Reinforcement Learning Reinforcement Learning: Policy Approach

E. Le Pennec

M2DS - Reinforcement Learning - Fall 2023

1

RL: What Are We Going To See?

Outline

- Operations Research and MDP.
- Reinforcement learning and interactions.
- More tabular reinforcement learning.
- Reinforcement and approximation of value functions.
- Actor/Critic: a Policy Point of View

Operations Research and MDP

How to find the best policy knowing the MDP?

- Is there an optimal policy?
- How to estimate it numerically?
- Finite states/actions space assumption (tabular setting).
- Focus on interative methods using value functions (dynamic programming).
- Policy deduced by a statewise optimization of the value function over the actions.
- Focus on the discounted setting.

Reinforcement Learning and Interactions



How to find the best policy not knowing the MDP?

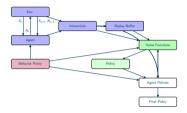
- How to interact with the environment to learn a good policy?
- Can we use a Monte Carlo strategy outside the episodic setting?
- How to update value functions after each interaction?
- Focus on stochastic methods using tabular value functions (*Q* learning, SARSA...)
- Policy deduced by a statewise optimization of the value function over the actions.

More Tabular Reinforcement Learning

Can We Do Better?

- Is there a gain to wait more than one step before updating?
- Can we interact with a different policy than the one we are estimating?
- Can we use an estimated model to plan?
- Can we plan in real time instead of having to do it beforehand?
- Finite states/actions space setting (tabular setting).

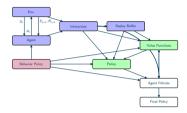
Reinforcement and Approximation of Value Functions



How to Deal with a Large/Infinite states/action space?

- How to approximate value functions?
- How to estimate good approximation of value functions?
- Finite action space setting.
- Stochastic algorithm (Deep Q Learning...).
- Policy deduced by a statewise optimization of the value function over the actions.

Actor/Critic: a Policy Point of View



Could We Directly Parameterized the Policy?

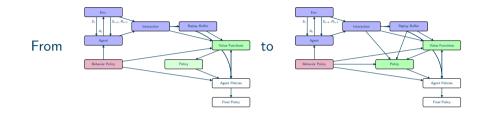
- How to parameterize a policy?
- How to optimize this policy?
- Can we combine parametric policy and approximated value function?
- State Of The Art Algorithms (DPG, PPO, SAC...)

Outline

Policy Gradient Theorems

- 2 Monte Carlo Based Policy Gradient
- 3 Actor / Critic Principle
- 4 3 SOTA Algorithms

Policy Point of View



Policy Point of View

- Optimize policy directely instead of deriving it from a value function.
- Avoid the argmax operator.
- Most natural POV?
- Pontryagin vs Hamilton-Jacobi(-Bellman) in control!

Policy Gradient Theorems

Policy Gradient Theorems

- 2 Monte Carlo Based Policy Gradient
- 3 Actor / Critic Principle
- ④ 3 SOTA Algorithms

5 References

Policy and Goal

Policy Gradient Theorems

$$J_{\mu}(\pi) = \sum_{s} \mu(s) v_{\pi}(s)$$

Goal: average expected return over the states

- Target used to define the linear programming formulation of an optimal policy in the tabular setting.
- μ can be the initial distribution of the states (independent of π)...
- but may also depends on π (for instance the associated stationary measure)
- Other choices will appear.
- Goal: optimize $J_{\mu}(\pi)$ in π !

Parametric Policy

Policy Gradient Theorems

$$\pi_{\theta}(a|s) = \begin{cases} \frac{e^{h_{\theta}(a,s)}}{\sum_{a'} e^{h_{\theta}(a,s')}} & \text{(softmax)} \\ P_{h_{\theta}(s)}(a) & \text{(parametric conditional model)} \\ \mathbf{1}_{a=h_{\theta}(s)} & \text{(deterministic)} \end{cases}$$

Parametric Policy

- Restriction of the set of policy to a parametrized one.
- Most classical parametrizations:
 - Soft-max with a preference function $h_{\theta}(a, s)$,
 - Parametric conditional model with parameter $h_{ heta}(s)$
- To be useful need to be able to sample the distribution.
- h_{θ} : from linear model to deep learning...
- Most of our result will assume that $\pi_{\theta}(a|s)$ is differentiable with respect to θ .
- Deterministic policies will be considered with a different analysis.

Episodic Setting: Gradient of Expected Returns

$$egin{split} \mathsf{v}_{\pi_{ heta}}(s) &= \mathbb{E}_{\pi_{ heta}}[G_0|S_0=s] \
abla_{ heta}\mathsf{v}_{\pi_{ heta}}(s) &= \mathbb{E}_{\pi_{ heta}}\left[\left(\sum_{t=0}^{ au_{ au}-1}
abla\log\pi_{ heta}(A_t|S_t)
ight)G_0ig|S_0=s
ight] \end{split}$$

Expected Returns

• Rely on
$$v_{\pi_{\theta}}(s) = \sum_{\tau} \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s) G_0(\tau)$$
 and
 $\nabla \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s) = \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s) \nabla \log \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s)$
 $= \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s) \sum_{t} (\nabla \log \pi_{\theta}(A_t | S_t) + \nabla p(R_{t+1}, S_{t+1} | S_t, A_t))$
 $= \mathbb{P}_{\pi_{\theta}}(\tau | S_0 = s) \sum_{t} \nabla \log \pi_{\theta}(A_t | S_t)$

• In an episodic setting, any trajectory au ends at a finite time $T_{ au}$.

13

Episodic

Episodic Setting: Policy Gradient Theorem

$$egin{split} J_{\mu_0}(\pi_ heta) &= \sum_s \mathbb{P}(S_0 = s) \, v_{\pi_ heta}(s) \
abla J_{\mu_0}(\pi_ heta) &= \mathbb{E}_{\pi_ heta} iggl[\left(\sum_{t=0}^{ au_ au-1}
abla \log \pi_ heta(A_t|S_t)
ight) \, G_0 iggr] \end{split}$$

Policy Gradient Theorem

• Natural μ : initial state distribution.

.

- Gradient is an expectation: MC type algorithm...
- Can be interpreted as the gradient of a the maximum likelihood of the actions weighted by the return.
- Favors good actions over bad ones.

Baseline and Variance Reduction

$$egin{split} J_{\mu_0}(\pi_ heta) &= \sum_s \mathbb{P}(S_0=s) \, \mathsf{v}_{\pi_ heta}(s) \
abla J_{\mu_0}(\pi_ heta) &= \mathbb{E}_{\pi_ heta} igggl[\left(\sum_{t=0}^{T_ au-1}
abla \log \pi_ heta(A_t|S_t)
ight) (G_0-b) igggr] \end{split}$$

Variance Reduction and Baseline

- The previous formulae are valid if one replace G_0 by any function of τ .
- For any constant b, this leads to

$$abla \mathbb{E}_{\pi_{ heta}}[b] = 0 = \mathbb{E}_{\pi_{ heta}}\left[\left(\sum_{t=0}^{T_{ au}-1}
abla \log \pi_{ heta}(A_t|S_t)
ight)b
ight]$$

- Optimal value for $b = \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right)^2 G_0 \right] / \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right)^2 \right]$
- Most used value $b = \mathbb{E}_{\pi_{\theta}}[G_0]$.

Gradient(s) of Expected Return

$$\begin{split} \mathbf{v}_{\pi_{\theta}}(s) &= \mathbb{E}_{\pi_{\theta}} \Big[\sum \gamma^{t} R_{t} \Big| S_{0} = s \Big] \\ \nabla \mathbf{v}_{\pi_{\theta}}(s) &= \sum_{t} \gamma^{t} \mathbb{E}_{\pi_{\theta}} \Big[\left(\sum_{t'=0}^{t-1} \nabla \log \pi_{\theta}(A_{t'}|S_{t'}) \right) R_{t} \Big| S_{0} = s \Big] \\ &= \sum_{t'} \mathbb{E}_{\pi_{\theta}} \Big[\nabla \log \pi_{\theta}(A_{t'}|S_{t'}) \left(\sum_{t \geq t'} \gamma^{t} R_{t} \right) |S_{0} = s \Big] \\ &= \sum_{t'} \gamma^{t'} \mathbb{E}_{\pi_{\theta}} \Big[\nabla \log \pi_{\theta}(A_{t'}|S_{t'}) q_{\pi_{\theta}}(S_{t'}, A_{t'}) |S_{0} = s \Big] \\ &= \sum_{t'} \gamma^{t'} \mathbb{E}_{\pi_{\theta}} \left[\nabla \log \pi_{\theta}(A_{t'}|S_{t'}) \underbrace{(q_{\pi_{\theta}}(S_{t'}, A_{t'}) - \mathbf{v}_{\pi_{\theta}}(S_{t'}))}_{\mathbf{a}_{\pi_{\theta}}(S_{t'}, A_{t'})} \Big| S_{0} = s \right] \end{split}$$

Expected Returns

• Several formulas of stochastic gradients!

More Gradient(s)

Policy Gradient Theorems

$$\begin{aligned} \nabla v_{\pi_{\theta}}(s) &= \sum_{t'} \gamma^{t'} \mathbb{E}_{\pi_{\theta}} [\nabla \log \pi_{\theta}(A_{t'}|S_{t'})q_{\pi_{\theta}}(S_{t'},A_{t'})|S_{0} = s] \\ &= \sum_{t'} \gamma^{t'} \mathbb{E}_{\pi_{\theta}} [\nabla \log \pi_{\theta}(A_{t'}|S_{t'})a_{\pi_{\theta}}(S_{t'},A_{t'})|S_{0} = s] \\ &= \sum_{s} \left(\sum_{t} \gamma^{t} \mathbb{P}_{\pi_{\theta}}(S_{t} = s|S_{0} = s) \right) \left(\sum_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s)q_{\pi_{\theta}}(s,a) \right) \\ &= \sum_{s} \left(\sum_{t} \gamma^{t} \mathbb{P}_{\pi_{\theta}}(S_{t} = s|S_{0} = s) \right) \left(\sum_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s)a_{\pi_{\theta}}(s,a) \right) \end{aligned}$$

Focus on states

• Even more stochastic gradients!

Policy Gradient(s)

$$egin{aligned} &J_{(\mu_0)}(\pi_{ heta}) = \sum_s \mu_0(s) \mathbf{v}_{\pi_{ heta}}(s) \ &
abla J_{\mu_0}(\pi_{ heta}) = \sum_s \left(\sum_t \gamma^t \mathbb{P}_{\pi_{ heta}}(S_t = s)
ight) \left(\sum_a \pi_{ heta}(a|s)
abla \log \pi_{ heta}(a|s) q_{\pi_{ heta}}(s,a)
ight) \ & = \sum_s \left(\sum_t \gamma^t \mathbb{P}_{\pi_{ heta}}(S_t = s)
ight) \left(\sum_a \pi_{ heta}(a|s)
abla \log \pi_{ heta}(a|s) (q_{\pi_{ heta}}(s,a) - \mathbf{v}_{\pi_{ heta}}(s,a))
ight) \end{aligned}$$

Discounted Setting

- Average (discounted) return from the beginning.
- Focus on early steps in discounted setting...

Policy Improvement Lemma

Policy Gradient Theorems

$$egin{aligned} J_{\mu_0}(\pi') - J_{\mu_0}(\pi) &= \sum_t \gamma^t \mathbb{P}_{\pi'}(S_t = s) \left(\sum_a \left(\pi'(a|s) - \pi(a|s)
ight) q_\pi(s,a)
ight) \ &= \sum_t \gamma^t \mathbb{P}_{\pi'}(S_t = s) \left(\sum_a \left(\pi'(a|s) - \pi(a|s)
ight) a_\pi(s,a)
ight) \end{aligned}$$

Proof

- By construction, if S_t is a trajectory using policy π' : $v_{\pi'}(S_t) - v_{\pi}(S_t) = \sum_a (\pi'(a|S_t) - \pi(a|S_t)) q_{\pi}(S_t, a) + \sum_a \pi'(a|s_t) (q_{\pi'}(S_t, a) - q_{\pi}(S_t, a))$ $= \sum_a (\pi'(a|s_t) - \pi(a|S_t)) v_{\pi}(S_t, a) + \mathbb{E}_{\pi'} [Vv_{\pi'}(S_{t+1}) - v_{\pi'}(S_{t+1})|S_t]$
- Discounted setting shortcut

$$v_{\pi'} - v_{\pi} = r_{\pi'} + \gamma P^{\pi'} v_{\pi'} - r_{\pi} - \gamma P^{\pi} v_{\pi} = r_{\pi'} - r_{\pi} + \gamma \left(P^{\pi'} - P^{\pi} \right) v_{\pi} + \gamma P^{\pi'} \left(v_{\pi'} - v_{\pi} \right) \\ v_{\pi'} - v_{\pi} = (I - \gamma P^{\pi'})^{-1} \left(r_{\pi'} - r_{\pi} + \gamma \left(P^{\pi'} - P^{\pi} \right) v_{\pi} \right)$$

19

Approximate Policy Improvement Lemma

$$\begin{split} \left| J_{\mu_0}(\pi') - J_{\mu_0}(\pi) - \sum_t \gamma^t \mathbb{P}_{\pi}(S_t = s) \left(\sum_a \left(\pi'(a|s) - \pi(a|s) \right) a_{\pi}(s, a) \right) \right| \\ &= \left| \sum_t \gamma^t \left(\mathbb{P}_{\pi'}(S_t = s) - \mathbb{P}_{\pi}(S_t = s) \right) \left(\sum_a \left(\pi'(a|s) - \pi(a|s) \right) a_{\pi}(s, a) \right) \right| \\ &\leq \frac{2\gamma}{(1-\gamma)^2} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1^2 \max_{s,a} |a_{\pi}(s, a)| \end{split}$$

Approximate Policy Improvement Lemma

• If
$$\max_{s} \|\pi'(\cdot|s) - \pi(\cdot|s)\|_{1} \leq \epsilon$$

 $\mathbb{P}_{\pi'}(S_{t} = s) = (1 - \epsilon)^{t} \mathbb{P}_{\pi}(S_{t} = s) + (1 - (1 - \epsilon)^{t}) \mathbb{P}_{\text{mistake}}(S_{t} = s)$
 $\rightarrow |\mathbb{P}_{\pi'}(S_{t} = s) - \mathbb{P}_{\pi}(S_{t} = s)| \leq 2(1 - (1 - \epsilon)^{t}) \leq 2\epsilon t$
• $\sum_{t} 2\gamma^{t} t = \frac{2\gamma}{(1 - \gamma)^{2}}$

Discounted

Approximate Policy Improvement Lemma

$$egin{aligned} & \left|J_{\mu_0}(\pi')-J_{\mu_0}(\pi)-\sum_t \gamma^t \mathbb{P}_{\pi}(S_t=s)\left(\sum_a \left(\pi'(a|s)-\pi(a|s)
ight)a_{\pi}(s,a)
ight)
ight| \ & \leq rac{2\gamma}{(1-\gamma)^2}\max_s \|\pi'(\cdot|s)-\pi(\cdot|s)\|_1^2\max_{s,a}|a_{\pi}(s,a)| \end{aligned}$$

Approximate Policy Improvement Lemma and Policy Gradient Theorem

• Let
$$\pi' = \pi_{\theta+h}$$
 and π_{θ}

- $\pi_{\theta+h}(a|s) \pi_{\theta}(a|s) = \pi_{\theta}(a|s) \langle \nabla \log \pi_{\theta}(a|s), h \rangle + O(\|h\|^2)$
- $\|\pi_{\theta+h}(\cdot|s) \pi_{\theta}(\cdot|s)\|_1 \leq \|h\|\max_a \|\nabla\log \pi_{\theta}(a|s)\| + O(\|h\|^2)$
- Implies Policy Gradient Theorem: $J_{\mu_0}(\pi_{\theta+h})$

 $= J_{\mu_0}(\pi_\theta) + \sum_{s} \gamma^t \mathbb{P}_{\pi_\theta}(S_t = s) \left(\sum_{s} \pi_\theta(a|s) \langle \nabla \log \pi_\theta(s, a), h \rangle a_\pi(s, a) \right) + O(\|h\|^2)$

0

Monte Carlo Based Policy Gradient

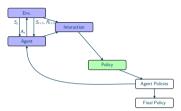
3 Actor / Critic Principle

④ 3 SOTA Algorithms

5 References

Monte Carlo Approach

Monte Carlo Based Policy Gradient



$$egin{aligned} G_t &= \sum\limits_{t' \geq t} R_{t+1} \ Q_{t,\pi_ heta}(s,a) &= \mathbb{E}[G_t | S_t = s, A_t = a] \end{aligned}$$

Monte Carlo

- Replace every return by an empirical estimate along episodes.
- Need to wait until the end of the episods.

REINFORCE: Monte Carlo Based Policy Gradient

Monte Carlo Based Policy Gradient

$$\begin{aligned} J_{\mu_0}(\pi_{\theta}) &= \sum_{s} \mathbb{P}(S_0 = s) \, v_{\pi_{\theta}}(s) \\ \nabla J_{\mu_0}(\pi_{\theta}) &= \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) \, G_0 \right] \\ &= \sum_{s} \left(\sum_{t} \mathbb{P}_{\pi_{\theta}}(S_t = s) \right) \left(\sum_{a} \pi_{\theta}(a | s) \nabla \log \pi_{\theta}(a | s) q_{\pi_{\theta}}(s, a) \right) \\ \widehat{\nabla} J_{\mu_0}(\pi_{\theta}) &= \left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) \, G_0 \quad \text{or} \quad \widehat{\nabla} J_{\mu_0}(\pi_{\theta}) = \sum_{t} \nabla \log \pi_{\theta}(A_t | S_t) G_t \end{aligned}$$

REINFORCE

- Plain MC (SGD) algorithm.
- Need to wait until the end of the episods.
- Convergence guarantees (even in off-line setting with importance sampling).

REINFORCE with Baseline

$$\nabla J_{\mu_0}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) (G_0 - b) \right] \\ = \sum_{s} \left(\sum_{t} \mathbb{P}_{\pi_{\theta}}(S_t = s) \right) \left(\sum_{a} \pi_{\theta}(a | s) \nabla \log \pi_{\theta}(a | s) \left(q_{\pi_{\theta}}(s, a) - b(s) \right) \right) \\ \widehat{\nabla} J_{\mu_0}(\pi_{\theta}) = \left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) (G_0 - b) \\ \widehat{\nabla} J_{\mu_0}(\pi_{\theta}) = \sum_{t} \nabla \log \pi_{\theta}(A_t | S_t) (G_t - b(S_t))$$

REINFORCE with baseline

or

- Several choices for b...
- and for b(s) which can be any function (a crude estimate of $V_{t,\pi}(s)$ for instance)!
- Convergence guarantees (even in off-line setting with importance sampling).

Discounted REINFORCE?

_

Monte Carlo Based Policy Gradient

$$\nabla J_{\mu_0}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) (G_0 - b) \right]$$
$$= \sum_{s} \left(\sum_{t} \gamma^t \mathbb{P}_{\pi_{\theta}}(S_t = s) \right) \left(\sum_{a} \pi_{\theta}(a | s) \nabla \log \pi_{\theta}(a | s) (q_{\pi_{\theta}}(s, a) - b(s)) \right)$$
$$\widehat{\nabla} J_{\mu_0}(\pi_{\theta}) = \left(\sum_{t=0}^{T_{\tau}-1} \nabla \log \pi_{\theta}(A_t | S_t) \right) (G_0 - b)$$
or
$$\widehat{\nabla} J_{\mu_0}(\pi_{\theta}) = \sum_{t} \gamma^t \nabla \log \pi_{\theta}(A_t | S_t) (G_t - b(S_t))$$

Discounted REINFORCE

- Can be defined...
- but still requires an episodic setting for the discounted return G_t to be computed.

Discounted Measure?

$$egin{aligned} &\widehat{
abla} J_{\mu_0}(\pi_{ heta}) = \sum_t \gamma^t
abla \log \pi_{ heta}(A_t|S_t) \left(G_t - b(S_t)
ight) \ &
ightarrow \widehat{
abla} J_{\mu_{\pi_{ heta}}}(\pi_{ heta}) = rac{1}{1-\gamma}
abla \log \pi_{ heta}(A_t|S_t) \left(G_t - b(S_t)
ight)? \end{aligned}$$

Discounted Measure?

- Much less weights for later states!
- Probability independent of t if the initial distribution is the stationary distribution $\mu_{\pi_{\theta}}$ corresponding to π_{θ} (it it exists).
- Approximately true after a burning stage if we reach stationarity...
- Better handled by the average return!
- More on this later...

Outline

Actor / Critic Principle

Delicy Gradient Theorems

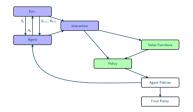
2 Monte Carlo Based Policy Gradient

3 Actor / Critic Principle

④ 3 SOTA Algorithms

5 References

Actor / Critic Principle



Actor/Critic

- Actor: Parametric policy π_{θ} used.
- Critic: Q-value function $Q_{w}(\cdot, \cdot)$ approximating $Q_{\pi_{\theta}}$.
- Critic follows the Actor, which is optimized using the Critic.
- In Value Approximation, the Actor follows the Critic (through the argmax operator).
- In on-line methods, the Actor is used to interact with the environment.

Actor/Critic

Actor / Critic Principle

$$\begin{split} J_{(\mu_0)}(\pi_{\theta}) &= \sum_{s} \mu_0(s) v_{\pi_{\theta}}(s) \\ \nabla J_{\mu_0}(\pi_{\theta}) &= \sum_{s} \left(\sum_{t} \gamma^t \mathbb{P}_{\pi_{\theta}}(S_t = s) \right) \left(\sum_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s) (q_{\pi_{\theta}}(s, a) - v_{\pi_{\theta}}(s, a)) \right) \\ \widehat{\nabla} J_{\mu_0}(\pi_{\theta}) &= \sum_{t} \gamma^t \pi_{\theta}(A_t|S_t) \nabla \log \pi_{\theta}(A_t|S_t) \left(q_{\pi_{\theta}}(S_t, A_t) - \sum_{a} \pi(a|S_t) q_{\pi_{\theta}}(S_t, A_t) \right) \\ &\simeq \sum_{t} \gamma^t \pi_{\theta}(A_t|S_t) \nabla \log \pi_{\theta}(A_t|S_t) \left(Q_{\mathbf{w}}(S_t, A_t) - \sum_{a} \pi(a|S_t) Q_{\mathbf{w}}(S_t, A_t) \right) \end{split}$$

Actor/Critic

- Critic update: Stochastic Policy Gradient with plugin.
- Actor update: any *Q*-value methods estimating $q_{\pi_{\theta}}$.
- Requires a two-scales algorithm so that Q_{w} is always a good estimate of $q_{\pi_{\theta}}$.
- Is this a real algorithm in a non-episodic setting?

Actor/Critic

$$\begin{aligned} J_{\mu_{\pi_{\theta}}}(\pi_{\theta}) &= \sum_{s} \mu_{\pi_{\theta}}(s) \mathbf{v}_{\pi_{\theta}}(s) \\ \nabla J_{\mu_{\pi_{\theta}}}(\pi_{\theta}) &= \sum_{s} \frac{1}{1-\gamma} \mathbb{P}_{\pi_{\theta}}(S_{t}=s) \left(\sum_{a} \pi_{\theta}(a|s) \nabla \log \pi_{\theta}(a|s) (q_{\pi_{\theta}}(s,a) - \mathbf{v}_{\pi_{\theta}}(s,a)) \right) \\ \widehat{\nabla} J_{\mu_{\pi_{\theta}}}(\pi_{\theta}) &\simeq \frac{1}{1-\gamma} \pi_{\theta}(A_{t}|S_{t}) \nabla \log \pi_{\theta}(A_{t}|S_{t}) \left(Q_{\mathbf{w}}(S_{t},A_{t}) - \sum_{a} \pi(a|S_{t}) Q_{\mathbf{w}}(S_{t},A_{t}) \right) \end{aligned}$$

Actor/Critic

- Critic update: Stochastic Policy Gradient with plugin.
- Actor update: any *Q*-value methods estimating $q_{\pi_{\theta}}$.
- Requires a two-scales algorithm so that $Q_{m w}$ is always a good estimate of $q_{\pi_{ heta}}$.
- Require the existence of a stationary measure...and that this stationary measure is reached *quickly*.
- Much harder to do off-policy algorithm as the stationary measure is not known!

Critic in Actor/Critic

$$Q_{oldsymbol{w}}\simeq q_{\pi_ heta}$$

Critic

- On-line TD learning with interaction following π_{θ} .
- Off-Policy TD learning is possible if the policy used for any action is stored.
- Approximate off-policy TD learning is possible using a replay buffer providing π_{θ} is changing slowly.
- May lead to 3 scales algorithm (Actor/Critic Target/Critic)
- As mentionned in the previous slide, much harder to do off-line update for the actor.

Off-Line Actor

Actor / Critic Principle

$$J_{\mu}'(\pi) = \sum_{s} \mu(s) v_{\pi}(s)$$

Off-Line Actor

- Idea proposed in 2012.
- Key lemma in the paper

$$abla J'_{\mu}(\pi_{ heta}) \simeq \sum_{s} \mu(s) \sum_{a} \pi_{ heta}(a|s)
abla \pi_{ heta}(a|s) q_{\pi_{ heta}}(s,a)$$

turns out to be wrong!

- Still used as a heuristic justification of many algorithms!
- Explicit formula for $\nabla J'_{\mu}(\pi_{\theta})$ can be obtained but much harder to use. . .

Outline

3 SOTA Algorithms

Delicy Gradient Theorems

2 Monte Carlo Based Policy Gradient

3 Actor / Critic Principle

4 3 SOTA Algorithms

5 References

PPO: Minorize-Majorization Algorithm

$$egin{aligned} J_{\mu_0}(\pi') \geq J_{\mu_0}(\pi) + \sum_t \gamma^t \mathbb{P}_{\pi}(S_t=s) \left(\sum_a \left(\pi'(s|a) - \pi(s|a)
ight) a_{\pi}(s,a)
ight) \ &- rac{2\gamma}{(1-\gamma)^2} \max_s \|\pi'(\cdot|s) - \pi(\cdot|s)\|_1^2 \max_{s,a} |a_{\pi}(s,a)| \end{aligned}$$

Ideal Minorize-Majorization Algorithm

• At step k, find θ_{k+1} maximizing

$$J_{\mu_0}(\pi_{\theta}|\pi_{\theta_k}) = \sum_s \sum_t \gamma^t \mathbb{P}_{\pi_{\theta_k}}(S_t = s) \left(\sum_a \left(\pi_{\theta}(s|a) - \pi_{\theta_k}(s|a) \right) a_{\pi_{\theta_k}}(s, a) - \frac{2\gamma}{(1-\gamma)^2} \max_s \|\pi_{\theta}(\cdot|s) - \pi_{\theta_k}(\cdot|s)\|_1^2 \max_{s,a} |a_{\pi_{\theta_k}}(s, a)| \right)$$

- By construction, $J_{\mu_0}(\pi_{ heta_{k+1}}) \geq J_{\mu_0}(\pi_{ heta_k})$
- Sample efficient algorithm as the same trajectory can be (re)used in the optimization.

PPO: Optimization

3 SOTA Algorithms

$$egin{aligned} J_{\mu_0}(\pi_ heta) &\geq J_{\mu_0}(\pi_{ heta_k}) + \sum_s \sum_t \gamma^t \mathbb{P}_{\pi_{ heta_k}}(S_t=s) \left(\sum_a \left(\pi_ heta(s|a) - \pi_{ heta_k}(s|a)
ight) a_{\pi_{ heta_k}}(s,a)
ight) \ &- rac{2\gamma}{(1-\gamma)^2} \max_s \|\pi_ heta(\cdot|s) - \pi_{ heta_k}(\cdot|s)\|_1^2 \max_{s,a} |a_{\pi_{ heta_k}}(s,a)| \end{aligned}$$

Optimization

- Gradient descent is possible.
- Gradient of the first term can be approximated using a critic by

$$\sum_{s} \sum_{t} \gamma^{t} \mathbb{P}_{\pi}(S_{t} = s) \left(\sum_{a} \pi_{\theta} \nabla \pi_{\theta}(s|a) A_{\pi_{\theta_{k}}}(s,a) \right)$$

- Gradient of the second term more involved.
- Simpler (TRPO like) strategy: optimize

$$\sum_{s} \sum_{t} \gamma^{t} \mathbb{P}_{\pi_{\theta_{k}}}(S_{t} = s) \left(\sum_{a} \left(\pi_{\theta}(s|a) - \pi_{\theta_{k}}(s|a) \right) a_{\pi_{\theta_{k}}}(s, a) \right)$$

under $\max_{s} \|\pi_{\theta}(\cdot|s) - \pi_{\theta_{k}}(\cdot|s)\|_{1}^{2} \leq \epsilon$ and reduce ϵ there is no gain.

36

PPO: KL Relaxation

3 SOTA Algorithms

$$egin{aligned} J_{\mu_0}(\pi_{ heta}) &\geq J_{\mu_0}(\pi_{ heta_k}) + \sum_s \sum_t \gamma^t \mathbb{P}_{\pi_{ heta_k}}(S_t = s) \left(\sum_a \left(\pi_{ heta}(s|a) - \pi_{ heta_k}(s|a)
ight) a_{\pi_{ heta_k}}(s,a)
ight)
ight) \ &- rac{2\gamma R_{ ext{max}}}{(1-\gamma)^2} \max_s \mathsf{KL}(\pi_{ heta_k}(\cdot|s),\pi_{ heta}(\cdot|s)) \end{aligned}$$

TRPO/PPO Optimization

- Replace the ℓ_1 norm by a KL divergence.
- In practice, replace the max by an average and replace $\frac{2\gamma R_{\text{max}}}{(1-\gamma)^3}$ by parameter β and replace the a_{π_k} by an estimate A_{π_k} .
- PPO: Gradient descent of the relaxed goal.
- TRPO: Constrained optimization.
- Adaptive scheme to set β .
- Can be used with continuous action.

PPO: Clipped Objective

3 SOTA Algorithms

$$\sum_{s} \sum_{t} \gamma^{t} \mathbb{P}_{\pi_{\theta_{k}}}(S_{t} = s) \left(\sum_{a} \pi_{\theta_{k}}(s|a) \min\left(\frac{\pi_{\theta}(s|a)}{\pi_{\theta_{k}}(s,a)} a_{\pi_{\theta_{k}}}(s,a), \operatorname{clip}(1-\epsilon, \frac{\pi_{\theta}(s|a)}{\pi_{\theta_{k}}(s,a)}, 1+\epsilon) a_{\pi_{\theta_{k}}}(s,a) \right) \right)$$

Clipped Objective

- Insight by (re)substracting $\sum_{a} \pi_{\theta_k}(s|a) a_{\theta_k}(s, a) = 0$: $\sum_{a} \min\left((\pi_{\theta}(s|a) - \pi_{\theta_k}(s, a)) a_{\pi_{\theta_k}}(s, a), \operatorname{clip}(-\epsilon, \pi_{\theta}(s|a) - \pi_{\theta_k}(s, a), \epsilon) a_{\pi_{\theta_k}}(s, a)\right)$ $= \sum_{a} \operatorname{clip}(-\epsilon \pi_{\theta_k}(s, a), \pi_{\theta}(s|a) - \pi_{\theta_k}(s, a), \epsilon \pi_{\theta_k}(s, a)) a_{\pi_{\theta_k}}(s, a)$ $- \max\left(0, -(\pi_{\theta}(s|a) - \pi_{\theta_k}(s, a)) a_{\pi_{\theta_k}}(s, a) - \epsilon \pi_{\theta_k}(s, a) |a_{\pi_{\theta_k}}(s, a)|\right)$ • First term amount to replace π_{θ} by a policy
- $\begin{aligned} \tilde{\pi}_{\theta}(a|s) &= \operatorname{clip}(\pi_{\theta_k}(a|s)(1-\epsilon), \pi_{\theta}(a|s), \pi_{\theta_k}(a|s)(1+\epsilon)) + \eta_s \pi_{\theta_k}(a|s) \\ \text{where } \eta \text{ is so that } \tilde{\pi} \text{ is a probability for all } s \text{ and } \|\tilde{\pi}_{\theta}(\cdot, s) \pi_{\theta_k}(\cdot, s)\|_1 \leq \epsilon \end{aligned}$
- Second term: hinge loss type penalization of policy π_{θ} penalizing *bad* actions.
- Very efficient for discrete actions.

PPO: Stationary Objective

3 SOTA Algorithms

$$\sum_{s,t} \mathbb{P}_{\pi_{\theta_k}}(S_t = s) \left(\sum_{a} \left(\pi_{\theta}(s|a) - \pi_{\theta_k}(s|a) \right) a_{\pi_{\theta_k}}(s, a) \right) - \beta \max_{s} \mathsf{KL}(\pi_{\theta_k}(\cdot|s), \pi_{\theta}(\cdot|s)) \\ \sum_{s,t} \mathbb{P}_{\pi_{\theta_k}}(S_t = s) \left(\sum_{a} \pi_{\theta_k}(s|a) \min\left(\frac{\pi_{\theta}(s|a)}{\pi_{\theta_k}(s, a)} a_{\pi_{\theta_k}}(s, a), \mathsf{clip}(1 - \epsilon, \frac{\pi_{\theta}(s|a)}{\pi_{\theta_k}(s, a)}, 1 + \epsilon) a_{\pi_{\theta_k}}(s, a) \right) \right)$$

Stationary Objective

- Amount to replace $J_{\mu_0}(\pi)$ by $J_{\mu_\pi}(\pi)$
- Most common implementation of PPO...
- But no way to justify it mathematically!
- May explain the (possible) instabilities of PPO.

DPG: Deterministic Policy Gradient

$$\begin{split} J_{\mu_0}(\pi_\theta) &= \sum_s \mu_0(s) v_{\pi_\theta}(s) & \text{with deterministic policy } \pi_\theta(a|s) = \mathbf{1}_{a = h_\theta(s)} \\ \nabla J_{\mu_0}(\pi_\theta) &= \sum_s \sum_t \gamma^t \mathbb{P}_{\pi_\theta}(S_t = s) \nabla_a q(S_t, h_\theta(S_t)) \nabla h_\theta(S_t) \end{split}$$

Deterministic Policy Gradient

- Deterministic policy replaced by a randomized one centered on $h_{\theta(s)}$ in the interactions!.
- Critic trained with a TD variant of DQN.
- Same formula by using a policy $\pi_{\theta} = \mathsf{N}(h_{\theta}(s), \sigma^{2}\mathrm{Id})$ and letting σ goes to 0.
- Off-Policy as claimed?
- Yes for the actor but no theoretical justification for the critic!
- In practice, the buffer contains only samples using a policy close to the current one. . .

SAC: A New Goal

3 SOTA Algorithms

$$R_t \to R_t + \lambda \mathcal{H}(\pi(S_t))$$

A Modified Reward

• Modification of the reward to favor high entropy policy:

$$R_t \to R_t + \lambda \mathcal{H}(\pi(S_t))$$

• Goal:

$$J(\pi) = \mathbb{E}_{\pi}\left[\sum_{t} \gamma^{t} \left(R_{t} + \lambda \mathcal{H}(\pi(S_{t}))\right)\right]$$

• Soft value function implicitly defined as the fixed point of $\mathcal{T}^{\pi}q_{\pi}(s,a) = r_{\pi}(s,a) + \gamma \sum_{s'} p(s'|s,a)v_{\pi}(s')$ where $v_{\pi}(s,a) = \sum_{a} \pi(a|s) \left(q_{\pi}(s,a) - \log \pi(a|s)\right)$

SAC: Policy Improvement and Optimal Policy

3 SOTA Algorithms

$$R_t \to R_t + \lambda \mathcal{H}(\pi(S_t))$$

A Modified Policy Improvement Lemma

• Policy improvement rule:

$$\pi^+(\cdot|s) = rgmax_{\pi(\cdot|s)} \sum_{a} \pi(a|s) \left(q(s,a) - \lambda \log(\pi(a|s))\right)$$
 $\pi^+(a|s) \propto \exp(-rac{1}{\lambda}q(s,a))$
implies $G_{\pi^+}(s,a) \ge G_{\pi}(s,a)$.

- At convergence, $J(\pi^*)$ is optimal!
- Convergence in the finite setting.

SAC: Parametrization

3 SOTA Algorithms

$$\pi \sim \pi_{ heta}$$
 and $q(s,a) \sim Q_{m{w}}$

SAC Choices

• Fitted TD learning for Q:

 $\boldsymbol{w} \simeq \operatorname{argmin} \sum_{(S,A,R,S') \in \mathcal{B}} \left(R + \mathbb{E}_{\pi_{\theta}} \left[\gamma Q_{\overline{\boldsymbol{w}}}(S',a) - \lambda \log \pi_{\theta}(a|S') \right] - Q_{\boldsymbol{w}}(S,A) \right)^2$

where the trajectory pieces are samples from a replay buffer and \overline{w} is a slowdown version of w (two-scales algorithm).

- Online version rather than batch...
- Fitted KL for π :

$$egin{aligned} & heta & pprox rgmin \sum_{(S,A,R,S')\in\mathcal{B}} \mathsf{KL}(\pi_{ heta}(\cdot|S)|\exp{-\lambda Q_{[}\overline{oldsymbol{w}}](S,\dot{)}/Z_{\overline{oldsymbol{w}}}(S))} \ & & \simeq \sum_{(S,A,R,S')\in\mathcal{B}} \mathbb{E}_{\pi_{ heta}}igg[rac{1}{\lambda}\log{\pi_{ heta}(a|S)} - Q_{ heta}(a|s)igg] \end{aligned}$$

Outline

References

44

Delicy Gradient Theorems

- 2 Monte Carlo Based Policy Gradient
- 3 Actor / Critic Principle

4 3 SOTA Algorithms

References

References

R. Sutton and A. Barto. *Reinforcement Learning, an Introduction (2nd ed.)* MIT Press, 2018

O. Sigaud and O. Buffet. *Markov Decision Processes in Artificial Intelligence*. Wiley, 2010

M. Puterman.

Markov Decision Processes. Discrete Stochastic Dynamic Programming. Wiley, 2005

D. Bertsekas and J. Tsitsiklis. *Neuro-Dynamic Programming*. Athena Scientific, 1996

W Powell

Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. Wiley, 2022 S. Meyn.

5. Meyn. Control Systems and Reinforcement Learning.

Cambridge University Press, 2022

V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Springer, 2008

T. Lattimore and Cs. Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

- You are free to:
 - Share: copy and redistribute the material in any medium or format
 - Adapt: remix, transform, and build upon the material for any purpose, even commercially.
- Under the following terms:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
 - No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Contributors

- Main contributor: E. Le Pennec
- Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas,
 - A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet.