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Outline
Operations Research and MDP.
Reinforcement learning and interactions.
More tabular reinforcement learning.
Reinforcement and approximation of value functions.
Actor/Critic: a Policy Point of View
Extensions
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Operations Research and MDP
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How to find the best policy knowing the MDP?
Is there an optimal policy?
How to estimate it numerically?

Finite states/actions space assumption (tabular setting).
Focus on interative methods using value functions (dynamic programming).
Policy deduced by a statewise optimization of the value function over the actions.
Focus on the discounted setting.

3



Reinforcement Learning and Interactions
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How to find the best policy not knowing the MDP?
How to interact with the environment to learn a good policy?
Can we use a Monte Carlo strategy outside the episodic setting?
How to update value functions after each interaction?

Focus on stochastic methods using tabular value functions (Q learning,
SARSA. . . )
Policy deduced by a statewise optimization of the value function over the actions.
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More Tabular Reinforcement Learning
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Can We Do Better?
Is there a gain to wait more than one step before updating?
Can we interact with a different policy than the one we are estimating?
Can we use an estimated model to plan?
Can we plan in real time instead of having to do it beforehand?

Finite states/actions space setting (tabular setting).
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Reinforcement and Approximation of Value Functions
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How to Deal with a Large/Infinite states/action space?
How to approximate value functions?
How to estimate good approximation of value functions?

Finite action space setting.
Stochastic algorithm (Deep Q Learning. . . ).
Policy deduced by a statewise optimization of the value function over the actions.
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Actor/Critic: a Policy Point of View
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Could We Directly Parameterized the Policy?
How to parameterize a policy?
How to optimize this policy?
Can we combine parametric policy and approximated value function?

State Of The Art Algorithms (DPG,PPO, SAC. . . )
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Extensions
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Can We Do Something Different in This Setting?
How to deal with the total and average returns?
How to deal with partial observations?
How to learn a policy or an implicit reward by observing an actor?

8



Outline

1 Total Reward

2 Average Return

3 Discount or No Discount?

4 POMDP

5 Imitation and Inverse Reinforcement Learning

6 More
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Total RewardOutline
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Total RewardTotal Reward

vΠ(s) = EΠ

[+∞∑
t′=1

Rt+1

∣∣∣∣∣S0 = s
]

= EΠ

[+∞∑
t′=1

max(0, Rt+1)
∣∣∣∣∣St = s

]
︸ ︷︷ ︸

v+,Π(s)

−EΠ

 +∞∑
t′=t+1

max(0, −Rt+1)

∣∣∣∣∣∣St = s


︸ ︷︷ ︸
v−,Π(s)

Total reward not necessarily well defined!
Need to assume this is the case!

Classical Assumptions
Episodic model: ∀Π, s, EΠ

[
mint,∀t′≥t,Rt′ =0 t

∣∣∣S0 = s
]

≤ H < +∞

Stochastic Shortest Path: ∃Π, ∀s, EΠ
[
mint,∀t′≥t,Rt′ =0 t

∣∣∣S0 = s
]

≤ H < +∞.
More general assumption: ∀Π, s either v+,Π(s) or vΠ(s) is finite.

To
ta

l
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Total RewardBellman Operator and Optimality Equation

sup
Π

vΠ(s) = v⋆(s) = max
a

r(s, a) +
∑
s′

p(s ′|s, a)v⋆(s ′)︸ ︷︷ ︸
T ⋆(v⋆)(s)

Similar to the discounted setting as:
We can focus on Markovian policy.
The optimal value v⋆ satisfies the Bellman optimality equation.

But. . .
T ⋆ is not a contraction and thus there may be several solutions of the equation.
If π is such that T πv⋆ = T ⋆v⋆, we need to assume that lim sup(Pπ)nv⋆(s) ≤ 0 to
prove that Π = (π, π, . . .) is optimal.
There may not exist an optimal policy!

Existence of optimal policies in the finite state-action setting by defining the total
reward to the limit of discounted setting when γ → 1 and using the finiteness of
the policy set. . .

To
ta

l
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Total RewardStochastic Shortest Path

∀s, EΠ

[
min

t,∀t ′≥t,Rt′=0
t
∣∣∣∣∣S0 = s

]
≤ H < +∞

A policy is said to be H-proper if it satisfies this property.

Extended Stochastic Shortest Path
Assumptions:

It exists a proper policy.
For any improper policy, it exists s such that vΠ(s) = −∞.

Results:
v⋆ is the unique solution of v = T ⋆v .
Value Iteration converges and Policy Iteration converges provided v0 ≤ T ⋆v0 (or
finite setting).
If all stationary policies are proper then T ⋆ is a contraction for a weighted sup-norm.

Any discounted model can be put in this framework by adding an absorbing state
reached at random at each step with probability 1 − γ and H = 1/(1 − γ).

To
ta

l
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Total RewardStochastic Shortest Path and Reinforcement Learning

δt = Rt + Q(St+1, At+1) − Q(St , At)

Prediction
Convergence of TD-learning algorithms for any proper policy.

δt = Rt + max
Q

(St+1, a) − Q(St , At)

Planning
Convergence of Q-learning algorithms is the Stochastic Shortest Path setting (It
exists a proper policy and for any improper policy, it exists s such that
vΠ(s) = −∞) if the Q estimates remain bounded.

See Neuro-Dynamic Programming from Bertsekas and Tsitsiklis!
May be very slow in practice!

To
ta

l
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Total RewardStochastic Shortest Path and Policy Gradient

∇vπθ
(s) =

∑
t′

Eπθ
[∇ log πθ(At′ |St′)aπθ

(St′ , At′)|S0 = s]

=
∑

s

(∑
t
Pπθ

(St = s|S0 = s)
)(∑

a
πθ(a|s)∇ log πθ(a|s)qπθ

(s, a)
)

Policy Gradient
Formula valid in the Stochastic Shortest Path Assumption (if the current policy is
proper).
Approximate Policy Improvement Lemma with a H2 multiplicative constant
(instead of O(H)).

Actor-Critic
Valid approach provided all the policies considered remain propers.
Main difficulty is to maintain a good estimate of qπθ

. . .

To
ta

l
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Total RewardPositive Bounded and Negative Models
Positive Bounded Models

∀Π, s, v+,Π(s) < ∞
∀s, ∃a, r(s, a) ≥ 0

Often stronger assumption: r(s, a) ≥ 0.
Any discounted model can be put in this framework by adding an absorbing state
reached at random at each step with probability 1 − γ.

Negative Models
∀Π, s, v+,Π(s) = 0 and v−,Π(s) < ∞
There exists a policy Π such that ∀s, vΠ(s) > −∞

Maximization of vΠ amounts to the minimization of v−,Π and the negative reward
can be interpreted as the opposite of costs.
Classical Stochastic Shortest Path within this framework.
See Markov Decision Processes. Discrete Stochastic Dynamic Programming from
Puterman.

To
ta

l
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Total RewardPositive Bounded and Negative Models Results
Result Positive Bounded Models Negative Models
Optimality equation v⋆ is a minimal solution within

v ≤ T ⋆v
v⋆ is a maximal solution within
v ≥ T ⋆v

T πv⋆ = T ⋆v⋆ ⇒ π optimal Only if
lim sup(Pπ)nv⋆(s) = 0

Always

Existence of optimal stationary
policy

S and A finite or existence of
optimal policy and r ≥ 0

As finite or As compact, r and
p continuous with respect to a.

Existence of stationary ϵ-
optimal policy

If v⋆ is bounded Not always (Always for non sta-
tionary policy)

Value Iteration converges 0 ≤ v0 ≤ v⋆ 0 ≥ v0 ≥ v⋆ and As finite or S
finite if v⋆ > −∞

Policy Iteration converges Yes Not always
Modified Policy Iteration con-
verges

0 ≤ v0 ≤ v⋆ and v0 ≤ T ⋆v0 Not always

Solution by linear programming Yes No

No RL analysis? To
ta

l
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Average ReturnOutline
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Average ReturnAverage Return

vΠ(s) = lim
T→∞

1
T vT ,Π(s) = lim

T→∞

1
T EΠ

[ T∑
t=1

Rt

∣∣∣∣∣S0 = s
]

−→ v+,Π(s) = lim sup
T→∞

1
T vT ,Π(s)

v−,Π(s) = lim inf
T→∞

1
T vT ,Π(s)

Average Return(s)
Limit vΠ may not be defined!
Prop: vΠ is well defined if Π is stationary and 1

T
∑T

t=1(Pπ)t−1 tends to a
stochastic matrix.
Limits v+,Π and v−,Π always defined! Av

er
ag

e
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Average ReturnAverage Returns and Optimality

v+,⋆(s) = sup
Π

v+,Π(s) and v−,⋆(s) = sup
Π

v−,Π(s)

Optimality of Π⋆

Average optimal:
v−,Π⋆ ≥ v+,⋆(s)

Lim-sup average optimal (best case analysis):
v+,Π⋆ ≥ v+,⋆(s)

Lim-inf average optimal (worst case analysis):
v−,Π⋆ ≥ v−,⋆(s)

More complex setting!
Let’s start with Prediction. . .

Av
er

ag
e
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Average ReturnPrediction for a Stationary Markov Policy

vΠ(s) = lim
T→∞

1
T

T∑
t=1

P t−1
π rπ =

(
lim

T→∞

1
T

T∑
t=1

P t−1
π

)
rπ = P∞

π rπ

Stochastic Matrix P∞
π

Measures the average amount of time spend on a state s ′ starting from state s at
t = 0 when using policy π.
Structure linked to the properties of the resulting Markov chain:

If aperiodic, P∞
π = limT PT

π i.e. P∞
π is close to the probability of reaching s ′ from s

at any large T .
If unichain, then P∞

π has identical rows and corresponds to the stationary
distribution.
If multichhain, then P∞

π has a diagonal block structure with rows equal withing each
block corresponding to the stationary distribution in each chain.

Implies that vΠ(s) = vΠ(s ′) in the Markov process is unichain.
Limit P∞

π may be hard to compute. . .

Av
er

ag
e
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Average ReturnAverage Reward and Relative Value Functions

Uπ(s) = Eπ

[ ∞∑
t=1

(Rt − vπ(St))
∣∣∣∣∣S0 = s

]
⇔ Uπ = (Id − Pπ + P∞

π )−1(Id − P∞
π )︸ ︷︷ ︸

Hπ

rπ

Link between Uπ and vπ

(Id − Pπ)vπ = 0
vπ + (I − Pπ)Uπ = rπ

Characterization by a system
If (Id − Pπ)v = 0 and v + (I − Pπ)U = rπ then

v = vπ,
U = Uπ + u with (I − Pπ)u = 0,
If P∞

π U = 0 then u = 0.

Prediction possible by solving this system as we do not need Uπ. Av
er

ag
e
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Average ReturnOptimality Equations

v(s) = max
a

∑
s′

p(s ′|s, a)v(s ′)

U(s) + v(s) = max
a∈Bs

r(s, a) +
∑
s′

p(s ′|s, a)U(s)with Bs = {a|
∑
s′

p(s ′|s, a)v(s ′) = v(s)}

π⋆(s) ∈ argmax
a∈Bs

r(s, a) +
∑
s′

p(s ′|s, a)U(s)

Existence
If there is a solution (v , U) of the system then v = v⋆ and π⋆ is an optimal policy.
There may exist other optimal policies not satisfying the argmax property.
There may not exist solutions to the system.

Associated relative value iteration and modified policy iteration can be defined.
Convergence under strong assumptions. . . Av

er
ag

e
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Average ReturnAverage Return and Relative Value Functions

r(π) = lim
T

Eπ

[
1
T

T−1∑
t=0

Rt

]
=
∑

s
µπ(s)

∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)r

Gt =
∑
t′≥t

(Rt − r(π))

vπ(s) = Eπ[Gt |St = s] and qπ(s, a) = Eπ[Gt |St = s, At = a]

Connection with Stochastic Shortest Path
Provided there is a state s that is visited with positive probability in the first m
steps for any starting state and any policy.
r(π) is the average cost between a visit s and the next one. . .

Reinforcement Learning Algorithms
Simultaneous estimation of q and r . . .
Much less theory as there is no contraction!

Av
er

ag
e
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Average ReturnAlgorithm(s)
Average: Planning by SARSA
input: MDP environment, initial state distribution µ0, policy Π and discount factor γ
parameter: Number of step T
init: ∀s, a, Q(s, a), N(s, a) = 0, n=0, t = 0, r = 0
Pick initial state S0 following µ0
repeat

N(St)← N(St) + 1
Pick action At according to π(·|St)
Q(St−1, At−1)← Q(St−1, At−1) + α(N(St−1, At−1)) (Rt − rt−1 + γQ(St , At)− Q(St−1, At−1))
r ← r + αt(Rt − r)
Π(St−1) = argmaxa Q(St−1, a) (plus exploration)
t ← t + 1

until t == T
output: Deterministic policy π̃(s) = argmaxa Q(s, a)

Q-learning variant (known as R-learning) and other estimations of r exist.
No convergence proof.
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Average ReturnPolicy Gradient

∇r(π) = lim
T

1
T Eπ

[ T∑
i=1

∇ log π(At |St)qπ(St , At)
]

∇r(π) = lim
T

1
T Eπ

[ T∑
i=1

∇ log π(At |St)aπ(St , At)
]

Policy Gradient
REINFORCE type algorithms, using MC estimate of q and a are possible,
but q and a are the relative ones, not the classical ones, and are much harder to
estimate.

Actor/Critic algorithms combining parametric estimation of q (or a) and gradient
exist.
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Discount or No Discount?To Discount or Not?

To Discount: J(π) = Eπ

[∑
t

ρtRt

]
Qπ(s, a) = Eπ

[∑
t

ρtRt

∣∣∣∣∣s0 = s, a0 = a
]

or Not (SSP): J(π) = Eπ

[∑
t

Rt

]
Qπ(s, a) = Eπ

[∑
t

Rt

∣∣∣∣∣s0 = s, a0 = a
]

To Discount or Not? Open Question!
Discount is (quite) artificial.
No discount in the evaluation part most of the time.
Discount often used in training due to better convergence for value
functions. . . toward a (quite) artificial policy target!

In practice, often hybrid scheme with no discount for the policy gradient part, but
discount for the value functions part! No strong justification but often better
numerical performance!
Average reward much less used! 28



POMDPOutline
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POMDPPOMDP

o ∼ P(·|s, a)

Partially Observed Markov Decision Process
MDP strongest assumption is that s is observed!
POMDP replaces this assumption by the observation of o with a known law of
P(o|s, a).
Can be recasted as a MDP where the state is the probability of being in a state s
given the current observation!
Much higher dimensional setting!

Policy gradient algorithms remain valid in the POMDP setting when replacing s
with o.
Difficult part is to obtain a good value function estimate.
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Imitation and Inverse
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Imitation and Inverse
Reinforcement Learning

Imitation Learning

St , At , (Rt+1, )St+1, At+1 → π

argmin
θ

t∑
i=1

log πθ(At |St)

Imitation Learning
Learn policy from observations.
Most classical approach: maximum likelihood.
Need to cover all states (possibly through the approximation)
Reward is not used.

DAGGER: Sequential approach to add feedback from trajectory with an estimated
policy through the decision that would have been made.
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Imitation and Inverse
Reinforcement Learning

Inverse Reinforcement Learning

St , At , St+1, At+1 or R → π⋆

Inverse Reinforcement Learning
Heuristic: Learn a reward which explains the observed policy and used it to
obtain a better policy (or to generalize to different models).
No clear mathematical formulation:

Reward so that the observed policy is optimal (with a margin) . (MDP only, R = 0
issue. . . )
Expected return/optimal value function linked to observed policy (trajectories)
probability (with entropic regularization)
????

Not always clear what is the exact problem solved!

Very hard problem!
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Imitation and Inverse
Reinforcement Learning

Learning from Preferences

St , At , St+1, At+1 vs St , A′
t , S ′

t+1, A′
t+1 → R → π⋆

Learning from Preferences
Often easier to compare trajectories than to make a demonstration.
Reinforcement Learning from Human Feedback: Learn a reward from the
demonstration using a preference model (Bradley-Terry?) and use it to find a
policy.
Direct Policy Optimization: shortcut to optimize directly the policy thanks to
the explicit preference model used.
Proximity constrains are often added to avoid moving too fast from a current
policy.

Key to the performances of current LLMs.

LLM: Large Language Model 34



MoreOutline
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MoreMore!

Regrets
Sample optimality
Robustness
Multi-agents (Games. . . )
LLM and world models. . .
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