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Machine Learnlng Introduction

Traditional modeling:

5 Data
Handcrafted Gelifplis m

model

Machine Learning:
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@
Data c t
Expected SO
Result
New

Computer m

A definition by Tom Mitchell

(http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T , as measured by P, improves with
experience E.

Source: azavea


http://www.cs.cmu.edu/~tom/

News Clustering

= Google News Q
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Sarah Huckabee Sanders rips CNN, media at heated brifing
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A news clustering algorithm:

Introduction
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@ Task: group article corresponding to the same news

@ Performance: quality of the clusters

o Experience: set of articles

Source: theverge.com



Ob_]ect ReCOgnltlon Introduction X

How would you design a predictor that labels all the parts
g| using the tools we have seen so far?

- = handle bar

right wheel

A detection/recognition algorithm:

@ Task: say if an object is present or not in the image
e Performance: number of errors

@ Experience: set of previously seen labeled images

Source: Unknown



A RObOt that Leal’ns Introduction

A robot endowed with a set of sensors and an online learning
algorithm:

e Task: play football
@ Performance: score evolution

o Experience:

e current environment and outcome,
@ past games

Source: Rutgers Prep School



Three Kinds of Leqrwningﬁ |

@ Task:
Clustering/DR

@ Performance:
Quality

@ Experience:

Raw dataset
(No Ground Truth)

Supervised
Learning Learning

Machine
Learning

Reinforcement’
Learning

Unsupervised Learning Supervised Learning Reinforcement Learning

@ Task:
Prediction

@ Performance:
Average error

@ Experience:

Predictions
(Ground Truth)

Introduction X

@ Task:
Action

@ Performance:
Total reward

@ Experience:
Reward from env.
(Interact. with env.)

v

o o
@ Timing: Offline/Batch (learning from past data) vs Online (continuous

learning)

@ Implicit stationarity assumption: Tomorrow is the same as yesterday!

Source: A. Wahid



Supervised and Unsupervised Introduction
x
X%

% %

Supervised Learning (Imitation)

@ Goal: Learn a function f predicting a variable Y from an
individual X.

e Data: Learning set with labeled examples (X;, Yi)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!

Unsupervised Learning (Structure Discovery)

@ Goal: Discover a structure within a set of individuals (X).

e Data: Learning set with unlabeled examples (X;)

@ Unsupervised learning is not a well-posed setting....

Source: KDnuggets



Machine Learning

@ Huge catalog of methods,

@ Need to define the performance,

o Feature design...

Introduction

scikit-learn
algorithm cheat-sheet

dimensionality
reduction

Source: scikit-learn.org



ML Pipeline

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

Test Set

PREDICTING l

Feature

Engineering Predict Target

New data

Learning pipeline

@ Test and compare models.

Introduction

S m

@ Deployment pipeline is different!

Source: CDiscount



DS # ML

Complication
Sorry
TRY AGAIN

Doyou

INDERSTAND: Datals
.uy\l CLEAN

QUESTION ALMOST

is clear DONE

but try again

dustering

Main DS difficulties

@ Figuring out the problem,

@ Accessing the data,
@ Not the ML part!

Source: Ch. Bourguignat
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Number Introduction
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Reading a ZIP code on an envelop

@ Task: give a number from an image.
e Data: X = image / Y = corresponding number.

@ Performance measure: error rate.

Source: Y. LeCun



Bio

Predicting protein interaction

Introduction

Task: Predict (unknown) interactions between proteins.

Data: X = pair of proteins / Y = existence or no of
interaction.

Performance measure: error rate.

Numerous similar questions in bio(informatics): genomic,...

Source: Unknown



DeteCtlon Introduction

Face detection

New Algorithms tor Complex Data
New Mexico, USA , 2015

Task: Detect the position of faces in an image
Different setting?
Reformulation as a supervised learning problem.

Goal: Detect the presence of faces at several positions and
scales.

Data: X = sub image / Y = presence or no of a face...
Performance measure: error rate.
Lots of detections in an image: post processing required...

Performance measure: box precision.

Source: A. Fermin



Eucalyptus

Introduction

Height estimation

@ Simple (and classical) dataset.

@ Task: predict the height from circumference.
e Data: X = circumference /

e Y = height.

e Performance measure: means squared error.
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E uca |ypt us Introduction

e Simple (and classical) dataset.

@ Goal: predict the height from circumference
@ X = circ = circumference.

e Y = ht = height.



Eucalyptus

Linear Model
@ Parametric model:
fz(circ) = B + g@circ

Introduction

@ How to choose 8 = (1), 3(2))?



LeaSt Sq uares Introduction

Methodology

° Natural goodness criterion:

Z |Y; — f3(X Z lht; — fz(circ; )|2

i=1

= Z ’ht,' = (,8(1) aF 5(2)circ;)i2
i=1
@ Choice of ,8 that minimizes this criterion!

= argmin Z |hi — ) + B(z)circ,-)]2
BER? i—1

@ Easy minimization with an explicit solution!



Prediction

Prediction

@ Linear prediction for the height:
ht = fg(circ) =30 4 g@circ

Introduction




HeU rIStIC Introduction

Linear Regression

@ Statistical model: (circ;, ht;) i.i.d. with the same law
than a generic (circ,ht).
e Performance criterion: Look for f with a small average
error
E Uht - f(circ)ﬂ
e Empirical criterion: Replace the unknown law by its
empirical counterpart
1 n
- Z |nt; — f(circ;)|?
n 4
i=1
e Predictor model: As the minimum over all function is 0 (if
all the circ; are different), restrict to the linear functions
f(circ) = B + BPcirc to avoid over-fitting.
e Model fitting: Explicit formula here.
@ This model can be too simple!



Polynomial Regression Introduction X

ht

Polynomial Model

@ Polynomial model: f3(circ) = 30, fcirc/?

@ Linear in (!

@ Easy least squares estimation for any degree!



WhICh Degree? Introduction

@ Increasing degree = increasing complexity and better fit on
the data
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WhICh Degree? Introduction

@ Increasing degree = increasing complexity and better fit on
the data




WhICh Degree? Introduction

@ Increasing degree = increasing complexity and better fit on
the data




WhICh Degree? Introduction

Best Degree?
@ How to choose among those solution?




Over_flttlng ISSUG Introduction X

Underfit

(High bias) Generalization

error

Overfit
(High
variance)

Error

Training error

Model complexity

Error behavior

@ Empirical risk (error made on the training set) decays when
the complexity of the model increases.

@ Quite different behavior when the error is computed on new
observations (true risk / generalization error).

@ Overfit for complex models: parameters learned are too
specific to the learning set!

@ General situation! (Think of polynomial fit...)

@ Need to use an other criterion than the training error!



Cross Validation and Penalization Introduction

@ How to estimate the generalization error in a different way?

e Find a way to correct the empirical error?

’

Two Approaches

@ Cross validation: Estimate the error on a different dataset:

o Very efficient (and almost always used in practice!)
e Need more data for the error computation.

@ Penalization approach: Correct the optimism of the
empirical error:

o Require to find the correction (penalty).




Univariate Regression Itroducion X

@ How to build a model?
@ How to fit a model to the data?

@ How to assess its quality?

@ How to select a model among a collection?
o

How to guaranty the quality of the selected model?




Outline

a Supervised Learning



SUperVISed Learnlng Supervised Learning X

Supervised Learning Framework

@ Input measurement X € X

@ Output measurement Y € ).

o (X,Y) ~ P with P unknown.

e Training data : D, = {(Xy, Y1),...,(X,,, Ya)} (i.id. ~P)

e Often
o X€RYand Y € {-1,1} (classification)
o or X € R? and Y € R (regression).

e A predictor is a function in F = {f : X — ) meas.}

o Construct a good predictor f from the training data. \

@ Need to specify the meaning of good.

@ Classification and regression are almost the same problem!



Supervised Learning X

Loss and Probabilistic Framework

Loss function for a generic predictor
@ Loss function: /(Y, (X)) measures the goodness of the

prediction of Y by f(X)

@ Examples:
e Prediction loss: g(Y, f(&)) = lYif(K)
(X)) =Y —f(X)]?

o Quadratic loss: £(
Risk function
@ Risk measured as the average loss for a new couple:

R(f) = Ex,v)~r [€(Y, f(X))]

@ Examples:
o Prediction loss: E [(Y, f(X))] =P (Y # f(X))
e Quadratic loss: E[(Y,f(X))] =E [|Y — f(X)|?]

e Beware: As f depends on D,,, R(f) is a random variable!

N,




BeSt SOlUtIOﬂ Supervised Learning X

@ The best solution f* (which is independent of D,) is
f* =arg min R(f) = arg ;‘%I]r:I_E [(Y,f(X))] =arg %'JT_‘_EK [Eym [y, f(&))]}

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1|X)
A(X) = S P(Y =+11X)>1/2
—1 otherwise

e In regression with the quadratic loss
(X)) =E[Y|X]

Issue: Solution requires to know E [Y|X] for all values of X! |




Goal Supervised Learning X

Machine Learning

@ Learn a rule to construct a predictor f € F from the training

o~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss

~ 12
f =f-=argmin— > (Y fo(X;
5 fejgee@n;( (X))

@ Examples:
e Linear regression
e Linear discrimination with

S={xrsign{x" 8+ 9} /8R! O e R}



EXa m ple TWOC | ass Dataset Supervised Learning X

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and
K. Johnson, Springer

@ Numerical experiments with R and the caret package.

° %
o° e,

< _ w @ ®  classes

2 [ 2 - L

g Py ® Clas2

52\ ®
;;‘ e
eeff e ® 8
WA Xooh



Example: Linear Discrimination

Supervised Learning 4

Decision region

Decision boundary
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Example: More Complex Model

Supervised Learning 4

Decision region

Decision boundary
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E uca |ypt us Supervised Learning X
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Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?



Euca |ythS Supervised Learning

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?
e by a line?



E uca |ypt us Supervised Learning X

s
cire

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?
e by a line? by a more complex formula?



E uca |ypt us Supervised Learning X

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference, block, clone / Y: height

@ Can we predict the height from the circumference?

e by a line? by a more complex formula?
e by also taking account of the block and the clone type?



U nder_flttlng / Over_flttlng |SSU€ Supervised Learning X

ho(x) = g(Bo + brzy + Oaz2) g(0y + 0121 + Oazo g(fo + 01y + 92'f
( g = sigmoid function) +0323 + 0423 +03aiTs + 4zl
+05x129)
OVERFITTING

UNDERFITTING
(high variance)

(high bias)

Model Complexity Dilemna

+O052%3 + Ogaias + . ..

@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

Source: A. Ng



Under-fitting / Over-fitting Issue

Supervised Learning X

Prediction Error

High Bias
Low Variance

Underfitting

Good models Overfitting

Low Bias
High Variance
.

Test error
Training error

Low

Complexity of the model

Under-fitting / Over-fitting

High

@ Under-fitting: simple model are too simple.

o Over-fitting: complex model are too specific to the training
set.

Source: Unknown



BIaS—VarlanCG Dllemma Supervised Learning X
o General setting:

F = {measurable functions X — Y}

Best solution: f* = argmins.» R(f)

Class S C F of functions

Ideal target in S: & = argmin,cgs R(f)

®
m
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o
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0]
el
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Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£5) — R(F*) + R(Fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.
@ Estimation error can be large if the model is complex.

Agnostic approach

@ No assumption (so far) on the law of (X, Y).




U nder_flttlng / Over_flttlng |SSU€ Supervised Learning X

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Model complexity
o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (bias) may be large (Under-fit).

@ High complexity model may contain a good ideal target but
the estimation error (variance) can be large (Over-fit)

Bias-variance trade-off <= avoid overfitting and underfittingJ

e Rk: Better to think in term of method (including feature
engineering and specific algorithm) rather than only of model.

Source: Unknown



Theoretlcal AnalySIS Supervised Learning X

Statistical Learning Analysis

@ Error decomposition:
R(fs) = R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

@ Bound on the approximation term: approximation theory.

@ Probabilistic bound on the estimation term: probability
theory!

@ Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)

@ Often need mild assumptions on P... (Nonparametric
Statistics?)



Binary Classification Loss Issue Supervised Learning X

Empirical Risk Minimizer

~ 1<
f = argmin = Zfo/l(yia f(X5))
fes n il

o Classification loss: £°/1(y, f(x)) = 1,200

@ Not convex and not smooth!



Probabilistic Point of View Supervised Learing X
|deal Solution and Estimation

@ The best solution f* (which is independent of D,) is
f*=arg fmeljg_ R(f) = arg mlnE [(Y,f(X))] =arg m|n Ex {IEHX [e(Y, f(x ))]]

Bayes Predictor (explicit solution)

In binary classification with 0 — 1 loss:
1 if P(Y=41X)>P(Y=-1|X
g = [T RO =FUX) 2 B(Y = -11)
—1 otherwise

@ Issue: Solution requires to know E [Y|X] for all values of X!

Source: A. Fermin

@ Solution: Replace it by an estimate.




Optlmlzation POIHt Of VleW Supervised Learning X
Loss Convexification 7

35 - (yf0<0) 4
- T

3 1

25 B

2 1

15 B

Minimizer of the risk

. 1
f = argmin — ZZO/I(Y,-, f(X;))
fes n i=1

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.




Probabilistic and Optimization Framework  supenised Learning

How to find a good function f with a small risk
R(f) =E[(Y,f(X))] ?

~

Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))

Problems

@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting...




Outline

9 A Probabilistic Point of View
@ Generative Modeling
@ Parametric Conditional Density Modeling
@ Non Parametric Conditional Density Modeling



BeSt SOl Uthﬂ A Probabilistic Point X

of View

@ The best solution f* (which is independent of D) is
f* = argmin R(f) = arg minE [(( Y, f(X))] = arg min Ex By [(0Y, F(X)]|
€

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+41|X)>P(Y =-1|X)
(X)) = S P(Y =+1|X)>1/2
—1 otherwise

o In regression with the quadratic loss
F(X) =E[Y[X]

Issue: Explicit solution requires to know Y |X (or E [Y|X]) for all
values of X!




P I Ugl n P red iCtOI’ A Probabilistic Point X

of View

e ldea: Estimate Y|X by V|X and plug it the Bayes classifier.

Plugin Bayes Predictor

@ In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1|X)
7(x) = o P(Y = +1X) > 1/2

—1 otherwise

@ In regression with the quadratic loss
f(X)=E [Y|X]

@ Rk: Direct estimation of E [Y|X] by m also possible...



P I Ugl n P red iCtOI’ A Probabilistic Point

of View

@ How to estimate Y|X?

Three main heuristics

o Fully Generative modeling: Estimate the law of (X, Y) and
use the Bayes formula to deduce an estimate of Y|X:
LDA/QDA, Naive Bayes...

e Parametric Conditional modeling: Estimate the law of Y|X
by a parametric law Lo(X): (generalized) linear regression...

@ Non Parametric Conditional modeling: Estimate the law
of Y|X by a non parametric estimate: kernel methods, loess,
nearest neighbors...

V.

@ Rk: Direct estimation of E [Y|X] by m also possible...



PIUgI n CIaSSifler A Probabilistic Point

of View

o Input: a data set D,
Learn Y|X or equivalently P (Y = k|X) (using the data set)
and plug this estimate in the Bayes classifier

e Output: a classifier f : RY — {—1,1}
- fP(Y = 1|1X)>P(Y = —
F(X) = +1 ifP(Y=1X)>P(Y 1|1X)
—1 otherwise

e Can we guaranty that the classifier is good if Y|X is well
estimated?



Classification Risk Analysis A Probabilstic Point

of View

o If f = sign(2p41 — 1) then
B[4, F(X))] — E [23(Y, F(X))]

<E || YIX = YIX|h]

< (E [2KL(Y|X, @Dm

o If one estimates P (Y = 1|X) well then one estimates * well!

@ Link between a conditional density estimation task and a
classification one!

@ Rk: In general, the conditional density estimation task is more
complicated as one should be good for all values of
P (Y = 1|X) while the classification task focus on values
around 1/2 for the 0/1 loss!

@ In regression, (often) direct control of the quadratic loss...



Outline

9 A Probabilistic Point of View
@ Generative Modeling

A Probabilistic Point
of View



FU”y Generatlve MOdellng A Probabilistic Point X

of View L

o lIdea: If one knows the law of (X, Y') everything is easy!

Bayes formula

e With a slight abuse of notation,
P (vix - 2L
_PXY)P(Y)
TP J

o Generative Modeling:

Propose a model for (X, Y') (or equivalently X|Y and Y),
Estimate it as a density estimation problem,

Plug the estimate in the Bayes formula

Plug the conditional estimate in the Bayes classifier.

e Rk: Require to estimate (X, Y) rather than only Y|X!

@ Great flexibility in the model design but may lead to complex
computation.



FU”y Generatlve MOdellng A Probabilistic Point X

of View

@ Simpler setting in classification!

Bayes formula

Binary Bayes classifier (the best solution)
1 ifP(Y=1X)>P(Y=-1|X
F(X) = {+ P (Y =11X) 2 P(Y = ~1X)

—1 otherwise
Heuristic: Estimate those quantities and plug the estimations.

By using different models/estimators for P (X|Y), we get
different classifiers.

@ Rk: No need to renormalize by P (X) to take the decision!



DISCI’Imlnant AnalySIS A Probabilistic Point

of View

Discriminant Analysis (Gaussian model)

@ The densities are modeled as multivariate normal, i.e.,

P (K| Y = k) ~ Nﬂlmzk
@ Discriminant functions:
gk(X) = In(P (XY = k)) + In(P (Y = k))

1 _

gr(X) =—5(X - ) T E (X = k)
1
- g In(27) — 5 In(|2k]) + In(P (Y = k))

o QDA (different X in each class) and LDA (X4 = X for all k)

V.

o Beware: this model can be false but the methodology
remains valid!



DISCI’Imlnant AnalySIS A Probabilistic Point

of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space
into some decision regions R1, Ro

@ The regions are separated by decision boundaries

Source: A. Fermin



DISCI’Imlnant AnalySIS A Probabilistic Point

of View

Quadratic Discriminant Analysis

@ The probability densities are Gaussian

@ The effect of any decision rule is to divide the feature space
into some decision regions R1,R2, ..., R

@ The regions are separated by decision boundaries

Source: A. Fermin



DISCI’Imlnant AnalySIS A Probabilistic Point

of View

In practice, we will need to estimate px, Xk and Py :=P (Y = k)

The estimate proportion P (V?k) =% =1%w liyi—iy

Maximum likelihood estimate of 7ix and ¥y (explicit formulas)

DA classifier

fo(X) =

2 +1 if g11(X) > g-1(X)
—1 otherwise
Decision boundaries: quadratic = degree 2 polynomials.

If one imposes ¥ _1 = X1 = X then the decision boundaries is
a linear hyperplane.



Discriminant Analysis

Linear Discriminant Analysis
oY, =X,=X

@ The decision boundaries are linear hyperplanes

A Probabilistic Point
of View

Source: A. Fermin



DISCI’Imlnant AnalySIS A Probabilistic Point

of View

Quadratic Discriminant Analysis

@ X, #X.
@ Arbitrary Gaussian distributions lead to Bayes decision
boundaries that are general quadratics.




Example: LDA

L]
A Probabilistic Point X
of View oS

Linear Discrimant Analysis
Decision region

Decision boundary
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Example: QDA

L]
A Probabilistic Point X
of View oS

Quadratic Discrimant Analysis
Decision region

Decision boundary
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N a |Ve BayeS A Probabilistic Point

of View

o Classical algorithm using a crude modeling for P (X|Y):
e Feature independence assumption'

HP( “I)
e Simple featurewise model: blnomlal if binary, multinomial if

finite and Gaussian if continuous

o If all features are continuous, similar to the previous Gaussian
but with a diagonal covariance matrix!

@ Very simple learning even in very high dimension!




Example: Naive Bayes

A Probabilistic Point

of View
Naive Bayes with Gaussian model
Decision region Decision boundary
L]
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Naive Bayes with density estimation A Probabilstic Point

of View
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Source: A. Fermin



Example: Naive Bayes

A Probabilistic Point

Naive Bayes with kernel density estimates

Decision region
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Othel’ MOdGlS A Probabilistic Point X

of View

@ Other models of the world!

Bayesian Approach

@ Generative Model plus prior on the parameters

@ Inference thanks to the Bayes formula

Graphical Models
@ Markov type models on Graphs

Gaussian Processes
@ Multivariate Gaussian models




Outline

9 A Probabilistic Point of View

@ Parametric Conditional Density Modeling

A Probabilistic Point
of View



Parametric Conditional Density Models 4 probabiisic point

of View

o ldea: Estimate directly Y|X by a parametric conditional
density Py (Y|X).

Maximum Likelihood Approach

@ Classical choice for 6:
n
0 = argmin— Y log Py (V;|X))
9 i=1
@ Goal: Minimize the Kullback-Leibler divergence between the
conditional law of Y|X and Py (Y|X)
E [KL(Y|X, Py (Y]X))]

@ Rk: This is often not (exactly) the learning task!
@ Large choice for the family {Py (Y|X)} but depends on Y
(and X).

@ Regression: One can also model directly E [Y|X] by f5(X)
and estimate it with a least square criterion...



Linear Conditional Density Models A provaic pore

of View

Linear Models

@ Classical choice: 0 = (¢', )
Py (Y|X) =Pxr5,,(Y)
e Very strong assumption!

o Classical examples:

Binary variable: logistic, probit...

Discrete variable: multinomial logistic regression...
Integer variable: Poisson regression...

Continuous variable: Gaussian regression...



Binary Classifier A Probabilistic Point

of View

Plugin Linear Discrimination
o Model P (Y = +1|X) by h(x" 5+ ©) with h non decreasing.
o hx B+ >1/2 xT8+ 50 —h1(1/2) >0
o Linear Classifier: sign(x' 8+ 5 — h=1(1/2))

Plugin Linear Classifier Estimation

@ Classical choice for h:t
h(t) = ﬁ logit or logistic
h(t) = Far(t) probit
h(t)=1—e* log-log
@ Choice of the best 3 from the data.




|\/|aximum leellhOOd Estimate A Probabilistic Point

of View

Probabilistic Model

@ By construction, Y|X follows B(P (Y = +1|X))
e Approximation of Y|X by B(h(x' 5 + 3©))

@ Natural probabilistic choice for 5: [ minimizing the distance
between B(h(x'3)) and B(P (Y = 1|X)).

@ Natural distance: Kullback-Leibler divergence

KL(B(P (Y = 11X)), B(h(x" 8))

= Ex [KL(B(B (Y = 1|X)), B(h(x"8))]
P(Y = 1|X)
h(xT5)

+(1-P(Y =1|X))log Lo

_Ex [IP’(Y — 11X) log




|\/|aximum leellhOOd Estimate A Probabilistic Point

of View

log-likelihood

o KL:
KL(B(P (Y = 1|X)), B(h(x' 5))
B B P(Y =1|X)
= Ex {P(Y—HX)'OE;W
1-P(Y = 1]X)]

I =P (Y = 11X))log ——} "7

= Ex {_P(Y =1|X) Iog(h(KTﬁ))

—(1=P (Y =1]X))log(1 — h(x" B))] + Cx,v
° Empirical counterpart = opposite of the log-likelihood:

_fz(ly 1log(h(X;TB)) + 1y,—_1 log(1 — h(X; 5)))

° I\/I|n|m|zat|on of possible if h is regular...




LOgiStiC Regression A Probabilistic Point

of View

Logistic Regression and Odd

@ Logistic model: h(t) = ﬁtet (most natural choice...)

@ The Bernoulli law B(h(t)) satisfies then
P(Y =1) . P(Y =1)
[ S——— log——— =1t
P(Y = 1) e’ < log

P(Y =-1)
@ Interpretation in term of odd.

@ Logistic model: linear model on the logarithm of the odd.

v

Associated Classifier

@ Plugin strategy:

-

Ho =" e
—1 otherwise

>1/2eX'>0

N




Logistic Regression and Minimization A Probabilstic Point

of View

Likelihood Rewriting

° Opposite of the log-likelihood:
- Z (1v-1108(h(X,T8)) + Ly log(1 — h(X; 7))

"B 1
:_Z<1Y 1lo g Xrﬁ +lY,-—1|0gl+exirﬁ>

= ; log (1 + e—v,-(zﬁﬁ))

@ Convex and smooth function of

o Easy optimization.




Example: Logistic

A Probabilistic Point

of View
Logistic
Decision region Decision boundary
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Featu re Design A Probabilistic Point ><

of View

Transformed Representation

e From X to ¢(X)!
@ New description of X leads to a different linear model:
fa(X) = &(X)' 8

Feature Design

@ Art of choosing .

o Examples:
e Renormalization, (domain specific) transform
e Basis decomposition
o Interaction between different variables...

N\




Example: Quadratic Logistic

A Probabilistic Point

of View
Quadratic Logistic
Decision region Decision boundary
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Gaussian Linear Regression A provaic pore

of View

Gaussian Linear Model
e Model: Y|X ~ N(x'3,02) plus independence

@ Probably the most classical model of all time!

@ Maximum Likelihood with explicit formulas for the two
parameters.

@ In regression, estimation of E [Y'|X] is sufficient: other/no
model for the noise possible.



Extension of Gaussian Linear Regression 4 probabiisic point

Generalized Linear Model

of View

Model entirely characterized by its mean (up to a scalar
nuisance parameter) (v(Eq [Y]) = 0 with v invertible).

Exponential family: Probability law family Py such that the
density can be written
,V9 V(9)+W( )
fy,0,¢) = "
where ¢ is a nuisance parameter and w a function
independent of 6.

Examples:
o Gaussian: f(y,0,¢) = e
o Bernoulli: f(y,6) = e20~(1+e") (9 = Inp/(1 — p))
o Poisson: f(y,0) = e0=¢"1+n() (g = |n \)

Linear Conditional model: Y[X ~ P, 1

ML fit of the parameters



Outline

9 A Probabilistic Point of View

@ Non Parametric Conditional Density Modeling

A Probabilistic Point
of View



Non Parametric Conditional Estimation  a prababiistic point X

of View L

@ ldea: Estimate Y|X or E [Y|X] directly without resorting to
an explicit parametric model.

Non Parametric Conditional Estimation

@ Two heuristics:
o Y|X (or E[Y|X]) is almost constant (or simple) in a
neighborhood of X. (Kernel methods)
o Y|X (or E[Y|X]) can be approximated by a model whose
dimension depends on the complexity and the number of
observation. (Quite similar to parametric model plus model

selection...)
v

@ Focus on kernel methods!



Kernel Methods

A Probabilistic Point
of View

@ Idea: The behavior of Y|X is locally constant or simple!

@ Use this local estimate to take the decision

Choose a kernel K (think of a weighted neighborhood).

For each X, compute a simple localized estimate of Y|X

In regression, estimation of E [Y|X] is sufficient.



Example: k Nearest-Neighbors (with

k=3)

A Probabilistic Point
of View

1 2
° °
° °
¢ ° °
° ) ° L4 ° ° °
° e ° °
° ° ° d ° ° )
° . °
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° °
° °
® . o
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. ° I * .
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o/‘ —° ° ) . ° .
°
° ° o °

Source: Unknown



Example: k Nearest-Neighbors (with
k =4)

A Probabilistic Point
of View

nkn



k Nea I’eSt— N elgh bOFS A Probabilistic Point

of View

@ Neighborhood V, of x: k learning samples closest from x.

k-NN as local conditional density estimate

2 ox,evx L{vi=t1}

PV =1X) ==

@ KNN Classifier:

~ +1 ifP(Y=1X)>P(Y =-1|X

B0 — (V=102 B (Y =-1X)
—1 otherwise

@ Lazy learning: all the computations have to be done at
prediction time.

@ Remark: You can also use your favorite kernel estimator...



Example: KNN

A Probabilistic Point
of View

k-NN with k=1

Decision region Decision boundary
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EXa m ple K N N A Probabilistic Point /‘L
of View

k-NN with k=5
Decision region Decision boundary
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Example: KNN X

A Probabilistic Point 4

of View
k-NN with k=9
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=13
Decision region Decision boundary
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Example: KNN

A Probabilistic Point

of View
k-NN with k=17
Decision region Decision boundary
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A Probabilistic Point
of View

Example: KNN X

k-NN with k=21

Decision region Decision boundary
-

@
® q
06 06- ®
@
e ®
o
® L
@ classes Q classes
5 S pa- *f
% o B classt % o ® t ® Classi
& B cess2 £ © Class2

02

02 04 06
PredictorA

02 04 06
PredictorA



Example: KNN

A Probabilistic Point

of View
k-NN with k=25
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Example: KNN

A Probabilistic Point

of View
k-NN with k=29
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Example: KNN

A Probabilistic Point

of View
k-NN with k=33
Decision region Decision boundary
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Example: KNN

A Probabilistic Point

of View
k-NN with k=37
Decision region Decision boundary
-
@
® q
06 06- ..
e S
o
® s
@ classes Q classes
5 S o4 ®®
%0"' B clesst %“ ® t @ Classi
£ B Class2 £ @ Class2

02

02 04 06 02 04 08
PredictorA PredictorA



Example: KNN

A Probabilistic Point
of View

k-NN with k=45
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=53
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=61
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=69
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=77
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=85
Decision region Decision boundary
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Example: KNN

A Probabilistic Point
of View

k-NN with k=101
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Example: KNN

A Probabilistic Point
of View

k-NN with k=109
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Example: KNN

A Probabilistic Point
of View

k-NN with k=117
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Example: KNN

A Probabilistic Point
of View

k-NN with k=125
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Example: KNN

A Probabilistic Point
of View

k-NN with k=133
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Example: KNN

A Probabilistic Point
of View

k-NN with k=141
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Example: KNN

A Probabilistic Point
of View

k-NN with k=149
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Example: KNN

A Probabilistic Point

of View
k-NN with k=157
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Example: KNN

A Probabilistic Point
of View
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Example: KNN

A Probabilistic Point
of View

k-NN with k=173
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Example: KNN

A Probabilistic Point

of View
k-NN with k=181
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Example: KNN

A Probabilistic Point

of View
k-NN with k=189
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Example: KNN

A Probabilistic Point

of View
k-NN with k=197
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Regression and Local Averaging A Probabilstic Point

of View

A naive idea

@ E [Y|X] can be approximated by a local average:

~ 1
F(X) = V—rm Y;
{X; € N(X)}] X,GZN(X)
where B(X) is a neighborhood of X.

o Heuristic:

o If X — E[Y|X] is regular then

E[Y|X] ~E [E [Y|X] [X' € N(X)] =E [Y]X € N(X)]
e Replace an expectation by an emplrlcal average:
E[Y|X € N(X)] ~ e eN XGXN: Y;




Regression and Local Averaging A Probabilstic Point

of View

Neighborhood and Size
@ Most classical choice: N (X) = {X, || X — X'|| < h } where
||l.]| is a (pseudo) norm and h a size (bandwidth) parameter.

@ In principle, the norm and h could vary with X, and the norm
can be replaced by a (pseudo) distance.

@ Focus here on a fixed distance with a fixed bandwidth h cased. |

Bandwidth Heuristic

o A large bandwidth ensures that the average is taken on
many samples and thus the variance is small...

@ A small bandwidth is thus that the approximation
E[Y|X] ~E [Y|X € N(X)] is more accurate (small bias).




Welghted LOC3| Averaging A Probabilistic Point

of View

Weighted Local Average

@ Replace the neighborhood N (X) by a decaying window
function w(X, X').

@ E [Y|X] can be approximated by a weighted local average:
o Zi W(K7K:) .

4

Kernel

@ Most classical choice: w(X, X') = K (%K) where h the
bandwidth is a scale parameter.

@ Examples:

o Box kernel: K(t) =1 <1 (Neighborhood)
o Triangular kernel: K(t) = max(1 — ||¢|[,0).
o Gaussian kernel: K(t) = e t/?

@ Rk: K and MK yields the same estimate.

N,




From Density Estimation to Regression 4 probabiisic point

of View

Nadaraya-Watson Heuristic

@ Provided all the densities exist
J Yo(X. Y)dY [ Yp(X, Y)dY

E[Y|X] = =
Vx| [ p(Y, X)dY p(X)
@ Replace the unknown densities by their estimates:
1 n
=-) KX-X;
s KX X)

p(X,Y) ZKX X)K'(Y = Y)
i=1
e Now if K’ is a kernel such that f YK’( Y)dY =0 then

/pr Y)dY = = ZKX XY
11




From Density Estimation to Regression 4 probabiisic point

of View

Nadaraya-Watson

@ Resulting estimator of E [Y|X]
n g _ )
f(&) _ Zi:nl \/’Kh(é_ KI)
=1 Kn(X = X;)
@ Same local weighted average estimator!

<

Bandwidth Choice

@ Bandwidth h of K allows to balance between bias and
variance.

@ Theoretical analysis of the error is possible.

@ The smoother the densities the easier the estimation but the
optimal bandwidth depends on the unknown regularity!

N,




Local Linear Estimation A Probabilistic Point

of View

Another Point of View on Kernel

@ Nadaraya-Watson estimator:
. " YKy(X — X
f(l) _ Z/_nl h(f —I)
i1 Kn(X = Xj)
@ Can be view as a minimizer of
D 1Yi = BPKn(X ~ X))
i=1
@ Local regression of order 0!

v

Local Linear Model

o Estimate E[Y|X] by f(X) = ¢(X)" B(X) where ¢ is any
function of X and $(X) is the minimizer of

STV = (X)) T BPKa(X — X).
=1

\




LOESS LOCal polynomial regrESSion A Probabilistic Point ><

of View

1D Nonparametric Regression

@ Assume that X € R and let ¢(X) = (1,X L, X9).
o LOESS estimate: f(X) = ZJ 06( )XJ with B(X)

minimizing
n d
D1 =0 BUXIPKa(X ~ X))
i=1 j=0
@ Most classical kernel used: Tricubic kernel
K(t) = max(1 —|t[3,0)3
@ Most classical degree: 2...

@ Local bandwidth choice such that a proportion of points
belongs to the window.




Outline

o Cross Validation and Error Estimation



Tralning ErrOF ISSUG Cross Validation and X

Error Estimation

Underfit

(High bias) Generalization

error

Overfit
(High
variance)

Error

Training error

Model complexity

Error behaviour

@ Learning/training error (error made on the learning/training
set) decays when the complexity of the method increases.

@ Quite different behavior when the error is computed on new
observations (generalization error).

@ Overfit for complex methods: parameters learned are too
specific to the learning set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training error!

Source: JMP



Error Estimation vs Method Selection Cross Validation and

Error Estimation

Predictor Error Estimation

@ Goal: Given a predictor f assess its quality.
@ Method: Hold-out error computation (/ Error correction).

@ Usage: Compute an estimate of the error of a selected
using a test set to be used to monitor it in the future.

@ Basic block very well understood.

Method Selection

@ Goal: Given a ML method assess its quality.
e Method: Cross Validation (/ Error correction)

@ Usage: Compute error estimates for several ML methods
using training/validation sets to choose the most promising
one.

@ Estimates can be pointwise or better intervals.
@ Multiple test issues in method selection.



Cross Validation and Error Correction Cross Validation and

Error Estimation

Two Approaches

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Correction approach: use empirical loss criterion but correct
it with a term increasing with the complexity of S

Ra(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?

@ The loss used in the risk: most natural!

o The loss used to estimate 6: penalized estimation!

A




Cross Validation X

Cross Validation and
I | I

Error Estimation
Training Set Test Set

e Very simple idea: use a second learning/verification set to
compute a verification error.

@ Sufficient to remove the dependency issue!

@ Implicit random design setting...
Cross Validation

@ Use (1 — €) x n observations to train and € x n to verify!
@ Possible issues:

o Validation for a learning set of size (1 — ¢) x n instead of n ?
o Unstable error estimate if en is too small 7

@ Most classical variations:
e Hold Out,
e Leave One Out,
e V-fold cross validation.

Source: JMP



HOld O Ut Cross Validation and X

Error Estimation

Principle

@ Split the dataset D in 2 sets Dyrain and Diest of size
nx(1l—e¢)and nxe.

o Learn £HO from the subset Dypain.

@ Compute the empirical error on the subset Diest:

~ 1 7
RHO(FHOY = — S (v, 70(X,))
(X;,Yi)EDrest

Predictor Error Estimation

o Use FHO a5 predictor.

A\

@ Use R,’;’O(?HO) as an estimate of the error of this estimator.

V.

Method Selection by Cross Validation

o Compute RHO(££0) for all the considered methods,

@ Select the method with the smallest CV error,

@ Reestimate the ?3 with all the data.

A




HOld O Ut Cross Validation and

Error Estimation

@ Split the dataset D in 2 sets Dyrain and Diest of size
nx(1l—e¢)and nxe.

o Learn MO from the subset Dyain.
@ Compute the empirical error on the subset Diest:
= 1 =
RAC(FO) =— > Y, f"(X)
(X;,Yi)EDrest

@ Only possible setting for error estimation.

Hold Out Limitation for Method Selection

@ Biased toward simpler method as the estimation does not use
all the data initially.

o Learning variability of RHO(£HO) not taken into account.




V—fOld C ross Va I |d atlon Cross Validation and

Error Estimation

Training Set Test Set

@ Split the dataset D in V sets D, of almost equals size.
@ Forve{l, .. 6V}

o Learn f~V from the dataset D minus the set D,.
e Compute the empirical error:

—V A—V 1 A—V
RN == > UYif (X))
Y (X,,Y))eD,
@ Compute the average empirical error'

@ Estimation of the quality of method not of a given predictor.

@ Leave One Out: V = n.

Source: JMP



V—fOld C ross Va I |d atlon Cross Validation and

Error Estimation

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not
independent!

o Consequence:
E [R$V(F)| =E [R;"(F™)]

Var [RSY ()] = %Var [RoY(F)

+(1- é) Cov [R,¥(F), Ry ()]

Average risk for a sample of size (1 — 4)n.

Variance term much more complex to analyze!

Fine analysis shows that the larger V the better...

Accuracy/Speed tradeoff: V =5 or V = 10!



Linear Regression and Leave One Out

Cross Validation and
Error Estimation

@ Leave One Out = V fold for V' = n: very expensive in general.

A fast LOO formula for the linear regression

@ Prop: for the least squares linear regression,

aiosy _ FOX) — Y,
f‘ 1 X — —I
(—I) 1 _ hii
with hj; the ith diagonal coefficient of the hat (projection)

matrix.
@ Proof based on linear algebral
@ Leads to a fast formula for LOO

RLOO(F Z Vi — F(X)?
(1= hy)?




Cross Validation and Confidence Interval  cros vaidation and

Error Estimation
@ How to replace pointwise estimation by a confidence interval?
@ Can we use the variability of the CV estimates?
o Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ~ indep.)

@ Compute the empirical variance and divide it by the number of
folds to construct an asymptotic Gaussian confidence interval,

@ Select the simplest model whose values falls into the
confidence interval of the model having the smallest CV error.

V.

PAC approach (Quantile, ~ indep. and small risk estim. error)

e Compute the raw medians (or a larger raw quantiles)

@ Select the model having the smallest quantiles to ensure a
small risk with high probability.

\

@ Always reestimate the chosen model with all the data.
@ To obtain an unbiased error estimate of the final predictor:
hold out error on untouched test data.



CI’OSS Va I id atiOn Cross Validation and X

Error Estimation
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Example: KNN (k = 61 using
cross-validation)

Cross Validation and
Error Estimation

k-NN with k=61

Decision region Decision boundary
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Train/Validation /Test

Cross Validation and
Error Estimation

[ Original set

[ Training set

Test set

‘ Training set

[ validation set |

Test set

Training, tuning, and
evaluation

Machine learning} 4%
algorithm

Predictive Model
. Final performance estimate

@ Selection Bias Issue:

o After method selection, the cross validation is biased.
o Furthermore, it qualifies the method and not the final

predictor.

@ Need to (re)estimate the error of the final predictor.

(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a

single predictor.

@ Estimate the performance of this predictor on Test.

Source: Shan-Hung Wu & Datalab



EI’I’OI’ COI’I’eCtiOI"I Cross Validation and

Error Estimation

@ Empirical loss of an estimator computed on the dataset used
to chose is is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic

Estimate an upper bound of this optimism for a given family.

Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!

Correction often called a penalty.



Penalization

Cross Validation and
Error Estimation

Penalized Loss

@ Minimization of

argmin = 3" (Y, (X)) + pen(0)
be® N7

where pen(0) is an error correction (penalty).

Penalties

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

N

Instantiation

o Mallows Cp: Least Squares with pen(f) = 2952
@ AIC Heuristics: Maximum Likelihood with pen(§) = 4

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)<

-
@ Structural Risk Minimization: Pred. loss and clever penalty.




Outline

e Optimization Point of View
@ SVM
@ Penalization
@ (Deep) Neural Networks
@ Tree Based Methods



Probabilistic and Optimization Framework opimizstion point of
View

How to find a good function f with a small risk
R(f) =E[(Y,f(X))] ?

~

Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))

Problems

@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting...




Empll’lcal RISk Mlnlmlzatlon Optimization Point of X

View

@ The best solution f* is the one minimizing
f* =argmin R(f) = argminE [¢{(Y, f(X))]

Empirical Risk Minimization

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the
minimization of the average empirical loss

N e
f=f=argmin— ) (Y}, fp(X;
7 ffeeen;( 0(X;))

e Intractable for the /%/1 |oss!



Convexification Strategy Optimization Point of

View

Risk Convexification

@ Replace the loss /(Y fp(X)) by a convex upperbound
(Y, fp(X)) (surrogate loss).

@ Minimize the average of the surrogate empirical loss

~ 1<
f=rf=argmin= Y 0(Y; (X,
5= argmin 3 ¢(Y, ()

e Use f = sign(f)

@ Much easier optimization.

Instantiation

@ Logistic (Revisited)

@ Support Vector Machine
o (Deep) Neural Network
@ Boosting




Classification Loss and Convexification Optimization Point of X

View

15 —_— 110

2 a5 A 05 0
y'f60

Convexification

@ Replace the loss /2/1(Y, f(X)) by
Uy, £(X)) = I(Yif (X))
with / a convex function.

o Further mild assumption: / is decreasing, differentiable at 0
and /'(0) < 0.




Classification Loss and Convexification Optimiztion Pont of X

35 — 1y T(0)<0)

Classical convexification

o Logistic loss: #/(Y,f(X)) = log(1 + e~ (X)) (Logistic / NN)
@ Hinge loss: ¢/(Y,f(X)) = (1 — Yf(X))+ (SVM)
@ Exponential loss: ¢/(Y,f(X)) = e Y (X) (Boosting...)




P rOpertleS Optimization Point of X

View

The Target is the Bayes Classifier

@ The minimizer of
E [('(Y, f(X))] = E [I(YF(X))]
is the Bayes classifier f* = sign(2n(X) — 1)

v

Control of the Excess Risk

@ It exists a convex function W such that
W (E [V, sign(f(X))] — E [V, F(X)])

<E[L(Y,f(X)] —E[((Y, (X))

@ Theoretical guarantee!



LOgIStIC ReV|S|ted Optimization Point of X

View

@ lIdeal solution:

~ 1.7
f = argmin — 1 Yi, f(X;
gmin > (¥, FX,)

Logistic regression

o Use f(X) = X5+ pO.

@ Use the logistic loss /(y, f) = log,(1 4+ e7¥f), i.e. the
-log-likelihood.

@ Different vision than the statistician but same algorithm!



Logistic Revisited

Optimization Point of 4

View
Logistic
Decision region Decision boundary
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Outline

e Optimization Point of View
@ SVM

Optimization Point of
View



|deal Separable Case Optimization Point of

View

e Linear classifier: sign(X '3 + 5(9)
@ Separable case: 3(3, 8(9), Vi, Yi(X; 5+ 8(®) > 0!

How to choose (3, b) so that the separation is maximal?

@ Strict separation: 3(3, 8(9),Vi, Yi(X; g+ 8®) > 1
o Distance between XT3+ 8 =1 and X' 3 + 80 = —1:
2

181l

o Maximizing this distance is equivalent to minimizing 3||3||2.

Source: M. Mohri et al



|deal Separable Case Optimization Point of

View

Separable SVM

o Constrained optimization formulation:

min%HﬂHz with Vi, Yi(X; 8+ B0) > 1

@ Quadratic Programming setting.

@ Efficient solver available...

Source: M. Mohri et al



View

Non Separable Case Optimization Point of X

@ What about the non separable case?

SVM relaxation

@ Relax the assumptions
Vi, Vi(X; T8+ 80) > 1
to
Vi, Yi(X;"B+ B80)>1—5
with the slack variables s; > 0

@ Keep those slack variables as small as possible by minimizing

f\|ﬂ||2+ CZs,

where C > 0 is the goodness-of- flt strength

Source: M. Mohri et al



View

Non Separable Case Optimization Point of X

SVM

o Constrained optimization formulation:
1 n _ Vi, YiX;TB+ @) >1—5
min 5”5”24‘(:;5 with { (X ) '

Vi, Si Z 0
o Hinge Loss reformulation:

o1 ° —
min EWJ’HZ + C; max(0,1 — Yi(X; 8 + B©))

Hinge Loss

@ Constrained convex optimization algorithms vs gradient
descent algorithms.

Source: M. Mohri et al



SVM as a Penalized Convex Relaxation  opsmistion peint o X

@ Convex relaxation:
1 n
argmin [|8]1* + C 3~ max(1 = Yi(X; "8+ 5©),0)
i=1

1 11
= argmin = > max(1 — Yi(X; T8 + © — |18l
argmin — 2 max( (X;' B+ B%),0) + anHﬁH

o Prop:
(7Y sign(X; ' B+ B9)) < max(1 - Yi(X;" B+ 5),0)

Penalized convex relaxation (Tikhonov!)

n
LS Oy, sign(X,T 5 + AO))
=i

Zmaxl— XTﬁ+5‘°))0)+ H6H2




SVM

Optimization Point of

View
Support Vector Machine
Decision region Decision boundary
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SVM

Optimization Point of

View
Support Vector Machine
Decision region Decision boundary
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Constrained Minimization Optimization Point of

View

Constrained Minimization
o Goal:

min f(x)
e {hj(x) =0, j.: 1,...p

@ or rather with argmin!

Different Setting

e f, hj, g; differentiable

e f convex, h; affine and g; concave.

Feasibility
e x is feasible if hj(x) =0 and g;j(x) < 0.
@ Rk: The set of feasible points may be empty

\




Lagl’a ngl an Optimization Point of

View

Constrained Minimization

o Goal:

hi(x)=0, j=1,...
p* = minf(x) with i(x) =0, J P
2 gi(x) <0, i=1,...q

o Def:

q
L(x, A\, 1) = f(x +Z/\h )+ nigi(x)

with A € RP and p € (RT)9.
@ The \; and p; are called the dual (or Lagrange) variables.
o Prop:
f(x) if x is feasible
400 otherwise

[’(Xﬂ/\vu) - {

min ma L(x,\, pu)=p*
XI)\ERP, uex(]R+)q (A k) =p

maXx
AERP, pe(RT)9

N,




Lagl’a nglal Dual Optimization Point of

View

o Def: :
L(x, A\, p) = f(x —i—Z)\h —i—Zu;g;(x)

with A € RP and p € (RT)9.

v

Lagragian Dual

@ Lagrandial dual function:
Q(A, p) = min L(x, A, 1)

e Prop:
Q(\, u) < f(x), for all feasible x
<

max QA i min  f(x)
AERP, pe(R+)9 x feasible




D ua I |ty Optimization Point of

View

= a in £(x, A
/\eRpfnué((Rﬂqme Eods)

Always weak duality:

g <p
ma min L(x, A\, 1) < min ma L(x, A,
AERP, ,uEX(]R*')q X (A ) < X AERP, ueX(RW (A 1)

Not always strong duality g* = p*.




St ro ng D ua | |ty Optimization Point of

View

Strong Duality

e Strong duality:

q-=p*
max min £(x, A\, ) = min max L(x, A,
AERP, pe(Rt)a X ( M) X XeRP, pe(Rt)9 ( M)

@ Allow to compute the solution of one problem from the other.

@ Requires some assumptions!

Strong Duality under Convexity and Slater's Condition

e f convex, h; affine and g; concave.

e Slater’s condition: it exists a feasible point such that
hj(x) = 0 for all j and gj(x) < O for all /.

e Sufficient to prove strong duality.

@ Rk: If the g; are affine, it suffices to have hj(x) = 0 for all j
and gi(x) <0 for all i.




K KT OPtimization Point of

View

Karush-Kuhn-Tucker Condition

@ Stationarity:
Vi L(x*, A, 1) = VE(x*) + D NVA(x*) + > puiVe(x*) =0
J i
@ Primal admissibility:
hj(x*) =0 and gi(x*) <0
@ Dual admissibility:
i >0
e Complementary slackness:
pigi(x*) =0 )

KKT Theorem

e If f convex, h; affine and g; concave, all are differentiable
and strong duality holds then x* is a solution of the primal
problem if and only if the KKT condition holds

\

@ Same result without differentiability using the sub-gradient...



SVM and Lagrangian Optimization Point of

View

SVM

@ Constrained optimization formulation:

min|BIE+CY s with {0 K AHAE) 21
i=1 Vi,sp >0

SVM Lagragian

@ Lagrangian:

1 n
£(8,9,5,0,) = SIBIE + €35
i=1

+ il = s = Yi( X B+ B89) =3 s

<

<




SVM a nd KKT Optimization Point of

View

KKT Optimality Conditions

o Stationarity:
VsL(B, B, 5,0, p) = B =D ai¥iX; =0

vﬁ(o)‘c(ﬂaﬂm):saaau) = Zai =0

Vsiﬁ(ﬂ,ﬂ(o),s,a,u) =C—ai—pi=0
@ Primal and dual admissibility:
(1—s—Yi(X;"8+89) <0, >0, >0, and yz; >0
@ Complementary slackness:
ai(l—s = Yi(X;"B+B%)) =0 and psi =0

Consequence

@ f*=>0;YiX;and 0 < o; < C.
o If aj # 0, X; is called a support vector and either
o 5;=0and Yi(X; 8+ ®) =1 (margin hyperplane),
o or a; = C (outliers).
o SO = y; — X, 8* for any support vector with 0 < a; < C.




SV M D ua | Optimization Point of

View

SVM Lagrangian Dual

@ Lagrangian Dual:

Aep)= o L B, s a,p)

@ Prop:
(4] ifzia,-Y,-;éOOrEIi,a,-+u,-7éC,
Q(a, p) = —o0
o if > .a;Yi=0and Vi,a; + pj = C,

o)=Y a5 e ViX T,

ij

V.

SVM Dual problem

@ Dual problem is a Quadratic Programming problem:

-
max « < max Q; oo Y X X
a>0,>0 Qo 1) 0<a <CZ ' %: U =

@ Involves the X; only through their scalar products.




Mercer Theorem Optimization Point of X

View e

Mercer Representation Theorem

@ For any loss ¢ and any increasing function ®, the minimizer in

B of
DAY X T8+ B9) + &(l|Bll2)
i=1

n
is a linear combination of the input points 8% = Za;'&i'
@ Minimization problem in o/: i=1

D AYi D aiXTX + BO) + o(|8]2)
i=1 J

involving only the scalar product of the data.

@ Optimal predictor requires only to compute scalar products.
?*(K) _ KTﬁ* +B(O) — ZOZ;K;TK
@ Transform a problem in dimension dim(X) in a problem in

dimension n.
@ Direct minimization in 8 can be more efficient...



Feat ure M a p Optimization Point of X

View

%:R? - R®
(21,29) = (21,22, 7) 1= (o}, V2a19,03)

Feature Engineering

@ Art of creating new features from the existing one X.
@ Example: add monomials (KU))Z, X0 xU)

@ Adding feature increases the dimension.

Feature Map
o Application ¢ : X — H with H an Hilbert space.

e Linear decision boundary in H: ¢(X)' 5+ 8 =0 is not an
hyperplane anymore in X.

|

@ Heuristic: Increasing dimension allows to make data almost
linearily separable.

Source: Unknown



POlynomlal Mapplng Optimization Point of
View
T2 V2129
(=1,1) LY 1,1L,4v2,—v2, —v2,1) | (L1, 4v2, +v2, 42, 1)
o o ] @
V21
Z1
@ [ ] (] o
(=1,-1) L-1)  LLV2 V242D | (1,1,-V2,+v2,-V2,1)

Polynomial Mapping of order 2

° ¢:R> > RS
P(X) = ((K(l))z,(K(z))z,ﬁg(l)g(z),\fzg(l),\65(2),1)

@ Allow to solve the XOR classification problem with the
hyperplane XM x@ =

Polynomial Mapping and Scalar Product

e Prop:
$(X) " o(X') = (1+ XTX)?

Source: M. Mohri et al



SVM Prlmal and Dual Optimization Point of
View
Primal, Lagrandian and Dual
@ Primal:

n
min || 3]|* + CZS; with

i=1

Vi, Yi(p(X;) T B+ B@) > 1 — 5
VI', s; > 0

@ Lagrangian:

1 n
£(8,89, 5,0, p) = S11BII* + DI
—{—Za, 1 —si = Yi(o(X)) B‘f’ﬁ(o) _ZHISI

@ Dual:
-
ag?)ix>0 Qay, 1) ﬁoinagcza, Izj:OéiOéjYiYﬂ?(Xi) ¢(Kj)

e Optimal X' 8* = 3, a; Yip(X) " ¢(X))

@ Only need to know to compute ¢(X)' ¢(X’) to obtain the
solution.



From Map tO Kel’nel Optimization Point of
View
e Many algorithms (e.g. SVM) require only to be able to
compute the scalar product ¢(X)' ¢(X).

@ Any application
k: X xX—=R
is called a kernel over X.

V.

Kernel Trick

o Computing directly the kernel k(x,x") = ¢(X)' ¢(X’) may be
easier than computing ¢(X), ¢(X’) and then the scalar
product.

@ Here k is defined from ¢.

@ Under some assumption on k, ¢ can be implicitely defined
from k!



P DS Kernel Optimization Point of X

View

Positive Definite Symmetric Kernels

o A kernel k is PDS if and only if
e k is symmetric, i.e.
k(X, X") = k(X' X)
o for any N € N and any (Xi,...,Xy) € XV,
K = [k(X;, X;)i<ij<n
is positive semi-definite, i.e. Yu € RN
u'Ku= Y uDulk(X;, X)) >0
1<ij<N
or equivalently all the eigenvalues of K are non-negative.

@ The matrix K is called the Gram matrix associated to
(X155 Xp).



Reproducing Kernel Hilbert Space Optimization Point of

View

Mercer Theorem

@ For any PDS kernel k : X x X — R, it exists a Hilbert space
H C R with a scalar product (-, )y such that

e it exists a mapping ¢ : X — H satisfying

k(X, X") = (&(X), ¢(X))ss
e the reproducing property holds, i.e. for any h € H and any

Xek

h(X) = (h, k(X, "))y -

e By def., H is a reproducing kernel Hilbert space (RKHS).
@ H is called the feature space associated to k and ¢ the
feature mapping.
@ No unicity in general.
e Rk: if k(X, X') = gb’(&)TgZ)’(l') with ¢/ : X — RP then
e H can be chosen as {X — ¢/(X)' 3,8 € RP} and

1X = ¢/(X) T8I = 1813
o S(X)(X) = X"X".



Kernel Construction Machinery Optimzsn P ot X

View

Separable Kernel
@ For any function ¥ : X — R, k(X, X') = W(X)W¥(X') is PDS.

Kernel Stability
@ For any PDS kernels k; and kp, k1 + k> and kiky are PDS
kernels.

@ For any sequence of PDS kernels k, converging pointwise to a
kernel k, k is a PDS kernel.
@ For any PDS kernel k such that |k| < r and any power series

> .nanz" with a, > 0 and a convergence radius larger than r,
> " ank" is a PDS kernel.
n

@ For any PDS kernel k, the renormalized kernel

/!
K(X,X') = HXX) is a PDS kernel.
VKX, X)k(X, X')

e Cauchy-Schwartz for k PDS: k(X, X')? < k(X, X)k(X', X")



Classical Kernels Optimization Point of X

View

PDS Kernels

@ Vanilla kernel:
k(X,X')=X"X

Polynomial kernel:
k(X X') = (1+ XTX)*
Gaussian RBF kernel:
KX, X') = exp (—7]1X = X|P)

Tanh kernel:

k(X,X') = tanh(aX ' X' + b)

Most classical is the Gaussian RBF kernel...

Lots of freedom to construct kernel for non classical data.



Re presenter Theorem Optimization Point of

View

Representer Theorem

@ Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function ® and any function L : R” — R,
the optimization problem

argmin L(h(X1), .., h(X,)) + &(l[Al])
€
admits only solutions of the form

n
Z a:'k(éh )
i=1

@ Examples:

o (kernelized) SVM
o (kernelized) Penalized Logistic Regression (Ridge)
o (kernelized) Penalized Regression (Ridge)



Kel’nel |Zed SVM Optimization Point of

View

Primal

@ Constrained Optimization:
d {v/‘, Yi(f(X;) +B?)>1—5

min flI& + C s; with
fEH,,B(O),sH HH ; I Vi, ;>0

@ Hinge loss:

o I+ CZ max(0,1 - Yi(f(X;) + 2))

’ i=1
° Representer'
min aiaik(X;, X))

75(0
+CZmax( Zak D+ 80y
i=1
@ Dual:

Zan k(X;, X))

max a, 1) < max Q;
a>ou>oQ( 0 0<or <CZ !




SVM

Decision region
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Optimization Point of
View

Support Vector Machine with polynomial kernel
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SVM

Optimization Point of

View
Support Vector Machine with Gaussian kernel
Decision region Decision boundary
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O Utl | ne Optimization Point of X

View A=A

e Optimization Point of View

@ Penalization



Simplified Models

Closest fit in population
Realization
", Closest fit

MODEL
SPACE

_ Shrunken fit

RESTRICTED
MODEL SPACE

Bias-Variance Issue

Optimization Point of
View

@ Most complex models may not be the best ones due to the

variability of the estimate.

@ Naive idea: can we simplify our model without loosing too

much?

e by using only a subset of the variables?
e by forcing the coefficients to be small?

@ Can we do better than exploring all possibilities?

Source: Tibshirani et al.



I_l near MOCIG'S Optimization Point of

View

e Setting: Gen. linear model = prediction of Y by h(x' ).

Model coefficients

@ Model entirely specified by .
o Coefficientwise:

o ) =0 means that the jth covariate is not used.
o 31 ~ 0 means that the ith covariate as a low influence...

@ If some covariates are useless, better use a simpler model...

Submodels

e Simplify the model through a constraint on 3!
@ Examples:
e Support: Impose that () =0 for i & /.
e Support size: Impose that ||5|[o = 27:1 104 < C
o Norm: Impose that |||, < C with 1 < p (Often p =2 or
p=1)




Norms and Sparsity Optimzsn P ot X

View e

g G

Sparsity

@ [ is sparse if its number of non-zero coefficients (£p) is small...

e Easy interpretation in term of dimension/complexity.

Norm Constraint and Sparsity

@ Sparsest solution obtained by definition with the ¢y norm.
@ No induced sparsity with the ¢ norm...

@ Sparsity with the ¢; norm (can even be proved to be the same
than with the ¢p norm under some assumptions).

@ Geometric explanation.

Source: Tibshirani et al.



Constraint and Penalization Optimization Point of X
View

Constrained Optimization

@ Choose a constant C.

o Compute 3 as
n

argmin = > ooy, h(x;" B))

BER [IBll,<C M=

Lagrangian Reformulation

@ Choose A\ and compute 3 as
1 /
argmin = > (Y, h(x;" B)) + AlIBIIZ
Berd M55
with p’ = p except if p = 0 where p’ = 1.

@ Easier calibration... but no explicit model S.

e Rk: ||3]|p is not scaling invariant if p # 0...

@ Initial rescaling issue.



Penallzation Optimization Point of X

View

Penalized Linear Model

@ Minimization of
1
argmin = > " ((Y;, h(x; " B)) + pen(B)
perd M-y
where pen(f) is a (sparsity promoting) penalty

@ Variable selection if /3 is sparse.

V.

Classical Penalties

@ AIC: pen(B) = A||Bllo (non convex / sparsity)

Ridge: pen(3) = A||3]|3 (convex / no sparsity)

Lasso: pen(B) = Al|5]|1 (convex / sparsity)
o Elastic net: pen(8) = A1 |81 + A2||8]13 (convex / sparsity)

v

Easy optimization if pen (and the loss) is convex...
Need to specify )\ to define a ML method!



Penalized Gen. Linear Models Optimization Point of

View

Classical Examples

@ Penalized Least Squares

Penalized Logistic Regression
@ Penalized Maximum Likelihood
e SVM
°

Tree pruning

@ Sometimes used even if the parametrization is not linear...



Penallzation Optimization Point of X

View

Penalized ¢%/1 loss (Structural Risk Minimization)

@ Minimization of

argmin ZEO/I Yi, fm(X;)) + pen(m)
fm,mEM meSm

where pen(m) is a compIeX|ty driven penalty...

@ No easy optimization here!

Classical Penalties

.. . o log |[M]|
e Finite class: pen(m) = \\/ ==~

dvc(Sm) og (775 )

n

@ Finite VC Dimension: pen(m) = /\\/

@ Need to specify \!



Convexified Loss Penalization Optimization Point of X

View

Penalized convexified ¢ loss

@ Minimization of

argmin Zf Yi, fm(X;)) + pen(m)
fr,MEM, €S N

where pen(m) is a compIeX|ty driven penalty...

@ Easy optimization here!

@ Reuse the previous pen(m)!
@ Need to specify \!

@ SVM case:

e dyc ~ ||3]|> which advocates for a penalty in A||3]...
o A penalty in \'||3]|? is more convenient numerically and there
is a correspondence between the two problems...



Penalization and Cross-Validation Optimization Point of

View

Practical Selection Methodology

@ Choose a penalty shape pen.

@ Compute a CV error for a penalty Apen for all A\ € A.
o Determine \ the A minimizing the CV error.
°

Compute the final model with a penalty XpAeﬁ.

@ CV allows to select a ML method, penalized estimation with a
penalty Apen, not a single predictor hence the need of a final
reestimation.

Why not using only CV?

o If the penalized minimization is easy, much cheaper to
compute the CV error for all A € A than for all possible
estimators (or even models)...

@ CV performs best when the set of candidates is not too big
(or is structured...)




Outline

e Optimization Point of View

@ (Deep) Neural Networks

Optimization Point of
View



Perceptron

inputs  weights

step function

weighted sum

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Optimization Point of

Source: Tikz



Pe rce pt ron Optimization Point of X

View L

Dendrites

l— Nucleus

Cell body

00—

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Source: Tikz



Perceptron

inputs  weights

step function

weighted sum

Perceptron (Rosenblatt 1957)
@ Inspired from biology.

@ Very simple (linear) model!
@ Physical implementation and proof of concept.

Optimization Point of

Source: Tikz



Perceptron

Perceptron (Rosenblatt 1957)

@ Inspired from biology.

@ Very simple (linear) model!

@ Physical implementation and proof of concept.

Optimization Point of
View

Source: Avin Calspan Advanced Technology Center



Artificial Neuron and Logistic Regression

Activation Neuron Configuration

n

1= Input
0= Oupt 2
B= Bias

d

Artificial neuron Logistic unit

@ Structure:

@ Mix inputs with a
weighted sum,

o Apply a (non linear)
activation function to
this sum,

o Eventually threshold the
result to make a decision.

@ Weights learned by
minimizing a loss function.

B1

v

Optimization Point of
View

Activation Fonction

o1
3 : ;
!

@ Structure:
o Mix inputs with a
weighted sum,
o Apply logistic function
o(t) =e'/(1+¢€),
@ Threshold at 1/2 to make
a decision!

@ Logistic weights learned by
minimizing the

-log-likelihood.

@ Equivalent to linear regression when using a linear activation

function!

Source: Unknown



M u |ti | ayer Pe rce pt ron Optimization Point of

View

Input Hidden Layer Output

B1 \ B2
1= Input H1
H= Hidden 12
0= Output H2 o1
B = Bias 13 =—"_

H3

MLP (Rumelhart, McClelland, Hinton - 1986)

@ Multilayer Perceptron: cascade of layers of artificial neuron
units.

@ Optimization through a gradient descent algorithm with a
clever implementation (Backprop)

@ Construction of a function by composing simple units.

@ MLP corresponds to a specific direct acyclic graph structure.

@ Non convex optimization problem!

Source: Unknown



Multilayer Perceptron
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Optimization Point of X
View o
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Deep NeU ral NetWOI'k Optimization Point of

View

DEEP NEURAL NETWORK

Deep Neural Network structure

@ Deep cascade of layers!

@ No conceptual novelty...

@ But a lot of tricks allowing to obtain a good solution: clever
initialization, better activation function, weight regularization,
accelerated stochastic gradient descent, early stopping...

@ Use of GPU and a lot of data...

@ Very impressive results!

Source: Nielsen, Bengio, Goodfellow and Courville



Deep Neural Network
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Deep Lea rn i ng Optimization Point of

View

Conv 5: Object Parts Fe8: Object Classes

Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
@ a clever optimization including initialization and regularization.

Examples: Deep Neural Network, AutoEncoder, Recursive
Neural Network...

Interpretation as a Representation Learning

Transfer learning: use as initialization a pretrained net.
Very efficient and still evolving!

Source: J. Hays



COﬂVOl UtiOI"I a | Network Optimization Point of
View

C3: . maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5
6@28x28

INPUT
32432 S2: f. maps
6@14x14

|
| Ful conection | Gaussian connections
¢ i c i i Full i

Tig. 2. Architecture of LeNet-3, a Convolutional Neural Network, here for digits recognition. Fach plane is a feature map, i.c. a set of units
whose weights are constrained to be identical.

Le Net - Y. LeCun (1989)

6 Hidden layer architecture

Drastic reduction of the number of parameters through a
translation invariance principle (convolution)

Requires 3 days of training for 60 000 examples!
Tremendous improvement.
Representation learned through the task.

Source: Y. LeCun



Deep Convolutional Networks Optimzsn P ot X

View

Alenet - A. Krizhevsky, |. Sutskever, G. Hinton (2012)

@ Bigger and deepr layers and thus much more parameters.

@ Clever intialization scheme, RELU, renormalization and use of
GPU.

@ 6 days of training for 1.2 millions images.

@ Tremendous improvement...

Source: A. Krizhevsky



Deep Convolutional Networks Optimzsn P ot X

View

“Inception 5 (GoogLeNet)

Frataytag?
g ety Raaly ]

Gyt il e e ¢
Hi L TR L

Deeper and deeper networks! (GoogleNet / Residual Neural
Network)

@ More computational power to learn a better representation.

Microsoft

Sources: Google /



Outline

e Optimization Point of View

@ Tree Based Methods

Optimization Point of
View



Classification And Regression Trees Optimization Point of

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))

View

Construction of a recursive partition through a tree structured
set of questions (splits around a given value of a variable)

For a given partition, probabilistic approach and optimization
approach yields the same classifier!

A simple majority vote/averaging in each leaf

<

Quality of the prediction depends on the tree (the partition).
Intuitively:

e small leaves lead to low bias but large variance

o large leaves lead to large bias but low variance...
Issue: Minim. of the (penalized) empirical error is NP hard!
Practical tree construction are all based on two steps:

e a top-down step in which branches are created (branching)

e a bottom-up in which branches are removed (pruning)



CA RT Optimization Point of X

View
PredictorB >= 0.2
PredictorA >=0.13
PredictorA < 0.31 PredictorB >=0.32

PredictorB »=0.29

PredictorA < 0.62 @



B ranc h | n g Optimization Point of X

View

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

o No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...



B ranc h | n g Optimization Point of X

View

X1 < .b?

Yes X

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

o No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...



B ranc h | n g Optimization Point of X

View

X1 < .b?

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

o No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...



B ranc h | n g Optimization Point of X

View

X1 < .b?

Greedy top-bottom approach

@ Start from a single region containing all the data

@ Recursively split those regions along a certain variable and a
certain value

o No regret strategy on the choice of the splits!

@ Heuristic: choose a split so that the two new regions are as
homogeneous possible...



B ranc h | n g Optimization Point of X

View

Various definition of homogeneous

@ CART: empirical loss based criterion (least squares/prediction error)

C(RR) =D tyiy(R) + > Uy, y(R))

X;ER x.€ER

@ CART: Gini index (Classification)
C(R.R) =Y p(R)(L = p(R))+ Y p(R)(L - p(R))

X;ER x,ER

@ C4.5: entropy based criterion (Information Theory)

C(R,R)= Y H(R)+ Y H(R)

x;€R gfeﬁ

CART with Gini is probably the most used technique...

Other criterion based on y? homogeneity or based on different
local predictors (generalized linear models...)



B ranc h | n g Optimization Point of X

View

Choice of the split in a given region

@ Compute the criterion for all features and all possible
splitting points (necessarily among the data values in the
region)

@ Choose the one minimizing the criterion

@ Variations: split at all categories of a categorical variables
using a clever category ordering (ID3), split at a fixed position
(median/mean)

@ Stopping rules:

o when a leaf/region contains less than a prescribed number of
observations
e when the region is sufficiently homogeneous...

@ May lead to a quite complex tree: over-fitting possible!

@ Additional pruning often use.



P run | ng Optimization Point of

View

e Model selection within the (rooted) subtrees of previous tree!

@ Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

@ The predictor in a leaf depends only on the values in this leaf.

o Efficient bottom-up (dynamic programming) algorithm if
the criterion used satisfies an additive property

AT)=>_ <L)

LET

e Example: AIC / CV.




P run | ng Optimization Point of

View

Examples of criterion satisfying this assumptions

o AIC type criterion:

ie'(y/', fr) () F AT = (Z C(yi, fr(x;) + A)
i=1

LET \x,ec
@ Simple cross-Validation (with (x},y/) a different dataset):

Zg/ y/?fC Z (Zﬁl(y”fc ))

LET \xieL

@ Limits over-fitting for a single tree.

@ Rk: almost never used when combining several trees...
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View
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CART: Pros and Cons

@ Leads to a easily
interpretable model

@ Fast computation of the
prediction

o Easily deals with categorical
features

Optimization Point of X
View

o Greedy optimization

@ Hard decision boundaries
@ Lack of stability




Ensem ble methOdS Optimization Point of

View

@ Lack of robustness for single trees.

@ How to combine trees?

Parallel construction

@ Construct several trees from bootstrapped samples and
average the responses (Bagging)

@ Add more randomness in the tree construction (Random
Forests)

Sequential construction

o Construct a sequence of trees by reweighting sequentially the
samples according to their difficulties (AdaBoost)

@ Reinterpretation as a stagewise additive model (Boosting)




Ensemble methods
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Ensemble methods

Random Forest

Decision region

classes

Class1
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PredictorB
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02 04 06
PredictorA

Decision boundary
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Ensemble methods

Optimization Point of 4

View
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Outline

e Model Selection
@ Models
@ Feature Design
@ Models, Complexity and Selection



Outline

e Model Selection
@ Models

Model Selection



Model and Hyperparameters

Input

Model Selection

q—ﬂ

Training Data

7LIb4194€9
Dbg0l5G7%4
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a 140
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14

Eee—)

Model

and
hyperparameters

Source: Unknown



Logistic Regression Model Selection

Ideal solution:
f*(x) = argmax P (Y|x)

Model Y|X with a logistic model.

Estimate its parameters with a Maximum Likelihood approach.

Plug the estimate in the Bayes classifier.

Model hyperparameters:

o Features
o Parametric model...



Generatlve MOdeling Model Selection X

@ Ideal solution:
f*(x) = argmax P (Y|x)

Generative Modeling

@ Estimate X|Y with a density estimator as well as P (Y)
@ Deduce using the Bayes formula an estimate Y|X.

@ Plug the estimate in the Bayes classifier.

Model hyperparameters:

o Features
e Generative model



Kel’n eI M eth Od Model Selection

@ Ideal solution:
f*(x) = argmax P (Y|x)

Kernel methods

e Estimate Y|X with a kernel conditional density estimator.

@ Plug the estimate in the Bayes classifier.

@ Model hyperparameters:

o Features
o Bandwidth and kernel



Logistic Regression

Ideal solution:

f*=argminE [EO/I(Y, f(&))}
fes

Replace ¢9/1 by the logistic loss.
Add a penalty A||f],

Compute the minimizer.

Model Selection

Model hyperparameters:

o Features
e Penalty and regularization parameter.



SVM Model Selection X

Ideal solution:

f* =argminE [ﬁo/l(y7 f(&))]
feS

Replace the expectation by its empirical counterpart.
Replace (%/Y(y, f) = 1,—¢ by €'y, f) = (1 — yf)+.
Add a penalty A||f[|3.

Compute the minimizer.

Model hyperparameters:
o Features
e S RKHS structure: features mapping and metric
e Regularization parameters A



( Deep) N eura I N etWOI’kS Model Selection

@ Ideal solution:

f*=argminE [Eo/l(Y, f(K))]
fes

Neuron: x — o(x '3 + 5(0)
Neural Network: Convolution system of neurons.

Replace ¢%/1(y, f) by a smooth/convex loss.

Minimize the empirical loss using the backprop algorithm
(gradient descent)

Model hyperparameters:

Features

Net architecture, activation function

Initialization strategy

Optimization strategy (and regularization strategy)



Tl’ee an d BOOStI n g Model Selection

@ Ideal solution:

f*(x) = argmaxP (Y|x) and f*=argminE Vo/l(Y7 f(l))}
fes

Single tree

@ Greedy Partition construction.
@ Local conditional density estimation / loss minimization.

@ Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest

@ Averaging of several predictors (probabilistic point of view)

Boosting

@ Best interpretation as a minimization of the exponential loss
Uy, f) = e ¥ (optimization point of view)




Outline

e Model Selection

@ Feature Design

Model Selection



Featu re DeSign Model Selection X

Transformed Representation

e From X to ¢(X)!
@ New description of X leads to a different linear model:
f3(X) = (X)' 8

Feature Design

@ Art of choosing ¢.
@ Examples:

o Renormalization, (domain specific) transform
e Basis decomposition
o Interaction between different variables...

@ Need to select a good transformation.



Outline

e Model Selection

@ Models, Complexity and Selection

Model Selection



Over_flttl ng ISSUG Model Selection

Underfit

(High bias) Generalization

error

Overfit
(High
variance)

Error

Training error

Model complexity

Error behaviour

@ Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.

@ Quite different behavior when the error is computed on new
observations (generalization error).

@ Overfit for complex models: parameters learned are too
specific to the learning set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training error!

Source: Unknown



Cross Validation and Penalization Model Selection

Two Approaches

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Bias correction approach: use empirical loss criterion but
correct with a term increasing with the complexity of S
Ra(fs) — Ra(fs) + pen(S)
and choose the model with the smallest corrected risk.

V.

Which loss to use?

@ The loss used in the risk: most natural!

o The loss used to estimate 6: penalized estimation!

A




Ensem ble methOdS Model Selection

@ How to combine several predictors (models)?

@ Two strategies: mixture or sequential

@ Model averaging

e Data dependent model averaging (learn mixture weights)

Stagewise

| \

@ Modify learning procedure according to current results.

@ Boosting, Cascade...

N




Outline

a Empirical Risk Minimization
@ Empirical Risk Minimization
@ ERM and PAC Bayesian Analysis
@ Hoeffding and Finite Class
@ McDiarmid and Rademacher Complexity
@ VC Dimension
@ Structural Risk Minimization



O Utl | ne Empirical Risk X

Minimization fot

a Empirical Risk Minimization
@ Empirical Risk Minimization



Empirical Risk Minimization Ermpirical Risk X

Minimization

Empirical Risk Minimizer (ERM)

@ For any loss ¢ and function class S,

N 1.7
f =argmin—» A(Y;, f(X;) = argmin R,(f
fes ”; ( (Xi) fes (7)

o Key property:
Rn(f) < Rnp(f),¥f e S

e Minimization not always tractable in practice!

@ Focus on the (%! case:
e only algorithm is to try all the functions,
e not feasible is there are many functions
e but interesting hindsight!



Outline

a Empirical Risk Minimization

@ ERM and PAC Bayesian Analysis

Empirical Risk
Minimization



ERM and PAC Analysis Empirical Risk ><

Minimization

@ Theoretical control of the random (error estimation) term:
R(fs) — R(f3)

Probably Almost Correct Analysis

e Theoretical guarantee that with probability larger than
1-4,
P (R(F) - R(fd) < es(9)) > 1-6
for a suitable es(d) > 0.
@ Implies:
o P (R(F) — R(f) S R(f) ~ R(F) +es(9)) 21~

« E[R() - R(%)] < /0 " ss(e)de

@ The result should hold without any assumption on the law P!



A General Decomposition Empircal Risk

Minimization
@ By construction:

R(F) = R(f$ ) ( o(F) = Ra(£8) + Ra(f§) — R(fS

Four possible upperbounds

° R(f) — R(f§) < sup ((R(f) = R(1s)) = (Ra(f) = Ra(£5)))

o R(f) — R(fF) < sup (R(f) = Ra(F)) + (Ra(fF) — R(£S))

fes
o R(F) —R(f§) < sup (R(f) = Ra(f)) + sup (Ra(f) = R(F))
o R(f) —R(f$) < 25up [R(f) = Ra(f)

Supremum of centered random variables!

Key: Concentration of each variable...



EI’I’OI’ BOUHCIS Empirical Risk X

Minimization

@ By construction, for any f' € S,
R(f') = Ra(f') + (R(f') — Ra(f"))

A uniform upper bound for the error

@ Simultaneously Vf’ € S,
R(f) < Ra(f') + sup (R(f) — Ru(f))
fes

@ Supremum of centered random variables!
o Key: Concentration of each variable...

@ Can be interpreted as a justification of the ERM!



Outline

a Empirical Risk Minimization

@ Hoeffding and Finite Class

Empirical Risk
Minimization



Concentration of the Empirical Loss Empircal Risk

Minimization
@ Empirical loss:

Rolf) = 23", £(X)
i=1

Properties

o O/1(Y; f(X;)) are i.i.d. random variables in [0, 1].

Concentration

P (Rn(f) — R(f) < 6) >1— ef2ne2
|

@ Concentration of sum of bounded independent variables!

@ Hoeffding theorem.



Hoeffd I ng Empirical Risk ><

Minimization

@ Let Z; be a sequence of independent centered random
variables supported in [a;, b;] then

2

n <€
’ <Z Zi > 6) <e 2imtima?
i1

2¢

@ Proof ingredients:
e Chernov bounds:

P (2": Z > 6) < E [e*>0, Zi] - 17, E [e*?]
i1

eAe eAe

. \Z: A2(b;—a;)?
o Exponential moment bounds: E [e*4] < e~ s

e Optimization in A

e Prop:

n MY (bi—a)?
E [&Z;Zl Z’} <e EF% .



Hoeffdlng Inequallty Empirical Risk X

Minimization

Let Z; be a sequence of independent centered random
variables supported in [aj, b;] then

n - <€
’ (Z Zi > 6> <e 2ialima’
i=1

Zi =L (B[ (v, £(X)] - (v, (X))
E[Z] =0 and
Z e [} (B [0, 700)] 1) 1 [©/3(Y, F(x)]

@ Concentration:

@ By symmetry,
P (Ra(f) = R(f) > €) < e 2
Combining the two yields
P (|R(f) — R(f)| > €) < 2¢~ 2"



Finite Class Case Empiical Risk X

Minimization

Concentration

e If S is finite of cardinality |S|,

P <sup(7z(f) ~Ro(f)) < V e 5)) >1-4
f n

P (supmn(f) _R(F)| < \/ log 5] + log(1/ 5)) >1-25
f

2n

@ Control of the supremum by a quantity depending on the
cardinality and the probability parameter 9.

@ Simple combination of Hoeffding and a union bound.



Finite Class Case Empirical Risk

Minimization

PAC Bounds

e If S is finite of cardinality |S|, with proba greater than 1 — 26

(P - RUE) < wogm *log1/0) | Woggln/a)

) 2\/Iog S| + log(1/6)
- 2n
e If S is finite of cardinality |S|, with proba greater than 1 — ¢,
simultaneously Vf’' € S,

R(f) < Rn(f’)+\/

log | S| + log(1/9)
2n

< Ra(F') + \/"’i,'f + \/'°g;/5)




Finite Class Case Empiical Risk X

Minimization

PAC Bounds

e If S is finite of cardinality |S|, with proba greater than 1 — 24

R(F) - () < 215 [2lntl/O)

n

e If S is finite of cardinality |S|, with proba greater than 1 — 9,
simultaneously Vf’' € S,

i 5

@ Risk increases with the cardinality of S.
@ Similar issue in cross-validation!

@ No direct extension for an infinite S...



Outline

a Empirical Risk Minimization

@ McDiarmid and Rademacher Complexity

Empirical Risk
Minimization



Concentration of the Supremum of Empirical Ris X
Minimization
Empirical Losses

@ Supremum of Empirical losses:
An(S)(KL s 7&n) = ?UgR(f) - Rn(f)
€

= sup (E [ (v F(x))] - f,iewl(v,-, f(x,))>

fes i=1

Properties

@ Bounded difference:

|A"(8)(K17 cee 7Kj7- : Kn) o AH(S)(KL c Kj) s 7Kn)| < 1/” )

P(An(S) —E[An(S)] <€) >1— e 2

@ Concentration of bounded difference function.
@ Generalization of Hoeffding theorem: McDiarmid Theorem.



|\/|CDiarmid Inequality Empirical Risk ><

Minimization

Bounded difference function

@ g: X" — R is a bounded difference function if it exist ¢; such
that
Y(Xi)iz, (Xi)iz € R,

8(X0 Xy Xy) = 8y, X, X,)

e If g is a bounded difference function and X; are independent
random variables then

—2¢

N
®
[

P(g(élw'wén) —E [g(élﬂ"'vin)] 2> €

P(E[g(X1,- -, Xn)] — &(X1,-., Xp) > €) < e2im1 ¥

@ Proof ingredients:

e Chernov bounds
e Martingale decomposition...



MCDlarmld Inequallty Empirical Risk X

Minimization

@ If g is a bounded difference function and X; are independent
random variables then

—2¢2

P(g(X1, . X,) —E[g(Xy,.. ., Xp)] > €) < e2ima ¥

e Using g = A,(S) for which ¢; = 1/n yields immediately
22

3 o2
-1 = e 2ne

]

P(AL(S)—E[A(S)] =€) <e

@ We derive then ,
—2e¢

P (An(S) > E[An(S)] +€) < einn = 20

@ It remains to upperbound

3|

E[A)] =E lsup R(f) — R,,(f)]
fesS



Rademacher Complexity

Empirical Risk
Minimization

@ Let o; be a sequence of i.i.d. random symmetric Bernoulli
variables (Rademacher variables):

E [sup (R(f) — Rna(f))| <2E
fes

Sl znja,-EO/l(Y,-, f(X,-))]

fes n i=1

Rademacher complexity

@ Let B C R", the Rademacher complexity of B is defined as

1 n
R,(B) =E — ibi
Q li:znéf’ 1

@ Theorem gives an upper bound of the expectation in term of
the average Rademacher complexity of the random set
Bn(S) = {(¢1(Yi, f(X))))iy. F € S}

@ Back to finite setting: This set is at most of cardinality 2!



Finite Set Rademacher Complexity Bound empiricst risk

Minimization

o If B is finite and such that Vb € B, 1||b||3 < M?, then
[2M2 log | B|
su oibj| <\ ——

fn(B) Leg Z ] n

o If B= B,(S) = {({%(Y;, f(X)))r_y, f €S}, we have M =1
and thus

2log | Ba(S)|

R.(B) < p

@ We obtain immediately

E [sup (R(f) — R,,(f))] <E
fesS




Finite Set Rademacher Complexity Bound empiricst risk

Minimization

Theorem

e With probability greater than 1 — 29,

R(?)_R(@)SE[ [log|B,(S)I| | [2108(1/0)

@ With probability greater than 1 — §, simultaneously V' € S

- 8|og|fn<8)|] . lo8(1/9)

2n

@ This is a direct consequence of the previous bound.



Finite Set Rademacher Complexity Bound  empirca ris X

Minimization

Corollary

@ If S is finite then with probability greater than 1 — 2§

REF) - R(F) < \/ 8log|S| \/ 2log(1/9)

n
@ If S is finite then with probability greater than 1 — §,
simultaneously Vf' € S

R(f) < Ra(f) + \/8 = 151, \/'°g$7/5)

@ It suffices to notice that
|Ba(S)| = [{(X(Y;, F(X)))iy, f € SH < |S]



Finite Set Rademacher Complexity Bound  empirca rise X

Minimization A

@ Same result with Hoeffding but with better constants!

R(?)_R(f§)<\/|0§L8]+\/2log,(71/5)

R(F) < Ra(f') + \/ 'Oil’f‘ - \/ '°g;/ )

@ Difference due to the crude upperbound of
E [sup(R(f) - R,,(f))]
fes

@ Why bother?: We do not have to assume that S is finite!
|Bn(S)| <27
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Back to the Bound

Empirical Risk
Minimization

fes

E [sup (R(f) — Ra(f))

. [ [810g |B,(S)

e Key quantity: E { 8|°g|an(S)|:|

@ Hard to control due to its structure!

A first data dependent upperbound

E[ /8|ogyfn(3)y S\/8IogE[fLB,,(S)|] T

@ Depends on the unknown P!




Shattering Coefficient Empirical Risk

Minimization

Shattering Coefficient (or Growth Function)

@ The shattering coefficient of the class S, s(S, n), is defined as
s(S,n) = sup  |{(£M(Y;, F(X)))i1, € S}
(X1, Y1) (X, Ya) JE(X X {—1,1})"

@ By construction, |B,(S)| < s(S, n) < max(27,|S|)!

A data independent upperbound

E

\/8|og |B,,(S)]‘ < \/8|ogs(8, n)




Shattering COfoICIGﬂt Empirical Risk

Minimization

e With probability greater than 1 — 29,
- I 2log(1
R(P)— R(E) < w 0gs(S.n) , ¢ 0g(1/9)

n n
e With probability greater than 1 — §, simultaneously V' € S,

R(F') < Ra(f') + \/8 logs(S, n) \/'Og(l/é)

n 2n

@ Depends only on the class S!



Vapnik-Chervonenkis Dimension Empircal Risk

Minimization

VC Dimension
@ The VC dimension dy¢ of S is defined as the largest integer d
such that
s(S,d) =2¢

@ The VC dimension can be infinite!

VC Dimension and Dimension

@ Prop: If span(S) corresponds to the sign of functions in a
linear space of dimension d then dy¢ < d.

@ VC dimension similar to the usual dimension.



VC Dimension and Sauer Lemma Empirical ik X
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Sauer Lemma
@ If the VC dimension dy¢ of § is finite

2" ifngd\/c
d
(en)vc if n > dyc

dvc

s(S,n) g{

@ Cor.: logs(S,n) < dyclog (d%) if n> dyc.



VC Dimension and PAC Bounds Empirical Risk

Minimization

PAC Bounds

o If S is of VC dimension dyc¢ then if n > dy¢
e With probability greater than 1 — 29,

8dvc log (2 ) L [2roe(1/9)
n n

R(F) = R(fF) < J
e With probability greater than 1 — §, simultaneously Vf’ € S,

Bdvclog () [log(1/9)
n 2n

R(f') < Rn(f’)+J

@ Rk: If dy¢c = +oo no uniform PAC bounds exists!
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Countable Collection and Non Uniform Empirical Risk
Minimization
PAC Bounds

PAC Bounds

@ Let mf > 0 such that Y} rcsmr =1
@ With proba greater than 1 — 29,

R(?)_R(fg)g\/Iog(21’{7rf)+\/2log,(71/6)

@ With proba greater than 1 — ¢, simultaneously Vf' € S,

R(F) < RA(F) + \/Iog(;:rf) . Wogg/«n

@ Very similar proof than the uniform one!

@ Much more interesting idea when combined with several
models...



Models, Non Uniform Risk Bounds and  emica i
SRM o

@ Assume we have a countable collection of set (Spm)mea and
let 7, be such that >, v mm = 1.

Non Uniform Risk Bound
@ With probability 1 — §, simultaneously for all m € M and all

feSn
\/8Iog\Bn(8m)\ +\/Iog(1/7rm)+\/log(l/5
n 2n 2n

Structural Risk Minimization

R(f) < Rn(f) +E

N,

@ Choose f as the minimizer over m € M and f € S,

/8Iog|B [log( 1/7rm

@ Mimics the minimization of the integrated risk!

f)+E

A\




SRM and PAC Bound Empirical Risk

Minimization

PAC Bound

o If  is the SRM minimizer then with probability 1 — 26,

\/8|og|Bn(Sm)|‘ +\/Iog(l/wm))
n 2n

R(f) < inf inf (R(f)JrIE
meM feSy

2log(1/9)

@ The SRM minimizer balances the risk R(f) and the upper
. . 8log |Bn(Sm log(1/mm
bound on the estimation error E [ ogn()] +1/ %.

o E [ 8"’g|“3n"(‘s"’)] can be replaced by an upper bound (for

instance a VC based one)...
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Creative Commons Attribution-ShareAlike (CC BY-SA 4.

@ You are free to:

@ Share: copy and redistribute the material in any medium or format

@ Adapt: remix, transform, and build upon the material for any purpose, even commercially.
@ Under the following terms:

@ Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes
were made. You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

@ ShareAlike: If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

@ No additional restrictions: You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.
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