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IntroductionMachine Learning
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A definition by Tom Mitchell
(http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T , as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/
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A news clustering algorithm:
Task: group article corresponding to the same news
Performance: quality of the clusters
Experience: set of articles
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A detection/recognition algorithm:
Task: say if an object is present or not in the image
Performance: number of errors
Experience: set of previously seen labeled images



IntroductionA Robot that Learns
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A robot endowed with a set of sensors and an online learning
algorithm:

Task: play football
Performance: score evolution
Experience:

current environment and outcome,
past games



IntroductionThree Kinds of Learning
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Unsupervised Learning
Task:
Clustering/DR
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Supervised Learning
Task:
Prediction
Performance:
Average error
Experience:
Predictions
(Ground Truth)

Reinforcement Learning
Task:
Action
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)

Timing: Offline/Batch (learning from past data) vs Online (continuous
learning)
Implicit stationarity assumption: Tomorrow is the same as yesterday!



IntroductionSupervised and Unsupervised
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Supervised Learning (Imitation)
Goal: Learn a function f predicting a variable Y from an
individual X .
Data: Learning set with labeled examples (X i ,Yi )
Assumption: Future data behaves as past data!
Predicting is not explaining!

Unsupervised Learning (Structure Discovery)
Goal: Discover a structure within a set of individuals (X i ).
Data: Learning set with unlabeled examples (X i )
Unsupervised learning is not a well-posed setting....



IntroductionMachine Learning
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Huge catalog of methods,
Need to define the performance,
Feature design...



IntroductionML Pipeline
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ntLearning pipeline
Test and compare models.

Deployment pipeline is different!



IntroductionDS 6= ML
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Figuring out the problem,
Accessing the data,
Not the ML part!
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Reading a ZIP code on an envelop
Task: give a number from an image.
Data: X = image / Y = corresponding number.
Performance measure: error rate.
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Predicting protein interaction
Task: Predict (unknown) interactions between proteins.
Data: X = pair of proteins / Y = existence or no of
interaction.
Performance measure: error rate.
Numerous similar questions in bio(informatics): genomic,...



IntroductionDetection
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Face detection
Task: Detect the position of faces in an image
Different setting?
Reformulation as a supervised learning problem.
Goal: Detect the presence of faces at several positions and
scales.
Data: X = sub image / Y = presence or no of a face...
Performance measure: error rate.
Lots of detections in an image: post processing required...
Performance measure: box precision.



IntroductionEucalyptus
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Height estimation
Simple (and classical) dataset.
Task: predict the height from circumference.
Data: X = circumference /
Y = height.
Performance measure: means squared error.
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IntroductionEucalyptus
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Simple (and classical) dataset.
Goal: predict the height from circumference
X = circ = circumference.
Y = ht = height.



IntroductionEucalyptus
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Linear Model
Parametric model:

fβ(circ) = β(1) + β(2)circ

How to choose β = (β(1), β(2))?



IntroductionLeast Squares

Methodology
Natural goodness criterion:

n∑
i=1
|Yi − fβ(X i )|2 =

n∑
i=1
|hti − fβ(circi )|2

=
n∑

i=1
|hti − (β(1) + β(2)circi )|2

Choice of β that minimizes this criterion!

β̂ = argmin
β∈R2

n∑
i=1
|hi − (β(1) + β(2)circi )|2

Easy minimization with an explicit solution!



IntroductionPrediction
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Prediction
Linear prediction for the height:

ĥt = f
β̂

(circ) = β̂(1) + β̂(2)circ



IntroductionHeuristic

Linear Regression
Statistical model: (circi , hti ) i.i.d. with the same law
than a generic (circ, ht).
Performance criterion: Look for f with a small average
error

E
[
|ht− f (circ)|2

]
Empirical criterion: Replace the unknown law by its
empirical counterpart

1
n

n∑
i=1
|hti − f (circi )|2

Predictor model: As the minimum over all function is 0 (if
all the circi are different), restrict to the linear functions
f (circ) = β(1) + β(2)circ to avoid over-fitting.
Model fitting: Explicit formula here.

This model can be too simple!



IntroductionPolynomial Regression
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Polynomial Model
Polynomial model: fβ(circ) =

∑p
l=1 β

(l)circl−1

Linear in β!
Easy least squares estimation for any degree!
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Models
Increasing degree = increasing complexity and better fit on
the data
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Best Degree?
How to choose among those solution?



IntroductionOver-fitting Issue

Error behavior
Empirical risk (error made on the training set) decays when
the complexity of the model increases.
Quite different behavior when the error is computed on new
observations (true risk / generalization error).

Overfit for complex models: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use an other criterion than the training error!



IntroductionCross Validation and Penalization

Two directions
How to estimate the generalization error in a different way?
Find a way to correct the empirical error?

Two Approaches
Cross validation: Estimate the error on a different dataset:

Very efficient (and almost always used in practice!)
Need more data for the error computation.

Penalization approach: Correct the optimism of the
empirical error:

Require to find the correction (penalty).



IntroductionUnivariate Regression
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Questions
How to build a model?
How to fit a model to the data?
How to assess its quality?
How to select a model among a collection?
How to guaranty the quality of the selected model?
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Supervised LearningSupervised Learning

Supervised Learning Framework
Input measurement X ∈ X
Output measurement Y ∈ Y.
(X ,Y ) ∼ P with P unknown.
Training data : Dn = {(X 1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!



Supervised LearningLoss and Probabilistic Framework

Loss function for a generic predictor
Loss function: `(Y , f (X )) measures the goodness of the
prediction of Y by f (X )
Examples:

Prediction loss: `(Y , f (X )) = 1Y 6=f (X)
Quadratic loss: `(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P [`(Y , f (X))]
Examples:

Prediction loss: E [`(Y , f (X ))] = P (Y 6= f (X ))
Quadratic loss: E [`(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!



Supervised LearningBest Solution

The best solution f ∗ (which is independent of Dn) is
f ∗ = arg min

f ∈F
R(f ) = arg min

f ∈F
E [`(Y , f (X ))] = arg min

f ∈F
EX

[
EY |X [`(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ∗(X ) =


+1 if P (Y = +1|X ) ≥ P (Y = −1|X )

⇔ P (Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ∗(X ) = E [Y |X ]

Issue: Solution requires to know E [Y |X ] for all values of X !



Supervised LearningGoal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(X i ))

Examples:
Linear regression
Linear discrimination with

S = {x 7→ sign{x>β + β(0)} /β ∈ Rd , β(0) ∈ R}



Supervised LearningExample: TwoClass Dataset

Synthetic Dataset
Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and
K. Johnson, Springer
Numerical experiments with R and the caret package.



Supervised LearningExample: Linear Discrimination



Supervised LearningExample: More Complex Model
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?

by a line? by a more complex formula?
by also taking account of the block and the clone type?
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Supervised LearningEucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference, block, clone / Y: height

Can we predict the height from the circumference?
by a line? by a more complex formula?
by also taking account of the block and the clone type?



Supervised LearningUnder-fitting / Over-fitting Issue
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Model Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?



Supervised LearningUnder-fitting / Over-fitting Issue
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Under-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training
set.



Supervised LearningBias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ∗ = argminf∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ∗S = argminf∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X ,Y ).



Supervised LearningUnder-fitting / Over-fitting Issue
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Different behavior for different model complexity
Low complexity model are easily learned but the
approximation error (bias) may be large (Under-fit).
High complexity model may contain a good ideal target but
the estimation error (variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature
engineering and specific algorithm) rather than only of model.



Supervised LearningTheoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S)−R(f ?) = R(f ?S )−R(f ?)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ?S )︸ ︷︷ ︸
Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability
theory!
Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)

Often need mild assumptions on P... (Nonparametric
Statistics?)



Supervised LearningBinary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (X i ))

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)

Not convex and not smooth!



Supervised LearningProbabilistic Point of View
Ideal Solution and Estimation
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The best solution f ∗ (which is independent of Dn) is
f ∗ = arg min

f ∈F
R(f ) = arg min

f ∈F
E [`(Y , f (X ))] = arg min

f ∈F
EX

[
EY |X [`(Y , f (x))]

]
Bayes Predictor (explicit solution)
In binary classification with 0− 1 loss:

f ∗(X ) =
{

+1 if P (Y = +1|X ) ≥ P (Y = −1|X )
−1 otherwise

Issue: Solution requires to know E [Y |X ] for all values of X !
Solution: Replace it by an estimate.



Supervised LearningOptimization Point of View
Loss Convexification

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (X i ))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant.



Supervised LearningProbabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E [`(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 `(Yi , f (X i ))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting...
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A Probabilistic Point
of View

Best Solution

The best solution f ∗ (which is independent of Dn) is
f ∗ = arg min

f ∈F
R(f ) = arg min

f ∈F
E [`(Y , f (X ))] = arg min

f ∈F
EX

[
EY |X [`(Y , f (X )]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ∗(X ) =


+1 if P (Y = +1|X ) ≥ P (Y = −1|X )

⇔ P (Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ∗(X ) = E [Y |X ]

Issue: Explicit solution requires to know Y |X (or E [Y |X ]) for all
values of X !



A Probabilistic Point
of View

Plugin Predictor

Idea: Estimate Y |X by Y |X
∧

and plug it the Bayes classifier.

Plugin Bayes Predictor
In binary classification with 0− 1 loss:

f̂ (X ) =


+1 if P (Y = +1|X )
∧

≥ P (Y = −1|X )
∧

⇔ P (Y = +1|X )
∧

≥ 1/2
−1 otherwise

In regression with the quadratic loss
f̂ (X ) = E

[
Y |X
∧]

Rk: Direct estimation of E [Y |X ] by E [Y |X ]
∧

also possible...



A Probabilistic Point
of View

Plugin Predictor

How to estimate Y |X?

Three main heuristics
Fully Generative modeling: Estimate the law of (X ,Y ) and
use the Bayes formula to deduce an estimate of Y |X :
LDA/QDA, Naive Bayes...
Parametric Conditional modeling: Estimate the law of Y |X
by a parametric law Lθ(X ): (generalized) linear regression...
Non Parametric Conditional modeling: Estimate the law
of Y |X by a non parametric estimate: kernel methods, loess,
nearest neighbors...

Rk: Direct estimation of E [Y |X ] by E [Y |X ]
∧

also possible...



A Probabilistic Point
of View

Plugin Classifier

Input: a data set Dn
Learn Y |X or equivalently P (Y = k|X ) (using the data set)
and plug this estimate in the Bayes classifier

Output: a classifier f̂ : Rd → {−1, 1}

f̂ (X ) =

+1 if ̂P (Y = 1|X ) ≥ ̂P (Y = −1|X )
−1 otherwise

Can we guaranty that the classifier is good if Y |X is well
estimated?



A Probabilistic Point
of View

Classification Risk Analysis

Theorem
If f̂ = sign(2p̂+1 − 1) then

E
[
`0,1(Y , f̂ (X ))

]
− E

[
`0,1(Y , f ?(X ))

]
≤ E

[
‖Ŷ |X − Y |X‖1

]
≤
(
E
[
2KL(Y |X , Ŷ |X

])1/2

If one estimates P (Y = 1|X ) well then one estimates f ? well!
Link between a conditional density estimation task and a
classification one!
Rk: In general, the conditional density estimation task is more
complicated as one should be good for all values of
P (Y = 1|X ) while the classification task focus on values
around 1/2 for the 0/1 loss!
In regression, (often) direct control of the quadratic loss...



A Probabilistic Point
of View
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A Probabilistic Point
of View

Fully Generative Modeling
Idea: If one knows the law of (X ,Y ) everything is easy!

Bayes formula
With a slight abuse of notation,

P (Y |X ) = P ((X ,Y ))
P (X )

= P (X |Y )P (Y )
P (X )

Generative Modeling:
Propose a model for (X ,Y ) (or equivalently X |Y and Y ),
Estimate it as a density estimation problem,
Plug the estimate in the Bayes formula
Plug the conditional estimate in the Bayes classifier.

Rk: Require to estimate (X ,Y ) rather than only Y |X !
Great flexibility in the model design but may lead to complex
computation.



A Probabilistic Point
of View

Fully Generative Modeling

Simpler setting in classification!

Bayes formula

P (Y = k|X ) = P (X |Y = k)P (Y = k)
P (X )

Binary Bayes classifier (the best solution)

f ∗(X ) =
{

+1 if P (Y = 1|X ) ≥ P (Y = −1|X )
−1 otherwise

Heuristic: Estimate those quantities and plug the estimations.
By using different models/estimators for P (X |Y ), we get
different classifiers.
Rk: No need to renormalize by P (X ) to take the decision!



A Probabilistic Point
of View

Discriminant Analysis

Discriminant Analysis (Gaussian model)
The densities are modeled as multivariate normal, i.e.,

P (X |Y = k) ∼ Nµk ,Σk

Discriminant functions:
gk(X) = ln(P (X|Y = k)) + ln(P (Y = k))

gk(X ) =− 1
2(X − µk)>Σ−1

k (X − µk)

− d
2 ln(2π)− 1

2 ln(|Σk |) + ln(P (Y = k))

QDA (different Σk in each class) and LDA (Σk = Σ for all k)

Beware: this model can be false but the methodology
remains valid!



A Probabilistic Point
of View

Discriminant Analysis
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space
into some decision regions R1,R2

, . . . ,Rc

The regions are separated by decision boundaries
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Quadratic Discriminant Analysis
The probability densities are Gaussian
The effect of any decision rule is to divide the feature space
into some decision regions R1,R2, . . . ,Rc

The regions are separated by decision boundaries
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Discriminant Analysis

Estimation
In practice, we will need to estimate µk , Σk and Pk := P (Y = k)

The estimate proportion ̂P (Y = k) = nk
n = 1

n
∑n

i=1 1{Yi =k}

Maximum likelihood estimate of µ̂k and Σ̂k (explicit formulas)

DA classifier

f̂G(X ) =
{

+1 if ĝ+1(X ) ≥ ĝ−1(X )
−1 otherwise

Decision boundaries: quadratic = degree 2 polynomials.
If one imposes Σ−1 = Σ1 = Σ then the decision boundaries is
a linear hyperplane.
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Discriminant Analysis
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Linear Discriminant Analysis
Σω1 = Σω2 = Σ
The decision boundaries are linear hyperplanes
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Discriminant Analysis

Quadratic Discriminant Analysis
Σω1 6= Σω2

Arbitrary Gaussian distributions lead to Bayes decision
boundaries that are general quadratics.
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Example: LDA
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Example: QDA
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Naive Bayes

Naive Bayes
Classical algorithm using a crude modeling for P (X |Y ):

Feature independence assumption:

P (X |Y ) =
d∏

l=1
P
(
X (l)

∣∣∣Y)
Simple featurewise model: binomial if binary, multinomial if
finite and Gaussian if continuous

If all features are continuous, similar to the previous Gaussian
but with a diagonal covariance matrix!
Very simple learning even in very high dimension!
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Naive Bayes with density estimation
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Example: Naive Bayes
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Other Models

Other models of the world!

Bayesian Approach
Generative Model plus prior on the parameters
Inference thanks to the Bayes formula

Graphical Models
Markov type models on Graphs

Gaussian Processes
Multivariate Gaussian models

...
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A Probabilistic Point
of View

Parametric Conditional Density Models

Idea: Estimate directly Y |X by a parametric conditional
density Pθ (Y |X ).

Maximum Likelihood Approach
Classical choice for θ:

θ̂ = argmin
θ
−

n∑
i=1

logPθ (Yi |X i )

Goal: Minimize the Kullback-Leibler divergence between the
conditional law of Y |X and Pθ (Y |X )

E [KL (Y |X ,Pθ (Y |X ))]

Rk: This is often not (exactly) the learning task!
Large choice for the family {Pθ (Y |X )} but depends on Y
(and X ).
Regression: One can also model directly E [Y |X ] by fθ(X )
and estimate it with a least square criterion...
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Linear Conditional Density Models

Linear Models
Classical choice: θ = (θ′, ϕ)

Pθ (Y |X ) = PX>β,ϕ (Y )
Very strong assumption!

Classical examples:
Binary variable: logistic, probit...
Discrete variable: multinomial logistic regression...
Integer variable: Poisson regression...
Continuous variable: Gaussian regression...
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Binary Classifier

Plugin Linear Discrimination
Model P (Y = +1|X ) by h(x>β+β(0)) with h non decreasing.
h(x>β + β(0)) > 1/2⇔ x>β + β(0) − h−1(1/2) > 0
Linear Classifier: sign(x>β + β(0) − h−1(1/2))

Plugin Linear Classifier Estimation
Classical choice for h:

h(t) = et

1 + et logit or logistic

h(t) = FN (t) probit
h(t) = 1− e−et log-log

Choice of the best β from the data.
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Maximum Likelihood Estimate

Probabilistic Model
By construction, Y |X follows B(P (Y = +1|X ))
Approximation of Y |X by B(h(x>β + β(0)))
Natural probabilistic choice for β: β minimizing the distance
between B(h(x>β)) and B(P (Y = 1|X )).

KL Distance
Natural distance: Kullback-Leibler divergence

KL(B(P (Y = 1|X )),B(h(x>β))

= EX
[
KL(B(P (Y = 1|X )),B(h(x>β))

]
= EX

[
P (Y = 1|X ) log P (Y = 1|X )

h(x>β)

+(1− P (Y = 1|X )) log 1− P (Y = 1|X )
1− h(x>β)

]
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Maximum Likelihood Estimate

log-likelihood
KL:
KL(B(P (Y = 1|X )),B(h(x>β))

= EX

[
P (Y = 1|X ) log P (Y = 1|X )

h(x>β)

+(1− P (Y = 1|X )) log 1− P (Y = 1|X )
1− h(x>β)

]
= EX

[
−P (Y = 1|X ) log(h(x>β))

−(1− P (Y = 1|X )) log(1− h(x>β))
]

+ CX ,Y

Empirical counterpart = opposite of the log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

>β)) + 1Yi =−1 log(1− h(X i
>β))

)
Minimization of possible if h is regular...
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Logistic Regression

Logistic Regression and Odd
Logistic model: h(t) = et

1+et (most natural choice...)
The Bernoulli law B(h(t)) satisfies then

P (Y = 1)
P (Y = −1) = et ⇔ log P (Y = 1)

P (Y = −1) = t

Interpretation in term of odd.
Logistic model: linear model on the logarithm of the odd.

Associated Classifier
Plugin strategy:

fβ(X ) =

1 if eX>β

1+eX>β > 1/2⇔ X>β > 0
−1 otherwise
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Logistic Regression and Minimization

Likelihood Rewriting
Opposite of the log-likelihood:

− 1
n

n∑
i=1

(
1Yi =1 log(h(X i

>β)) + 1Yi =−1 log(1− h(X i
>β))

)

= −1
n

n∑
i=1

(
1Yi =1 log eX i

>β

1 + eX>β
+ 1Yi =−1 log 1

1 + eX i
>β

)

= 1
n

n∑
i=1

log
(
1 + e−Yi (X i

>β)
)

Convex and smooth function of β
Easy optimization.
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Example: Logistic



A Probabilistic Point
of View

Feature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )>β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables...
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Example: Quadratic Logistic
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Gaussian Linear Regression
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Gaussian Linear Model
Model: Y |X ∼ N (x>β, σ2) plus independence
Probably the most classical model of all time!
Maximum Likelihood with explicit formulas for the two
parameters.

In regression, estimation of E [Y |X ] is sufficient: other/no
model for the noise possible.
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Extension of Gaussian Linear Regression

Generalized Linear Model
Model entirely characterized by its mean (up to a scalar
nuisance parameter) (v(Eθ [Y ]) = θ with v invertible).
Exponential family: Probability law family Pθ such that the
density can be written

f (y , θ, ϕ) = e
yθ−v(θ)

ϕ
+w(y ,ϕ)

where ϕ is a nuisance parameter and w a function
independent of θ.
Examples:

Gaussian: f (y , θ, ϕ) = e
yθ−θ2/2

ϕ + y2/2
ϕ

Bernoulli: f (y , θ) = ezθ−ln(1+eθ) (θ = ln p/(1− p))
Poisson: f (y , θ) = e(yθ−eθ)+ln(y !) (θ = lnλ)

Linear Conditional model: Y |X ∼ Px>β...

ML fit of the parameters
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A Probabilistic Point
of View

Non Parametric Conditional Estimation

Idea: Estimate Y |X or E [Y |X ] directly without resorting to
an explicit parametric model.

Non Parametric Conditional Estimation
Two heuristics:

Y |X (or E [Y |X ]) is almost constant (or simple) in a
neighborhood of X . (Kernel methods)
Y |X (or E [Y |X ]) can be approximated by a model whose
dimension depends on the complexity and the number of
observation. (Quite similar to parametric model plus model
selection...)

Focus on kernel methods!
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Kernel Methods

Idea: The behavior of Y |X is locally constant or simple!

Kernel
Choose a kernel K (think of a weighted neighborhood).
For each X̃ , compute a simple localized estimate of Y |X
Use this local estimate to take the decision

In regression, estimation of E [Y |X ] is sufficient.
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Example: k Nearest-Neighbors (with
k = 3)
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Example: k Nearest-Neighbors (with
k = 4)
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of View

k Nearest-Neighbors

Neighborhood Vx of x : k learning samples closest from x .

k-NN as local conditional density estimate

̂P (Y = 1|X ) =
∑

X i∈VX
1{Yi =+1}

|VX |

KNN Classifier:

f̂KNN(X ) =

+1 if ̂P (Y = 1|X ) ≥ ̂P (Y = −1|X )
−1 otherwise

Lazy learning: all the computations have to be done at
prediction time.
Remark: You can also use your favorite kernel estimator...
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A Probabilistic Point
of View

Regression and Local Averaging

A naive idea
E [Y |X ] can be approximated by a local average:

f̂ (X ) = 1
|{X i ∈ N (X )}|

∑
X i∈N (X)

Yi

where B(X ) is a neighborhood of X .
Heuristic:

If X → E [Y |X ] is regular then
E [Y |X ] ' E

[
E
[
Y |X ′

]
|X ′ ∈ N (X )

]
= E

[
Y |X ′ ∈ N (X )

]
Replace an expectation by an empirical average:

E
[
Y |X ′ ∈ N (X )

]
' 1
|{X i ∈ N (X )}|

∑
X i∈N (X)

Yi
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Regression and Local Averaging

Neighborhood and Size
Most classical choice: N (X ) = {X ′, ‖X − X ′‖ ≤ h } where
‖.‖ is a (pseudo) norm and h a size (bandwidth) parameter.
In principle, the norm and h could vary with X , and the norm
can be replaced by a (pseudo) distance.
Focus here on a fixed distance with a fixed bandwidth h cased.

Bandwidth Heuristic
A large bandwidth ensures that the average is taken on
many samples and thus the variance is small...
A small bandwidth is thus that the approximation
E [Y |X ] ' E

[
Y |X ′ ∈ N (X )

]
is more accurate (small bias).
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Weighted Local Averaging

Weighted Local Average
Replace the neighborhood N (X ) by a decaying window
function w(X ,X ′).
E [Y |X ] can be approximated by a weighted local average:

f̂ (X ) =
∑

i w(X ,X ′i )Yi∑
i w(X ,X ′i )

.

Kernel
Most classical choice: w(X ,X ′) = K

(
X−X ′

h

)
where h the

bandwidth is a scale parameter.
Examples:

Box kernel: K (t) = 1‖t‖≤1 (Neighborhood)
Triangular kernel: K (t) = max(1− ‖t‖, 0).
Gaussian kernel: K (t) = e−t2/2

Rk: K and λK yields the same estimate.
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From Density Estimation to Regression

Nadaraya-Watson Heuristic
Provided all the densities exist

E [Y |X ] =
∫
Yp(X ,Y )dY∫
p(Y ,X )dY =

∫
Yp(X ,Y )dY

p(X )
Replace the unknown densities by their estimates:

p̂(X ) = 1
n

n∑
i=1

K (X − X i )

p̂(X ,Y ) = 1
n

n∑
i=1

K (X − X i )K ′(Y − Yi )

Now if K ′ is a kernel such that
∫
YK ′(Y )dY = 0 then∫

Y p̂(X ,Y )dY = 1
n

n∑
i=1

K (X − X i )Yi
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From Density Estimation to Regression

Nadaraya-Watson
Resulting estimator of E [Y |X ]

f̂ (X ) =
∑n

i=1 YiKh(X − X i )∑n
i=1 Kh(X − X i )

Same local weighted average estimator!

Bandwidth Choice
Bandwidth h of K allows to balance between bias and
variance.
Theoretical analysis of the error is possible.
The smoother the densities the easier the estimation but the
optimal bandwidth depends on the unknown regularity!
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Local Linear Estimation

Another Point of View on Kernel
Nadaraya-Watson estimator:

f̂ (X ) =
∑n

i=1 YiKh(X − X i )∑n
i=1 Kh(X − X i )

Can be view as a minimizer of
n∑

i=1
|Yi − β|2Kh(X − X i )

Local regression of order 0!

Local Linear Model
Estimate E [Y |X ] by f̂ (X ) = φ(X )>β̂(X ) where φ is any
function of X and β̂(X ) is the minimizer of

n∑
i=1
|Yi − φ(X i )>β|2Kh(X − X i ).
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LOESS: LOcal polynomial regrESSion
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1D Nonparametric Regression
Assume that X ∈ R and let φ(X ) = (1,X , . . . ,Xd ).
LOESS estimate: f̂ (X ) =

∑d
j=0 β̂(X (j))X j with β̂(X )

minimizing
n∑

i=1
|Yi −

d∑
j=0

β(j)X j
i |

2Kh(X − X i ).

Most classical kernel used: Tricubic kernel
K (t) = max(1− |t|3, 0)3

Most classical degree: 2...
Local bandwidth choice such that a proportion of points
belongs to the window.
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Cross Validation and
Error Estimation

Training Error Issue
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Error behaviour
Learning/training error (error made on the learning/training
set) decays when the complexity of the method increases.
Quite different behavior when the error is computed on new
observations (generalization error).

Overfit for complex methods: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use a different criterion than the training error!



Cross Validation and
Error Estimation

Error Estimation vs Method Selection

Predictor Error Estimation
Goal: Given a predictor f assess its quality.
Method: Hold-out error computation (/ Error correction).
Usage: Compute an estimate of the error of a selected f
using a test set to be used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Error correction)
Usage: Compute error estimates for several ML methods
using training/validation sets to choose the most promising
one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection.
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Error Estimation

Cross Validation and Error Correction

Two Approaches
Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.
Correction approach: use empirical loss criterion but correct
it with a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!
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Cross Validation
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Very simple idea: use a second learning/verification set to
compute a verification error.
Sufficient to remove the dependency issue!
Implicit random design setting...

Cross Validation
Use (1− ε)× n observations to train and ε× n to verify!
Possible issues:

Validation for a learning set of size (1− ε)× n instead of n ?
Unstable error estimate if εn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.



Cross Validation and
Error Estimation

Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size
n × (1− ε) and n × ε.
Learn f̂ HO from the subset Dtrain.
Compute the empirical error on the subset Dtest:

RHO
n (f̂ HO) = 1

nε
∑

(X i ,Yi )∈Dtest

`(Yi , f̂ HO(X i ))

Predictor Error Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the error of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV error,
Reestimate the f̂S with all the data.



Cross Validation and
Error Estimation

Hold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size
n × (1− ε) and n × ε.
Learn f̂ HO from the subset Dtrain.
Compute the empirical error on the subset Dtest:

RHO
n (f̂ HO) = 1

nε
∑

(X i ,Yi )∈Dtest

`(Yi , f̂ HO(X i ))

Only possible setting for error estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use
all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.
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V -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, ..,V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical error:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

`(Yi , f̂ −v (X i ))

Compute the average empirical error:

RCV
n (f̂ ) = 1

V

V∑
v=1
R−v

n (f̂ −v )

Estimation of the quality of method not of a given predictor.
Leave One Out : V = n.
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V -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variable but are not
independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1− 1
V )Cov

[
R−v

n (f̂ −v ),R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1− 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better...

Accuracy/Speed tradeoff: V = 5 or V = 10!
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Linear Regression and Leave One Out

Leave One Out = V fold for V = n: very expensive in general.

A fast LOO formula for the linear regression
Prop: for the least squares linear regression,

f̂ −i (X i ) = f̂ (X i )− hiiYi
1− hii

with hii the ith diagonal coefficient of the hat (projection)
matrix.
Proof based on linear algebra!
Leads to a fast formula for LOO:

RLOO
n (f̂ ) = 1

n

n∑
i=1

|Yi − f̂ (X i )|2
(1− hii )2
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Cross Validation and Confidence Interval
How to replace pointwise estimation by a confidence interval?
Can we use the variability of the CV estimates?
Negative result: No unbiased estimate of the variance!

Gaussian Interval (Comparison of the means and ∼ indep.)
Compute the empirical variance and divide it by the number of
folds to construct an asymptotic Gaussian confidence interval,
Select the simplest model whose values falls into the
confidence interval of the model having the smallest CV error.

PAC approach (Quantile, ∼ indep. and small risk estim. error)
Compute the raw medians (or a larger raw quantiles)
Select the model having the smallest quantiles to ensure a
small risk with high probability.

Always reestimate the chosen model with all the data.
To obtain an unbiased error estimate of the final predictor:
hold out error on untouched test data.
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Cross Validation
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Example: KNN (k̂ = 61 using
cross-validation)
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Train/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final
predictor.

Need to (re)estimate the error of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a
single predictor.
Estimate the performance of this predictor on Test.
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Error Estimation

Error Correction

Empirical loss of an estimator computed on the dataset used
to chose is is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.
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Penalization

Penalized Loss
Minimization of

argmin
θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(X i )) + pen(θ)

where pen(θ) is an error correction (penalty).

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(θ) = 2d

nσ
2.

AIC Heuristics: Maximum Likelihood with pen(θ) = d
n .

BIC Heuristics: Maximum Likelohood with pen(θ) = log(n)d
n .

Structural Risk Minimization: Pred. loss and clever penalty.
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Optimization Point of
View

Probabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E [`(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 `(Yi , f (X i ))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting...



Optimization Point of
View

Empirical Risk Minimization

The best solution f ? is the one minimizing
f ? = arg minR(f ) = arg minE [`(Y , f (X ))]

Empirical Risk Minimization
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the average empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(X i ))

Intractable for the `0/1 loss!



Optimization Point of
View

Convexification Strategy

Risk Convexification
Replace the loss `(Y , fθ(X )) by a convex upperbound
`′(Y , fθ(X )) (surrogate loss).
Minimize the average of the surrogate empirical loss

f̃ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`′(Yi , fθ(X i ))

Use f̂ = sign(f̃ )

Much easier optimization.

Instantiation
Logistic (Revisited)
Support Vector Machine
(Deep) Neural Network
Boosting



Optimization Point of
View

Classification Loss and Convexification

Convexification
Replace the loss `0/1(Y , f (X )) by

`′(Y , f (X )) = l(Yi f (X ))
with l a convex function.
Further mild assumption: l is decreasing, differentiable at 0
and l ′(0) < 0.



Optimization Point of
View

Classification Loss and Convexification

Classical convexification
Logistic loss: `′(Y , f (X )) = log(1 + e−Yf (X)) (Logistic / NN)
Hinge loss: `′(Y , f (X )) = (1− Yf (X ))+ (SVM)
Exponential loss: `′(Y , f (X )) = e−Yf (X) (Boosting...)



Optimization Point of
View

Properties

The Target is the Bayes Classifier
The minimizer of

E
[
`′(Y , f (X ))

]
= E [l(Yf (X ))]

is the Bayes classifier f ? = sign(2η(X )− 1)

Control of the Excess Risk
It exists a convex function Ψ such that

Ψ
(
E
[
`0/1(Y , sign(f (X ))

]
− E

[
`0/1(Y , f ?(X )

])
≤ E

[
`′(Y , f (X )

]
− E

[
`′(Y , f ?(X ))

]
Theoretical guarantee!



Optimization Point of
View

Logistic Revisited

Ideal solution:

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (X i ))

Logistic regression
Use f (X ) = X>β + β(0).
Use the logistic loss `(y , f ) = log2(1 + e−yf ), i.e. the
-log-likelihood.

Different vision than the statistician but same algorithm!
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Logistic Revisited
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Ideal Separable Case
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Linear classifier: sign(X>β + β(0))
Separable case: ∃(β, β(0)),∀i ,Yi (X i

>β + β(0)) > 0!

How to choose (β, b) so that the separation is maximal?
Strict separation: ∃(β, β(0)), ∀i ,Yi (X i

>β + β(0)) ≥ 1
Distance between X>β + β(0) = 1 and X>β + β(0) = −1:

2
‖β‖

Maximizing this distance is equivalent to minimizing 1
2‖β‖

2.
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Ideal Separable Case
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Separable SVM
Constrained optimization formulation:

min 1
2‖β‖

2 with ∀i ,Yi (X i
>β + β(0)) ≥ 1

Quadratic Programming setting.
Efficient solver available...
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Non Separable Case

So
ur

ce
:

M
.M

oh
ri

et
al

.

What about the non separable case?

SVM relaxation
Relax the assumptions

∀i ,Yi (X i
>β + β(0)) ≥ 1

to
∀i ,Yi (X i

>β + β(0)) ≥ 1− si
with the slack variables si ≥ 0
Keep those slack variables as small as possible by minimizing

1
2‖β‖

2 + C
n∑

i=1
si

where C > 0 is the goodness-of-fit strength
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Non Separable Case

So
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SVM
Constrained optimization formulation:

min 1
2‖β‖

2 + C
n∑

i=1
si with

{
∀i ,Yi (X i

>β + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge Loss reformulation:

min 1
2‖β‖

2 + C
n∑

i=1
max(0, 1− Yi (X i

>β + β(0)))︸ ︷︷ ︸
Hinge Loss

Constrained convex optimization algorithms vs gradient
descent algorithms.



Optimization Point of
View

SVM as a Penalized Convex Relaxation

Convex relaxation:

argmin 1
2‖β‖

2 + C
n∑

i=1
max(1− Yi (X i

>β + β(0)), 0)

= argmin 1
n

n∑
i=1

max(1− Yi (X i
>β + β(0)), 0) + 1

Cn
1
2‖β‖

2

Prop:
`0/1(Yi , sign(X i

>β + β(0))) ≤ max(1− Yi (X i
>β + β(0)), 0)

Penalized convex relaxation (Tikhonov!)

1
n

n∑
i=1
`0/1(Yi , sign(X i

>β + β(0)))

≤ 1
n

n∑
i=1

max(1− Yi (X i
>β + β(0)), 0) + 1

Cn
1
2‖β‖

2
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SVM
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Optimization Point of
View

Constrained Minimization

Constrained Minimization
Goal:

min
x

f (x)

with
{
hj(x) = 0, j = 1, . . . p
gi (x) ≤ 0, i = 1, . . . q

or rather with argmin!

Different Setting
f , hj , gi differentiable
f convex, hj affine and gi concave.

Feasibility
x is feasible if hj(x) = 0 and gi (x) ≤ 0.
Rk: The set of feasible points may be empty



Optimization Point of
View

Lagrangian
Constrained Minimization

Goal:

p∗ = min
x

f (x) with
{
hj(x) = 0, j = 1, . . . p
gi (x) ≤ 0, i = 1, . . . q

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi (x)

with λ ∈ Rp and µ ∈ (R+)q.
The λj and µi are called the dual (or Lagrange) variables.
Prop:

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) =
{
f (x) if x is feasible
+∞ otherwise

min
x

max
λ∈Rp , µ∈(R+)q

L(x , λ, µ) = p∗



Optimization Point of
View

Lagrangial Dual

Lagrangian
Def:

L(x , λ, µ) = f (x) +
p∑

j=1
λjhj(x) +

q∑
i=1

µigi (x)

with λ ∈ Rp and µ ∈ (R+)q.

Lagragian Dual
Lagrandial dual function:

Q(λ, µ) = min
x
L(x , λ, µ)

Prop:
Q(λ, µ) ≤ f (x), for all feasible x

max
λ∈Rp , µ∈(R+)q

Q(λ, µ) ≤ min
x feasible

f (x)



Optimization Point of
View

Duality

Primal
Primal:

p∗ = min
x∈X

f (x) with
{
hj(x) = 0, j = 1, . . . p
gi (x) ≤ 0, i = 1, . . . q

Dual
Dual:

q∗ = max
λ∈Rp , µ∈(R+)q

Q(λ, µ) = max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ)

Duality
Always weak duality:

q∗ ≤ p∗

max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ) ≤ min

x
max

λ∈Rp , µ∈(R+)q
L(x , λ, µ)

Not always strong duality q∗ = p∗.



Optimization Point of
View

Strong Duality

Strong Duality
Strong duality:

q∗ = p∗

max
λ∈Rp , µ∈(R+)q

min
x
L(x , λ, µ) = min

x
max

λ∈Rp , µ∈(R+)q
L(x , λ, µ)

Allow to compute the solution of one problem from the other.
Requires some assumptions!

Strong Duality under Convexity and Slater’s Condition
f convex, hj affine and gi concave.
Slater’s condition: it exists a feasible point such that
hj(x) = 0 for all j and gi (x) < 0 for all i .
Sufficient to prove strong duality.
Rk: If the gi are affine, it suffices to have hj(x) = 0 for all j
and gi (x) ≤ 0 for all i .



Optimization Point of
View

KKT
Karush-Kuhn-Tucker Condition

Stationarity:
∇xL(x∗, λ, µ) = ∇f (x∗) +

∑
j
λj∇h(x∗) +

∑
i
µi∇g(x∗) = 0

Primal admissibility:
hj(x∗) = 0 and gi (x∗) ≤ 0

Dual admissibility:
µi ≥ 0

Complementary slackness:
µigi (x∗) = 0

KKT Theorem
If f convex, hj affine and gi concave, all are differentiable
and strong duality holds then x∗ is a solution of the primal
problem if and only if the KKT condition holds

Same result without differentiability using the sub-gradient...



Optimization Point of
View

SVM and Lagrangian

SVM
Constrained optimization formulation:

min ‖β‖2 + C
n∑

i=1
si with

{
∀i ,Yi (X i

>β + β(0)) ≥ 1− si

∀i , si ≥ 0

SVM Lagragian
Lagrangian:

L(β, β(0), s, α, µ) = 1
2‖β‖

2 + C
n∑

i=1
si

+
∑

i
αi (1− si − Yi (X i

>β + β(0)))−
∑

i
µisi



Optimization Point of
View

SVM and KKT

KKT Optimality Conditions
Stationarity:

∇βL(β, β(0), s, α, µ) = β −
∑

i
αiYiX i = 0

∇β(0)L(β, β(0), s, α, µ) =
∑

i
αi = 0

∇siL(β, β(0), s, α, µ) = C − αi − µi = 0
Primal and dual admissibility:

(1− si − Yi (X i
>β + β(0))) ≤ 0, si ≥ 0, αi ≥ 0, and µi ≥ 0

Complementary slackness:
αi (1− si − Yi (X i

>β + β(0))) = 0 and µisi = 0

Consequence
β∗ =

∑
i αiYiX i and 0 ≤ αi ≤ C .

If αi 6= 0, X i is called a support vector and either
si = 0 and Yi (X i

>β + β(0)) = 1 (margin hyperplane),
or αi = C (outliers).

β(0)∗ = Yi − X i
>β∗ for any support vector with 0 < αi < C .



Optimization Point of
View

SVM Dual

SVM Lagrangian Dual
Lagrangian Dual:

Q(α, µ) = min
β,β(0),s

L(β, β(0), s, α, µ)

Prop:
if
∑

i αiYi 6= 0 or ∃i , αi + µi 6= C ,
Q(α, µ) = −∞

if
∑

i αiYi = 0 and ∀i , αi + µi = C ,

Q(α, µ) =
∑

i
αi −

1
2
∑
i,j
αiαjYiYjX i

>X j

SVM Dual problem
Dual problem is a Quadratic Programming problem:

max
α≥0,µ≥0

Q(α, µ)⇔ max
0≤α≤C

∑
i
αi −

1
2
∑
i ,j
αiαjYiYjX i

>X j

Involves the X i only through their scalar products.



Optimization Point of
View

Mercer Theorem
Mercer Representation Theorem

For any loss ` and any increasing function Φ, the minimizer in
β of

n∑
i=1

`(Yi ,X i
>β + β(0)) + Φ(‖β‖2)

is a linear combination of the input points β∗ =
n∑

i=1
α′iX i .

Minimization problem in α′:
n∑

i=1
`(Yi ,

∑
j
α′jX i

>X j + β(0)) + Φ(‖β‖2)

involving only the scalar product of the data.

Optimal predictor requires only to compute scalar products.
f̂ ∗(X ) = X>β∗ + β(0) =

∑
i
α′iX i

>X

Transform a problem in dimension dim(X ) in a problem in
dimension n.
Direct minimization in β can be more efficient...
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Feature Map
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Feature Engineering
Art of creating new features from the existing one X .
Example: add monomials (X (j))2, X (j)X (j′)...
Adding feature increases the dimension.

Feature Map
Application φ : X → H with H an Hilbert space.
Linear decision boundary in H: φ(X )>β + β(0) = 0 is not an
hyperplane anymore in X .

Heuristic: Increasing dimension allows to make data almost
linearily separable.
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Polynomial Mapping
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Polynomial Mapping of order 2
φ : R2 → R6

φ(X ) =
(

(X (1))2, (X (2))2,
√
2X (1)X (2),

√
2X (1),

√
2X (2), 1

)
Allow to solve the XOR classification problem with the
hyperplane X (1)X (2) = 0.

Polynomial Mapping and Scalar Product
Prop:

φ(X )>φ(X ′) = (1 + X>X ′)2



Optimization Point of
View

SVM Primal and Dual

Primal, Lagrandian and Dual
Primal:

min ‖β‖2 + C
n∑

i=1
si with

{
∀i ,Yi (φ(X i )>β + β(0)) ≥ 1− si

∀i , si ≥ 0
Lagrangian:

L(β, β(0), s, α, µ) = 1
2‖β‖

2 + C
n∑

i=1
si

+
∑

i
αi (1− si − Yi (φ(X i )>β + β(0)))−

∑
i
µisi

Dual:
max

α≥0,µ≥0
Q(α, µ)⇔ max

0≤α≤C

∑
i
αi −

1
2
∑
i ,j
αiαjYiYjφ(X i )>φ(X j)

Optimal X>β∗ =
∑

i αiYiφ(X )>φ(X i )

Only need to know to compute φ(X )>φ(X ′) to obtain the
solution.



Optimization Point of
View

From Map to Kernel

Many algorithms (e.g. SVM) require only to be able to
compute the scalar product φ(X )>φ(X ′).

Kernel
Any application

k : X × X → R
is called a kernel over X .

Kernel Trick
Computing directly the kernel k(x , x ′) = φ(X )>φ(X ′) may be
easier than computing φ(X ), φ(X ′) and then the scalar
product.

Here k is defined from φ.
Under some assumption on k, φ can be implicitely defined
from k!



Optimization Point of
View

PDS Kernel

Positive Definite Symmetric Kernels
A kernel k is PDS if and only if

k is symmetric, i.e.
k(X ,X ′) = k(X ′,X )

for any N ∈ N and any (X 1, . . . ,XN) ∈ XN ,
K = [k(X i ,X j)]1≤i,j≤N

is positive semi-definite, i.e. ∀u ∈ RN

u>Ku =
∑

1≤i,j≤N
u(i)u(j)k(X i ,X j) ≥ 0

or equivalently all the eigenvalues of K are non-negative.

The matrix K is called the Gram matrix associated to
(X 1, . . . ,XN).



Optimization Point of
View

Reproducing Kernel Hilbert Space

Mercer Theorem
For any PDS kernel k : X × X → R, it exists a Hilbert space
H ⊂ RX with a scalar product 〈·, ·〉H such that

it exists a mapping φ : X → H satisfying
k(X ,X ′) = 〈φ(X ), φ(X )〉H

the reproducing property holds, i.e. for any h ∈ H and any
X ∈ X

h(X ) = 〈h, k(X , ·)〉H .

By def., H is a reproducing kernel Hilbert space (RKHS).
H is called the feature space associated to k and φ the
feature mapping.
No unicity in general.
Rk: if k(X ,X ′) = φ′(X )>φ′(X ′) with φ′ : X → Rp then

H can be chosen as {X 7→ φ′(X )>β, β ∈ Rp} and
‖X 7→ φ′(X )>β‖2

H = ‖β‖2
2.

φ(X )(X ′) = X>X ′.



Optimization Point of
View

Kernel Construction Machinery

Separable Kernel
For any function Ψ : X → R, k(X ,X ′) = Ψ(X )Ψ(X ′) is PDS.

Kernel Stability
For any PDS kernels k1 and k2, k1 + k2 and k1k2 are PDS
kernels.
For any sequence of PDS kernels kn converging pointwise to a
kernel k, k is a PDS kernel.
For any PDS kernel k such that |k| ≤ r and any power series∑

n anzn with an ≥ 0 and a convergence radius larger than r ,∑
n

ankn is a PDS kernel.

For any PDS kernel k, the renormalized kernel

k ′(X ,X ′) = k(X ,X ′)√
k(X ,X )k(X ′,X ′)

is a PDS kernel.

Cauchy-Schwartz for k PDS: k(X ,X ′)2 ≤ k(X ,X )k(X ′,X ′)



Optimization Point of
View

Classical Kernels

PDS Kernels
Vanilla kernel:

k(X ,X ′) = X>X ′

Polynomial kernel:
k(X ,X ′) = (1 + X>X ′)k

Gaussian RBF kernel:
k(X ,X ′) = exp

(
−γ‖X − X ′‖2

)
Tanh kernel:

k(X ,X ′) = tanh(aX>X ′ + b)

Most classical is the Gaussian RBF kernel...
Lots of freedom to construct kernel for non classical data.



Optimization Point of
View

Representer Theorem

Representer Theorem
Let k be a PDS kernel and H its corresponding RKHS,
for any increasing function Φ and any function L : Rn → R,
the optimization problem

argmin
h∈H

L(h(X 1), . . . , h(Xn)) + g(‖h‖)

admits only solutions of the form
n∑

i=1
α′ik(X i , ·).

Examples:
(kernelized) SVM
(kernelized) Penalized Logistic Regression (Ridge)
(kernelized) Penalized Regression (Ridge)



Optimization Point of
View

Kernelized SVM
Primal

Constrained Optimization:
min

f ∈H,β(0),s
‖f ‖2H + C

n∑
i=1

si with
{
∀i ,Yi (f (X i ) + β(0)) ≥ 1− si

∀i , si ≥ 0
Hinge loss:

min
f ∈H,β(0)

‖f ‖2H + C
n∑

i=1
max(0, 1− Yi (f (X i ) + β(0)))

Representer:
min
α′,β(0)

∑
i ,j
α′iα

′
jk(X i ,X j)

+ C
n∑

i=1
max(0, 1− Yi (

∑
j
α′jk(X j ,X i ) + β(0)))

Dual
Dual:

max
α≥0,µ≥0

Q(α, µ)⇔ max
0≤α≤C

∑
i
αi −

1
2
∑
i ,j
αiαjYiYjk(X i ,X j)
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SVM
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Bias-Variance Issue
Most complex models may not be the best ones due to the
variability of the estimate.

Naive idea: can we simplify our model without loosing too
much?

by using only a subset of the variables?
by forcing the coefficients to be small?

Can we do better than exploring all possibilities?



Optimization Point of
View

Linear Models

Setting: Gen. linear model = prediction of Y by h(x>β).

Model coefficients
Model entirely specified by β.
Coefficientwise:

β(i) = 0 means that the ith covariate is not used.
β(i) ∼ 0 means that the ith covariate as a low influence...

If some covariates are useless, better use a simpler model...

Submodels
Simplify the model through a constraint on β!
Examples:

Support: Impose that β(i) = 0 for i 6∈ I.
Support size: Impose that ‖β‖0 =

∑d
i=1 1β(i) 6=0 < C

Norm: Impose that ‖β‖p < C with 1 ≤ p (Often p = 2 or
p = 1)
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Norms and Sparsity
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Sparsity
β is sparse if its number of non-zero coefficients (`0) is small...
Easy interpretation in term of dimension/complexity.

Norm Constraint and Sparsity
Sparsest solution obtained by definition with the `0 norm.
No induced sparsity with the `2 norm...
Sparsity with the `1 norm (can even be proved to be the same
than with the `0 norm under some assumptions).
Geometric explanation.
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View

Constraint and Penalization

Constrained Optimization
Choose a constant C .
Compute β as

argmin
β∈Rd ,‖β‖p≤C

1
n

n∑
i=1

`(Yi , h(x i
>β))

Lagrangian Reformulation
Choose λ and compute β as

argmin
β∈Rd

1
n

n∑
i=1

`(Yi , h(x i
>β)) + λ‖β‖p′p

with p′ = p except if p = 0 where p′ = 1.
Easier calibration... but no explicit model S.

Rk: ‖β‖p is not scaling invariant if p 6= 0...
Initial rescaling issue.



Optimization Point of
View

Penalization

Penalized Linear Model
Minimization of

argmin
β∈Rd

1
n

n∑
i=1

`(Yi , h(x i
>β)) + pen(β)

where pen(β) is a (sparsity promoting) penalty
Variable selection if β is sparse.

Classical Penalties
AIC: pen(β) = λ‖β‖0 (non convex / sparsity)
Ridge: pen(β) = λ‖β‖22 (convex / no sparsity)
Lasso: pen(β) = λ‖β‖1 (convex / sparsity)
Elastic net: pen(β) = λ1‖β‖1 + λ2‖β‖22 (convex / sparsity)

Easy optimization if pen (and the loss) is convex...
Need to specify λ to define a ML method!



Optimization Point of
View

Penalized Gen. Linear Models

Classical Examples
Penalized Least Squares
Penalized Logistic Regression
Penalized Maximum Likelihood
SVM
Tree pruning

Sometimes used even if the parametrization is not linear...



Optimization Point of
View

Penalization

Penalized `0/1 loss (Structural Risk Minimization)
Minimization of

argmin
fm,m∈M,fm∈Sm

1
n

n∑
i=1

`0/1(Yi , fm(X i )) + pen(m)

where pen(m) is a complexity driven penalty...

No easy optimization here!

Classical Penalties

Finite class: pen(m) = λ
√

log |M|
n

Finite VC Dimension: pen(m) = λ

√
dVC (Sm) log

(
en

dVC (Sm)

)
n

Need to specify λ!



Optimization Point of
View

Convexified Loss Penalization

Penalized convexified ` loss
Minimization of

argmin
fm,m∈M,fm∈Sm

1
n

n∑
i=1

`(Yi , fm(X i )) + pen(m)

where pen(m) is a complexity driven penalty...

Easy optimization here!
Reuse the previous pen(m)!
Need to specify λ!
SVM case:

dVC ∼ ‖β‖2 which advocates for a penalty in λ‖β‖...
A penalty in λ′‖β‖2 is more convenient numerically and there
is a correspondence between the two problems...
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View

Penalization and Cross-Validation

Practical Selection Methodology
Choose a penalty shape p̃en.
Compute a CV error for a penalty λp̃en for all λ ∈ Λ.
Determine λ̂ the λ minimizing the CV error.
Compute the final model with a penalty λ̂p̃en.

CV allows to select a ML method, penalized estimation with a
penalty λ̂p̃en, not a single predictor hence the need of a final
reestimation.

Why not using only CV?
If the penalized minimization is easy, much cheaper to
compute the CV error for all λ ∈ Λ than for all possible
estimators (or even models)...
CV performs best when the set of candidates is not too big
(or is structured...)
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Very simple (linear) model!
Physical implementation and proof of concept.
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Perceptron (Rosenblatt 1957)
Inspired from biology.
Very simple (linear) model!
Physical implementation and proof of concept.
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Artificial Neuron and Logistic Regression
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Artificial neuron
Structure:

Mix inputs with a
weighted sum,
Apply a (non linear)
activation function to
this sum,
Eventually threshold the
result to make a decision.

Weights learned by
minimizing a loss function.

Logistic unit
Structure:

Mix inputs with a
weighted sum,
Apply logistic function
σ(t) = et/(1 + et),
Threshold at 1/2 to make
a decision!

Logistic weights learned by
minimizing the
-log-likelihood.

Equivalent to linear regression when using a linear activation
function!
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Multilayer Perceptron
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MLP (Rumelhart, McClelland, Hinton - 1986)
Multilayer Perceptron: cascade of layers of artificial neuron
units.
Optimization through a gradient descent algorithm with a
clever implementation (Backprop)

Construction of a function by composing simple units.
MLP corresponds to a specific direct acyclic graph structure.
Non convex optimization problem!
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Multilayer Perceptron
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Deep Neural Network

So
ur

ce
:
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Co
ur
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lleDeep Neural Network structure

Deep cascade of layers!

No conceptual novelty...
But a lot of tricks allowing to obtain a good solution: clever
initialization, better activation function, weight regularization,
accelerated stochastic gradient descent, early stopping...
Use of GPU and a lot of data...
Very impressive results!
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Deep Learning

So
ur

ce
:

J.
H
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Family of Machine Learning algorithm combining:
a (deep) multilayered structure,
a clever optimization including initialization and regularization.

Examples: Deep Neural Network, AutoEncoder, Recursive
Neural Network...
Interpretation as a Representation Learning
Transfer learning: use as initialization a pretrained net.
Very efficient and still evolving!
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Convolutional Network
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Le Net - Y. LeCun (1989)
6 Hidden layer architecture
Drastic reduction of the number of parameters through a
translation invariance principle (convolution)

Requires 3 days of training for 60 000 examples!
Tremendous improvement.
Representation learned through the task.
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Deep Convolutional Networks
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Alenet - A. Krizhevsky, I. Sutskever, G. Hinton (2012)
Bigger and deepr layers and thus much more parameters.
Clever intialization scheme, RELU, renormalization and use of
GPU.

6 days of training for 1.2 millions images.
Tremendous improvement...
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Deep Convolutional Networks
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Trends
Deeper and deeper networks! (GoogLeNet / Residual Neural
Network)
More computational power to learn a better representation.
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Optimization Point of
View

Classification And Regression Trees

Tree principle (CART by Breiman (85) / ID3 by Quinlan (86))
Construction of a recursive partition through a tree structured
set of questions (splits around a given value of a variable)
For a given partition, probabilistic approach and optimization
approach yields the same classifier!
A simple majority vote/averaging in each leaf
Quality of the prediction depends on the tree (the partition).
Intuitively:

small leaves lead to low bias but large variance
large leaves lead to large bias but low variance...

Issue: Minim. of the (penalized) empirical error is NP hard!
Practical tree construction are all based on two steps:

a top-down step in which branches are created (branching)
a bottom-up in which branches are removed (pruning)
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Branching

X1 < .5?

X1 < .2? X2 < .7?

Yes No

Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a
certain value

No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as
homogeneous possible...
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Yes NoYes No

Greedy top-bottom approach
Start from a single region containing all the data
Recursively split those regions along a certain variable and a
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No regret strategy on the choice of the splits!
Heuristic: choose a split so that the two new regions are as
homogeneous possible...
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Branching

Various definition of homogeneous
CART: empirical loss based criterion (least squares/prediction error)

C(R,R) =
∑
x i∈R

`(yi , y(R)) +
∑
x i∈R

`(yi , y(R))

CART: Gini index (Classification)
C(R,R) =

∑
x i∈R

p(R)(1− p(R)) +
∑
x i∈R

p(R)(1− p(R))

C4.5: entropy based criterion (Information Theory)
C(R,R) =

∑
x i∈R

H(R) +
∑
x i∈R

H(R)

CART with Gini is probably the most used technique...
Other criterion based on χ2 homogeneity or based on different
local predictors (generalized linear models...)



Optimization Point of
View

Branching

Choice of the split in a given region
Compute the criterion for all features and all possible
splitting points (necessarily among the data values in the
region)
Choose the one minimizing the criterion

Variations: split at all categories of a categorical variables
using a clever category ordering (ID3), split at a fixed position
(median/mean)
Stopping rules:

when a leaf/region contains less than a prescribed number of
observations
when the region is sufficiently homogeneous...

May lead to a quite complex tree: over-fitting possible!
Additional pruning often use.



Optimization Point of
View

Pruning

→

Model selection within the (rooted) subtrees of previous tree!
Number of subtrees can be quite large but the tree structure
allows to find the best model efficiently.

Key idea
The predictor in a leaf depends only on the values in this leaf.
Efficient bottom-up (dynamic programming) algorithm if
the criterion used satisfies an additive property

C(T ) =
∑
L∈T

c(L)

Example: AIC / CV.



Optimization Point of
View

Pruning

Examples of criterion satisfying this assumptions
AIC type criterion:

n∑
i=1

`′(yi , fL(x i )(x i ) + λ|T | =
∑
L∈T

∑
x i∈L

`′(yi , fL(x i ) + λ


Simple cross-Validation (with (x ′i , y ′i ) a different dataset):

n′∑
i=1

`′(y ′i , fL(x ′i ) =
∑
L∈T

∑
x ′i∈L

`′(y ′i , fL(x ′i )


Limits over-fitting for a single tree.
Rk: almost never used when combining several trees...
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Optimization Point of
View

CART: Pros and Cons

Pros
Leads to a easily
interpretable model
Fast computation of the
prediction
Easily deals with categorical
features

Cons
Greedy optimization
Hard decision boundaries
Lack of stability



Optimization Point of
View

Ensemble methods

Lack of robustness for single trees.
How to combine trees?

Parallel construction
Construct several trees from bootstrapped samples and
average the responses (Bagging)
Add more randomness in the tree construction (Random
Forests)

Sequential construction
Construct a sequence of trees by reweighting sequentially the
samples according to their difficulties (AdaBoost)
Reinterpretation as a stagewise additive model (Boosting)
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Model SelectionModel and Hyperparameters
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Model SelectionLogistic Regression

Ideal solution:
f ∗(x) = argmax P (Y |x)

Logistic
Model Y |X with a logistic model.
Estimate its parameters with a Maximum Likelihood approach.
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Parametric model...



Model SelectionGenerative Modeling

Ideal solution:
f ∗(x) = argmax P (Y |x)

Generative Modeling
Estimate X |Y with a density estimator as well as P (Y )
Deduce using the Bayes formula an estimate Y |X .
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Generative model



Model SelectionKernel Method

Ideal solution:
f ∗(x) = argmax P (Y |x)

Kernel methods
Estimate Y |X with a kernel conditional density estimator.
Plug the estimate in the Bayes classifier.

Model hyperparameters:
Features
Bandwidth and kernel



Model SelectionLogistic Regression

Ideal solution:
f ∗ = argmin

f ∈S
E
[
`0/1(Y , f (X ))

]
Logistic

Replace `0/1 by the logistic loss.
Add a penalty λ‖f ‖p
Compute the minimizer.

Model hyperparameters:
Features
Penalty and regularization parameter.



Model SelectionSVM

Ideal solution:
f ∗ = argmin

f ∈S
E
[
`0/1(Y , f (X ))

]
SVM

Replace the expectation by its empirical counterpart.
Replace `0/1(y , f ) = 1y=f by `′(y , f ) = (1− yf )+.
Add a penalty λ‖f ‖2S .
Compute the minimizer.

Model hyperparameters:
Features
S RKHS structure: features mapping and metric
Regularization parameters λ



Model Selection(Deep) Neural Networks

Ideal solution:
f ∗ = argmin

f ∈S
E
[
`0/1(Y , f (X ))

]
NN

Neuron: x 7→ σ(x>β + β(0))
Neural Network: Convolution system of neurons.
Replace `0/1(y , f ) by a smooth/convex loss.
Minimize the empirical loss using the backprop algorithm
(gradient descent)

Model hyperparameters:
Features
Net architecture, activation function
Initialization strategy
Optimization strategy (and regularization strategy)



Model SelectionTree and Boosting

Ideal solution:
f ∗(x) = argmax P (Y |x) and f ∗ = argmin

f ∈S
E
[
`0/1(Y , f (X ))

]
Single tree

Greedy Partition construction.
Local conditional density estimation / loss minimization.
Suboptimal tree optimization through a relaxed criterion

Bagging/Random Forest
Averaging of several predictors (probabilistic point of view)

Boosting
Best interpretation as a minimization of the exponential loss
`(y , f ) = e−yf (optimization point of view)
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Model SelectionFeature Design

Transformed Representation
From X to Φ(X )!
New description of X leads to a different linear model:

fβ(X ) = Φ(X )>β

Feature Design
Art of choosing Φ.
Examples:

Renormalization, (domain specific) transform
Basis decomposition
Interaction between different variables...

Need to select a good transformation.
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Model SelectionOver-fitting Issue
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Error behaviour
Learning/training error (error made on the learning/training
set) decays when the complexity of the model increases.
Quite different behavior when the error is computed on new
observations (generalization error).

Overfit for complex models: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use a different criterion than the training error!



Model SelectionCross Validation and Penalization

Two Approaches
Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.
Bias correction approach: use empirical loss criterion but
correct with a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + pen(S)
and choose the model with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!



Model SelectionEnsemble methods

How to combine several predictors (models)?
Two strategies: mixture or sequential

Mixture
Model averaging
Data dependent model averaging (learn mixture weights)

Stagewise
Modify learning procedure according to current results.
Boosting, Cascade...



Outline
1 Introduction

Machine Learning
Motivation
The Example of Univariate Linear Regression

2 Supervised Learning
3 A Probabilistic Point of View

Generative Modeling
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling

4 Cross Validation and Error Estimation
5 Optimization Point of View

SVM
Penalization
(Deep) Neural Networks
Tree Based Methods

6 Model Selection
Models
Feature Design
Models, Complexity and Selection

7 Empirical Risk Minimization
Empirical Risk Minimization
ERM and PAC Bayesian Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

8 References



Empirical Risk
Minimization

Outline
1 Introduction

Machine Learning
Motivation
The Example of Univariate Linear Regression

2 Supervised Learning
3 A Probabilistic Point of View

Generative Modeling
Parametric Conditional Density Modeling
Non Parametric Conditional Density Modeling

4 Cross Validation and Error Estimation
5 Optimization Point of View

SVM
Penalization
(Deep) Neural Networks
Tree Based Methods

6 Model Selection
Models
Feature Design
Models, Complexity and Selection

7 Empirical Risk Minimization
Empirical Risk Minimization
ERM and PAC Bayesian Analysis
Hoeffding and Finite Class
McDiarmid and Rademacher Complexity
VC Dimension
Structural Risk Minimization

8 References



Empirical Risk
Minimization

Empirical Risk Minimization

Empirical Risk Minimizer (ERM)
For any loss ` and function class S,

f̂ = argmin
f ∈S

1
n

n∑
i=1

`(Yi , f (X i ) = argmin
f ∈S

Rn(f )

Key property:
Rn(f̂ ) ≤ Rn(f ), ∀f ∈ S

Minimization not always tractable in practice!
Focus on the `0/1 case:

only algorithm is to try all the functions,
not feasible is there are many functions
but interesting hindsight!
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Minimization

ERM and PAC Analysis

Theoretical control of the random (error estimation) term:
R(f̂S)−R(f ?S )

Probably Almost Correct Analysis
Theoretical guarantee that with probability larger than
1− δ,

P
(
R(f̂ )−R(f ?S ) ≤ εS(δ)

)
≥ 1− δ

for a suitable εS(δ) ≥ 0.
Implies:

P
(
R(f̂ )−R(f ?) ≤ R(f ?S )−R(f ?) + εS(δ)

)
≥ 1− δ

E
[
R(f̂ )−R(f ?S )

]
≤
∫ +∞

0
δS(ε)dε

The result should hold without any assumption on the law P!



Empirical Risk
Minimization

A General Decomposition
By construction:

R(f̂ )−R(f ?S ) = R(f̂ )−Rn(f̂ ) +Rn(f̂ )−Rn(f ?S ) +Rn(f ?S )−R(f ?S )
≤ R(f̂ )−Rn(f̂ ) +Rn(f ?S )−R(f ?S )

≤
(
R(f̂ )−R(f ?S )

)
−
(
Rn(f̂ )−Rn(f ?S )

)
Four possible upperbounds

R(f̂ )−R(f ?S ) ≤ sup
f ∈S

((R(f )−R(f ?S ))− (Rn(f )−Rn(f ?S )))

R(f̂ )−R(f ?S ) ≤ sup
f ∈S

(R(f )−Rn(f )) + (Rn(f ?S )−R(f ?S ))

R(f̂ )−R(f ?S ) ≤ sup
f ∈S

(R(f )−Rn(f )) + sup
f ∈S

(Rn(f )−R(f ))

R(f̂ )−R(f ?S ) ≤ 2 sup
f ∈S
|R(f )−Rn(f )|

Supremum of centered random variables!
Key: Concentration of each variable...
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Minimization

Error Bounds

By construction, for any f ′ ∈ S,
R(f ′) = Rn(f ′) +

(
R(f ′)−Rn(f ′)

)
A uniform upper bound for the error

Simultaneously ∀f ′ ∈ S,
R(f ′) ≤ Rn(f ′) + sup

f ∈S
(R(f )−Rn(f ))

Supremum of centered random variables!
Key: Concentration of each variable...
Can be interpreted as a justification of the ERM!
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Empirical Risk
Minimization

Concentration of the Empirical Loss

Empirical loss:

Rn(f ) = 1
n

n∑
i=1

`0/1(Yi , f (X i ))

Properties
`0/1(Yi , f (X i )) are i.i.d. random variables in [0, 1].

Concentration

P (R(f )−Rn(f ) ≤ ε) ≥ 1− e−2nε2

P (Rn(f )−R(f ) ≤ ε) ≥ 1− e−2nε2

P (|Rn(f )−R(f )| ≤ ε) ≥ 1− 2e−2nε2

Concentration of sum of bounded independent variables!
Hoeffding theorem.
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Hoeffding

Theorem
Let Zi be a sequence of independent centered random
variables supported in [ai , bi ] then

P
( n∑

i=1
Zi ≥ ε

)
≤ e

− 2ε2∑n
i=1(bi−ai )2

Proof ingredients:
Chernov bounds:

P

( n∑
i=1

Zi ≥ ε

)
≤

E
[
eλ
∑n

i=1 Zi
]

eλε ≤
∏n

i=1 E
[
eλZi

]
eλε

Exponential moment bounds: E
[
eλZi

]
≤ e

λ2(bi −ai )2
8

Optimization in λ
Prop:

E
[
eλ
∑n

i=1 Zi
]
≤ e

λ2∑n
i=1(bi−ai )2

8 .
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Minimization

Hoeffding Inequality

Theorem
Let Zi be a sequence of independent centered random
variables supported in [ai , bi ] then

P
( n∑

i=1
Zi ≥ ε

)
≤ e

− 2ε2∑n
i=1(bi−ai )2

Zi = 1
n

(
E
[
`0/1(Y , f (X ))

]
− `0/1(Yi , f (X i ))

)
E [Zi ] = 0 and
Zi ∈ [ 1

n

(
E
[
`0/1(Y , f (X ))

]
− 1

)
, 1

nE
[
`0/1(Y , f (X ))

]
]

Concentration:
P (R(f )−Rn(f ) ≥ ε) ≤ e−2nε2

By symmetry,
P (Rn(f )−R(f ) ≥ ε) ≤ e−2nε2

Combining the two yields
P (|Rn(f )−R(f )| ≥ ε) ≤ 2e−2nε2
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Finite Class Case

Concentration
If S is finite of cardinality |S|,

P

sup
f

(R(f )−Rn(f )) ≤

√
log |S|+ log(1/δ)

2n

 ≥ 1− δ

P

sup
f
|Rn(f )−R(f )| ≤

√
log |S|+ log(1/δ)

2n

 ≥ 1− 2δ

Control of the supremum by a quantity depending on the
cardinality and the probability parameter δ.
Simple combination of Hoeffding and a union bound.
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Finite Class Case

PAC Bounds
If S is finite of cardinality |S|, with proba greater than 1− 2δ

R(f̂ )−R(f ?S ) ≤

√
log |S|+ log(1/δ)

2n +

√
log(1/δ)

2n

≤ 2

√
log |S|+ log(1/δ)

2n
If S is finite of cardinality |S|, with proba greater than 1− δ,
simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|+ log(1/δ)

2n

≤ Rn(f ′) +

√
log |S|
2n +

√
log(1/δ)

2n
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Finite Class Case

PAC Bounds
If S is finite of cardinality |S|, with proba greater than 1− 2δ

R(f̂ )−R(f ?S ) ≤

√
log |S|
2n +

√
2 log(1/δ)

n
If S is finite of cardinality |S|, with proba greater than 1− δ,
simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log |S|
2n +

√
log(1/δ)

2n

Risk increases with the cardinality of S.
Similar issue in cross-validation!
No direct extension for an infinite S...
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Concentration of the Supremum of
Empirical Losses

Supremum of Empirical losses:
∆n(S)(X 1, . . . ,Xn) = sup

f ∈S
R(f )−Rn(f )

= sup
f ∈S

(
E
[
`0/1(Y , f (X ))

]
− 1

n

n∑
i=1

`0/1(Yi , f (X i ))
)

Properties
Bounded difference:
|∆n(S)(X 1, . . . ,X j , . . .Xn)−∆n(S)(X 1, . . .X ′j , . . . ,Xn)| ≤ 1/n

Concentration

P (∆n(S)− E [∆n(S)] ≤ ε) ≥ 1− e−2nε2

Concentration of bounded difference function.
Generalization of Hoeffding theorem: McDiarmid Theorem.
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McDiarmid Inequality

Bounded difference function
g : X n → R is a bounded difference function if it exist ci such
that
∀(X i )n

i=1, (X ′i )n
i=1 ∈ R,∣∣∣g(X 1, . . . ,X j , . . . ,Xn)− g(X 1, . . . ,X ′j , . . . ,Xn)

∣∣∣ ≤ ci

Theorem
If g is a bounded difference function and X i are independent
random variables then

P (g(X 1, . . . ,Xn)− E [g(X 1, . . . ,Xn)] ≥ ε) ≤ e
−2ε2∑n

i=1 c2
i

P (E [g(X 1, . . . ,Xn)]− g(X 1, . . . ,Xn) ≥ ε) ≤ e
−2ε2∑n

i=1 c2
i

Proof ingredients:
Chernov bounds
Martingale decomposition...
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McDiarmid Inequality

Theorem
If g is a bounded difference function and X i are independent
random variables then

P (g(X 1, . . . ,Xn)− E [g(X 1, . . . ,Xn)] ≥ ε) ≤ e
−2ε2∑n

i=1 c2
i

Using g = ∆n(S) for which ci = 1/n yields immediately

P (∆n(S)− E [∆n(S)] ≥ ε) ≤ e
−2ε2∑n

i=1 c2
i = e−2nε2

We derive then

P (∆n(S) ≥ E [∆n(S)] + ε) ≤ e
−2ε2∑n

i=1 c2
i = e−2nε2

It remains to upperbound

E [∆n] = E
[

sup
f ∈S
R(f )−Rn(f )

]
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Rademacher Complexity

Theorem
Let σi be a sequence of i.i.d. random symmetric Bernoulli
variables (Rademacher variables):

E
[

sup
f ∈S

(R(f )−Rn(f ))
]
≤ 2E

[
sup
f ∈S

1
n

n∑
i=1

σi`
0/1(Yi , f (X i ))

]

Rademacher complexity
Let B ⊂ Rn, the Rademacher complexity of B is defined as

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]

Theorem gives an upper bound of the expectation in term of
the average Rademacher complexity of the random set
Bn(S) = {(`0/1(Yi , f (X i )))n

i=1, f ∈ S}.
Back to finite setting: This set is at most of cardinality 2n!
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Finite Set Rademacher Complexity Bound

Theorem
If B is finite and such that ∀b ∈ B, 1

n‖b‖
2
2 ≤ M2, then

Rn(B) = E
[

sup
b∈B

1
n

n∑
i=1

σibi

]
≤

√
2M2 log |B|

n

If B = Bn(S) = {(`0/1(Yi , f (X i )))n
i=1, f ∈ S}, we have M = 1

and thus

Rn(B) ≤

√
2 log |Bn(S)|

n
We obtain immediately

E
[

sup
f ∈S

(R(f )−Rn(f ))
]
≤ E

√8 log |Bn(S)|
n

 .
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Finite Set Rademacher Complexity Bound

Theorem
With probability greater than 1− 2δ,

R(f̂ )−R(f ?S ) ≤ E

√8 log |Bn(S)|
n

+

√
2 log(1/δ)

n

With probability greater than 1− δ, simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) + E

√8 log |Bn(S)|
n

+

√
log(1/δ)

2n

This is a direct consequence of the previous bound.
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Finite Set Rademacher Complexity Bound

Corollary
If S is finite then with probability greater than 1− 2δ

R(f̂ )−R(f ?S ) ≤

√
8 log |S|

n +

√
2 log(1/δ)

n
If S is finite then with probability greater than 1− δ,
simultaneously ∀f ′ ∈ S

R(f ′) ≤ Rn(f ′) +

√
8 log |S|

n +

√
log(1/δ)

2n

It suffices to notice that
|Bn(S)| = |{(`0/1(Yi , f (X i )))n

i=1, f ∈ S}| ≤ |S|
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Finite Set Rademacher Complexity Bound

Same result with Hoeffding but with better constants!

R(f̂ )−R(f ?S ) ≤

√
log |S|
2n +

√
2 log(1/δ)

n

R(f ′) ≤ Rn(f ′) +

√
log |S|
2n +

√
log(1/δ)

2n
Difference due to the crude upperbound of

E
[

sup
f ∈S

(R(f )−Rn(f ))
]

Why bother?: We do not have to assume that S is finite!
|Bn(S)| ≤ 2n
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Back to the Bound

Theorem

E
[

sup
f ∈S

(R(f )−Rn(f ))
]
≤ E

√8 log |Bn(S)|
n


Key quantity: E

[√
8 log |Bn(S)|

n

]
Hard to control due to its structure!

A first data dependent upperbound

E

√8 log |Bn(S)|
n

 ≤
√

8 logE [|Bn(S)|]
n (Jensen)

Depends on the unknown P!
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Shattering Coefficient

Shattering Coefficient (or Growth Function)
The shattering coefficient of the class S, s(S, n), is defined as
s(S, n) = sup

((X1,Y1),...,(Xn,Yn))∈(X×{−1,1})n
|{(`0/1(Yi , f (X i )))n

i=1, f ∈ S}|

By construction, |Bn(S)| ≤ s(S, n) ≤ max(2n, |S|)!

A data independent upperbound

E

√8 log |Bn(S)|
n

 ≤
√

8 log s(S, n)
n
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Shattering Coefficient

Theorem
With probability greater than 1− 2δ,

R(f̂ )−R(f ?S ) ≤

√
8 log s(S, n)

n +

√
2 log(1/δ)

n
With probability greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
8 log s(S, n)

n +

√
log(1/δ)

2n

Depends only on the class S!
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Vapnik-Chervonenkis Dimension

VC Dimension
The VC dimension dVC of S is defined as the largest integer d
such that

s(S, d) = 2d

The VC dimension can be infinite!

VC Dimension and Dimension
Prop: If span(S) corresponds to the sign of functions in a
linear space of dimension d then dVC ≤ d .

VC dimension similar to the usual dimension.
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VC Dimension and Sauer Lemma

Sauer Lemma
If the VC dimension dVC of S is finite

s(S, n) ≤

2n if n ≤ dVC(
en

dVC

)dVC if n > dVC

Cor.: log s(S, n) ≤ dVC log
(

en
dVC

)
if n > dVC .
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VC Dimension and PAC Bounds

PAC Bounds
If S is of VC dimension dVC then if n > dVC

With probability greater than 1− 2δ,

R(f̂ )−R(f ?S ) ≤

√√√√8dVC log
(

en
dVC

)
n +

√
2 log(1/δ)

n
With probability greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√√√√8dVC log
(

en
dVC

)
n +

√
log(1/δ)

2n

Rk: If dVC = +∞ no uniform PAC bounds exists!
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Countable Collection and Non Uniform
PAC Bounds

PAC Bounds
Let πf > 0 such that

∑
f ∈S πf = 1

With proba greater than 1− 2δ,

R(f̂ )−R(f ?S ) ≤

√
log(1/πf )

2n +

√
2 log(1/δ)

n
With proba greater than 1− δ, simultaneously ∀f ′ ∈ S,

R(f ′) ≤ Rn(f ′) +

√
log(1/πf )

2n +

√
log(1/δ)

2n

Very similar proof than the uniform one!
Much more interesting idea when combined with several
models...
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Models, Non Uniform Risk Bounds and
SRM

Assume we have a countable collection of set (Sm)m∈M and
let πm be such that

∑
m∈M πm = 1.

Non Uniform Risk Bound
With probability 1− δ, simultaneously for all m ∈M and all
f ∈ Sm,

R(f ) ≤ Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n +

√
log(1/δ)

2n

Structural Risk Minimization
Choose f̂ as the minimizer over m ∈M and f ∈ Sm of

Rn(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n

Mimics the minimization of the integrated risk!
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SRM and PAC Bound

PAC Bound
If f̂ is the SRM minimizer then with probability 1− 2δ,

R(f̂ ) ≤ inf
m∈M

inf
f ∈Sm

R(f ) + E

√8 log |Bn(Sm)|
n

+

√
log(1/πm)

2n


+

√
2 log(1/δ)

n

The SRM minimizer balances the risk R(f ) and the upper
bound on the estimation error E

[√
8 log |Bn(Sm)|

n

]
+
√

log(1/πm)
2n .

E
[√

8 log |Bn(Sm)|
n

]
can be replaced by an upper bound (for

instance a VC based one)...
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