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Motivation, Supervised vs
Unsupervised Learning

Motivation

Marketing: finding groups of customers with similar behavior given a large
database of customer data containing their properties and past buying records;
Biology: classification of plants and animals given their features;
Libraries: book ordering;
Insurance: identifying groups of motor insurance policy holders with a high
average claim cost; identifying frauds;
City-planning: identifying groups of houses according to their house type, value
and geographical location;
Internet: document classification; clustering weblog data to discover groups of
similar access patterns.
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Motivation, Supervised vs
Unsupervised Learning

Marketing
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Data: Base of customer data containing their properties and past buying records
Goal: Use the customers similarities to find groups.
Two directions:

Visualization: propose a representation of the customers so that the groups are
visible
Clustering: propose an explicit grouping of the customers
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Motivation, Supervised vs
Unsupervised Learning

Dimension Reduction
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How to view a high-dimensional dataset?
High-dimension: dimension larger than 2!
Projection in a 2D space.
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Motivation, Supervised vs
Unsupervised Learning

Machine Learning
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A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.
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Motivation, Supervised vs
Unsupervised Learning

Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X 1, Y1), . . . , (Xn, Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y measurable
Cost/Loss function: ℓ(f (X ), Y ) measure how well f (X ) predicts Y
Risk:

R(f ) = E [ℓ(Y , f (X ))] = EX
[
EY |X [ℓ(Y , f (X ))]

]
Often ℓ(f (X ), Y ) = ∥f (X ) − Y ∥2 or ℓ(f (X ), Y ) = 1Y ̸=f (X)

Goal
Learn a rule to construct a classifier f̂ ∈ F from the training data Dn s.t. the
risk R(f̂ ) is small on average or with high probability with respect to Dn.
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Motivation, Supervised vs
Unsupervised Learning

Unsupervised Learning

Experience, Task and Performance measure
Training data : D = {X 1, . . . , Xn} (i.i.d. ∼ P)
Task: ???
Performance measure: ???

No obvious task definition!

Tasks for this lecture
Dimension reduction: construct a map of the data in a low dimensional space
without distorting it too much.
Clustering (or unsupervised classification): construct a grouping of the data
in homogeneous classes.
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Motivation, Supervised vs
Unsupervised Learning

Dimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Map can be defined only on the dataset.

Motivations
Visualization of the data
Dimension reduction (or embedding) before further processing

14



Motivation, Supervised vs
Unsupervised Learning

Dimension Reduction

Need to control the distortion between D and Φ(D) = {Φ(X 1), . . . , Φ(Xn)}

Distortion(s)
Reconstruction error:

Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Relationship preservation:
Compute a relation X i and X j and a relation between Φ(X i) and Φ(X j)
Control the difference between those two relations.

Leads to different constructions. . . .
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Motivation, Supervised vs
Unsupervised Learning

Clustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Similar to classification except:
no ground truth (no given labels)
label only elements of the dataset!

Motivations
Interpretation of the groups
Use of the groups in further processing
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Motivation, Supervised vs
Unsupervised Learning

Clustering

Need to define the quality of the cluster.
No obvious measure!

Clustering quality
Inner homogeneity: samples in the same group should be similar.
Outer inhomogeneity: samples in two different groups should be different.

Several possible definitions of similar and different.
Often based on the distance between the samples.
Example based on the Euclidean distance:

Inner homogeneity = intra class variance,
Outer inhomogeneity = inter class variance.

Beware: choice of the number of cluster K often complex!
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Motivation, Supervised vs
Unsupervised Learning

Bonus Task : Learning Representations

General observation: most data do not have a label !
Example: The number of images on which someone has described the content of
the image is a tiny fraction of the images online.
Labeling is very expensive and time consuming
A lot of information can be extracted from the structure of the data, before seeing
any label.

How can we leverage the large quantity of un-labeled data?
Learn relevant features (=“representations”) in an unsupervised fashion
Use those features to solve a supervised task with a fraction of labeled data.

Semi-supervised framework
↬ Very useful in practice, for images, time series, text.
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Motivation, Supervised vs
Unsupervised Learning

Semi-supervised Framework
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With representation learned in an unsupervised fashion + a simple linear model,
one can achieve the same performance with 10% of data labeled than with a fully
annotated dataset.
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Motivation, Supervised vs
Unsupervised Learning

Unsupervised Learning is a Versatile Approach!

The learner is always right
A subjective measure of performance
Subjective choices for the algorithmic constraints (e.g., the type of transformation
of the data we allow for low-dimensional representation, type of groups in
clustering)
⇒ Very difficult or impossible to tell which is the “best” method.

Yet:
Extremely important in practice:

90-99% of the data is un-labeled!
the tasks themselves are fundamental

Huge success in various fields (Text, Learning Representations, GANS, etc.)
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Motivation, Supervised vs
Unsupervised Learning

Unsupervised Learning is a Versatile Approach!

Today’s goals for the two main tasks
Discussing possible choices of measures of performance and algorithmic
constraints
Understand the correspondences between those choices and a variety of classical
algorithms
For the simplest algorithms (PCA, k-means), get a precise mathematical
understanding of the learning process.
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A First GlimpseWhat’s a group?
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No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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A First GlimpsePrototype Approach
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A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.
Number of groups fixed at the beginning
No need to compare the samples between them!
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A First GlimpseContiguity Approach
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A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)
Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 26



A First GlimpseAgglomerative Approach
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A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion
Numerous variations on the merging criterion. . .
Number of groups chosen afterward.
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A First GlimpseChoice of the method and of the number of groups

So
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Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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A First GlimpseDimensionality Curse
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DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

Dimensionality Curse
Previous approaches based on distances.
Surprising behavior in high dimension: everything is ((often) as) far away.
Beware of categories. . .
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A First GlimpseDimensionality Curse
DISCLAIMER: Even if they are used everywhere beware of the usual
distances in high dimension!

High Dimensional Geometry Curse
Folks theorem: In high dimension, everyone is alone.
Theorem: If X 1, . . . , Xn in the hypercube of dimension d such that their
coordinates are i.i.d then

d−1/p
(
max ∥X i − X j∥p − min ∥X i − X j∥p

)
= 0 + OP

√ log n
d


max ∥X i − X j∥p

min ∥X i − X j∥p
= 1 + OP

√ log n
d

 .

When d is large, all the points are almost equidistant. . .
Nearest neighbors are meaningless!
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A First GlimpseHow to Simplify?
A Projection Based Approach

Observations: X 1, . . . , Xn ∈ Rd

Simplified version: Φ(X 1), . . . , Φ(Xn) ∈ Rd with Φ an affine projection preserving
the mean Φ(X ) = P(X − m) + m with P⊤ = P = P2 and m = 1

n
∑

i X i .

How to choose P?
Inertia criterion: max

P

∑
i ,j

∥Φ(X i) − Φ(X j)∥2?

Reconstruction criterion:
min

P

∑
i

∥X i − Φ(X i)∥2?

Relationship criterion:
min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2?

Rk: Best solution is P = I! Need to reduce the rank of the projection to
d ′ < d . . . 33
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A First GlimpseInertia criterion
Heuristic: a good representation is such that the projected points are far apart.

Two views on inertia
Inertia:

I = 1
2n2

∑
i ,j

∥X i − X j∥2 = 1
n

n∑
i=1

∥X i − m∥2

2 times the mean squared distance to the mean = Mean squared distance
between individual

Inertia criterion (Principal Component Analysis)

Criterion: max
P

∑
i ,j

1
2n2 ∥PX i − PX j∥2 = max

P

1
n
∑

i
∥PX i − m∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤
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A First GlimpseFirst Component of the PCA
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X̃ = m + a⊤(X − m)a with ∥a∥ = 1

Inertia: 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a

Principal Component Analysis: optimization of the projection

Maximization of Ĩ = 1
n

n∑
i=1

a⊤(X i − m)(X i − m)⊤a = a⊤Σa with

Σ = 1
n

n∑
i=1

(X i − m)(X i − m)⊤ the empirical covariance matrix.

Explicit optimal choice given by the eigenvector of the largest eigenvalue of Σ.
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A First GlimpsePCA
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Principal Component Analysis : sequential optimization of the projection
Explicit optimal solution obtain by the projection on the eigenvectors of the
largest eigenvalues of Σ.
Projected inertia given by the sum of those eigenvalues.

Often fast decay of the eigenvalues: some dimensions are much more important
than other.
Not exactly the curse of dimensionality setting. . .
Yet a lot of small dimension can drive the distance!
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A First GlimpseReconstruction Criterion

Heuristic: a good representation is such that the projected points are close to the
original ones.

Reconstruction Criterion

Criterion: min
P

∑
i

1
n∥X i − (P(X i − m) + m)∥2 = min

P

1
n
∑

i
∥(I − P)(X i − m)∥2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Proof (Pythagora):∑

i
∥X i − m∥2 =

∑
i

(
∥P(X i − m)∥2 + ∥(I − P)(X i − m)∥2

)
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A First GlimpsePCA, Reconstruction and Distances

Individu 1

Individu 2
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Close projection doesn’t mean close individuals!
Same projections but different situations.
Quality of the reconstruction measured by the angle with the projection space!
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A First GlimpseRelationship Criterion

Heuristic: a good representation is such that the projected points scalar products
are similar to the original ones.

Relationship Criterion (Multi Dimensional Scaling)
Criterion: min

P

∑
i ,j

|(X i − m)⊤(X j − m) − (Φ(X i) − m)⊤(Φ(X j) − m)|2

Solution: Choose P as a projection matrix on the space spanned by the d ′ first
eigenvectors of Σ = 1

n
∑

i(X i − m)(X i − m)⊤

Same solution with a different heuristic!
Much more involved justification!
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Dimension ReductionDimension Reduction

Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Space X of possibly high dimension.

Dimension Reduction Map
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )

Criterion
Reconstruction error
Relationship preservation
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Dimension ReductionReconstruction Error Approach

Goal
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X ))

Canonical example for X ∈ Rd : find Φ and Φ̃ in a parametric family that minimize
1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2
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Dimension ReductionPrincipal Component Analysis

X ∈ Rd and X ′ = Rd ′

Affine model X ∼ m +
∑d ′

l=1 X ′(l)V (l) with (V (l)) an orthonormal family.
Equivalent to:

Φ(X ) = V ⊤(X − m) and Φ̃(X ′) = m + V X ′

Reconstruction error criterion:
1
n

n∑
i=1

∥X i − (m + VV ⊤(X i − m)∥2

Explicit solution: m is the empirical mean and V is any orthonormal basis of the
space spanned by the d ′ first eigenvectors (the one with largest eigenvalues) of
the empirical covariance matrix 1

n
∑n

i=1(X i − m)(X i − m)⊤.
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Dimension ReductionPrincipal Component Analysis

PCA Algorithm
Compute the empirical mean m = 1

n
∑n

i=1 X i

Compute the empirical covariance matrix 1
n
∑n

i=1(X i − m)(X i − m)⊤.
Compute the d ′ first eigenvectors of this matrix: V (1), . . . , V (d ′)

Set Φ(X ) = V ⊤(X − m)

Complexity: O(n(d + d2) + d ′d2)
Interpretation:

Φ(X ) = V ⊤(X − m): coordinates in the restricted space.
V (i): influence of each original coordinates in the ith new one.

Scaling: This method is not invariant to a scaling of the variables! It is custom to
normalize the variables (at least within groups) before applying PCA.
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Dimension ReductionMultiple Factor Analysis
PCA assumes X = Rd !
How to deal with categorical values?
MFA = PCA with clever coding strategy for categorical values.

Categorical value code for a single variable
Classical redundant dummy coding:

X ∈ {1, . . . , V } 7→ P(X ) =
(
1X=1, . . . , 1X=V

)⊤
Compute the mean (i.e. the empirical proportions): P = 1

n
∑n

i=1 P(X i)

Renormalize P(X ) by 1/
√

(V − 1)P:
P(X ) 7→ Pr (X )

(
1X=1, . . . 1X=V

)
7→

 1X=1√
(V − 1)P1

, . . . ,
1X=V√

(V − 1)PV
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Dimension ReductionMultiple Factor Analysis

χ2 type distance!
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Dimension ReductionMultiple Factor Analysis

PCA becomes the minimization of
1
n

n∑
i=1

∥Pr (X i) − (m + VV ⊤(Pr (X i) − m))∥2

= 1
n

n∑
i=1

V∑
v=1

∣∣∣1X i =v − (m′ +
∑d ′

l=1 V (l)⊤(P(X i) − m′)V (l ,v))
∣∣∣2

(V − 1)Pv

Interpretation:
m′ = P
Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l) can be interpreted s as a probability profile.

Complexity: O(n(V + V 2) + d ′V 2)
Link with Correspondence Analysis (CA)
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Dimension ReductionMultiple Factor Analysis

MFA Algorithm
Redundant dummy coding of each categorical variable.
Renormalization of each block of dummy variable.
Classical PCA algorithm on the resulting variables

Interpretation as a reconstruction error with a rescaled/χ2 metric.
Interpretation:

Φ(X ) = V ⊤(P r (X ) − m): coordinates in the restricted space.
V (l): influence of each modality/variable in the ith new coordinates.

Scaling: This method is not invariant to a scaling of the continuous variables! It
is custom to normalize the variables (at least within groups) before applying PCA.
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Dimension ReductionNon Linear PCA

PCA Model
PCA: Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) orthonormal
X ′,(l) without constraints.

Two directions of extension:
Other constraints on V (or the coordinates in the restricted space): ICA, NMF,
Dictionary approach
PCA on a non linear image of X : kernel-PCA

Much more complex algorithm!
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Dimension ReductionNon Linear PCA

ICA (Independent Component Analysis)
Linear model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints.
X ′,(l) independent

NMF (Non Negative Matrix Factorization)
(Linear) Model assumption

X ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) non negative
X ′,(l) non negative.
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Dimension ReductionNon Linear PCA
Dictionary

(Linear) Model assumption

X ≃ m +
d ′∑

l=1
X ′,(l)V (l) = m + V X ′

with
V (l) without constraints
X ′ sparse (with a lot of 0)

kernel PCA
Linear model assumption

Ψ(X − m) ≃
d ′∑

l=1
X ′,(l)V (l) = V X ′

with
V (l) orthonormal
X ′

l without constraints.
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Dimension ReductionAuto Encoder

Deep Auto Encoder
Construct a map Φ with a NN from the space X into a space X ′ of smaller
dimension:

Φ : X → X ′

X 7→ Φ(X )
Construct Φ̃ with a NN from X ′ to X
Control the error between X and its reconstruction Φ̃(Φ(X )):

1
n

n∑
i=1

∥X i − Φ̃(Φ(X i))∥2

Optimization by gradient descent.
NN can be replaced by another parametric function. . .
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Dimension ReductionPairwise Relation
Different point of view!
Focus on pairwise relation R(X i , X j).

Distance Preservation
Construct a map Φ from the space X into a space X ′ of smaller dimension:

Φ : X → X ′

X 7→ Φ(X ) = X ′

such that
R(X i , X j) ∼ R′(X ′

i , X ′
j)

Most classical version (MDS):
Scalar product relation: R(X i , X j) = (X i − m)⊤(X j − m)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean scalar product matching:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − (X ′
i)

⊤X ′
j

∣∣∣2
Φ often defined only on D. . . 55



Dimension ReductionMultiDimensional Scaling

MDS Heuristic
Match the scalar products:

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − X i
′⊤X ′

j

∣∣∣2
Linear method: X ′ = U⊤(X − m) with U orthonormal

Beware: X can be unknown, only the scalar products are required!
Resulting criterion: minimization in U⊤(X i − m) of

1
n2

n∑
i=1

n∑
j=1

∣∣∣(X i − m)⊤(X j − m) − (X i − m)⊤UU⊤(X j − m)
∣∣∣2

without using explicitly X in the algorithm. . .
Explicit solution obtained through the eigendecomposition of the know Gram
matrix (X i − m)⊤(X j − m) by keeping only the d ′ largest eigenvalues.
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Dimension ReductionMultiDimensional Scaling

In this case, MDS yields the same result than the PCA (but with different inputs,
distance between observation vs correlations)!
Explanation: Same SVD problem up to a transposition:

MDS
X (n)

⊤X (n) ∼ X (n)
⊤UU⊤X (n)

PCA
X (n)X (n)

⊤ ∼ U⊤X (n)X (n)
⊤U

Complexity: PCA O((n + d ′)d2) vs MDS O((d + d ′)n2). . .
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Dimension ReductionGeneralized MDS

Preserving the scalar products amounts to preserve the Euclidean distance.
Easier generalization if we work in term of distance!

Generalized MDS
Generalized MDS:

Distance relation: R(X i , X j) = d(X i , X j)
Linear mapping X ′ = Φ(X ) = V ⊤(X − m).
Euclidean matching:

1
n2

n∑
i=1

n∑
j=1

∣∣d(X i , X j) − d ′(X ′
i , X ′

j)
∣∣2

Strong connection (but no equivalence) with MDS when d(x , y) = ∥x − y∥2!
Minimization: Simple gradient descent can be used (can be stuck in local
minima).
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Dimension ReductionISOMAP

MDS: equivalent to PCA (but more expensive) if d(x , y) = ∥x − y∥2!
ISOMAP: use a localized distance instead to limit the influence of very far point.

ISOMAP
For each point X i , define a neighborhood Ni (either by a distance or a number of
points) and let

d0(X i , X j) =
{

+∞ if X j /∈ Ni

∥X i − X j∥2 otherwise
Compute the shortest path distance for each pair.
Use the MDS algorithm with this distance
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Dimension ReductionRandom Projection

Random Projection Heuristic
Draw at random d ′ unit vector (direction) Ui .
Use X ′ = U⊤(X − m) with m = 1

n
∑n

i=1 X i

Property: If X lives in a space of dimension d ′′, then, as soon as, d ′ ∼ d ′′ log(d ′′),

∥X i − X j∥2 ∼ d
d ′ ∥X ′

i − X ′
j∥2

Do not really use the data!
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Dimension Reductiont-Stochastic Neighbor Embedding
SNE heuristic

From X i ∈ X , construct a set of conditional probability:

Pj|i = e−∥X i −X j ∥2/2σ2
i∑

k ̸=i e−∥X i −Xk∥2/2σ2
i

Pi |i = 0

Find X ′
i in Rd ′ such that the set of conditional probability:

Qj|i = e−∥X ′
i −X ′

j ∥2/2σ2
i∑

k ̸=i e−∥X ′
i −X ′

k∥2/2σ2
i

Qi |i = 0

is close from P.

t-SNE: use a Student-t term (1 + ∥X ′
i − X ′

j∥2)−1 for X ′
i

Minimize the Kullback-Leibler divergence (
∑
i ,j

Pj|i log
Pj|i
Qj|i

) by a simple gradient

descent (can be stuck in local minima).
Parameters σi such that H(Pi) = −

∑n
j=1 Pj|i log Pj|i = cst.

61



Dimension Reductiont-Stochastic Neighbor Embedding

Very successful/ powerful technique in practice
Convergence may be long, unstable, or strongly depending on parameters.
See this distill post for many impressive examples

Representation depending on t-SNE parameters
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Dimension ReductionUMAP
Topological Data Analysis inspired.

Uniform Manifold Approximation and Projection
Define a notion of asymmetric scaled local proximity between neighbors:

Compute the k-neighborhood of X i , its diameter σi and the distance ρi between X i
and its nearest neighbor.
Define

wi(X i , X j) =
{

e−(d(X i ,X j )−ρi )/σi for X j in the k-neighborhood
0 otherwise

Symmetrize into a fuzzy nearest neighbor criterion
w(X i , X j) = wi(X i , X j) + wj(X j , X i) − wi(X i , X j)wj(X j , X i)

Determine the points X ′
i in a low dimensional space such that∑

i ̸=j
w(X i , X j) log

(
w(X i , X j)
w ′(X ′

i , X ′
j)

)
+ (1 − w(X i , X j)) log

(
(1 − w(X i , X j))
(1 − w ′(X ′

i , X ′
j))

)

Can be performed by local gradient descent. 63



Dimension ReductionGraph based

Graph heuristic
Construct a graph with weighted edges wi ,j measuring the proximity of X i and X j
(wi ,j large if close and 0 if there is no information).
Find the points X ′

i ∈ Rd ′ minimizing
1
n

1
n

n∑
i=1

n∑
j=1

wi ,j∥X ′
i − X ′

j∥2

Need of a constraint on the size of X ′
i . . .

Explicit solution through linear algebra: d ′ eigenvectors with smallest eigenvalues
of the Laplacian of the graph D − W , where D is a diagonal matrix with
Di ,i =

∑
j wi ,j .

Variation on the definition of the Laplacian. . .

64



Dimension ReductionOutline

1 Motivation, Supervised vs Unsupervised
Learning

2 A First Glimpse
Clustering
Dimensionality Curse
Simplification

3 Dimension Reduction
Reconstruction Error
Relationship Preservation
Comparing Methods?
Words and Word Vectors

4 Clustering
Prototype Approach
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

5 Generative Adversarial Network

6 References

65



Dimension ReductionHow to Compare Different Dimensionality Reduction
Methods ?

Difficult! Once again, the metric is very subjective.

However, a few possible attempts
Did we preserve a lot of inertia with only a few directions?
Do those directions make sense from an expert point of view?
Do the low dimension representation preserve some important information?
Are we better on subsequent task?
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Dimension ReductionAn Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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Dimension ReductionAn Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used.
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Dimension ReductionAn Example: MNIST

PCA autoencoder t-SNE UMAP

MNIST Dataset
Images of 28 × 28 pixels.
No label used!
4 different embeddings.

Quality evaluated by visualizing the true labels not used to obtain the
embeddings.
Only a few labels could have been used. 67



Dimension ReductionAnother Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Dimension ReductionAnother Example: A 2D Set

Original

PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
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Dimension ReductionAnother Example: A 2D Set

Original PCA t-SNE UMAP

Cluster Dataset
Set of points in 2D.
No label used!
3 different embeddings.

Quality evaluated by stability. . .
68
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Dimension ReductionWord Vectors

So
ur

ce
:

nl
p.

st
an

fo
rd

.e
du

Word Embedding
Map from the set of words to Rd .
Each word is associated to a vector.
Hope that the relationship between two vectors is related to the relationship
between the corresponding words!
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Dimension ReductionWord And Context

Look ! A single word and its context

Word And Context
Idea: characterize a word w through its relation with words c appearing in its
context. . .
Probabilistic description:

Joint distribution: f (w , c) = P (w , c)
Conditional distribution(s): f (w , c) = P (w |c) or f (w , c) = P (c|w).
Pointwise mutual information: f (w , c) = P (w , c) /(P (w)P (c))

Word w characterized by the vector Cw = (f (w , c))c or Cw = (log f (w , c))c .

In practice, C is replaced by an estimate on large corpus.
Very high dimensional model!
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Dimension ReductionA (Naïve) SVD Approach

C

(nw ×nc)

≃ Ur

(nw ×r)

Σr ,r

(r×r)

Vr
⊤

(r×nc)

Truncated SVD Approach
Approximate the embedding matrix C using the truncated SVD decomposition
(best low rank approximation).
Use as a code

C ′
w = Ur ,w Σα

r ,r
with α ∈ [0, 1].

Variation possible on C .
State of the art results but computationally intensive. . . 72



Dimension ReductionA Least Square Approach

All the previous models correspond to
−logP (w , c) ∼ C ′t

w C ′′
c + αw + βc

GloVe (Global Vectors)
Enforce such a fit through a (weighted) least square formulation:∑

w ,c
h(P (w , c))

∥∥−logP (w , c) −
(
C ′t

w C ′′
c + αw + βc

)∥∥2

with h a increasing weight.
Minimization by alternating least square or stochastic gradient descent. . .

Much more efficient than SVD.
Similar idea in recommendation system.
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Dimension ReductionA Learning Approach

Supervised Learning Formulation
True pairs (w , c) are positive examples.
Artificially generate negative examples (w ′, c ′) (for instance by drawing c ′ and w ′

independently in the same corpus.)
Model the probability of being a true pair (w , c) as a (simple) function of the
codes C ′

w and C ′′
c .

Word2vec: logistic modeling

P (1|w , c) = eC ′t
W C ′′

c

1 + eC ′t
W C ′′

c

State of the art and efficient computation.
Similar to a factorization of − log(P (w , c) /(P (w)P (c))) but without requiring
the estimation of the probabilities!
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ClusteringClustering
Training data : D = {X 1, . . . , Xn} ∈ X n (i.i.d. ∼ P)
Latent groups?

Clustering
Construct a map f from D to {1, . . . , K} where K is a number of classes to be
fixed:

f : X i 7→ ki

Motivations
Interpretation of the groups
Use of the groups in further processing

Several strategies possible!
Can use dimension reduction as a preprocessing.
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ClusteringWhat’s a group?

So
ur

ce
:

J.
Pi

te
l

No simple or unanimous definition!
Require a notion of similarity/difference. . .

Three main approaches
A group is a set of samples similar to a prototype.
A group is a set of samples that can be linked by contiguity.
A group can be obtained by fusing some smaller groups. . .
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ClusteringPrototype Approach

So
ur

ce
:

A
.J

eff
ar

es

A group is a set of samples similar to a prototype.
Most classical instance: k-means algorithm.
Principle: alternate prototype choice for the current groups and group update
based on those prototypes.
Number of groups fixed at the beginning
No need to compare the samples between them!
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ClusteringContiguity Approach

So
ur

ce
:

W
ik

ip
ed

ia

A group is the set of samples that can be linked by contiguity.
Most classical instance: DBScan
Principle: group samples by contiguity if possible (proximity and density)
Some samples may remain isolated.
Number of groups controlled by the scale parameter.

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 79



ClusteringAgglomerative Approach

So
ur

ce
:

up
G

ra
d

A group can be obtained by fusing some smaller groups. . .
Hierachical clustering principle: sequential merging of groups according to a best
merge criterion
Numerous variations on the merging criterion. . .
Number of groups chosen afterward.

80



ClusteringChoice of the method and of the number of groups

So
ur

ce
:

Sc
ik

it-
Le

ar
nNo methods is better than the other. . .

Criterion not necessarily explicit!
No cross validation possible
Choice of the number of groups: a priori, heuristic, based on the final usage. . .
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ClusteringPartition Based
Partition Heuristic

Clustering is defined by a partition in K classes. . .
that minimizes a homogeneity criterion.

K- Means
Cluster k defined by a center µk .
Each sample is associated to the closest center.

Centers defined as the minimizer of
n∑

i=1
min

k
∥X i − µk∥2

Iterative scheme (Loyd):
Start by a (pseudo) random choice for the centers µk
Assign each samples to its nearby center
Replace the center of a cluster by the mean of its assigned samples.
Repeat the last two steps until convergence.
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ClusteringPartition Based

84



ClusteringPartition based

Other schemes:
McQueen: modify the mean each time a sample is assigned to a new cluster.
Hartigan: modify the mean by removing the considered sample, assign it to the
nearby center and recompute the new mean after assignment.

A good initialization is crucial!
Initialize by samples.
k-Mean++: try to take them as separated as possible.
No guarantee to converge to a global optimum: repeat and keep the best result!

Complexity : O(n × K × T ) where T is the number of steps in the algorithm.
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ClusteringPartition based

k-Medoid: use a sample as a center
PAM: for a given cluster, use the sample that minimizes the intra distance (sum of
the squared distance to the other points)
Approximate medoid: for a given cluster, assign the point that is the closest to the
mean.

Complexity:
PAM: O(n2 × T ) in the worst case!
Approximate medoid: O(n × K × T ) where T is the number of steps in the
algorithm.

Remark: Any distance can be used. . . but the complexity of computing the
centers can be very different.
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ClusteringK-Means

k = 4 k = 10 k = 10
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ClusteringModel Based

Model Heuristic
Use a generative model of the data:

P (X ) =
K∑

k=1
πkPθk (X |k)

where πk are proportions and Pθ (X |k) are parametric probability models.
Estimate those parameters (often by a ML principle).
Assign each observations to the class maximizing the a posteriori probability
(obtained by Bayes formula)

π̂kPθ̂k
(X |k)∑K

k′=1 π̂k′P
θ̂k′

(X |k ′)

Link with Generative model in supervised classification!
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ClusteringModel Based
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ClusteringModel Based

A two class example
A mixture π1f1(X ) + π2f2(X )

and the posterior probability πi fi(X )/(π1f1(X ) + π2f2(X ))

Natural class assignment!
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ClusteringModel Based

Sub-population estimation
A mixture π1f1(X ) + π2f2(X )

Two populations with a parametric distribution fi .

Most classical choice: Gaussian distribution

Gaussian Setting
X 1, . . . , X n independent

X i ∼ N (µ1, σ2
1) with probability π1 or X i ∼ N (µ2, σ2

2) with probability π2

We don’t know the parameters µi , σi , πi .

We don’t know from which distribution each X i has been drawn.
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ClusteringModel Based

Maximum Likelihood
Density: π1Φ(X , µ1, σ2

1) + π2Φ(X , µ2, σ2
2)

log-likelihood:
L(θ) =

n∑
i=1

log
(
π1Φ(X i , µ1, σ2

1) + π2Φ(X i , µ2, σ2
2)
)

No straightforward way to optimize the parameters!

92



ClusteringModel Based

What if algorithm
Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood:
n∑

i=1
Zi log Φ(X i , µ1, σ2

1) + (1 − Zi) log Φ(X i , µ2, σ2
2)

Easy optimization. . . but the Zi are unknown!
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ClusteringModel Based
What if algorithm

Assume we know from which distribution each sample has been sampled: Zi = 1 if from
f1 and Zi = 0 otherwise.

log-likelihood: n∑
i=1

Zi log Φ(X i , µ1, σ2
1) + (1 − Zi) log Φ(X i , µ2, σ2

2)

Easy optimization. . . but the Zi are unknown!

Bootstrapping Idea
Replace Zi by its expectation given the current estimate.

E [Zi ] = P (Zi = 1|θ) (A posteriori probability)

and iterate. . .

Can be proved to be good idea!
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ClusteringModel Based

EM Algorithm
(Random) initialization: µ0

i , σ0
i , π0

i .
Repeat:

Expectation (Current a posteriori probability):

Et [Zi ] = P
(
Zi = 1|θt) = πt

1Φ(X i , µt
1, (σt

1)2)
πt

1Φ(X i , µt
1, (σt

1)2) + πt
2Φ(X i , µt

2, (σt
2)2)

Maximization of
n∑

i=1

Et [Zi ] log Φ(X i , µ1, σ2
1) + Et [1 − Zi ] log Φ(X i , µ2, σ2

2)

to obtain µt+1
i , σt+1

i , πt+1
i .
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ClusteringModel Based

Large choice of parametric models.

Gaussian Mixture Model
Use

Pθk

(
X⃗ |k

)
∼ N (µk , Σk)

with N (µ, Σ) the Gaussian law of mean µ and covariance matrix Σ.

Efficient optimization algorithm available (EM)
Often some constraint on the covariance matrices: identical, with a similar
structure. . .
Strong connection with K -means when the covariance matrices are assumed to be
the same multiple of the identity.
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ClusteringModel Based

Probabilistic latent semantic analysis (PLSA)
Documents described by their word counts w
Model:

P (w) =
K∑

k=1
πkPθk (w |k)

with k the (hidden) topic, πk a topic probability and Pθk (w |k) a multinomial law
for a given topic.
Clustering according to

P (k|w) =
π̂kPθ̂k

(w |k)∑
k′ π̂k′P

θ̂k′
(w |k ′)

Same idea than GMM!
Bayesian variant called LDA.
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ClusteringModel Based

Parametric Density Estimation Principle
Assign a probability of membership.
Lots of theoretical studies. . .
Model selection principle can be used to select K the number of class:

AIC / BIC / MDL penalization
Cross Validation is also possible!

Complexity: O(n × K × T )
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ClusteringGaussian Mixture Models

k = 4 k = 10 k = 10
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Clustering(Non Parametric) Density Based

Density Heuristic
Cluster are connected dense zone separated by low density zone.
Not all points belong to a cluster.

Basic bricks:
Estimate the density.
Find points with high densities.
Gather those points according to the density

Density estimation:
Classical kernel density estimate. . .

Gathering:
Link points of high density and use the resulted component.
Move them toward top of density hill by following the gradient and gather all the
points arriving at the same summit.
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Clustering(Non Parametric) Density Based

Concepts

2 paramètres:
� Eps: rayon maximum de voisinage

� MinPts: nb minimum de pts pour que V(p) soit un voisinage de taille Eps du pts p

Exemple avec MinPts = 4 et Eps = 1cm

x
y objet de coeur car V(y) existe (au moins MinPts objets dans le voisinage

de y de rayon Eps)x

y

de y de rayon Eps)

x objet de bord (d’une classe) car V(x) n’existe pas (moins de MinPts dans

son voisinnage de rayon eps)

x est directement densité atteignable depuis y car V(y) existe et x  

appartient à V(y); y n’est pas directement atteignable depuis x car V(x) 

n’existe pas

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Concepts

x est densité-atteignable depuis y s’il existe une chaîne de points (de 

longueur quelconque) partant de y et allant jusqu’à x et telle que le 

point pi+1 est densité atteignable depuis pi. 

p1 appartient à V(y), p2 appartient à V(p1),  x appartient à V(p2)

x

p2

X et y sont densité-connectés s’il existe un point z tel que x soit atteignable

depuis z et y soit atteignable depuis z (sur ce schéma, on voit que sans 

x

p1
y

le point)

Une classe C doit vérifier les 2 conditions suivantes :

1) Si un point x appartient à C alors tout point atteignable depuis x 

appartient à C. 

2) Tous les points d’une classe sont densité-connectés. 

Les points pleins appartiennent à une même classe, les points vides a une

autre classe. Le point z appartient à deux classes. Par convention, on 

l’affecte à la première classe à laquelle il est affecté.

x

y

z

Examples:
DBSCAN: link point of high densities using a very simple kernel.
PdfCLuster: find connected zone of high density.
Mean-shift: move points toward top of density hill following an evolving kernel
density estimate.

Complexity: O(n2 × T ) in the worst case.
Can be reduced to O(n log(n)T ) if samples can be encoded in a tree structure
(n-body problem type approximation).
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ClusteringDBSCAN

ϵ = .45 ϵ = .2 ϵ = .1
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ClusteringAgglomerative Clustering

Agglomerative Clustering Heuristic
Start with very small clusters (a sample by cluster?)
Sequential merging of the most similar clusters. . .
according to some greedy criterion ∆.

Generates a hierarchy of clustering instead of a single one.
Need to select the number of cluster afterwards.
Several choice for the merging criterion. . .
Examples:

Minimum Linkage: merge the closest cluster in term of the usual distance
Ward’s criterion: merge the two clusters yielding the less inner inertia loss (k-means
criterion)
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ClusteringAgglomerative Clustering
Algorithm

Start with (C(0)
i ) = ({X i}) the collection of all singletons.

At step s, we have n − s clusters (C(s)
i ):

Find the two most similar clusters according to a criterion ∆:
(i , i ′) = argmin

(j,j′)
∆(C(s)

j , C(s)
j′ )

Merge C(s)
i and C(s)

i′ into C(s+1)
i

Keep the n − s − 2 other clusters C(s+1)
i′′ = C(s)

i′′

Repeat until there is only one cluster.

Complexity: O(n3) in general.
Can be reduced to O(n2)

if only a bounded number of merging is possible for a given cluster,
for the most classical distances by maintaining a nearest neighbors list.
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ClusteringAgglomerative Clustering
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Merging criterion based on the distance between points
Minimum linkage:

∆(Ci , Cj) = min
X i ∈Ci

min
X∈Cj

d(X i , X j)

Maximum linkage:
∆(Ci , Cj) = max

X i ∈Ci
max
X∈Cj

d(X i , X j)

Average linkage:
∆(Ci , Cj) = 1

|Ci ||Cj |
∑

X i ∈Ci

∑
X∈Cj

d(X i , X j)

107



ClusteringAgglomerative Clustering

Clustering based on the proximity. . .
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ClusteringAgglomerative Clustering

Merging criterion based on the inertia (distance to the mean)
Ward’s criterion:

∆(Ci , Cj) =
∑

X i ∈Ci

(
d2(X i , µCi ∪Cj ) − d2(X i , µCi )

)
+
∑

X j ∈Cj

(
d2(X j , µCi ∪Cj ) − d2(X j , µCj )

)
If d is the Euclidean distance:

∆(Ci , Cj) = 2|Ci ||Cj |
|Ci | + |Cj |

d2(µCi , µCj )

Same criterion than in the k-means algorithm but greedy optimization.
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ClusteringAgglomerative Clustering
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ClusteringGrid based

Grid heuristic
Split the space in pieces
Group those of high density according to their proximity

Similar to density based estimate (with partition based initial clustering)
Space splitting can be fixed or adaptive to the data.
Examples:

STING (Statistical Information Grid): Hierarchical tree construction plus DBSCAN
type algorithm
AMR (Adaptive Mesh Refinement): Adaptive tree refinement plus k-means type
assignment from high density leaves.
CLIQUE: Tensorial grid and 1D detection.

Linked to Divisive clustering (DIANA)
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ClusteringOthers

Graph based
Spectral clustering: dimension reduction + k-means.
Message passing: iterative local algorithm.
Graph cut: min/max flow.

Kohonen Map,
. . .

113



ClusteringOutline

1 Motivation, Supervised vs Unsupervised
Learning

2 A First Glimpse
Clustering
Dimensionality Curse
Simplification

3 Dimension Reduction
Reconstruction Error
Relationship Preservation
Comparing Methods?
Words and Word Vectors

4 Clustering
Prototype Approach
Contiguity Approaches
Agglomerative Approaches
Other Approaches
Scalability

5 Generative Adversarial Network

6 References

114

Erwan LE PENNEC




ClusteringScalability

Large dataset issue
When n is large, a O(nα log n) with α > 1 is not acceptable!
How to deal with such a situation?

Beware: Computing all the pairwise distance requires O(n2) operations!

Ideas
Sampling
Online processing
Simplification
Parallelization
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ClusteringSampling

Sampling heuristic
Use only a subsample to construct the clustering.
Assign the other points to the constructed clusters afterwards.

Requires a clustering method that can assign new points (partition, model. . . )
Often repetition and choice of the best clustering
Example:

CLARA: K-medoid with sampling and repetition
Two step algorithm:

Generate a large number n′ of clusters using a fast algorithm (with n′ ≪ n)
Cluster the clusters with a more accurate algorithm.
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ClusteringOnline

Online heuristic
Modify the current clusters according to the value of a single observation.

Requires compactly described clusters.
Examples:

Add to an existing cluster (and modify it) if it is close enough and create a new
cluster otherwise (k-means without reassignment)
Stochastic descent gradient (GMM)

May leads to far from optimal clustering.
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ClusteringSimplification

Simplification heuristic
Simplify the algorithm to be more efficient at the cost of some precision.

Algorithm dependent!
Examples:

Replace groups of observation (preliminary cluster) by the (approximate) statistics.
Approximate the distances by cheaper ones.
Use n-body type techniques.
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ClusteringParallelization

Parallelization heuristic
Split the computation on several computers.

Algorithm dependent!
Examples:

Distance computation in k-means, parameter gradient in model based clustering
Grid density estimation, Space splitting strategies

Classical batch sampling not easy to perform as partitions are not easily merged. . .
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Generative Adversarial
Network

Generative Modeling and Density Estimation
Generative Model

Probabilistic model of the world.
Allow to generate samples that mimics X .
Classical approaches are based on likelihood:

Parametric model,
Bayesian model.

Generative Algorithm
Computational probabilistic model of the world.
Allow to generate samples G(Z ) that mimic X from

a randomness source Z ,
a computable function G .

No explicit form of the likelihood!

How to learn G?
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Generative Adversarial
Network

A Clever Idea

Φ(

G(Z )

)

∼

Φ(

X

)

?
From estimation to. . .

discrimination
Discriminator (Goodfellow 14)

Let

(X̃ , Y ) =
{

(X , 1) with probability 1/2
(G(Z ), 0) with probability 1/2

Can we guess from X̃ whether it comes from X or G(Z )?
Discriminator loss = Classifier loss:

L(D, G) = 1/2EX [− log D(X )] + 1/2EG(Z) [− log(1 − D(G(Z )))]

Heuristic
One can learn a discriminator from the data for a fixed G .
The ideal generator is such that this problem is hard!
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Generative Adversarial
Network

A Clever Idea
Φ(G(Z )) ∼ Φ(X )?

From estimation to. . . discrimination
Discriminator (Goodfellow 14)

Let

(X̃ , Y ) =
{

(X , 1) with probability 1/2
(G(Z ), 0) with probability 1/2

Can we guess from X̃ whether it comes from X or G(Z )?
Discriminator loss = Classifier loss:

L(D, G) = 1/2EX [− log D(X )] + 1/2EG(Z) [− log(1 − D(G(Z )))]

Heuristic
One can learn a discriminator from the data for a fixed G .
The ideal generator is such that this problem is hard!
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Generative Adversarial
Network

A Clever Idea
Best Discriminator

Bayes Discriminator D∗:
D∗(X̃ ) = P

(
Y = 1|X̃

)
=

1/2fX (X̃ )
1/2fX (X̃ ) + 1/2fG(Z)(X̃ )

Optimal loss:
L(D∗, G) = 1/2EX

[
− log 1/2 + − log

fX (X )
1/2fX (X ) + 1/2fG(Z)(X )

]

+ 1/2EG

[
− log 1/2 + − log fG(G)

1/2fX (G) + 1/2fG(G)

]
= −1/2KL(fX , 1/2fX + 1/2fG(Z))

− 1/2KL(fG(Z), 1/2fX + 1/2fG(Z)) + log 2
= −JKL1/2(fX , fG(Z)) + log 2

Adversarial minimization:
argmax

G
min

D
L(D, G) = argmin

G
JKL1/2(fX , fG(Z))
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Generative Adversarial
Network

Generative Adversarial Network

G∗ = argmin
G

max
D

[
1/2EX [log D(X )] + 1/2EG(Z) [log(1 − D(G(Z )))]

]
Generative Adversarial Network

Replace the set of all possible G and D by a set of parametric functions, for
instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G .

Z is often U [−1, 1] or N (0, 1).
Not that easy to train:

hard to achieve Nash equilibrium (no guaranteed convergence)
mode collapse (restart required)
support issue of KL like divergence (add noise)
adding feature matching helps!
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Generative Adversarial
Network

GAN and f -divergence

Df (P, Q) =
∫

f
(p(x)

q(x)

)
q(x)

= supTEX∼P [T (X )] − EG∼Q [f ∗(T (G))]

f -divergence and dual representation
Defines a divergence for any convex f .
Dual representation with f ∗(x) = supu⟨x , u⟩ − f (u)

min
G

sup
T

EX∼P [T (X )] − EZ [f ∗(T (G(Z ))]

f -GAN
Replace the set of all possible G and T by a set of parametric functions, for
instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G . 125



Generative Adversarial
Network

Classical GAN and f -GAN
JKL(P, Q) = supTEX∼P [T (X )] − EG∼Q [− log(2 − expT (G))]

Classical GAN as a f -GAN
JKL-divergence is a f divergence with f (u) = −(u + 1) log 1+u

2 + u log u.
Parameterize T by log 2 − log(1 + e−T ′) so that

JKL(P, Q) = sup
T ′

EX∼P
[
log 2 − log(1 + e−T ′)

]
− EG∼Q

[
log(2 − 2/(1 + e−T ′)

]
= 2 log 2 + sup

T ′
EX∼P

[
log(1/(1 + e−T ′))

]
+ EG∼Q

[
log(1 − 1/(1 + e−T ′))

]
GAN formulation up to the parameterization of T :

min
G

max
T ′

EX
[
log(1/(1 + e−T ′(X)))

]
+ EG(Z)

[
log(1 − 1/(1 + e−T ′(G(Z))))

]
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Generative Adversarial
Network

GAN and Wasserstein
W (P, Q) = inf

ξ∈π(P,Q)
E(p,q)∼ξ [∥p − q∥]

= 1
K sup∥f ∥L≤KEX∼P [f (X )] − EG∼Q [f (G))]

min
G

sup
∥f ∥L≤1

EX∼P [f (X )] − EZ [f (G(Z ))]

WGAN
Replace the set of all possible G and f by a set of parametric functions, for
instance some deep neural networks
Replace the expectations by some empirical means.
Alternate a maximization on D and a minimization on G .

Constraint on the Lipschitz norm is the most complex part:
clip on the network weights
or penalization of the gradient norm

Rk: More a case of integral probability metric than optimal transport. . .
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Generative Adversarial
Network

GAN

Generative Adversial Network
Clever idea combined with state of the art NN architecture.
Impressive results!

Can it be used to perform clustering in the latent space?
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