Introduction to Reinforcement Learning

E. Le Pennec

M2 DS - Fall 2021

1

- 1 Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- **5** Reinforcement Setting
- 6 Reinforcement and Approximation
- 🕜 AlphaGo

1 Machine Learning

- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

Machine Learning

Google News

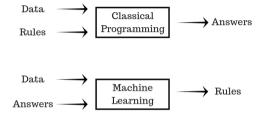
Q. Search

Headlines Local For You U.S.

88cm	548	Top Stories		
3	Top Stories			
0	World	WEI CHESS	Sarah Huckabee Sanders rips CNN, media at heated briefing rennews - thispe	1.1
pe -	U.S.	14 B	HELATED COVERAGE	
E:	Business		Three journalists leaving CNNI after retracted article Highly Glad - CNNINcesy - Jun 26, 2017	16.13
Θ	Technology	MORE ADOUT	Reporter accuses White House of 'inflaming' media tensions in heated exchange The Hill (blog) - Th app	Google N We've made
8	Entertainment	Sorah Huckabee	Opinion: CNN journalists screwed up, then out - should that be the standard at	with more of more contr.
6.	Sports	Sanders	White House, on Wall Street and in	Read our bi
~		White House Press Secretary	Opinion - MarketWatch - 1h spo	1600 0010
۰.	Science		Reporter interjects as Sanders devources media Weshington Post	
5	Health	Donald Trump		In the Ne
			Vew full coverage 🤌 🔺	Executive
/	Manage sections	THE OWNER WATCHING	A Time Magazine with Trump on the cover hangs in his golf	Secena Wi
		00	clubs. It's fake.	Secia
		1/30	Washington Post - dh aga	
		DOAND	RELATED COVERAGE	Google
			Donald Trump Time Magazine Covens: See Them All Time.com Meet Referenced - Time Magazine - Theop	John McE
			V V	Backeral

Machine Learning

Machine Learning



A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from **experience E** with respect to some **class of tasks T** and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E.

Object Detection

Machine Learning

A detection algorithm:

- Task: say if an object is present or not in the image
- Performance: number of errors
- Experience: set of previously seen labeled images

Machine Learning

Article Clustering

An article clustering algorithm:

- Task: group articles corresponding to the same news
- Performance: quality of the clusters
- Experience: set of articles

A Robot that Learns

Machine Learning

A robot endowed with a set of sensors playing football:

- Task: play football
- Performance: score evolution
- Experience:
 - past games
 - current environment and action outcome,

Three Kinds of Learning

Machine Learning

Unsupervised Learning

• Task: Clustering/DR

• Performance: Quality

• Experience: Raw dataset (No Ground Truth)

Supervised Learning

- Task: Prediction/Classification
- Performance: Average error
- Experience: Good Predictions (Ground Truth)

Reinforcement Learning

- Task: Action
- Performance: Total reward
- Experience: Reward from env. (Interact. with env.)

• Timing: Offline/Batch (learning from past data) vs Online (continuous learning)

Machine Learning

- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning Setting

- Env.: provides a reward and a new state for any action.
- Agent policy π : choice of an action A_t from the state S_t .
- Total reward: (discounted) sum of the rewards.

Questions

- **Policy evaluation:** how to evaluate the expected reward of a policy knowing the environment?
- Planning: how to find the best policy knowing the environment?
- **Reinforcement Learning:** how to find the best policy without knowing the environment?

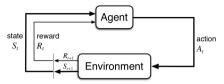
MDP

Machine Learning

- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

The Agent-Environment Interface

MDP



MDP

- At time step $t \in \mathcal{N}$:
 - State $S_t \in \mathcal{S}$: representation of the environment
 - Action $A_t \in \mathcal{A}(S_t)$: action chosen
 - Reward $R_{t+1} \in \mathcal{R}$: instantaneous reward
 - New state S_{t+1}
- Dynamic entirely defined by

$$\mathbb{P}(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a) = p(s', r | s, a)$$

 \bullet Finite MDP: $\mathcal{S}, \ \mathcal{A} \ \text{and} \ \mathcal{R}$ are finite.

Returns and Episodes

MDP

Return

• (Discounted) Return:

$$G_t = \sum_{t'=t+1}^{T} \gamma^{t'-(t+1)} R_{t'}$$

• Recursive property

$$G_t = R_{t+1} + \gamma G_{t+1}$$

• Finiteness if $|R| \leq M$

$$|G_t| \leq egin{cases} (\mathcal{T}-(t+1)) M & ext{if } \mathcal{T} < \infty \ Mrac{1}{1-\gamma} & ext{otherwise} \end{cases}$$

• Not well defined if $T = \infty$ and $\gamma = 1$.

Policies and Value Functions

Policy and Value Functions

- Policy: $\pi(a|s)$
- Value function:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[G_t | S_t = s
ight] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s
ight]$$

• Action value function:

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t|S_t = s, A_t = a
ight]$$

Two natural problems

- Policy evaluation: compute v_{π} given π .
- Planning: find π^* such that $v_{\pi^*}(s) \ge v_{\pi}(s)$ for all s and π .
- Those objects may not exist in general!
- Can be traced back to the 50's!

L POLYTECHNOLUE

DP

- Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

Fixed Point Property

• Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')
ight] = \mathcal{T}_{\pi}(v_{\pi})(s)$$

• Linear equation that can be solved.

Policy Evaluation by Dynamic Programming

- Fixed point iterative algorithm: $v_{k+1}(s) = \mathcal{T}_{\pi}(v_k)(s)$
- Converge if $T < \infty$ or $\gamma < 1$.

Planning by Policy Improvement

Policy Improvement Property

- If π' is such that $\forall s, q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$ then $v_{\pi'} \geq v_{\pi}$.
- ϵ -greedy improvement among ϵ -policy: classical improvement degraded by picking uniformly the action with probability ϵ

Policy Iteration Algorithm

- Compute v_{π_k}
- Greedy update:

$$egin{aligned} \pi_{k+1}(s) &= rgmax_{a} q_{\pi_k}(s,a) \ &= rgmax_{a} \sum_{s',r} p(s',r|s,a) \left(r+\gamma v_{\pi_k}(s')
ight) \end{aligned}$$

- If $\pi' = \pi$ after a greedy update $v_{\pi_{k+1}} = v_{\pi_k} = v_*$.
- Convergence in finite time in the finite setting.

Planning by Bellman Backup

Fixed Point Property

• Bellman Equation

$$v_*(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_*(s')] = \mathcal{T}_*(v_*)(s)$$

• Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

- Iterative algorithm: $v_{k+1}(s) = \mathcal{T}_*(v_k)(s)$
- Converge if $T < \infty$ or $\gamma < 1$.
- Amount to improve the policy after only one step of policy evaluation.

Planning by Bellman Backup

Q-value and enhancement

• Q-value:

$$q_{\pi}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s',a') \right]$$

• Easy policy enhancement: $\pi'(s) = \operatorname{argmax} q(s, a)$

Fixed Point Property

• Bellman Equation

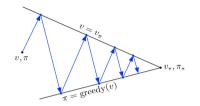
$$q_*(s,a) = \sum_{s'} \sum_r p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a')
ight] = \mathcal{T}_*(q_*)(s,a)$$

• Linear programming problem that can be solved.

Policy Evaluation by Dynamic Programming

• Iterative algorithm: $q_{k+1}(s,a) = \mathcal{T}_*(q_k)(s,a)$

Generalized Policy Iteration



Generalized Policy Iteration

- Consists of two simultaneous interacting processes:
 - one making a value function consistent with the current policy (policy evaluation)
 - one making the policy greedy with respect to the current value function (policy improvement)
- Stabilizes only if one reaches the optimal value/policy pair.
- Asynchronous update are possible provided every state(/action) is visited infinitely often.
- Very efficient but requires the knowledge of the transition probabilities.

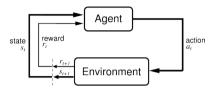
DP

L'A

RL

- Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

Reinforcement Learning



Reinforcement Learning - Sutton (98)

• An agent takes actions in a sequential way, receives rewards from the environment and tries to maximize his long-term (cumulative) reward.

Reinforcement Learning

- MDP setting with cumulative reward.
- Planning problem.
- Environment known only through interaction, i.e. some sequences $\cdots S_t A_t R_{t+1} S_{t+1} A_{t+1} \cdots$.

Monte Carlo

MC Methods

- Back to $v_{\pi}(s) = \mathbb{E}_{\pi} [G_t | S_t = s].$
- Monte Carlo:
 - Play several episodes using policy π .
 - Average the returns obtained after any state s.
- Good theoretical properties provided every states are visited asymptotically *infinitely often*.

Extensions

- Extension to off-policy setting (behavior policy $b \neq$ target policy π) with importance sampling.
- Extension to planning with policy improvement steps
- No theoretical results for the last case.
- Need to wait until the end of an episode to update anything...

Bootstrap and TD Prediction

Bootstrap and TD

• Rely on

$$egin{aligned} & \mathbf{v}_{\pi}(s) = \mathcal{T}_{\pi}\mathbf{v}_{\pi}(s) \ & = \mathbb{E}\left[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1})|S_t = s
ight] \end{aligned}$$

• Temporal Difference: stochastic approximation scheme $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

- Contraction of the second state of the second
- Can be proved to converge (under some assumption on α)!
- Combine the best of Dynamic Programing and MC.
- Can be written in term of Q:

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right)$

SARSA and Q Learning

• How to use this principle to obtain the best policy?

SARSA: Planning by Prediction and Improvement (online)

- Update Q following the current policy π $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$
- Update π by policy improvement.
- May not converge if one use a greedy policy update

Q Learning: Planning by Bellman Backup (off-line)

- Update Q following the behavior policy b $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right)$
- No need to use importance sampling correction for depth 1 update.
- Proof of convergence in both cases.

Variations

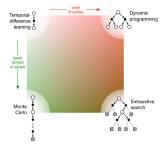


Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the two of the most important dimensions explored in Part I of this book: the depth and width of the updates.

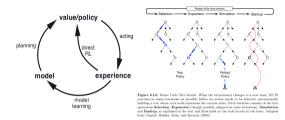
Depth

• Number of steps in the update.

Width

• Number of states/actions considered at each step.

Planning and Learning



Planning and Models

• Planning can combine a model estimation (DP) and direct learning (RL).

Real Time Planning

- Planning can be made online starting from the current state.
- Curse of dimensionality: methods are hard to use when the cardinality of the states and the actions are large!

L Pocriticities

RL

- Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- **5** Reinforcement Setting
- 6 Reinforcement and Approximation
- AlphaGo

Value Function Approximation

Value Function Approximation

- Idea: replace v(s) by a parametric $\hat{v}(s, \boldsymbol{w})$.
- Issues:
 - Which approximation functions?
 - How to define the quality of the approximation?
 - How to estimate **w**?

Approximation functions

- Any parametric (or kernel based) approximation could be used.
- Most classical choice:
 - Linear approximation.
 - Deep Neural Nets...

Approximation Quality

• How define when $\hat{v}(\cdot, \boldsymbol{w})$ is close to v_{π} (or v_{*})

Prediction(/Control)

• Prediction objective:

• Bellman Residual:

$$\sum_{s} \mu(s)(v_{\pi}(s) - \hat{v}(s, oldsymbol{w}))^2$$

 $\sum_{s} \mu(s)(\mathcal{T}_{\pi}\hat{v}(s, oldsymbol{w}) - \hat{v}(s, oldsymbol{w}))^2$

or its projection...

• **Issue:** Neither v_{π} or \mathcal{T}_{π} are known...

Online Prediction

• SGD algorithm on **w**:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha \left(v_{\pi}(S_t) - \hat{v}(S_t, \boldsymbol{w}) \right) \nabla \hat{v}(S_t, \boldsymbol{w})$$

• MC approximation (still SGD):

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha \left(\boldsymbol{G}_t - \hat{\boldsymbol{v}}(\boldsymbol{S}_t, \boldsymbol{w}) \right) \nabla \hat{\boldsymbol{v}}(\boldsymbol{S}_t, \boldsymbol{w})$$

• TD approximation (not SGD anymore):

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha \left(R_{t+1} + \gamma \hat{\boldsymbol{v}}(\boldsymbol{S}_{t+1}, \boldsymbol{w}_t) - \hat{\boldsymbol{v}}(\boldsymbol{S}_t, \boldsymbol{w}) \right) \nabla \hat{\boldsymbol{v}}(\boldsymbol{S}_t, \boldsymbol{w})$$

• Deeper or wider scheme possible.

Online Control

- SARSA-like algorithm:
 - Prediction step as previously with the current policy

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha \left(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \boldsymbol{w}) - \hat{q}(S_t, A_t, \boldsymbol{w}) \right) \nabla \hat{q}(S_t, A_t, \boldsymbol{w})$$

• $\epsilon\text{-greedy}$ update of the current policy

Offline Control with Approximation

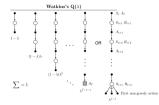


Figure 12.12: The backup diagram for Watkins's $Q(\lambda)$. The series of component updates ends either with the end of the episode or with the first nongreedy action, whichever comes first.

Offline Control

• Q-Learning like algorithm:

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t + \alpha \left(R_{t+1} + \gamma \max_{a} \hat{q}(S_{t+1}, a, \boldsymbol{w}) - \hat{q}(S_t, A_t, \boldsymbol{w}) \right)$$

 $imes
abla \hat{q}(S_t, A_t, oldsymbol{w})$

with an arbitrary policy b.

- Deeper formulation using importance sampling possible.
- Issue: Hard to make it converge in general!

RL

Deadly Triad

Sutton-Barto's Deadly Triad

- Function Approximation
- Bootstrapping
- Off-policy training

Stabilization Tricks

- (Back to policy iteration),
- Memory replay: sample from a set of episodes
- Frozen Q: use the previous weights in the max
- Clip/normalize rewards. . .

Actor-Critic

• Other approach with a **parametric policy**.

Actor-Critic

- Simultaneous parameterization of
 - the policy π by θ ,
 - the value function s by \boldsymbol{w}
- Simultaneous update:

$$\delta_t = R_t + \gamma \hat{v}(S_{t+1}, \boldsymbol{w}) - \hat{v}(S_t, \boldsymbol{w})$$
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_{t+1} + \alpha \delta_t \frac{\nabla \pi(\boldsymbol{a}|S_t, \boldsymbol{\theta})}{\pi(\boldsymbol{a}|S_t, \boldsymbol{\theta})}$$
$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_{t+1} + \alpha \delta_t \nabla \hat{v}(S_t, \boldsymbol{w})$$

- Online approach
- Can be adapted to continuous actions.

AlphaGo

- Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation

AlphaGo

AlphaGo

AlphaGo

- Enhanced MCTS technique using a Deep NN for both the value function and the policy.
- Rollout policy and initial value network by supervised learning on a huge database.
- Enhancement of the value network using Actor/Critic RL on self-play.

AlphaGo

AlphaGo

AlphaGo Zero

- No supervised initialization but only self-play.
- Alternate
 - MCTS with a current policy.
 - Gradient descent toward the resulting MCTS policy
- Much shorter training time and better performance!

- Machine Learning
- 2 Reinforcement Learning
- 3 Markov Decision Processes
- Oynamic Programing
- 5 Reinforcement Setting
- 6 Reinforcement and Approximation
- 7 AlphaGo

References

References

R. Sutton and A. Barto. *Reinforcement Learning, an Introduction (2nd ed.)* MIT Press, 2018

O. Sigaud and O. Buffet. *Markov Decision Processes in Artifical Intelligence*. Wiley, 2010

M. Puterman.

Markov Decision Processes. Discrete Stochastic Dynamic Programming. Wiley, 2005

Radi Aprilas

T. Lattimore and Cs. Szepesvári. *Bandit Algorithms*. Cambridge Univeristy Press, 2019

D. Bertsekas and J. Tsitsiklis. *Neuro-Dynamic Programming*. Athena Scientific, 1996

Cs. Szepesvári. *Algorithms for Reinforcement Learning.* Morgan & Claypool, 2010

Licence and Contributors

Creative Commons Attribution-ShareAlike (CC BY-SA 4.0)

- You are free to:
 - Share: copy and redistribute the material in any medium or format
 - Adapt: remix, transform, and build upon the material for any purpose, even commercially.
- Under the following terms:
 - Attribution: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - ShareAlike: If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
 - No additional restrictions: You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Contributors

- Main contributor: E. Le Pennec
- Contributors: S. Boucheron, A. Dieuleveut, A.K. Fermin, S. Gadat, S. Gaiffas, A. Guilloux, Ch. Keribin, E. Matzner, M. Sangnier, E. Scornet.