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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
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Operations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.
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Reinforcement Learning and Interactions
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How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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Reinforcement Learning
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From Probability to Statistics?
What to do if one has no knowledge of the underlying MDP?
Only information through interactions!
Prediction? Planning?
Focus on the discounted setting
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Prediction with Monte CarloMonte Carlo, i.e. Just Play!

Most simple way to evaluate a policy.

Just Play Following Policy Π
Play N episodes following the policy.
During each episode, compute the (discounted) gain.
Compute the average gain.

What is computed?
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Prediction with Monte CarloAverage Gain or Value Function

E[G0] vs vt,Π(s) = E[Gt |St = s]

Prediction as Value Function Evaluation
Not the same goal.
By construction,

E[G0] =
∑

s
µ0(s)vt,Π(s)

Much easier to compute the average gain than the value function (even if we use
a stationary policy)

Average gain is nevertheless the most classical way to evaluate a policy (with a
single number).
Implicit episodic setting if we do not want to use approximated gain.
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Prediction with Monte CarloAverage Gain Estimation

Episodic: Evaluation by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: V = 0 ,n = 0
repeat

n← n + 1
t ← 0
G ← 0
Pick initial state S0 following µ0
repeat

Pick action At according to π(·|St)
G → G + γtRt+1
t ← t + 1

until episod ends at time T
V ← V + G

until n == N
V ← V /N
output: Average gain V
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Prediction with Monte CarloMonte Carlo Prediction

How to estimate vt,Π?

Just Play Following Policy Π
Play N episodes following the policy.
During episode, record St and Rt .
After each episode, compute recursively for each time t the gain Gt .
Estimate vt,Π(s) by the average Gt over all trajectories such that St = s

May require a lot of game to have a non empty set for each state s at
each time t
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Prediction with Monte CarloMonte Carlo Prediction

How to estimate vΠ for a stationary policy?

Just Play Following Policy Π
Play N episodes following the policy.
During each episode, record St and Rt .
After each episode, compute recursively for each time t the gain Gt .
Estimate vΠ(s) by the average over all trajectories of all Gt such that St = s,
whatever t.

The same state may be reached several time during a single episode. . .
First-visit variant: Use only the first visit of s for each episode.
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Prediction with Monte CarloMonte Carlo Prediction
Episodic: Prediction by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: ∀s, V (s), n = 0, N(s) = 0
repeat

n← n + 1
t ← 0
Pick initial state S0 following µ0
repeat

(If First-visit) N(St)← N(St) + 1
Pick action At according to π(·|St)
Record Rt+1, St+1
t ← t + 1

until episod ends at time T
GT+1 = 0
t → T + 1
repeat

t ← t − 1
Compute Gt = Rt+1 + γGt+1
(If First-visit) V (St) = V (St) + Gt

until t = 0
until n == N
for s ∈ S do

V (s)← V (s)/N(s)
end
output: Value function V
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Prediction with Monte CarloMonte Carlo Prediction Analysis

First-Visit Variant Analysis
Straightforward analysis as all the used values for a given state s are independent.
Variance of order 1/N(s) where N(s) is the number of episod where s is visited.
Convergence if the number of visit goes to ∞.
Strong assumption is practice as some states may not be visited by a given policy
(if we cannot play on the initial state).

Every-visit works. . . but not necessarily better!
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Planning with Monte CarloMonte Carlo Planning

Can we use a MC approach to find a good policy?

A First Attempt
Estimate vπ(s) by Vπ(s) using MC.
Compute Qπ(s, a) = r(s, a) + γ

∑
s′ p(s ′|s, a)Vπ(s)

Enhance the current policy by setting π(s) = argmaxa Qπ(s, a)

Inspired by the Operations Research results. . .
But unusable as r and p are unknown!
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Planning with Monte CarloMonte Carlo Planning

A Second Attempt
Estimate qπ(s, a) by Qπ(s, a) using MC.
Enhance the current policy by setting π(s) = argmaxa Qπ(s, a)

Requires that N(s, a) the number of times that an episode contains the state s
followed by action a goes to ∞.
Impossible with a deterministic policy!
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Planning with Monte CarloMonte Carlo Planning
Classical Exploratory Policies. . .

Stochastic policies ensuring that any action can occurs at any state.
ϵ-exploratory policy: use a determistic policy and replace it with a random action
with probability ϵ.
Gibbs policy: use a policy where π(a|s) ∝ eG(a,s) > 0.

A Final Attempt
Start from an exploratory policy.
Estimate qπ(s, a) by Qπ(s, a) using MC.
Enhance the current policy while remaining a exploratory policy.

Last step is not straightforward. . .
except for ϵ-deterministic policy for which the ϵ-exploratory policy with base
policy π(s) = argmaxa Qπ(s, a) works.
No convergence proof.
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Prediction with Temporal
Differencies

Advanced Implementation of Monte Carlo Prediction

Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))

On-Line Monte Carlo
Average for a given state can be updated each time we have the gain Gt for a
state St .
Just use α(N) = 1/N and increment N(St).
No need to record the values between episodes. . .

We still need to wait until the end of each episode to compute Gt .
Can we do better?
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Prediction with Temporal
Differencies

Advanced MC Prediction
Episodic: Prediction by MC
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of episodes N
init: ∀s, V (s), n = 0, N(s) = 0
repeat

n← n + 1
t ← 0
Pick initial state S0 following µ0
repeat

(If First-visit) N(St)← N(St) + 1
Pick action At according to π(·|St)
Record Rt+1, St+1
t ← t + 1

until episod ends at time T
GT+1 = 0
t → T + 1
repeat

t ← t − 1
Compute Gt = Rt+1 + γGt+1
(If First-visit) V (St) = V (St) + 1

N(St ) (Gt − V (St))
until t = 0

until n == N
output: Value function V

We still need to wait until the end of each episode to compute Gt .
Can we do better?

Ep
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Prediction with Temporal
Differencies

Prediction with Temporal Differencies

From Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))
to Vπ(St)← Vπ(St) + α(N(St)) (Rt+1 + γVπ(St+1)− Vπ(St))︸ ︷︷ ︸

δt

Bootstrap Strategy
Replace Gt by an instantaneous estimate Rt+1 + γVπ(St+1).
Amounts to replace γRt+2 + γ2Rt+1 by an approximation of its expectation given
St+1: vπ(St+1).
Bootstrap as we use the current estimate Vπ(St+1) instead of the true value.
δt = Rt+1 + γVπ(St+1)− Vπ(St) is called a temporal difference.

No need to wait until the end of the episodes!
Can be used in the discounted setting. D
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Prediction with Temporal
Differencies

TD Prediction

Discounted: Prediction by TD
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, V (s), n = 0, N(s) = 0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
V (St)← V (St) + α(N(St)) (Rt+1 + γV (St+1)− V (St))
t ← t + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Value function V

But does this work? D
isc
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ed
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Prediction with Temporal
Differencies

Prediction with Temporal Differencies

E[δt |St ]E[Rt+1 + γVπ(St+1)− Vπ(St)|St ] = (T π − Id) Vπ(St)

TD and Bellman Operator
TD as an approximate Policy Iteration:

E[Vπ] (St)← Vπ + α(N(St)) (T π − Id) Vπ(St)
Proof of convergence of this algorithm to a zero of T π − Id, i.e. the fixed point of
T π!
Proof requires a mild assumption of α (satisfied by α(N) = 1/N) and the strong
assumption that N(s) goes to ∞.

MC could be interpreted in a similar way (stochastic approximation) by noticing
that E[Gt − Vπ(St)|St ] = vπ(St)− Vπ(St).
Often use with a constant α

D
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Prediction with Temporal
Differencies

MC vs TD
Vπ(St)← Vπ(St) + α(N(St))(Gt − Vπ(St))

or Vπ(St)← Vπ(St) + α(N(St)) (Rt+1 + γVπ(St+1)− Vπ(St))︸ ︷︷ ︸
δt

MC vs TD
Both are based on stochastic approximation.
Both converges (under similar assumptions) to the correct value function.
TD does not require to wait until the end of the episode.
No theorical difference in the speed of convergence but often TD is better. . .
Solve different approximate problems when used with a finite set of episodes:

MC compute the empirical gain from any state.
TD compute the value function of the empirical Bellman operator (the one obtained
by using the empirical transition probabilities)

If Vπ is kept constant during an episode
Gt − Vπ(St) =

∑
t′≥T

γt′−tδt

Ep
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Link with Stochastic
Approximation

Stochastic Approximation

θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

=⇒ θk → {θ, H(θ) = 0}
Stochastic Approximation

Family of sequential stochastic algorithm converging to a zero of a function.
Classical assumptions:

E[ϵk ] = 0, Var [ϵk ] < σ2, and E[∥ηk∥]→ 0,∑
k αk →∞ and

∑
k α2

k <∞,
the algorithm converges if we replace hk by H.

Convergence toward a neighborhood if α is kept constant (as often in practice).
Most famous example are probably Robbins-Monro and SGD.
Proof quite technical in general.
The convergence with H is easy to obtain for a contraction.
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Link with Stochastic
Approximation

Stochastic Approximation and ODE

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to d θ̃

dt = H(θ̃)

ODE Approach
General proof showing that the algorithm converges provided the ODE converges.
Rely on the rewriting the equation

θk+1 − θk
αk

= hk(θk) = H(θk) + ϵk + ηk

αk can be interpreted as a time difference allowing to define a time tk =
∑

t′≤t αk .
θ(t) is piecewise affine and defined through its derivative at time t ∈ (tk , tk+1).
This piecewise function remains close to any solution of the ODE starting from θk
for an arbitrary amount of time provided k is large enough.

More general proofs based on martingale. 28



Link with Stochastic
Approximation

Asynchronous Update

From θk+1 = θk + αkhk(θk) with hk(θ) = H(θ) + ϵk + ηk

to ∀i , θk+1(i) = θk(i) + αk(i)hk(θk)(i)

Asynchronous Update
Componentwise action on θ.
Not necessarily the same stepsize αk(i) for all components.
αk(i) = 0 is permitted!
Previous results hold provided for every component i ,

∑
k αk(i)→∞ and∑

k α2
k(i) <∞,

Exact setting of TD approximation!
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Planning with Value IterationPlanning with Temporal Differencies
A State Value Function Attempt

V⋆ is the fixed point of T ⋆.
Approximate it as the zero of T ⋆ − Id.
By construction

T ⋆v(St) = max
a

E[RT+1 + γv(St+1)|St , a]
Not an expectation!

A State-Action Value Function Attempt
q⋆ is the fixed point of T ⋆.
Approximate it as the zero of T ⋆ − Id.
By construction

T ⋆q(St , At) = E
[
Rt+1 + γ max

a
q(St+1, a)

∣∣∣St , At
]

An expectation! D
isc

ou
nt

ed
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Planning with Value IterationQ Learning

Discounted: Planning by Q-Learning
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St , At)← Q(St , At) + α(N(St , At))

(
Rt+1 + γ max

a
Q(St+1, a)− Q(St , At)

)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a) D
isc

ou
nt

ed
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Planning with Value IterationPlanning with Q Learning

Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γ max
a

Q(St+1, a)− Q(St , At)︸ ︷︷ ︸
δt


Q-Learning

Update is independent of the policy Π.
Convergence of the Q-value function provided the policy is such that N(s, a)
tends to ∞ for any state and any action.
Implies a convergence of the policy.
Relies on temporal difference.

Most classical (tabular) planning algorithm!

D
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Planning with Policy
Improvement

Planning with Policy Improvement

from Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γ max
a

Q(St+1, a)− Q(St , At)︸ ︷︷ ︸
δt


to Q(St , At) = Q(St , At) + α(N(St , At))

Rt+1 + γQ(St+1, At+1)− Q(St , At)︸ ︷︷ ︸
δt


Π(St) = argmax

a
Q(St , a)(plus exploration)

Policy Improvement
More emphasis on the policy with a link between the policy used to play and the
optimized policy.
Almost equivalent to use the current policy in the Q-Learning algorithm. D
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Planning with Policy
Improvement

SARSA

Discounted: Planning by SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t ′ = 0
repeat

t ← 0 Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Qt(St−1, At−1)← Q(St−1, At−1) + α(N(St−1, At−1)) (Rt + γQ(St , At)− Q(St−1, At−1))
Π(St−1) = argmaxa Q(St−1, a) (plus exploration)
t ← t + 1
t ′ ← t ′ + 1

until episod ends at time T ′ or t ′ == T
until t ′ == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a)

Does this work?

D
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Planning with Policy
Improvement

SARSA and exploration

Π(St) = argmax
a

Q(St , a)(plus exploration)

SARSA and Exploration
No hope of convergence if we do not explore all possible actions (and states).
Impossible if the policy used is deterministic.
Exploration is required!
Most classical choice: ϵ-greedy policy with a decaying ϵ.

Convergence proof is harder than for Q-Learning.
Relies on the similarity in the limit (when ϵ goes to 0) with the Q-Learning
algorithm.
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Exploration vs ExploitationQ-Learning vs SARSA

How different are they?
In Q-learning, the exploratory policy used is decoupled from the optimized policy.
This exploratory policy may yield low rewards on average.
In SARSA, the two policies are linked with the hope on having higher rewards
during the learning step.
Subtle different behavior even if we modify the exploratory policy in Q-Learning.

D
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Exploration vs ExploitationExploration vs Exploitation

Exploration vs Exploitation
Exploration: explore new policies to be able to discover the best ones.
Exploitation: use good policies to obtain a good return.
Exploration is a requirement.

No tradeoff if we optimize only the final result!
Tradeoff between the two if we consider that the returns during training matters!
Q-learning use the first approach and SARSA try to tackle the second.
Tradeoff if we study a regret: ∑

t
EΠ⋆ [Rt ]− EΠt [Rt ]

which forces us to be good as fast as possible.
No natural definition in the discounted setting.
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