Reinforcement Learning Operations Research: Prediction and Planning

E. Le Pennec

M2DS - Reinforcement Learning - Fall 2023

1

RL: What Are We Going To See?

Outline

- Operations Research and MDP.
- Reinforcement learning and interactions.
- More tabular reinforcement learning.
- Reinforcement and approximation of value functions.
- Actor/Critic: a Policy Point of View

Operations Research and MDP

How to find the best policy knowing the MDP?

- Is there an optimal policy?
- How to estimate it numerically?
- Finite states/actions space assumption (tabular setting).
- Focus on interative methods using value functions (dynamic programming).
- Policy deduced by a statewise optimization of the value function over the actions.
- Focus on the discounted setting.

Outline

- Prediction and Bellman Equation
- 2 Prediction by Dynamic Programming and Contraction
- 3 Planning, Optimal Policies and Bellman Equation
- 🕘 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- D Episodic and Infinite Setting
 - 1 References

Markov Decision Process / Operations Research

MDP / OR

- Known MDP model
- Focus on the finite horizon setting

$$G_t^T = \sum_{t'=t+1}^T R_{t'}$$

and the discounted setting:

$$G_t^{\gamma} = \sum_{t'=t+1}^{\infty} \gamma^{t'-(t+1)} R_{t'}$$

• We will later consider the other settings.

Discounted Horizon Finite

6

Policy

• Finite horizon : emphasis on Markovian policies

$$\Pi_t(A_t = a_t) = \pi_t(A_t = a_t | S_t = s_t) = \pi_t(a_t | s_t)$$

• Discounted return: emphasis on stationary Markovian policies $\Pi_t(A_t=a_t)=\pi(A_t=a_t|S_t=s_t)=\pi(a_t|s_t)$

Prediction

Prediction

• How to efficently evaluate the quality of a policy

$$v_{t,\Pi}(s) = \mathbb{E}_{\Pi}\left[\sum_{t'=t+1}^{T} \gamma^{t'-(t+1)} R_{t'} \middle| S_t = s
ight]$$

when we can ensure that the sum is finite?

• $v_{t,\Pi}$ independent of t in the discounted setting if the policy is stationary.

Discounted Episodic inite LL. 7

Policy

 $\bullet\,$ How to find a policy π such that

$$\sum_{s,t} \mu(s,t) v_{t,\Pi}(s)$$

is as large as possible?

• Emphasis on $\mu(s, t) = 0$ if $t \neq 0$ and $\mu(s, 0) = \mathbb{P}_0(S_0 = s_0)$.

Outline

Prediction and Bellman Equation

- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- **1** References

10

Finite

Prediction and Bellman Equation

Discounted

Episodic

$$v_{t,\Pi}(s) = \sum_{a} \pi_t(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_{t+1,\Pi}(s')\right)$$
$$= \sum_{a} \pi_t(a|s) r(s,a) + \gamma \sum_{a} \sum_{b} p(s'|s,a) \pi_t(a|s) v_{t+1,\Pi}(s')$$

а

s'

Bellman Equation

а

- Link between $v_{t,\Pi}$ and $v_{t+1,\Pi}$.
- Straightforward consequence of

$$G_{t} = \sum_{t'=t+1}^{T} \gamma^{t'-(t+1)} R_{t'} = R_{t+1} + \gamma \sum_{t'=t+2}^{T} \gamma^{t'-(t+2)} R_{t'} = R_{t+1} + \gamma G_{t+1}$$

and thus

$$\mathbb{E}[G_t|S_t = s] = \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[\mathbb{E}[G_{t+1}|S_{t+1}]|S_t = s]$$

Bellman Operator

 $\mathcal{T}^{\pi_t} \cdot \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$

 $r_{\pi_t}(s)$

Prediction and Bellman Equation

Bellman Operator

• Affine operator from the space of state value functions to the space of state value functions.

 $\mathcal{T}^{\pi_t} v(s) = \sum_{a} \pi_t(a|s) r(s,a) + \gamma \sum_{s'} p(s'|s,a) \sum_{a} \pi_t(a|s) v(s')$

• By construction,

$$v_{t,\Pi} = \mathcal{T}^{\pi_t} v_{t+1,\Pi}$$

 $P^{\pi t}(s,s')$

*r*_{πt} is the vector of average immediate rewards using policy πt while P^{πt} is the one step state transition matrix using policy πt.

Outline

Prediction by Dynamic Programming and Contraction

Prediction and Bellman Equation

- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- 11 References

Finite Horizon: Naive Approach

Prediction by Dynamic Programming and Contraction

$$P = \sum_{a_t, r_{t+1}, s_{t+1}, \cdots, r_T} \left(\sum_{t'=t+1}^T r_{t'} \right) \mathbb{P}_{\Pi}(A_t = a_t \dots, R_T = r_T | S_t = s)$$

=
$$\sum_{a_t, r_{t+1}, s_{t+1}, \cdots, r_T} \left(\sum_{t'=t+1}^T r_{t'} \right) \pi_t(a_t | s) \times \cdots \times p(s_T, r_T | s_{T-1}, a_{T-1})$$

Finite Horizon: Naive Approach

- Exhaustive exploration of the trajectories.
- Complexity of order $(|\mathcal{A}| \times |\mathcal{S}| \times |\mathcal{R}|)^{T-t}$ for the value function at time t.
- Complexity can be reduced to $(|\mathcal{A}| \times |\mathcal{S}|)^{T-t}$ by noticing that

 $v_{t,\Pi}^{T}(s) = \sum_{a_{t},r_{t+1},s_{t+1},\cdots,r_{T}} \left(\sum_{t'=t+1}^{T} r_{t'}\right) \mathbb{P}_{\Pi}(A_{t} = a_{t}\ldots,R_{T} = r_{T}|S_{t} = s)$

$$v_{t,\Pi}^{T}(s) = \sum_{a_t, s_{t+1}, \cdots, s_{t-1}, a_{t-1}} \left(\sum_{t'=t+1}^{T} r(s_t, a_t) \right) \pi_t(a_t|s) \times \cdots \times p(s_T|s_{T-1}, a_{T-1})$$

Finite Horizon: Recursive Prediction

$$egin{aligned} & m{v}_{T,\Pi}^T = 0 \ & m{v}_{t-1,\Pi}^T = \mathcal{T}^{\pi_{t-1}}m{v}_{t,\Pi}^T \end{aligned}$$

Programming and Contraction

Finite Horizon: Recursive Prediction

- After time T, the finite horizon return $G_t^T = 0$ hence $v_{T,\Pi}^T = 0$ whatever the policy.
- The Bellman equation yields second equation.
- Equivalent rewriting

$$v_{t-1,\Pi}^{T}(s) = r_{\pi_{t-1}}(s) + \sum_{s'} P_{\pi_{t-1}}(s,s') v_{t}^{T}$$

• Complexity of order only $T \times |\mathcal{S}|^2(|\mathcal{A}| + |\mathcal{S}|)$ to compute all the value functions.

Prediction by Dynamic Programming and Contraction

Finite Horizon: Prediction by Value Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle and policy \Pi
parameter: Horizon T
init: v_T^T(s) = 0 \forall s \in S, t = T
repeat
      t \leftarrow t - 1
      for \forall s \in S do
             v_t^{\mathsf{T}}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi_t(a|s) \left( r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) v_{t+1}^{\mathsf{T}}(s') \right)
      end
until t = 0
output: Value functions v_t^T
```

• Most classical formulation

Discounted: Naive Approach

Prediction by Dynamic Programming and Contraction

$$v_{t,\Pi}^{\gamma}(s) = \sum_{t,\Pi}^{\infty} \gamma^{t'-(t+1)} \mathbb{E}_{\Pi}[R_{t'}|S_t = s] \simeq \sum_{t,\Pi}^{T} \gamma^{t} \mathbb{E}_{\Pi}[R_{t'}|S_t = s] = v_{t,\Pi}^{\gamma,T}(s)$$

$$v_{t,\Pi}^{\gamma,T}(s) = \sum_{a_t, s_{t+1}, \cdots, s_{t-1}, a_{t-1}} \left(\sum_{t'=t+1}^T \gamma^{t'-(t+1)} r(s_t, a_t) \right) \pi_t(a_t|s) \times \cdots \times p(s_T|s_{t-1}, a_{t-1})$$

Naive approach

- Exhaustive exploration of truncated trajectories.
- Back to the finite horizon setting...
- **Prop:** Control on the error as $\left| v_{\Pi}^{\gamma} v_{t,\Pi}^{\gamma,T} \right|_{\infty} \leq \frac{\gamma^{T+1-t}}{1-\gamma} \max_{r \in \mathcal{R}} |r|$

• Relation between the error $\epsilon \simeq \gamma^{T-t}$ and the numerical complexity $C = (|\mathcal{A}| \times |\mathcal{S}|)^{T-t}$ of order $C \simeq \epsilon^{-1}$.

Discounted: Recursive Prediction with Naive Initialization

Recursive Prediction

- Requires an initialization at time T with a horizon T'.
- The Bellman equation yields the second equation.
- Complexity of order only $T \times |\mathcal{S}|^2(|\mathcal{A}| + |\mathcal{S}|)$ to compute all the value functions after the initialization of cost $(|\mathcal{A}| \times |\mathcal{S}|)^{T'-T}$.
- Prop: If the approximation error between $v_{T,\Pi}^{\gamma}$ and $v_{T,\Pi}^{\gamma,T'}$ is bounded by ϵ then $\|v_{t,\Pi}^{\gamma} \tilde{v}_{t,\Pi}\|_{\infty} \leq \gamma^{T-t}\epsilon, \quad \forall t \leq T$

Discounted and stationary: Bellman Equation

Prediction by Dynamic Programming and Contraction

$$v_{\Pi} = \mathcal{T}^{\pi} v_{\Pi}$$
$$v_{\Pi}(s) = \sum_{a} \pi(a|s) r(s,a) + \gamma \sum_{s'} \sum_{a} p(s'|s,a) \pi(a|s) v_{\Pi}(s')$$

Bellman Equation

- Time independent value function v_{Π} .
- **Prop:** Unique solution of the linear equation $v_{\Pi} = \mathcal{T}^{\pi} v_{\Pi}$
- Complexity of order $(|A|+|S|) imes |S|^2$ to obtain the solution.

Discounted and stationary: Recursive Implementation

Prediction by Dynamic Programming and Contraction

$$m{v}_{\Pi} = \mathcal{T}^{\pi}m{v}_{\Pi}$$

 $m{v}_{k+1} = \mathcal{T}^{\pi}m{v}_k$ with arbitrary $m{v}_0$

- **Prop:** Unique fixed point of the Bellman operator $v \mapsto \mathcal{T}^{\pi}v$.
- **Prop:** The iterates $v_{k+1} = \mathcal{T}^{\pi} v_k$ converges toward v_{Π} and $\|v_k v_{\Pi}\|_{\infty} \leq \gamma^k \|v_0 v_{\Pi}\|_{\infty}$
- Complexity of order $(k + |A|)|S|^2$ to obtain the kth iterate.
- Exponential decay of the error with respect to the complexity.

Bellman Operator and Contraction

$$|\mathcal{T}^{\pi}\mathbf{v} - \mathcal{T}^{\pi}\mathbf{v}'||_{\infty} \leq \gamma \|\mathbf{v} - \mathbf{v}'\|_{\infty}$$

Proof

• By definition

$$\|\mathcal{T}^{\pi}\mathbf{v}-\mathcal{T}^{\pi}\mathbf{v}'\|_{\infty}=\gamma\|\mathcal{P}^{\pi}(\mathbf{v}-\mathbf{v}')\|_{\infty}$$

 $\sum P_{i,j}^{\pi} = 1$

 $\bullet\,$ It suffices then to notice that P^{π} is a transition matrix, so that

and thus
$$|\sum_j P^\pi_{i,j} z_j| \leq \max |z_j|$$

Consequences

- Unicity of the solution of $\mathcal{T}^{\pi}v = v$.
- Linear decay γ^k of the error with the iterates.

Bellman Operator and Bellman Equation Solution

Prediction by Dynamic Programming and Contraction

$$\mathbf{v}_{\Pi} = \left(\sum_{k=0}^{\infty} \gamma^k \left(\mathbf{P}^{\pi}\right)^k\right) \mathbf{r}_{\pi}$$

A Closed Formula for the State Value Function

- $v_{\Pi} = \mathcal{T}^{\pi} v_{\Pi} \Leftrightarrow (I \gamma P^{\pi}) v_{\Pi} = r_{\pi}$
- As P^{π} is a transition matrix, its eigenvalues are smaller than 1 and thus $(I \gamma P^{\pi})$ is invertible of inverse

$$(I - \gamma P^{\pi})^{-1} = \sum_{k=0}^{\infty} \gamma^{k} (P^{\pi})^{k}$$

• Could have been obtained without the Bellman equation as the $((P^{\pi})^k)_{s,s'}$ is, by construction, the probability of being at state s' at time k starting from s at time 0 and following Π .

Discounted and stationary: Value Iteration

Contraction

Discounted: Prediction by Value Iteration

```
input: MDP model \langle (\mathcal{S}, \mathcal{A}, \mathcal{R}), P \rangle, discount factor \gamma, and stationary policy \pi
init: \tilde{v}(s) \forall s \in S
repeat
        \tilde{v}_{\text{prev}} \leftarrow \tilde{v}
        for s \in S do
               	ilde{v}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left( r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) 	ilde{v}_{\mathsf{prev}}(s') 
ight)
        end
output: Value function \tilde{v}
```

• When to stop?

Discounted and stationary: Value Iteration

L'

Discounted: Prediction by Value Iteration

input: MDP model $\langle (S, A, \mathcal{R}), P \rangle$, discount factor γ , and stationary policy π **parameter:** $\delta > 0$ as accuracy termination threshold init: $\tilde{v}(s) \forall s \in S$ repeat $\tilde{v}_{\text{prev}} \leftarrow \tilde{v}$ $\Delta \leftarrow 0$ for $s \in S$ do $ilde{\mathbf{v}}(s) \leftarrow \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) \left(r(s, \mathbf{a}) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \mathbf{a}) \tilde{\mathbf{v}}_{\mathsf{prev}}(s')
ight)$ $\Delta \leftarrow \max\left(\Delta, |\tilde{\mathbf{v}}(s) - \tilde{\mathbf{v}}_{\mathsf{prev}}(s)|\right)$ end until $\Delta < \delta$ **output:** Value function \tilde{v}

• Prop: when the algorithms stops

$$\| ilde{\mathbf{v}} - \mathbf{v}_{\mathsf{\Pi}}\|_{\infty} \leq rac{2\delta}{1-\gamma}$$

Discounted and stationary: Value Iteration

Prediction by Dynamic Programming and Contraction

Discounted: Prediction by Value Iteration - Gauss-Seidel Version

input: MDP model $\langle (S, A, \mathcal{R}), P \rangle$, discount factor γ , and stationary policy π **parameter:** $\delta > 0$ as accuracy termination threshold init: $\tilde{v}(s) \forall s \in S$ repeat $\Delta \leftarrow 0$ for $s \in S$ do $\tilde{v}_{\text{prev}} \leftarrow \tilde{v}(s)$ $\widetilde{v}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) \widetilde{v}(s') \right)$ $\Delta \leftarrow \max(\Delta, |\widetilde{v}(s) - \widetilde{v}_{\text{prev}}|)$ end until $\Delta < \delta$ **output:** Value function \tilde{v}

- Gauss-Seidel variation mostly used in practice.
- No need to store the previous value function.

Outline

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- 11 References

Optimal Policy

Planning, Optimal Policies and Bellman Equation

Optimal Policy

 \bullet An optimal policy Π_{\star} should be better than any other policies:

$$\forall s, \forall t, v_{t,\Pi_{\star}}(s) = \sup_{\pi} v_{t,\Pi}(s)$$

Several Questions

- Do this policy exists?
- Is it unique?
- How to characterize it?
- How to obtain it?
- Even the sup above could be an issue if it is not attained!

Finite Horizon and Optimal Policy

Planning, Optimal Policies and Bellman Equation

Explicit Recursive Solution

- After horizon T, any policy leads to a 0 return.
- At time T-1,
 - the total return G_T is the immediate return at time T and thus

$$v_{\mathcal{T},\Pi^{\star}}(s) = \sup_{\pi(a|s)} \sum_{a} \pi(a|s) r(a,s) = \sup_{a} r(a,s)$$

- the optimal policy π^{\star}_{T-1} exists and is determistic.
- By recursion,
 - the total return at time t-1 is the immediate return at time t plus the total return at time t-1 and thus

$$v_{t-1,\Pi^{\star}}(s) = \sup_{\pi(a|s)} \sum_{a} \pi(a|s) \left(r(a,s) + \sum_{s'} p(s'|s,a) v_{t,\Pi^{\star}} \right)$$
$$= \sup_{a} \left(r(a,s) + \sum_{s'} p(s'|s,a) v_{t,\Pi^{\star}} \right)$$

• the optimal policy π_{t-1}^{\star} exists and is determistic.

Discounted Setting and Optimal Stationary Policy

Heuristic

• Optimal policy:
$$v^{\Pi^{\star}}(s) = \sup_{\pi} v_{\Pi}(s)$$

• Stationary solution:

$$\begin{aligned} \gamma_{\Pi^{\star}}(s) &= \sup_{\pi} \left(\mathcal{T}^{\pi} v_{\Pi^{\star}} \right)(s) \\ &= \sup_{\pi_t(\cdots|s)} \sum_{a} \pi(a|s) \left(r(a,s) + \gamma \sum_{s'} p(s'|s,a) v_{\Pi^{\star}}(s') \right) \\ &= \sup_{a} \left(r(a,s) + \gamma \sum_{s'} p(s'|s,a) v_{\Pi^{\star}}(s') \right) \end{aligned}$$

• Optimal deterministic policy: $\pi^*(s) \in \operatorname{argmax} (r(a, s) + \gamma \sum_{s'} p(s'|s, a) v_{\Pi^*}(s')).$

• Is everything well defined? Yes but one has to be more cautious!

Optimal Value Function and Bellman Operator

Optimal Value Function

- Optimal value function: $v_{\star}(s) = \sup_{\Pi} v_{\Pi}(s)$
- Defined state by state so that it is not necessarily attained by a single Π^{\star}

Optimal Bellman operator

• Similar to the Bellman operator but do not depend on a policy:

$$\mathcal{T}^{\star}v(s) = \sup_{a} \left(r(a,s) + \gamma \sum_{s'} p(s'|s,a)v(s') \right)$$

Link between the two

- $v \geq \mathcal{T}^* v$ implies $v \geq v_*$.
- $v \leq \mathcal{T}^* v$ implies $v \leq v_*$.

Optimal Value Function and Bellman Operator

Bellman Operator and Fixed Point

Prop: *T*^{*} is a γ-contraction for the sup-norm and thus it exists a unique v_{**} such that v_{**} = *T*^{*} v_{**}.

Fixed Point and Optimal Value Function

- **Prop:** : $v_* = v_{**}$ and is thus the unique fixed point of \mathcal{T}^* .
- **Proof:** $v_{\star\star} = \mathcal{T}^{\star} v_{\star\star}$ and thus $v_{\star\star} = v_{\star}$ according the link between the optimal value function and the Bellman operator.
- Does this mean something about policies?

Optimal Policy and Bellman Operator

Planning, Optimal Policies and Bellman Equation

Bellman Operator and Policy

• **Prop:** For any v, any policy π_v satisfying

$$\pi_v(s) \in \operatorname*{argmax}_{a}\left(r(a,s) + \gamma \sum_{s'} p(s'|s,a)v(s')\right)$$

is such that $\mathcal{T}^\star v(s) = \sup_{\pi} \mathcal{T}^\pi v(s) = \mathcal{T}^{\pi_v} v(s)$

Bellman Operator and Optimal Policy

• **Prop:** Any stationary policy π_{\star} satisfying

$$\pi_{\star}(s) \in \operatorname*{argmax}_{a} \left(r(a,s) + \gamma \sum_{s'} p(s'|s,a) v^{\star}(s') \right)$$

is optimal.

• **Proof:** Indeed by construction, $\mathcal{T}^* v_* = \mathcal{T}^{\pi_*} v_*$ and thus, as $\mathcal{T}^* v_* = v_*$, $v_{\pi_*} = v_*$.

Optimal Policy and Bellman Operator

Planning, Optimal Policies and Bellman Equation

Summary

- It exists a unique v_{\star} such that $\mathcal{T}^{\star}v_{\star} = v_{\star}$
- $\forall s, v_{\star}(s) = \sup_{\pi} v_{\pi}(s)$
- Any policy π_{\star} satisfying:

$$\forall s, \pi_{\star}(s) \in \operatorname*{argmax}_{a} \left(r(a, s) + \gamma \sum_{s'} p(s'|s, a) v^{\star}(s') \right)$$

is optimal as $\forall s, v_{\pi_{\star}}(s) = v_{\star}(s) = \sup_{\pi} v_{\pi}(s)$

• Existence result but not (yet) a constructive algorithm!

Outline

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation

4 Linear Programming

- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- Episodic and Infinite Setting
- References

Linear System and Linear Programming

 $m{v}_{\pi} = \mathcal{T}^{\pi}m{v}_{\pi} \qquad m{v}_{\star} = \mathcal{T}^{\star}m{v}_{\star}$

Explicit Resolution of the Equations?

- Prediction:
 - Simple linear system for v_{π} .
 - Already mentionned before...
 - Complexity of order $(|A| + |S|)|S|^2$.
- Planning:
 - More complex linear programming system for v_{\star} due to the max operator.
 - Optimal policy easily deduced from v_{\star} .
 - Complexity of order $(|A||S|)^3$.

Linear Programming

From
$$\forall s, v(s) = \sup_{a} r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s')$$

to $\min_{v} \sum_{s} \mu(s) v(s)$
such that $\forall (s, a), v(s) \ge r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s')$

Different formulations but same solution

- Using $v \geq \mathcal{T}^{\star} v \Leftrightarrow v \geq v_{\star}$, the condition implies $v \geq v_{\star}$
- Now for any μ satisfying $\mu(s) > 0$, $\sum_{s} \mu(s)v(s) \ge \sum_{s} \mu(s)v_{\star}(s)$ as soon as the condition is satisfied, hence v_{\star} is a solution.
- If for any state $v(s) > v_{\star}(s)$ then $\sum_{s} \mu(s)v(s) > \sum_{s} \mu(s)v_{\star}(s)$ and thus v_{\star} is the unique minimizer.

Primal Problem

Linear Programming

Primal: $\min_{V} \sum_{s} \mu(s)v(s)$ such that $\forall (s, a), v(s) \ge r(s, a) + \gamma \sum_{s'} p(s'|s, a)v(s')$

Some properties

- Can be solved with a linear programming solver.
- Unicity of solution (and thus independence with respect to $\mu)$ can be proved without using $v_{\star}.$
 - **Proof:** let v_1 a solution for μ_1 and v_2 a solution for μ_2 then min (v_1, v_2) satifies the constraints. Furthermore if exists $v_2(s) < v_1(s)$ then min (v_1, v_2) is a strictly better solution for μ_2 which is impossible.
Dual Problem

Primal:
$$\begin{split} \min_{v} \sum_{s} \mu(s) v(s) \\ & \text{such that } \forall (s, a), v(s) \geq r(s, a) + \gamma \sum_{s'} p(s'|s, a) v(s') \\ \text{Dual:} \quad \max_{\lambda(s,a) \geq 0} \sum_{s,a} \lambda(s, a) r(s, a) \\ & \text{such that } \forall s, \sum_{a} \lambda(s, a) = \mu(s) + \gamma \sum_{s', a} p(s|s', a) \lambda(s', a) \end{split}$$

Derivation

• Usual derivation through the Lagrangian:

$$\mathcal{L}(\mathbf{v},\lambda) = \sum_{s} \mu(s)\mathbf{v}(s) + \sum_{s,a} \lambda(s,a) \left(r(s,a) + \gamma \sum_{s',a} p(s|s',a)\mathbf{v}(s') - \mathbf{v}(s) \right)$$

• Strong duality as Slater condition holds when $\gamma < 1$ with $v = \frac{1+\epsilon}{1-\gamma} \max_{s,a} r(s,a)$.

Linear Programming

Dual and Interpretation

Linear Programming

Dual:
$$\max_{\lambda(s,a)\geq 0} \sum_{s,a} \lambda(s,a) r(s,a)$$

such that $\forall s, \sum_{a} \lambda(s,a) = \mu(s) + \gamma \sum_{s',a} p(s|s',a)\lambda(s',a)$
Interpretation :
$$\max_{\pi} \sum_{k=0}^{\infty} \gamma^{k} \sum_{s,a} \mathbb{P}(S_{t} = a, A_{t} = a|S_{0} \sim \mu, \pi) r(s,a)$$

Interpretation in terms of policy

- For any feasible λ , define $u(s) = \sum_{a} \lambda(s, a)$ and the policy $\pi(a|s) = \lambda(s, a)/u(s)$.
- **Prop:** $u = (\mathrm{Id} \gamma P^{\pi})\mu = \sum_{k=0}^{\infty} \gamma^k (P^{\pi})^k \mu$.
- **Prop:** $\lambda(s, a) = \pi(a|s)u(s) = \sum_{k=0}^{\infty} \gamma^k \mathbb{P}(S_t = a, A_t = a|S_0 \sim \mu, \pi)$
- Conversely for any π they is a feasible λ .
- Any optimal λ_* (and thus policy) satisfies $\lambda_*(s, a) = 0$ if $v_*(s) > r(s, a) + \gamma \sum_{s'} p(s'|s, a) v_*(s')$ (optimal policy support)

Outline

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- **1** References

Finite Horizon

Finite Horizon: Planning by Value Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle
parameter: Horizon T
init: v_T^T(s) = 0 \forall s \in S, t = T
repeat
        t \leftarrow t - 1
       for s \in S do
            v_t^{\mathsf{T}}(s) \leftarrow \max_{a \in \mathcal{A}} \left( r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) v_{t+1}^{\mathsf{T}}(s') \right)
       end
until t = 0
output: Deterministic policy \pi_t(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left( r(s, a) + \gamma \sum_{a' \in S} p(s'|s, a) v_{t+1}^{\mathsf{T}}(s') \right)
```

- Algorithm used to prove the existence of an optimal policy.
- No necessarily unique as argmax may not be unique.

Optimal Value Function, Fixed Point and Contraction Planning by Value Iteration

Bellman Operator

- Properties of Optimal Bellman Operator:
 - v_{\pm} is a fixed point of \mathcal{T}^{\star} .
 - \mathcal{T}^{\star} is a γ -contraction for the $\|\cdot\|_{\infty}$ norm.
- Classical fixed point theorem setting.
- Practical algorithm to approximate v_{\star} .

Value Iteration Algorithm

Discounted: Value Iteration Planning

input: MDP model $\langle (S, A, R), P \rangle$, and discount factor γ **parameter:** $\delta > 0$ as accuracy termination threshold **init:** $\tilde{v}(s) \forall s \in S$ **repeat**

```
 \begin{array}{|c|c|} & \tilde{v}_{\text{prev}} \leftarrow \tilde{v} \\ & \Delta \leftarrow 0 \\ & \text{for } s \in \mathcal{S} \text{ do} \\ & & & \\ & & \tilde{v}(s) \leftarrow \max_{a \in \mathcal{A}} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \tilde{v}_{\text{prev}}(s') \\ & & \Delta \leftarrow \max(\Delta, |\tilde{v}(s) - \tilde{v}_{\text{prev}}(s)|) \\ & & \text{end} \\ & \text{until } \Delta < \delta \\ & \text{output: Value function } \tilde{v} \end{array}
```

- Same convergence criterion (and similar proof) than in the planning case.
- Which policy?

Value Iteration Algorithm

Discounted: Value Iteration Planning

input: MDP model $\langle (S, A, \mathcal{R}), P \rangle$, and discount factor γ **parameter:** $\delta > 0$ as accuracy termination threshold init: $\tilde{v}(s) \forall s \in S$ repeat $\tilde{v}_{\text{prev}} \leftarrow \tilde{v}$ $\Delta \leftarrow 0$ for $s \in S$ do $egin{aligned} & ilde{v}(s) \leftarrow \max_{a \in \mathcal{A}} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) ilde{v}_{\mathsf{prev}}(s') \ & \Delta \leftarrow \max{(\Delta, | ilde{v}(s) - ilde{v}_{\mathsf{prev}}(s)|)} \end{aligned}$ end until $\Delta < \delta$ output: Deterministic policy $\tilde{\pi}(s) \in \operatorname{argmax} r(s, a) + \gamma \sum p(s'|s, a) \tilde{v}(s')$ des

- Natural idea: define a policy using the argmax of the existence proof.
- Do we have a convergence guarantee on the resulting policy?

Value and argmax Policy

Value and argmax Policy

- Bound on the loss of the final policy!
- Rely on the fact that, by construction, $\mathcal{T}^{ ilde{\pi}} ilde{v}=\mathcal{T}^{\star} ilde{v}$

• Proof:

$$\begin{aligned} \|\mathbf{v}_{\tilde{\pi}} - \mathbf{v}_{\star}\|_{\infty} &= \|\mathcal{T}^{\tilde{\pi}}\mathbf{v}_{\tilde{\pi}} - \mathcal{T}^{\tilde{\pi}}\tilde{\mathbf{v}} + \mathcal{T}^{\star}\tilde{\mathbf{v}} - \mathcal{T}^{\star}\mathbf{v}_{\star}\|_{\infty} \\ &\leq \|\mathcal{T}^{\tilde{\pi}}\mathbf{v}_{\tilde{\pi}} - \mathcal{T}^{\tilde{\pi}}\tilde{\mathbf{v}}\|_{\infty} + \|\mathcal{T}^{\star}\tilde{\mathbf{v}} - \mathcal{T}^{\star}\mathbf{v}_{\star}\|_{\infty} \\ &\leq \gamma \|\mathbf{v}_{\tilde{\pi}} - \tilde{\mathbf{v}}\|_{\infty} + \gamma \|\tilde{\mathbf{v}} - \mathbf{v}_{\star}\|_{\infty} \\ &\leq \gamma \|\mathbf{v}_{\tilde{\pi}} - \mathbf{v}_{\star}\|_{\infty} + 2\gamma \|\tilde{\mathbf{v}} - \mathbf{v}_{\star}\|_{\infty} \end{aligned}$$

Value Iteration Algorithm

Discounted: Value Iteration Planning

input: MDP model $\langle (S, A, \mathcal{R}), P \rangle$, and discount factor γ **parameter:** $\delta > 0$ as accuracy termination threshold init: $\tilde{v}(s) \forall s \in S$ repeat $\tilde{v}_{\text{prev}} \leftarrow \tilde{v}$ $\Delta \leftarrow 0$ for $s \in S$ do $egin{aligned} & ilde{v}(s) \leftarrow \max_{a \in \mathcal{A}} r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) ilde{v}_{\mathsf{prev}}(s') \ & \Delta \leftarrow \max{(\Delta, | ilde{v}(s) - ilde{v}_{\mathsf{prev}}(s)|)} \end{aligned}$ end until $\Delta < \delta$

output: Deterministic policy $\tilde{\pi}(s) \in \underset{a}{\operatorname{argmax}} r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \tilde{v}(s')$

• Prop:
$$\|\mathbf{v}_{\tilde{\pi}} - \mathbf{v}_{\star}\|_{\infty} \leq rac{4\gamma\delta}{1-\gamma}$$

45

From State Value to State-Action Value Functions

tion

 $q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{i} \gamma^{k} R_{t} | S_{0} = s, A_{0} = a
ight]$ $egin{aligned} \mathsf{v}_{\pi}(s) = \mathbb{E}_{\pi} \left| \sum \gamma^k \mathsf{R}_t | S_0 = s
ight| \end{aligned}$ $\mathcal{T}^{\pi}v(s) = \sum_{a} \pi(a|s) \left(r(s,a) + \gamma \sum_{a'} p(s'|s,a)v(s') \right)$ $\mathcal{T}^{\pi}q(s,a) = r(s,a) + \sum_{s'} p(s'|s,a) \sum_{a} \pi(a|s')q(s',a) \bigcup_{a}$ $\mathcal{T}^{\star}q(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a} q(s',a) \qquad \bigcirc$ $\mathcal{T}^{\star}v(s) = \max_{a} r(s, a) + \gamma \sum_{s} p(s'|s, a)v(s')$

Two equivalent point of view?

- Everything could have been defined using the state-action point of view.
- Knowing v_{π} is equivalent to knowing q_{π} as $v_{\pi}(s) = \sum_{a} \pi(s|a)q_{\pi}(s,a)$ and $q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s').$

State-Action Bellman Operators

Properties

- **Prop:** \mathcal{T}^{π} and \mathcal{T}^{\star} are γ contractions for the $\|\cdot\|_{\infty}$ norm.
- **Prop:** q_{π} is the unique solution of $\mathcal{T}^{\pi}q = q$
- **Prop:** q_* defined $q_*(s, a) = \sup_{\pi} q_{\pi}(s, a)$ is the unique solution of $q = \mathcal{T}^*q$ and is attained for any policy π_* satisfying $\pi_*(s) \in \operatorname{argmax} q_*(s, a)$.
- **Prop:** Any such policy satisfies: $v_{\pi_{\star}}(s) = q_{\pi_{\star}}(s, \pi_{\star}(s)) = v_{\star}(s)$.

State-Action Value Iteration Algorithm

Discounted: Planning by State-Action Value Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle, and discount factor \gamma
parameter: \delta > 0 as accuracy termination threshold
init: \tilde{q}(s, a) \forall (s, a) \in S \times A
repeat
         \tilde{q}_{\text{prev}} \leftarrow \tilde{q}
         \Delta \leftarrow 0
        for s \in S do
                  for a \in \mathcal{A} do
                      egin{aligned} & 	ilde{q}(s, a) \leftarrow \left( r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \max_{a'} 	ilde{q}_{\mathsf{prev}}(s', a') 
ight) \ & \Delta \leftarrow \max\left(\Delta, |	ilde{q}(s, a) - 	ilde{q}_{\mathsf{prev}}(s, a)|
ight) \end{aligned}
                  end
         end
until \Delta < \delta
output: Deterministic policy \tilde{\pi}(s) \in \operatorname{argmax} \tilde{q}(s, a)
```

• Same complexity but more storage than with state value function...

• but will be useful later!

Outline

Planning by Policy Iteration

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- References

Value Fonction vs Policy Point of View

$$v, q \longrightarrow \Pi$$
 or $\Pi \longrightarrow v, q$?

Planning

- Focus so far on value-fonction point of view!
- Heuristic: find a good approximation of the optimal value function and deduce a good policy.
- Can we work directly on the policy itself?
- For prediction, only the policy point of view makes sense!

Toward Policy Improvement

$$orall s, \pi_+(s) \in rgmax_a q_\pi(s,a) \Longrightarrow orall v_{\pi_+}(s) \geq v_\pi(s)$$

Classical Policy Improvement Lemma

- **Prop:** Given a policy π and its q value-function, one can obtain a better policy with the argmax operator.
- **Prop:** If no improvement is possible, it means that π is already optimal.
- **Proof:** Use $\mathcal{T}^{\pi_+}v_{\pi} = \mathcal{T}^*v_{\pi} \geq \mathcal{T}^{\pi}v_{\pi} = v_{\pi}$ to prove $(\mathcal{T}^{\pi_+})^k v_{\pi} \geq v_{\pi}$ which implies the result by letting k goes to $+\infty$.
- Leads to a sequential improvement algorith...

Policy Improvement Lemma

Planning by Policy Iteration

$$\mathbb{E}[\mathbf{v}_{\pi'}(S_0)] - \mathbb{E}[\mathbf{v}_{\pi}(S_0)] = \sum_{k=0}^{\infty} \gamma^k \mathbb{E}_{\pi'} \left[\sum_a \pi'(a|S_t) \left(q_{\pi}(S_t, a) - \mathbf{v}_{\pi}(S_t) \right) \right] \\ = \sum_{k=0}^{\infty} \gamma^k \mathbb{E}_{\pi'} \left[\sum_a \left(\pi'(a|S_t) - \pi(a|S_t) \right) q_{\pi}(S_t, a) \right]$$

A Generic Improvement Lemma

- No assumptions on π and $\pi'!$
- Easy proof.
- Imply the previous lemma as $\max_a Q_\pi(s,a) v_\pi(s) \ge 0$.
- Show that improvement choices are possible.
- Will prove to be useful later...

Discounted: Planning by Policy Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle, and discount factor \gamma
parameter: Initial policy \tilde{\pi}
repeat
Compute q_{\tilde{\pi}}.
```

```
for s \in S do

for a \in A do

\hat{pol}(s) \leftarrow \operatorname{argmax} q_{\tilde{\pi}}(s, a)

end

end

output: Deterministic policy \tilde{\pi}.
```

Some issues

- How to obtain q_{π} ?
- When to stop?

ШĪ

Discounted: Planning by Policy Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle, and discount factor \gamma
parameter: Initial policy \tilde{\pi}
repeat
      stable \leftarrow 0
      Compute q_{\tilde{\pi}}.
      for s \in S do
             old – action \leftarrow \tilde{\pi}(s)
             \tilde{\pi}(s) \leftarrow \operatorname{argmax} q_{\tilde{\pi}}(s, a)
             if \tilde{\pi}(s) \neq old - action then
                   stable \leftarrow 0
             end
      end
until stable == 1
output: Deterministic policy \tilde{\pi}.
```

Finite Setting

- Finite set of action-states implies a finite set of policy.
- Convergence of the algorithm in finite time!

Planning by Policy Iteration

tion

Convergence Rate

- Crude analysis:
 - Bound after k steps of the algorithm

$$\begin{aligned} \|\boldsymbol{v}_{\pi_k} - \boldsymbol{v}_\star\|_{\infty} &\leq \gamma \|\boldsymbol{v}_{\pi_{k-1}} - \boldsymbol{v}_\star\|_{\infty} \leq \gamma^k \|\boldsymbol{v}_{\pi_0} - \boldsymbol{v}_\star\|_{\infty} \\ \|\boldsymbol{v}_{\pi_k} - \boldsymbol{v}_\star\|_{\infty} &\leq \frac{\gamma}{1-\gamma} \|\boldsymbol{v}_{\pi_k} - \boldsymbol{v}_{\pi_{k-1}}\|_{\infty} \end{aligned}$$

- Not much better than value iteration but much higher complexity as q_{πk} is obtained by solving the Bellman equation!
- Much faster in practice. . .
- Clever analysis (Putterman):
 - Under some mild assumptions and provided $\|P^{\pi_k} P^\star\| \leq K \|v_{\pi_k} v_\star\|_\infty$ then

$$\|oldsymbol{v}_{\pi_k}-oldsymbol{v}_\star\|_\infty\leq rac{K\gamma}{1-\gamma}\|oldsymbol{v}_{\pi_{k-1}}-oldsymbol{v}_\star\|_\infty^2$$

• May explain the better convergence in practice!

Outline

- Optimization Interpretation

- **Optimization Interpretation**

Value Iteration: (Relaxed) First Order Method

Value Iteration

• Iteration:

$$egin{aligned} &\mathcal{T}^{\star} v_{k-1} \ &= v_{k-1} + \left(\mathcal{T}^{\star} - \operatorname{Id}
ight) v_{k-1} \end{aligned}$$

Relaxation

$$\mathbf{v}_k = \mathbf{v}_{k-1} - \alpha \left(\mathrm{Id} - \mathcal{T}^* \right) \mathbf{v}_{k-1}$$

can be proved to converge for any $\alpha < \frac{2}{1+\gamma}$.

- Can be interpreted as a first order method with pseudo-gradient $(\mathcal{T}^* \mathrm{Id}) v_{k-1}$.
- No function corresponding to this gradient!
- Is there a better choice for α than $\alpha = 1$?
- No as the resulting operator is a contraction of constant

 $|1 - \alpha| + \alpha \gamma \ge \gamma$

Discounted

Policy Iteration: Newton-Raphson Method

Policy Iteration

• Explicit iteration:

Solve
$$v_{\pi_{k-1}} = \mathcal{T}^{\pi_k} v_{\pi_{k-1}}$$

Let π_k such that $\mathcal{T}^{\pi_k} v_{\pi_{k-1}} = \mathcal{T}^* v_{\pi_{k-1}}$

• Implicit iteration on v_{π_k} :

$$\begin{aligned} \mathbf{v}_{\pi_{k}} &= (\mathrm{Id} - \gamma P^{\pi_{k}})^{-1} \mathbf{r}_{\pi_{k}} \\ &= (\mathrm{Id} - \gamma P^{\pi_{k}})^{-1} \left(\mathbf{r}_{\pi_{k}} + (\gamma P^{\pi_{k}} - \mathrm{Id}) \mathbf{v}_{\pi_{k-1}} + (\mathrm{Id} - \gamma P^{\pi_{k}}) \mathbf{v}_{\pi_{k-1}} \right) \\ &= \mathbf{v}_{\pi_{k-1}} - (\mathrm{Id} - \gamma P^{\pi_{k}})^{-1} (\mathrm{Id} - \mathcal{T}^{\pi_{k}}) \mathbf{v}_{\pi_{k-1}} \end{aligned}$$

- Can be interpreted as a second order method with pseudo-gradient $(\mathrm{Id} \mathcal{T}^{\pi_k})v_{\pi_{k-1}} = (\mathrm{Id} \mathcal{T}^{\star})v_{\pi_{k-1}}$ and pseudo-Hessian $(\mathrm{Id} \gamma P^{\pi_k})$.
- Not a formal analysis but give a good insight on the better convergence of policy iteration.

Outline

Approximation and Stability

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- References

Ideal Value and Policy Iteration?

- Iterative algorithms.
- Convergence proofs assume perfect computation.
- What happens if we make a (small) error at each step?
- Particularly important for Policy Iteration in which one resolves a linear system at each step!

Value Iteration Stability

$$\begin{aligned} \mathbf{v}_{k} &= \mathcal{T}^{\star} \mathbf{v}_{k-1} + \epsilon_{k-1} \\ \implies \|\mathbf{v}_{k} - \mathbf{v}_{\star}\|_{\infty} \leq \gamma^{k} \|\mathbf{v}_{0} - \mathbf{v}_{\star}\|_{\infty} + \frac{\underset{0 \leq k' < k}{\mathsf{max}} \|\epsilon_{k'}\|_{\infty}}{1 - \gamma} \\ \implies \|\mathbf{v}_{\pi_{k}} - \mathbf{v}_{\star}\|_{\infty} \leq \frac{2\gamma^{k+1}}{1 - \gamma} \|\mathbf{v}_{0} - \mathbf{v}_{\star}\|_{\infty} + \frac{2\gamma \underset{0 \leq k' < k}{\mathsf{max}} \|\epsilon_{k'}\|_{\infty}}{(1 - \gamma)^{2}} \end{aligned}$$

Stability with respect to the error

- Proof relies on the contraction property of \mathcal{T}^* (hence similar results for \mathcal{T}^{π}). • Error term $\frac{\max_{0 \le k' < k} \|\epsilon_{k'}\|_{\infty}}{1-\gamma}$ can be replaced by $\sum_{k'=0}^{k-1} \gamma^{k-k'} \|\epsilon_{k'}\|_{\infty}$
- Convergence if $\|\epsilon_k\|_{\infty}$ tends to 0.
- Remains in a neighborhood of the optimal solution if $\|\epsilon_k\|_{\infty}$ is bounded.

$$\begin{aligned} \mathbf{v}_{k-1} &= \mathbf{v}_{\pi_{k-1}} + \epsilon_{k-1} \quad \text{and} \quad \mathcal{T}^{\pi_k} \mathbf{v}_{k-1} = \mathcal{T}^* \mathbf{v}_{k-1} \\ \implies \|\mathbf{v}_{\pi_k} - \mathbf{v}_\star\|_{\infty} &\leq \gamma^k \|\mathbf{v}_{\pi_0} - \mathbf{v}_\star\|_{\infty} + \frac{\gamma(2-\gamma) \max_{0 \leq k' < k} \|\epsilon_{k'}\|_{\infty}}{(1-\gamma)^2} \end{aligned}$$

Stability with respect to the error

• Quite involved proof but crude results.

• Error term
$$\frac{\max_{0 \le k' < k} \|\epsilon_{k'}\|_{\infty}}{1-\gamma}$$
 can be replaced by $\sum_{k'=0}^{k-1} \gamma^{k-k'} \|\epsilon_{k'}\|_{\infty}$

- Convergence if $\|\epsilon_k\|_{\infty}$ tends to 0.
- Remains in a neighborhood of the optimal solution if $\|\epsilon_k\|_{\infty}$ is bounded.
- Policy Iteration only requires an approximate estimate of ν_{π_{k-1}}, for instance obtained by Bellman iteration...

Outline

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting
- References

Modified Policy Iteration

Discounted: Planning by Generalized Policy Iteration

```
input: MDP model \langle (S, A, \mathcal{R}), P \rangle, and discount factor \gamma
parameter: Initial q
repeat
      for s \in S do
             \tilde{\pi}(s) \leftarrow \operatorname{argmax} q(s, a)
      end
      repeat
             q_{\rm prev} \rightarrow q
             for (s, a) \in \mathcal{S} \times \mathcal{A} do
                   q(s,a) \leftarrow r(s,a) + \gamma \sum_{s,a'} p(s'|s,a) \tilde{\pi}(a'|s) q_{\mathsf{prev}}(s,a)
             end
output: Deterministic policy \tilde{\pi}.
```

- Algorithm driven by q.
- Flexibility in the number of prediction steps after each policy improvement steps.
- Special cases:
 - Large number: Policy Iteration with (small) error.
 - One: Value Iteration!

MPI Analysis

$$\mathcal{T}^{\pi_k} \mathbf{v}_k = \mathcal{T}^* \mathbf{v}_k \quad \text{and} \quad \mathbf{v}_{k+1} = (\mathcal{T}^{\pi_k})^{m_k} \mathbf{v}_k$$
$$\implies \|\mathbf{v}_{k+1} - \mathbf{v}_\star\|_{\infty} \le \gamma \left(\frac{1 - \gamma^{m_k}}{1 - \gamma} \|\mathbf{P}^{\pi_k} - \mathbf{P}^\star\| + \gamma^{m_k}\right) \|\mathbf{v}_k - \mathbf{v}_\star\|_{\infty}$$

Convergence Results

- Quite technical proof.
- Valid only under the mild assumption $\mathcal{T}^* v_0 \geq v_0$.
- Very fast decay provided $||P^{\pi_k} P^*||$ is small.
- No stability with arbitrary errors. . .

Generalized Policy Iteration

General Policy Iteration

- Two simultaneous interacting processes:
 - One forcing the policy to correspond to the current value function (Policy Improvement)
 - One trying to male the current value function coherent with the current policy (Policy Evaluation)
- Several variations possible on the two processes.
- In GPI, the policy is driven by the value function.
- Typically, stabilizes only if one reaches the optimal value/policy pair.

State Update Order

Generalized Policy Iteration

Discounted: Prediction by Value Iteration - State Update Order

input: MDP model $\langle (S, A, R), P \rangle$, discount factor γ , and stationary policy π init: $\tilde{v}(s) \forall s \in S$ repeat $\left| \begin{array}{c} \tilde{v}_{\text{prev}} \leftarrow \tilde{v} \\ \text{for } s \in S' \subset S \text{ do} \\ \\ \\ \tilde{v}(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \tilde{v}_{\text{prev}}(s') \right) \\ \text{end} \\ \text{output: Value function } \tilde{v} \end{array} \right|$

Classical strategies

- $\mathcal{S}' = \mathcal{S}$: classical iteration
- $S' = \{s\}$: Gauss-Seidel
- $S' = \{s, |T^{\pi}\tilde{v}(s) \tilde{v}(s)| > \epsilon\}$: Prioritized sweeping
- Converges provided all states are visited infinitely often...
- Gain in term of storage or focus on most interesting states...

Policy Improvement Variation

$$\begin{array}{l} \text{Greedy}: \ \pi(s) \in \operatorname*{argmax}_{a} q(s,a) \Longleftrightarrow \pi(\cdot|s) \in \operatorname*{argmax}_{\tilde{\pi}} \sum_{a} \tilde{\pi}(a) q(s,a) \\ \text{Restricted}: \ \pi(\cdot|s) \in \operatorname*{argmax}_{\tilde{\pi} \in \tilde{\Pi}_{\epsilon}} \sum_{a} \tilde{\pi}(a) q(s,a) \\ \text{Regularized}: \ \pi(\cdot|s) \in \operatorname*{argmax}_{\tilde{\pi}} \sum_{a} \tilde{\pi}(a) q(s,a) + \epsilon P(\tilde{\pi}) \end{array}$$

Classical Variations

- ϵ -greedy: Restrict $ilde{\pi}$ to the set of policy s.t. $ilde{\pi}(a) \geq \epsilon$
 - Explicit solution: $\pi(a|s) = \epsilon + (1 \epsilon) \operatorname{argmax} q(s, a)$
 - Policy improvement property if ϵ decreases.
- Soft-max: Regularize by $\epsilon H(\tilde{\pi})$ where H is the entropy.
 - Explicit solution: $\pi(a|s) \propto \exp(q(s,a)/\epsilon)$
 - No classical policy improvement...
- $\bullet\,$ Tends to greedy when $\epsilon\,$ goes to 0.
- Turn out to be interesting later...

Outline

Episodic and Infinite Setting

- 1 Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- D Episodic and Infinite Setting
 - 1 References

Episodic Setting

Episodic and Infinite Setting

$$\mathbb{E}_{\pi}\Big[\min_{t}\{t,\forall t'\geq t,\ R_{t'}=0\}\Big] < H \Rightarrow \|\mathcal{T}v-\mathcal{T}v'\|_{\xi} \leq \frac{H-1}{H}\|v-v'\|_{\xi}$$

Proper Policy

- A policy π is said to be *H*-proper if $\mathbb{E}_{\pi}\left[\min_{t}\{t, \forall t' \geq t, R_{t'}=0\}\right] \leq H < \infty$
- \Leftrightarrow average duration of an episode using this policy less than a finite horizon H!

Bellman operators

- If a policy π is *H*-proper, the Bellman operator \mathcal{T}^{π} is a (H-1)/H- contraction for a weighted sup-norm.
- If all the policies are *H*-propers, the optimal Bellman operator \mathcal{T}^* is a (H-1)/H-contraction for a weighted sup-norm.
- Under those strong assumptions, episodic setting \simeq discounted setting with $\gamma = (H-1)/H$.
- Some results can be obtained under the much milder assumption that there is one proper policy and that any non-proper policy has at least one state for which $v_{\pi}(s) = -\infty$.

70

Infinite Setting

Episodic and Infinite Setting

- No issue with the rewards, as only the expectation is used.
- All the theory remains valid if the states are countable, but there is an issue in the algorithms, as we need to store/update an infinite number of states.
- The proof of existence of an optimal policy requires the max to be attained, which cannot be ensured in an infinite (even countable setting).

Some results. . .

- Thm: If S is countable, there exists an ϵ -optimal (stationary) policy for any $\epsilon > 0$.
- Thm: If S is a Polish space (completely metrizable topological space),
 - there exists a (P, ϵ) -optimal (stationary policy) for any $\epsilon > 0$.
 - if each A_s is countable, there exists an ϵ -optimal (stationary) policy for any $\epsilon > 0$.
 - if each A_s is finite, there exists an optimal (stationary) policy.
 - if each A_s is a compact metric space, r(s, a) is a bounded u.s.c. function on A_s and p(B|s, a) is continuous in a for each Borel subset B and any s, there exists an optimal (stationary) policy.
- Mainly technical difficulties...

Outline

References

- Prediction and Bellman Equation
- Prediction by Dynamic Programming and Contraction
- 8 Planning, Optimal Policies and Bellman Equation
- 4 Linear Programming
- 5 Planning by Value Iteration
- 6 Planning by Policy Iteration
- Optimization Interpretation
- 8 Approximation and Stability
- 9 Generalized Policy Iteration
- 🔟 Episodic and Infinite Setting

References

References

R. Sutton and A. Barto. *Reinforcement Learning, an Introduction (2nd ed.)* MIT Press, 2018

O. Sigaud and O. Buffet. *Markov Decision Processes in Artificial Intelligence*. Wiley, 2010

M. Puterman.

Markov Decision Processes. Discrete Stochastic Dynamic Programming. Wiley, 2005

D. Bertsekas and J. Tsitsiklis. *Neuro-Dynamic Programming*. Athena Scientific, 1996

Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. Wiley, 2022 S. Meyn. Control Systems and Reinforcement

Control Systems and Reinforcement Learning.

Cambridge University Press, 2022

W Powell

V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008

T. Lattimore and Cs. Szepesvári. *Bandit Algorithms.* Cambridge University Press, 2020

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

- You are free to:
 - Share: copy and redistribute the material in any medium or format
 - Adapt: remix, transform, and build upon the material for any purpose, even commercially.
- Under the following terms:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
 - No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Contributors

- Main contributor: E. Le Pennec
- Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
 - A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet.