = min
β,β(0),s

1

2
∥β∥2 −

∑
i

αiYiXi
⊤β +

∑
i

αi

= min
β

1

2
∥β∥2 −

∑
i

αiYiXi
⊤β +

∑
i

αi

The optimal β can be obtained by setting to 0 the derivative:

β −
∑
i

αiYiXi
⊤ = 0

Plugging this value in the formula yields immediately

Q(α, µ) = −1

2

∑
i,j

αiαjYiYjXi
⊤Xj +

∑
i

αi

4.9 Mercer Representation Claim

Claim 21. For any loss ℓ and any increasing function Φ, the minimizer in β of

n∑
i=1

ℓ(Yi, Xi
⊤β + β(0)) + Φ(∥β∥2)

is a linear combination of the input points β∗ =

n∑
i=1

α′
iXi.

Proof. Assume β is a minimizer of

n∑
i=1

ℓ(Yi, Xi
⊤β + β(0)) + Φ(∥β∥2)

and let βX be the orthogonal projection of β on the �nite dimensional space spanned by the Xi.
By construction β − βX is orthogonal to all the Xi and thus

Xi
⊤β + β(0) = Xi

⊤(βX + β − βX) + β(0)

= Xi
⊤βX + β(0)

and thus

n∑
i=1

ℓ(Yi, Xi
⊤β + β(0)) + Φ(∥β∥2) =

n∑
i=1

ℓ(Yi, Xi
⊤βX + β(0)) + Φ(∥β∥2)

≥
n∑

i=1

ℓ(Yi, Xi
⊤βX + β(0)) + Φ(∥βX∥2)

13



where the inequality holds because ∥β∥2 = ∥βX∥2 + ∥β − βX∥2. The minimum is thus reached
by a β in the space spanned by the Xi, i.e.

β =

n∑
i=1

αiXi.

4.10 Mercer Kernel Claim

Claim 22. For any PDS kernel k : X × X → R, it exists a Hilbert space H ⊂ RX with a scalar
product ⟨·, ·⟩H such that

� it exists a mapping ϕ : X → H satisfying

k(X,X ′) = ⟨ϕ(X), ϕ(X)⟩H

� the reproducing property holds, i.e. for any h ∈ H and any X ∈ X

h(X) = ⟨h, k(X, ·)⟩H .

Proof. For any x, we de�ne Φ(X) = k(X, ·), Φ(X) is thus a function from X → R. Now denote
H the set of �nite linear combination of ϕ(X). We can de�ne a scalar product between the
function by:

⟨Φ(X),Φ(Y )⟩H = k(X,Y ).

Indeed because k is a PDS kernel, all the properties of a scalar product are satis�ed. Now let
f ∈ H, by de�nition f =

∑n
i=1 αik(Xi, ·) and thus

f(X) =

n∑
i=1

αik(Xi, X)

n∑
i=1

αi ⟨k(Xi, ·), k(X, ·)⟩H

=

〈
n∑

i=1

αik(Xi, ·), k(X, ·)

〉
H

= ⟨f, k(X, ·)⟩H .

H is not a Hilbert space but only a pre-Hilbert space. It has to be completed by the Cauchy
sequence process to obtain an Hilbert space H satisfying all the required properties.

4.11 Kernel Construction Machinery

Claim 23. For any function Ψ : X → R, k(X,X ′) = Ψ(X)Ψ(X ′) is PDS.

Proof. k is symmetric by construction. Now for any N , and any Xi and ui∑
i,j

uiujk(Xi, Xj) =
∑
i,j

uiujϕ(Xi)ϕ(Xj)

= (
∑
i

uiϕ(Xi))
2 ≥ 0.

14



Claim 24. For any PDS kernels k1 and k2, and any λ ≥ 0 k1+λk2 and λk1k2 are PDS kernels.

Proof. The symmetry is a direct consequence of the symmetry of k1 and k2.
Now for any N , and any Xi and ui, we have∑

i,j

uiuj(k1 + λk2)(Xi, Xj) =
∑
i,j

uiuj

(
k1(Xi, Xj) + λk2(Xi, Xj)

)
=
∑
i,j

uiujk1(Xi, Xj) + λ
∑
i,j

uiujk2(Xi, Xj) ≥ 0

as a sum of two non negative term.
Now for the product∑

i,j

uiuj(λk1k2)(Xi, Xj) = λ
∑
i,j

uiujk1(Xi, Xj)k2(Xi, Xj)

As k1 is a PDS the matrix K1 = (k1(Xi, Xj)) is sdp and thus can be expressed as a product
K1 = MM t so that k1(Xi, Xj) =

∑
k Mi,kMk,j . We can plug this expression in the previous

sum

= λ
∑
i,j

uiuj

∑
k

Mi,kMk,jk2(Xi, Xj)

= λ
∑
k

∑
i,j

uiMi,kujMk,jk2(Xi, Xj) ≥ 0

as each term in the sum in k is non negative.

Claim 25. For any sequence of PDS kernels kn converging pointwise to a kernel k, k is a PDS
kernel.

Proof. The symmetry is preserved by the pointwise convergence as well as the positivity.

Claim 26. For any PDS kernel k such that |k| ≤ r and any power series
∑

n anz
n with an ≥ 0

and a convergence radius larger than r,
∑
n

ank
n is a PDS kernel.

Proof. This a direct consequence of the previous claim.

Claim 27. For any PDS kernel k, the renormalized kernel k′(X,X ′) =
k(X,X ′)√

k(X,X)k(X ′, X ′)
is

a PDS kernel.

Proof. As before, the symmetry is not an issue. For the positivity,∑
i,j

uiujk
′(Xi, Xj) =

∑
i,j

uiuj

k(Xi, Xj)√
k(Xi, Xi)k(Xj , Xj)∑

i,j

ui√
k(Xi, Xi)

uj√
k(Xj , Xj)

k(Xi, Xj) ≥ 0

15



4.12 Mercer Representation Claim

Claim 28. Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R, the optimization problem

argmin
h∈H

L(h(X1), . . . , h(Xn)) + Φ(∥h∥)

admits only solutions of the form

n∑
i=1

α′
ik(Xi, ·).

Proof. The proof is similar to the one for the non kernel setting. Assume h is a minimizer of

argmin
h∈H

L(h(X1), . . . , h(Xn)) + Φ(∥h∥).

Let hX be the orthogonal projection of h on the �nite dimensional space spanned by the k(Xi, ·).
By construction, h− hX is orthogonal to all the k(Xi, ·) and thus

h(Xi) = ⟨h, k(Xi, ·)⟩ =
〈
hX + h− hX , k(Xi, ·)

〉
=
〈
hX , k(Xi, ·)

〉
= hX(Xi).

This implies that

L(h(X1), . . . , h(Xn)) + Φ(∥β∥2) = L(h(X1), . . . , hX(Xn)) + Φ(∥β∥2)
≥ L(h(X1), . . . , hX(Xn)) + Φ(∥βX∥2)

where the inequality holds because ∥h∥2 = ∥hX∥2 + ∥h − hX∥2. The minimum is thus reached
by a h in the space spanned by the k(Xi, ·), i.e.

β =

n∑
i=1

αik(Xi, ·).

4.13 SVM and VC dimension

See Mohri, Rostamizadeh, and Talwalkar 2012 as the VC dimension will only be de�ned later.

5 Optimization

Most of the results can be found in Bubeck 2015.

5.1 Linear Predictor, Gradient and Hessian

Claim 29. � Gradient:

∇F (w) =
1

n

n∑
i=1

ℓ′(Yi, ⟨Xi,w⟩)Xi

with ℓ′(y, f) =
∂ℓ(y, f)

∂f
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� Hessian matrix:

∇2F (w) =
1

n

n∑
i=1

ℓ′′(Yi, ⟨Xi,w⟩)XiXi
⊤

with ℓ′′(y, f) =
∂2ℓ(y, f)

∂f2

5.2 Exhaustive Search

Claim 30. � If G is C-Lipschitz, evaluating G on a grid of precision ϵ/(
√
dC) is su�cient

to �nd a ϵ-minimizer of G.

� Required number of evaluation: Nϵ = O
(
(C

√
d/ϵ)d

)
5.3 L Smoothness

Claim 31. If G is twice di�erentiable, G is L-smooth if and only if for all x ∈ Rd,

λmax(∇2G(x)) ≤ L.

Proof. Fix x, y ∈ Rd and c > 0. Let g(t) = ∇G(x+ tcy). Thus, g′(t) = [∇2G(x+ tcy)](cy). By
the mean value theorem, there exists some constant tc ∈ [0, 1] such that

∇G(x+ cy)−∇G(x) = g(1)− g(0) = g′(tc) = [∇2G(x+ tccy)](cy). (1)

First implication

Taking the norm of both sides of (1) and applying the smoothness condition, we obtain

∥[∇2G(x+ tccy)]y∥ ≤ L∥y∥.

By taking c → 0 and using the fact that tc ∈ [0, 1] and G ∈ C2, we have

∥[∇2G(x)]y∥ ≤ L∥y∥.

Then, λmax(∇2G(x)) ≤ L.
Second implication

Taking the norm of both sides of (1), we have

∥∇G(x+ cy)−∇G(x)∥2 = ∥[∇2G(x+ tccy)](cy)∥2.

Note that, for any real-valued symmetric matrix A and any vector u,

∥Au∥22 = uTATAu = ⟨ATAu, u⟩ ≤ λmax(A)2∥u∥2

Thus,

∥∇G(x+ cy)−∇G(x)∥2 ≤ λmax([∇2G(x+ tccy)])∥(cy)∥2 ≤ L∥cy∥2.

Claim 32. F is L-smooth in the linear regression and the logistic regression cases.
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5.4 Convergence of GD

Claim 33. Let G : Rd → R be a L-smooth convex function. Let w⋆ be the minimum of f on
Rd. Then, Gradient Descent with step size α ≤ 1/L satis�es

G(w[k])−G(w⋆) ≤ ∥w[0] −w⋆∥22
2αk

.

Proof. This is a consequence of Lemma 7.

Claim 34. In particular, for α = 1/L,

Nϵ = O(L∥w[0] −w⋆∥22/(2ϵ))

iterations are su�cient to get an ϵ-approximation of the minimal value of G.

Proof. In order to have an ϵ-minimizer, it su�ces that
∥w[0]−w⋆∥2

2

2αk ≤ ϵ, i.e. k ≥ ∥w[0]−w⋆∥2
2

2αϵ which
yields the result.

Claim 35. If G is convex and L-smooth, then for any w,w′ ∈ Rd

G(w) ≤ G(w′) +∇G(w′)
⊤
(w −w′) +

L

2
∥w −w′∥22 .

Proof. Using the fact that

G(w′) = G(w) +

∫ 1

0

(∇G(w + t(w′ −w)))
⊤
(w′ −w)dt

= G(w) +∇G(w)
⊤
(w′ −w)

+

∫ 1

0

(∇G(w + t(w′ −w))−∇G(w))
⊤
(w′ −w)dt,

so that

|G(w′)−G(w)− (∇G(w))
⊤
(w′ −w)|

≤
∫ 1

0

|(∇G(w + t(w′ −w))−∇G(w))
⊤
(w′ −w)dt|

≤
∫ 1

0

∥∇G(w + t(w′ −w))−∇G(w)∥ ∥w′ −w∥ dt

≤
∫ 1

0

Lt ∥w′ −w∥2 dt = L

2
∥w′ −w∥2 .

Claim 36. Let G : Rd → R be a L-smooth, µ strongly convex function. Let w⋆ be the minimum
of G on Rd. Then, Gradient Descent with step size α ≤ 1/L satis�es

G(w[k])−G(w⋆) ≤ 1

2α

(
1− αµ

)k
∥G(w[0])−G(w⋆)∥22.

Proof. This is a consequenc of Lemma 10.
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Claim 37. Let G : Rd → R be a convex function, C-Lipschitz in B(w⋆, R) where w⋆ be the
minimizer of f on Rd. Assume that

α[k] > 0, α[k] → 0,
∑
k

α[k] = +∞

and
∥∥w[0] −w⋆

∥∥ ≤ R Then, Subgradient Descent with step size α[k] satis�es

min
k

G(w[k])−G(w⋆) ≤ C
R2 +

∑k
k′=0(α

[k′])2

2
∑k

k′=0 α
[k′]

Proof. This is a consequence of Lemma 14

5.5 Proximal Descent

Claim 38. � R(w) = 1Ω(w): proxγ R(w′) = PΩ(w
′)

� R(w) = 1
2∥w∥22: proxγ R(w′) = 1

1+γw.

� R(w) = ∥w∥1: proxγ R(w′) = Tγ(w
′) with Tγ(w)i = sign(wi)max(0, |wi| − γ) (soft

thresholding).

Proof. If R(w) = 1Ω(w), then

proxγ R(w′) = argmin
w

1

2γ
∥w −w′∥2 +R(w′)

= arg min
w∈Ω

1

2γ
∥w −w′∥2

= PΩ(w
′)

.
If R(w) = 1

2∥w∥2 then

proxγ R(w′) = argmin
w

1

2γ
∥w −w′∥2 +R(w′)

= argmin
1

2γ
∥w −w′∥2 + 1

2
∥w∥2

The function minimzed is smooth (and strongly convex) and its gradient is given by

1

γ
(w −w′) +w

which is equal to 0 i� w = 1
1+γw

′, hence the result.

If R(w) = ∥w∥1 then

1

2γ
∥w −w′∥2 +R(w) =

d∑
i

(
1

2γ
(wi −w′

i)
2 + |wi|

)
.
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We can analyse thus each coordinate independently. Let f(x) = 1
2γ (x− x′)2 + |x|, this function

is strongly convex and its subgradient is given by

δf (x) =


1
γ (x− x′)− 1 if x < 0

[ 1γ (−x′)− 1, 1
γ (−x′) + 1] if x = 0

1
γ (x− x′) + 1 if x > 0

One verify easily that

� if x′ < −γ then 0 ∈ δf (x) for x = x′ + γ

� if x′ > γ then 0 ∈ δf (x) for x = x′ − γ

� if −γ ≤ x′ ≤ γ then 0 ∈ δf (0)

and thus

proxγ | · ∥(x′) =


x′ + γ if x′ < −γ

0 if −γ ≤ x ≤ γ

x′ − γ if x′ > γ

or equivalently

proxγ | · ∥(x′) = sign(x′)max(0, |x′| − γ)

Claim 39. � F L-smooth and R simple:

G(w[k])−G(w⋆) ≤ ∥w[0] −w⋆∥22
2αk

.

and Nϵ = O(L∥w[0] −w⋆∥22/2ϵ).

� F L-smooth and µ-convex and R simple:

G(w[k])−G(w⋆) ≤ 1

2α

(
1− αµ

)k
∥G(w[0])−G(w⋆)∥22.

and Nϵ = O(− log ϵ/(αµ)).

� F C-Lipschitz and R is the characteristic function of a convex set:

min k′ ≤ kG(w[k′])−G(w⋆) ≤ C
R2 + r2 log(k + 1)

4r
√
k + 1

and Nϵ = O
(
(C(− log ϵ)/ϵ)2

)
.

Proof. Those are consequences of Lemma 4, Lemma 9 and Lemma 14.
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5.6 Coordinate Descent

Claim 40. If G is continuously di�erentiable and strictly convex, then exact coordinate descent
converges to a minimum.

Claim 41. Assume that G is convex and smooth and that each Gi is Li-smooth.
Consider a sequence {w[k]} given by CGD with α[k] = 1/Lik and coordinates i1, i2, . . . chosen

at random: i.i.d and uniform distribution in {1, . . . , d}. Then

E
[
G(w[k+1])−G(w∗)

]
≤ d

d+ k

((
1− 1

d

)
(G(w[0])−G(w∗)) +

1

2

∥∥∥w[0] −w∗
∥∥∥2
L

)
,

with ∥w∥2L =
∑d

j=1 Ljw
2
j .

5.7 Gradient Descent Acceleration

Claim 42. Assume that G is a L-smooth, convex function whose minimum is reached at w⋆.
Then, if β[k] = (k − 1)/(k + 2),

G(w[k])−G(w⋆) ≤ 2∥w[0] −w⋆∥22
α(k + 1)2

.

Proof. See Lemma 13

Claim 43.

Assume that G is a L-smooth, µ strongly convex function whose minimum is reached at w⋆.

Then, if β[k] =
1−

√
µ/L

1+
√

µ/L
,

G(w[k])−G(w⋆) ≤ ∥w[0] −w⋆∥22
α

(
1−

√
µ

L

)k
.

Proof. The proof combines ideas of Lemma 9 and Lemma 13. It is left as an exercise or can be
found in Beck 2017.

Claim 44. � For any w[0] ∈ Rd and any k satisfying 1 ≤ k ≤ (d − 1)/2, there exists a
L-smooth convex function f such that for any general �rst order method

G(w[k])−G(w⋆) ≥ 3L∥w[0] −w⋆∥22
32(k + 1)2

.

� For any w[0] ∈ Rd and any k ≤ (d − 1)/2, there exists a L-smooth, µ strongly convex
function f such that for any general �rst order method

G(w[k])−G(w⋆) ≥ µ

2

(1−√µ/L

1 +
√

µ/L

)2k
∥w[0] −w⋆∥22.

Proof. The proof is quite technical and can be found in Nesterov 2018.
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5.8 Stochastic Gradient Descent

Claim 45. � With α[k] = 2R/(b
√
k)

E

G(1
k

k∑
j=1

w[j]
)−G(w⋆) ≤ 3rb√

k

� If G is µ-strictly convex then with α[k] = 2/(µ(k + 1)),

E

G( 2

k(k + 1)

k∑
j=1

jw[j]
)−G(w⋆) ≤ 2b2

µ(k + 1)
.

Proof. Those are consequences of Lemma 17.

5.9 Lemma and more

Here we let G = F +R with R simple.
The proximal gradient descent algorithm is given by

w[k+1] = proxα[k],R

(
w[k] − α[k]δF (w

[k])
)

where δF (w
[k]) is a subgradient of F at w[k]. If F is di�erentiable then δF (w

[k]) = ∇F (w[k]).

Lemma 1. For any di�erentiable function F and w, if we let

w+ = proxα,R(w − α∇F (w))

then as soon as α satisfy

F (w+) ≤ F (w) +
〈
∇F (w),w+ −w

〉
+

1

2α
∥w+ −w∥2

then for any z

G(z)−G(w+) ≥ 1

2α
∥z −w+∥2 − 1

2α
∥z −w∥2 + F (z)− F (w)− ⟨∇F (w), z −w⟩

.

Proof. We introduce the function

ϕ(x) = F (w) + ⟨∇F (w), x−w⟩+R(x) +
1

2α
∥x−w∥2

By construction,

ϕ(x) = R(x) +
1

2α
∥x−w − αF (w)∥2 + F (w)− α∥∇F (w)∥2

and thus w+ = proxα,R(w − α∇F (w)) is the minimizer of the 1/α strictly convex function ϕ.
This implies that for any z,

ϕ(z)− ϕ(w+) ≥ 1

2α
∥z −w+∥2
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Now

ϕ(w+) = F (w) +
〈
∇F (w),w+ −w

〉
+R(w+) +

1

2α
∥w+ −w∥2

and thus using the assumption on α

ϕ(w+) ≥ F (w+) +R(w+) = G(w+)

while

ϕ(z) = F (w) + ⟨∇F (w), z −w⟩+R(z) +
1

2α
∥z −w∥2

adding and substracting F (z) yields

ϕ(z) = G(z) +
1

2α
∥z −w∥2 + F (w)− F (z) + ⟨∇F (w), z −w⟩

and thus

G(z) +
1

2α
∥z −w∥2 + F (w)− F (z) + ⟨∇F (w), z −w⟩ −G(w+) ≥ 1

2α
∥z −w+∥2

which is equivalent to the inequality in the lemma.

Lemma 2. For any convex function F and w, if we let

w+ = proxα,R(w − α∇F (w))

then as soon as α satisfy

F (w+) ≤ F (w) +
〈
∇F (w),w+ −w

〉
+

1

2α
∥w+ −w∥2

then for any z

G(z)−G(w+) ≥ 1

2α
∥z −w+∥2 − 1

2α
(1− αµ)∥z −w∥2

where µ > 0 if F is µ strongly convex and µ = 0 otherwise. Furthermore αµ ≤ 1.

Proof. This is an immediate consequence of the previous lemma as

F (z)− F (w)− ⟨∇F (w), z −w⟩ ≥ µ

2
∥z −w∥2

which yields the bounds.
Furthermore, as

F (w+) ≥ F (w) +
〈
∇F (w),w+ −w

〉
+

µ

2
∥w+ −w∥2

we deduce µ ≤ 1
α and thus αµ ≤ 1.
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Lemma 3. If F is convex and we use the Gradient Descent algorithm with α[k] such that

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

then

G(w[k+1])−G(w[k]) ≤ − 1

2α[k]
∥w[k+1] −w[k]∥2

G(w[k+1])−G(w∗) ≤ 1

2α[k]
(1− α[k]µ)∥w[k] −w∗∥2 − 1

2α[k]
∥w[k+1] −w∗∥2

where µ > 0 if F is µ strongly convex and µ = 0 otherwise. Furthermore α[k]µ ≤ 1.

Proof. As

w[k+1] = proxα,R(w
[k] − α∇F (w[k]))

we can apply the previous lemma with z = w[k] and z = w∗ as soon as

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

.
This leads to

G(w[k])−G(wk+1) ≥ 1

2α[k]
∥w[k+1] −w[k]∥2

and

G(w∗)−G(w[k+1]) ≥ 1

2α[k]
∥w[k+1] −w∗∥2 − 1

2α[k]
(1− α[k]µ)∥w[k] −w∗∥2

Lemma 4. If F is L-smooth and we use the Gradient Descent algorithm with α[k] satisfying

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

then

G(w[k])−G(w∗) ≤ ∥w[0] −w∗∥2

2k
(

1
k

∑k−1
k′=0 α

[k′]
)

Proof. Lemma 3 yields

G(w[k+1])−G(w[k]) ≤ − 1

2α[k]
∥w[k+1] −w[k]∥2

G(w[k+1])−G(w∗) ≤ 1

2α[k]
∥w[k] −w∗∥2 − 1

2α[k]
∥w[k+1] −w∗∥2

The �rst inequality implies that the G(w[k]) are decreasing. For the second one, we multiply
�rst the inequality by α[k] and sum them over k

k−1∑
k′=0

α[k]
(
G(w[k′+1])−G(w∗)

)
≤ 1

2
∥w[0] −w∗∥2 − 1

2
∥w[k] −w∗∥2
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and thus as G(w[k]) are decreasing

k−1∑
k′=0

αkG(w[k])−G(w∗) ≤ 1

2
∥w[0] −w∗∥2

which implies

G(w[k])−G(w∗) ≤ 1

2k
(

1
k

∑k−1
k′=0 α

[k]
)∥w[0] −w∗∥2

Lemma 5. if F is L smooth then if α[k] ≤ 1
L then

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

Proof. if F is L-smooth then

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

L

2
∥w[k+1] −w[k]∥2

and thus

≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

Lemma 6. In the backtracking algorithm, at each step

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2,

and

1

k

k−1∑
k′=0

α[k′] ≥ β

L
and

1

2α[k]

k∏
k′=0

(1− α[k]µ) ≤ L

2β
(1− βµ

L
)k+1

Proof. First point is satis�ed by construction as α[k] is equal to βlα0 where l is the smallest
integer such that βlα0 satis�es

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2βlα0
∥w[k+1] −w[k]∥2,

Note that such a l exists as the condition is satis�ed for any l such that βlα0 ≤ 1/L. In
particular, one always has that α > β/L. Furthermore, as α[k]µ ≤ 1 and Lµ ≤ 1, we obtain
0 ≤ 1− α[k]µ ≤ 1− βµ/L this implies immediately

1

k

k−1∑
k′=0

α[k′] ≥ β

L
and

1

2α[k]

k∏
k′=0

(1− α[k]µ) ≤ L

2β
(1− βµ

L
)k+1
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Lemma 7. If F is L-smooth and we use the Gradient Descent algorithm with α[k] = α ≤ 1/L
then

G(w[k])−G(w∗) ≤ ∥w[0] −w∗∥2

2αk

Proof. We combine Lemma 4 and Lemma 5 to obtain

G(w[k])−G(w∗) ≤ ∥w[0] −w∗∥2

2k
(

1
k

∑k−1
k′=0 α

)
≤ ∥w[0] −w∗∥2

2kα

Lemma 8. If F is L-smooth and we use the Gradient Descent algorithm with α[k] obtained by
backtracking then

G(w[k])−G(w∗) ≤ ∥w[0] −w∗∥2

2k
(

1
k

∑k−1
k′=0 α

[k′]
)

with 1
k

∑k−1
k′=0 α

[k′] ≥ β/L.

Proof. This is the result of Lemma 4 and Lemma 6.

Lemma 9. If F is L-smooth and µ strictly convex, and we use the Gradient Descent algorithm
with α[k] satisfying

F (w[k+1]) ≤ F (w[k]) +
〈
∇F (w[k]),w[k+1] −w[k]

〉
+

1

2α[k]
∥w[k+1] −w[k]∥2

then

G(w[k+1])−G(w∗) ≤ 1

2α[k]

k∏
k′=0

(1− α[k]µ)∥w[0] −w∗∥2.

Proof. Acccording to Lemma 3, we have

G(w[k+1])−G(w[k]) ≤ − 1

2α[k]
∥w[k+1] −w[k]∥2

G(w[k+1])−G(w∗) ≤ 1

2α[k]
(1− α[k]µ)∥w[k] −w∗∥2 − 1

2α[k]
∥w[k+1] −w∗∥2

The second inequality implies immediately

∥w[k+1] −w∗∥2 ≤ (1− α[k]µ)∥w[k] −w∗∥2

so that

∥w[k+1] −w∗∥2 ≤
k∏

k′=0

(1− α[k]µ)∥w[0] −w∗∥2.
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Plugging this bound in the same inequality we have used yields

G(w[k+1])−G(w∗) ≤ 1

2α[k]
(1− α[k]µ)∥w[k] −w∗∥2

≤ 1

2α[k]

k∏
k′=0

(1− α[k]µ)∥w[0] −w∗∥2.

Lemma 10. If F is L-smooth and µ stricly convex and we use the Gradient Descent algorithm
with with α[k] obtained by backtracking then

G(w[k+1])−G(w∗) ≤ 1

2α[k]

k∏
k′=0

(1− α[k]µ)∥w[0] −w∗∥2.

with

1

2α[k]

k∏
k′=0

(1− α[k]µ) ≤ L

2β
(1− βµ

L
)k+1

Proof. This is a direct consequence of Lemma 6 and Lemma 9.

Lemma 11. If F is L-smooth and µ stricly convex and we use the Gradient Descent algorithm
with α[k] = α ≤ 1/L then

G(w[k+1])−G(w∗) ≤ 1

2α

k∏
k′=0

(1− αµ)∥w[0] −w∗∥2.

Proof. This is a direct consequence of Lemma 5 and Lemma 9.

Lemma 12. If F is convex and we use the Accelerated Gradient Descent algorithm with α[k]

decreasing such that

F (w[k+1]) ≤ F (w[k+1/2]) +
〈
∇F (w[k+1/2]),w[k+1] −w[k+1/2]

〉
+

1

2α[k]
∥w[k+1] −w[k+1/2]∥2

then provided β[k] = (t[k−1]−1)/t[k] with t[k] satisfying t[0] = 1, t[k] ≥ 1 and (t[k+1])2− t[k+1] ≤
(t[k])2 then

G(w[k+1])−G(w∗) ≤ 1

2(t[k])2α[k]
∥w[0] −w∗∥2.

Proof. As

w[k+1] = proxα,R(w
[k+1/2] − α∇F (w[k+1/2]))

with

w[k+1/2] = w[k] + β[k](w[k] −w[k−1])

we can apply Lemma 2 with w = w[k+1/2] and w+ = w[k+1]. As soon as α[k] is such that

F (w[k+1]) ≤ F (w[k+1/2]) +
〈
∇F (w[k+1/2]),w[k+1] −w[k+1/2]

〉
+

1

2α[k]
∥w[k+1] −w[k+1/2]∥2
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we have

G(z)−G(w[k+1]) ≥ 1

2α[k]
∥z −w[k+1]∥2 − 1

2α[k]
∥z −w[k+1/2]∥2

Using z = θ[k]w∗ + (1− θ[k])w[k] yields

G(θ[k]w∗ + (1− θ[k])w[k])−G(w[k+1]) ≥ 1

2α[k]
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2

− 1

2α[k]
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1/2]∥2

By convexity of G,

G(θ[k]w∗ + (1− θ[k])w[k])−G(w[k+1]) ≤ θ[k]G(w∗) + (1− θ[k])G(w[k])−G(w[k+1])

≤ (1− θ[k])
(
G(w[k])−G(w∗)

)
−
(
G(w[k+1])−G(w∗)

)
Now

∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1/2]∥2 = ∥θ[k]w∗ + (1− θ[k])w[k] −w[k] − β[k]
(
wk −wk−1

)
∥2

= ∥θ[k]w∗ + β[k]w[k−1] − (β[k] + θ[k])wk∥2

=

(
θ[k]

θ[k−1]

)2 ∥∥∥∥θ[k−1]w∗ +
θ[k−1]

θ[k]
β[k]w[k−1] − θ[k−1]

θ[k]

(
β[k] + θ[k]

)
w[k]

∥∥∥∥2

if we let θ[k] = β[k] θ[k−1]

1−θ[k−1] , we obtain provided 0 ≤ θ[k] ≤ 1

=

(
θ[k]

θ[k−1]

)2

∥θ[k−1]w∗ + (1− θ[k−1])w[k−1] −w[k]∥2

Combining the two previous bounds yields

(1− θ[k])α[k]
(
G(w[k])−G(w∗)

)
− α[k]

(
G(w[k+1])−G(w∗)

)
≥ 1

2
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2 − 1

2

(
θ[k]

θ[k−1]

)2

∥θ[k−1]w∗ + (1− θ[k−1])w[k−1] −w[k]∥2

and equivalently

1

(θ[k])2

(
α[k]

(
G(w[k+1])−G(w∗)

)
+

1

2
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2

)
≤ 1

(θ[k−1])2

(
(θ[k−1])2(1− θ[k])

(θ[k])2
α[k]

(
G(w[k])−G(w∗)

)
+

1

2
∥θ[k−1]w∗ + (1− θ[k−1])w[k−1] −w[k]∥2

)
≤ 1

(θ[k−1])2

(
α[k−1]

(
G(w[k])−G(w∗)

)
+

1

2
∥θ[k−1]w∗ + (1− θ[k−1])w[k−1] −w[k]∥2

)
provided

(θ[k−1])2(1− θ[k])

(θ[k])2
α[k] ≤ α[k−1].
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If this holds, one has

1

(θ[k])2

(
α[k]

(
G(w[k+1])−G(w∗)

)
+

1

2
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2

)
≤ 1

(θ[0])2

(
α[0]

(
G(w[1])−G(w∗)

)
+

1

2
∥θ[0]w∗ + (1− θ[0])w[0] −w[1]∥2

)
Using the result obtained with Lemma 2 at k = 0 and using w[1/2] = w[0], we obtain

1

(θ[k])2

(
α[k]

(
G(w[k+1])−G(w∗)

)
+

1

2
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2

)
≤ 1

(θ[0])2

(
1

2
∥w[0] −w∗∥ − 1

2
∥w[1] −w∗∥2 + 1

2
∥θ[0]w∗ + (1− θ[0])w[0] −w[1]∥2

)
and thus if we assume that θ[0] = 1

1

(θ[k])2

(
α[k]

(
G(w[k+1])−G(w∗)

)
+

1

2
∥θ[k]w∗ + (1− θ[k])w[k] −w[k+1]∥2

)
≤ 1

2
∥w[0] −w∗∥2

We deduce thus the following bound

G(w[k+1])−G(w∗) ≤ (θ[k])2

2α[k]
∥w[0] −w∗∥2

De�ning everything in term of t[k] = 1/θ[k] yields

β[k] =
θ[k](1− θ[k−1])

θ[k−1]

=
t[k−1] − 1

t[k]

we have obtained

G(w[k+1])−G(w∗) ≤ 1

2(t[k])2α[k]
∥w[0] −w∗∥2

provided t[0] = 1,

t[k] ≥ 1

and (
(t[k])2 − t[k]

)
α[k] ≤ α[k−1](t[k−1])2.

As we assume that the α[k] are decreasing, it is enough to verify that

(t[k])2 − t[k] ≤ (t[k−1])2
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Lemma 13. If F is convex, L-smooth and we use the Accelerated Gradient Descent algorithm
with either α[k] ≤ 1/L or α[k] obtain by the decreasing backtracking algorithm then for β[k] =
(t[k−1] − 1)/t[k] de�ned with either Nesterov choice of t[k] or t[k] = k+k0

k0
with k0 ≥ 2 then then

G(w[k+1])−G(w∗) ≤ k0
2(k + k0)2γL)2

∥w[0] −w∗∥2.

with γ = 1 for the constant step size and k0 = 2 for Nesterov's choice.

Proof. The bound

(t[k])2 − t[k] ≤ (t[k−1])2

is equivalent to

t[k] ≤ 1 +
√
1 + 4(t[k−1])2

2

Nesterov parameters is obtained by optimizing this later bound and de�ning t[k] =
1+

√
1+4(t[k−1])2

2

starting from t[0] = 1. Note that if t[k] ≥ (k + 2)/2 then

t[k+1] =
1 +

√
1 + 4t[k]

2

≥
1 +

√
1 + (k + 2)2

2

≥ 1 + k + 2

2
=

(k + 1) + 2

2

and thus this property is satis�ed for any k.
One verify easily that the choice t[k] = k+k0

k0
is suitable as t[0] = 1 and

(t[k+1])2 − t[k+1] − (t[k])2 =

(
k + 1 + k0

k0

)2

− k + 1 + k0
k0

−
(
k + k0
k0

)2

=
1

k20

(
(k + 1 + k0)

2 − k0(k + 1 + k0)− (k + k20)
)

=
1

k20
(2(k + k0) + 1− k0(k + 1 + k0))

=
1

k20
((2− k0)k + 1− k0(1 + k0)) ≤ 0

as soon as k0 ≥ 2. It leads to

β[k] =
t[k−1] − 1

t[k]
=

k−1+k0

k0
− 1

k+k0

k0

=
k − 1

k + k0

Lemma 14. If F is convex such that the sub gradient δF can be bounded, ∥δF ∥2 ≤ B2, ∥w[k] −
w∗∥ ≤ r2 then

min
0≤k′≤k−1

F (w[k′])− F (w∗) ≤
r2 +

∑k−1
k′=0(α

[k′])2B2

2
∑k−1

k′=0 α
[k′]

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

r2 +
∑k−1

k=0(α
[k′])2B2

2kmin1≤k′≤k α[k′]
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Proof. As R is the characteristic function of a convex set C and thus the proximal operator is a
projection, one verify immediately that provided that w[k] ∈ C,

∥w[k+1] −w∗∥2 ≤ ∥w[k] − α[k]δF (w
[k])−w∗∥2

≤ ∥w[k] −w∗∥2 − 2α[k]
〈
δF (w

[k]),w[k] −w∗
〉
+ (α[k])2∥δF (w[k])∥2

≤ ∥w[k] −w∗∥2 + 2α[k]
(
F (w∗)− F (w[k])

)
+ (α[k])2∥δF (w[k])∥2

this implies

α[k]
(
F (w[k])− F (w∗)

)
≤ 1

2

(
∥w[k] −w∗∥2 − ∥w[k+1] −w∗∥2

)
+

(α[k])2

2
∥δF (w[k])∥2.

Summing those bounds along k yields

k−1∑
k′=0

α[k′]
(
F (w[k′])− F (w∗)

)
≤ 1

2
∥w[0] −w∗∥2 +

k−1∑
k=0

(α[k′])2

2
∥δF (w[k′])∥2.

We deduce thus that

k−1∑
k′=0

α[k′]

(
min

0≤k′≤k−1
F (w[k′])− F (w∗)

)
≤ 1

2
∥w[0] −w∗∥2 +

k−1∑
k′=0

(α[k′])2

2
∥δF (w[k′])∥2

that is

min
0≤k′≤k−1

F (w[k′])− F (w∗) ≤
∥w[0] −w∗∥2 +

∑k−1
k′=0(α

[k′])2∥δF (w[k′])∥2

2
∑k−1

k=0 α
[k′]

Along the same line, we have simultaneously

min
1≤k′≤k

α[k′]
k∑

k′=1

(
F (w[k′])− F (w∗)

)
≤ 1

2
∥w[1] −w∗∥2 +

k−1∑
k′=0

(α[k′])2

2
∥δF (w[k′])∥2

and thus

1

k

k∑
k′=1

(
F (w[k′])− F (w∗)

)
≤

∥w[0] −w∗∥2 +
∑k−1

k′=0(α
[k′])2∥δF (w[k′])∥2

2kmin1≤k′≤k α[k′]

and thus using the convexity of F

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

∥w[0] −w∗∥2 +
∑k−1

k′=0(α
[k′])2∥δF (w[k′])∥2

2kmin1≤k′≤k α[k′]

If we assume that ∥w[k] −w∗∥2 ≤ r2 and ∥δF (w[k′])∥2 ≤ B2 then this yields

min
0≤k′≤k−1

F (w[k′])− F (w∗) ≤
r2 +

∑k−1
k′=0(α

[k′])2B2

2
∑k−1

k′=0 α
[k′]

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

r2 +
∑k−1

k=0(α
[k′])2B2

2kmin1≤k′≤k α[k′]
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Lemma 15. If F is convex such that the sub gradient δF can be bounded, ∥δF ∥2 ≤ B2, ∥w[k] −
w∗∥ ≤ r2 then for α[k] = α0/

√
k with α0 = r/(

√
2B), we have

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

√
2rB

k

and

min
k′≤k

F (w[k′])− F (w∗) ≤
√
2rB

k

Proof. We start from the �rst bound obtain in the proof of the previous lemma

α[k]
(
F (w[k])− F (w∗)

)
≤ 1

2

(
∥w[k] −w∗∥2 − ∥w[k+1] −w∗∥2

)
+

(α[k])2

2
∥δF (w[k])∥2

or rather

F (w[k])− F (w∗) ≤ 1

2α[k]

(
∥w[k] −w∗∥2 − ∥w[k+1] −w∗∥2

)
+

α[k]

2
∥δF (w[k])∥2

We are going to use that the α[k] are decreasing we have

k∑
k′=1

(
F (w[k′])− F (w∗)

)
≤

k∑
k′=1

(
1

2α[k′]

(
∥w[k′] −w∗∥2 − ∥w[k′+1] −w∗∥2

)
+

α[k′]

2
∥δF (w[k′])∥2

)

≤ ∥w[1] −w∗∥2

2α[1]
+

k−1∑
k′=2

(
1

α[k′]
− 1

α[k′−1]

)
∥w[k′] −w∗∥2 +

k∑
k′=1

α[k′]

2
∥δF (w[k′])∥2

≤ ∥w[1] −w∗∥2

2α[1]
+

k−1∑
k′=2

(
1

2α[k′]
− 1

2α[k′−1]

)
∥w[k′] −w∗∥2 +

k∑
k′=1

α[k′]

2
∥δF (w[k′])∥2

If we assume that ∥w[k] −w∗∥2 ≤ r2 and ∥δF (w[k′])∥2 ≤ B2 then this yields

min
0≤k′≤k−1

F (w[k′])− F (w∗) ≤
r2 +

∑k−1
k′=0(α

[k′])2B2

2
∑k−1

k′=0 α
[k′]

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

r2 +
∑k−1

k=0(α
[k′])2B2

2kmin1≤k′≤k α[k′]

and if the α[k] are decreasing

min
0≤k′≤k−1

F (w[k′])− F (w∗) ≤
r2

α[1] +
∑k

k′=1 α
[k′]B2

2k

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

r2

α[1] +
∑k

k′=1 α
[k′]B2

2k

Plugging α[k] = α0/
√
k and using

∑k
k′=1

1√
k′ ≤ 2

√
k and

∑k
k′=1 1/k

′ ≤ ln(k) + 1 yields

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤ r2

2α0

√
k
+

α0√
k
B2
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Optimizing in α0 yields α0 = r/(
√
2B) and

F

(
1

k

k∑
k′=1

w[k′]

)
− F (w∗) ≤

√
2rB

k

Lemma 16. If F is µ strongly convex and ∥∇F∥2 ≤ B2 then for α[k] = α0

k with α0 ≥ 2
µ

F

(
1

k(k + 1)

k∑
k′=1

k′w[k′]

)
− F (w∗) ≤ α0B

2

2(k + 1)

and

min
k′≤k

F (w[k′])− F (w∗) ≤ α0B
2

2(k + 1)

Proof. Using the strong convexity of F

∥w[k+1] −w∗∥2 ≤ ∥w[k] − α[k]∇F (w[k])−w∗∥2

≤ ∥w[k] −w∗∥2 − 2α[k]
〈
∇F (w[k]),w[k] −w∗

〉
+ (α[k])2∥δF (w[k])∥2

≤ ∥w[k] −w∗∥2 ++2α[k]
(
F (w∗)− F (w[k])

)
− α[k]µ∥w[k] −w∗∥2 + (α[k])2∥δF (w[k])∥2

which implies

F (w[k])− F (w∗) ≤ 1

2α[k]

(
(1− α[k]µ)∥w[k] −w∗∥2 − ∥w[k+1] −w∗∥2

)
+

α[k]

2
∥∇F∥2

We can now sum those inequalities

k∑
k′=1

k′
(
F (w[k′])− F (w∗)

)
≤

k∑
k′=1

k′

2α[k′]

(
(1− α[k′]µ)∥w[k′] −w∗∥2 − ∥w[k′+1] −w∗∥2

)
+

k∑
k′=1

k′α[k′]

2
∥∇F∥2

≤ 1− α[1]µ

2α[1]
∥w[1] −w∗∥2 +

k∑
k′=2

(
k′(1− α[k′]µ)

2α[k′]
− k′ − 1

2α[k′−1]

)
∥w[k′] −w∗∥2

+

k∑
k′=1

k′α[k′]

2
∥∇F∥2

One verify easily that for α[k] = α0/k this yields

≤ 1− α0µ

2α0
∥w[1] −w∗∥2 +

k∑
k′=2

(2− α0µ)k − 1

2α0
∥w[k′] −w∗∥2 + α0

2

k∑
k′=1

∥∇F∥2
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so that for any α0 ≥ 2
µ

≤ 1− α0µ

2α0
∥w[1] −w∗∥2 + α0

2

k∑
k′=1

∥∇F∥2

≤ α0

2

k∑
k′=1

∥∇F∥2

≤ kα0B
2

2

By convexity of F

F

(
1

k(k + 1)

k∑
k′=1

k′w[k′]

)
− F (w∗) ≤ 1

k(k + 1)

∑
k′ = 1

k
k′
(
F (w[k′])− F (w∗)

)
≤ α0B

2

2(k + 1)

Note that using

min
k′≤k

F (wk) ≤ 1

k(k + 1)

k∑
k′=1

k′F (w[k′])

leads to

min
k′≤k

F (w[k′])− F (w∗) ≤ α0B
2

2(k + 1)

Lemma 17. Assume we have access to δ̂F (w) which verify E
[
δ̂F (w)

]
= δF (w) where δF (w) is

a subgradient of F at w and E
[
∥δ̂F (w)∥2|w

]
≤ B.

� if F is convex and ∥w[k] −w∗∥ ≤ r2 then for α[k] = α0/
√
k with α0 = r/(

√
2B), we have

E

[
F

(
1

k

k∑
k′=1

w[k′]

)]
− F (w∗) ≤

√
2rB

k

� if F is µ strongly convex then for α[k] = α0

k with α0 ≥ 2
µ

E

[
F

(
1

k(k + 1)

k∑
k′=1

k′w[k′]

)]
− F (w∗) ≤ α0B

2

2(k + 1)
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Proof. In this stochastic setting, we have, if we let µ = 0 if F is not strongly convex:

E
[
∥w[k+1] −w∗∥2|w[k]

]
≤ E

[
∥w[k] − α[k]δ̂F (w

[k])−w∗∥2|w[k]
]

≤ E
[
∥w[k] −w∗∥2|w[k]

]
− 2α[k]E

[〈
δ̂F (w

[k]),w[k] −w∗
〉
|w[k]

]
+ (α[k])2E

[
∥δF (w[k])∥2|w[k]

]
≤ ∥w[k] −w∗∥2 − 2α[k]

〈
δF (w

[k]),w[k] −w∗
〉
+ (α[k])2B2

≤ (1− α[k]µ)∥w[k] −w∗∥2 − 2α[k]
(
F (w[k])− F (w∗)

)
+ (α[k])2B2

which implies

F (w[k])− F (w∗) ≤ 1

2α[k]

(
(1− α[k]µ)∥w[k] −w∗∥2 − E

[
∥w[k+1] −w∗∥2|w[k]

])
+

α[k]

2
B2

and thus

E
[
F (w[k])

]
− F (w∗) ≤ 1

2α[k]

(
(1− α[k]µ)E

[
∥w[k] −w∗∥2

]
− E

[
∥w[k+1] −w∗∥2

])
+

α[k]

2
B2

We can now repeat the proof of the previous lemmas to obtain the results.
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