Reinforcement Learning
 Proofs

E. Le Pennec

Fall 2018

1 History Dependent or Markov Policies

Proposition 1 (Equivalence of History Dependent and Markov Policies). Let π be a stochastic history dependent policy. For each state $s_{0} \in S$, there exists a stochastic policy π^{\prime} such that $V^{\pi^{\prime}}\left(s_{0}\right)=V^{\pi}\left(s_{0}\right)$.

Proof. Let $\pi^{\prime}\left(a_{t} \mid s_{t}\right)=\mathbb{E}\left[\pi\left(a_{t} \mid H_{t}\right) \mid S_{t}=s_{t}, S_{0}=s_{0}\right]$, we can prove by recursion that

$$
\mathbb{P}_{\pi^{\prime}}\left(S_{t}=s_{t}, A_{t}=a_{t} \mid S_{0}=s_{0}\right)=\mathbb{P}_{\pi}\left(S_{t}=s_{t}, A_{t}=a_{t} \mid S_{0}=s_{0}\right)
$$

This holds by definition for $t=0$. Now assume the property is true for $t^{\prime} \leq t-1$. By construction,

$$
\begin{aligned}
\mathbb{P}_{\pi}\left(S_{t}=s_{t} \mid S_{0}=s_{0}\right) & =\sum_{s_{t-1}} \sum_{a_{t-1}} p\left(s_{t} \mid s_{t-1}, A_{t-1}\right) \mathbb{P}_{\pi}\left(S_{t-1}=s_{t-1}, A_{t-1}=a_{t-1} \mid S_{0}=s_{0}\right) \\
& =\sum_{s_{t-1}} \sum_{a_{t-1}} p\left(s_{t} \mid s_{t-1}, a_{t-1}\right) \mathbb{P}_{\pi^{\prime}}\left(S_{t-1}=s_{t-1}, A_{t-1}=a_{t-1} \mid S_{0}=s_{0}\right) \\
& =\mathbb{P}_{\pi}\left(S_{t}=s_{t} \mid S_{0}=s_{0}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathbb{P}_{\pi^{\prime}}\left(S_{t}=s_{t}, A_{t}=a_{t} \mid s_{0}\right) & =\pi^{\prime}\left(a_{t} \mid s_{t}\right) \mathbb{P}_{\pi^{\prime}}\left(S_{t}=s_{t} \mid S_{0}=s_{0}\right) \\
& =\mathbb{P}_{\pi}\left(A_{t}=a_{t} \mid S_{t}=s_{t}, S_{0}=s_{0}\right) \mathbb{P}_{\pi}\left(S_{T}=s_{t} \mid S_{0}=s_{0}\right) \\
& =\mathbb{P}_{\pi^{\prime}}\left(S_{t}=s_{t}, A_{T}=a_{t} \mid S_{0}=s_{0}\right)
\end{aligned}
$$

It suffices then to notice that the quality criterion of π and π^{\prime} depends on π only through respectively $\mathbb{E}_{\pi}\left[r\left(S_{t}, A_{t}\right) \mid S_{0}=s_{0}\right]$ or $\mathbb{E}_{\pi}\left[r\left(S_{t}, A_{t}\right) \mid S_{0}=s_{0}\right]$ which are equals.

2 Discounted Reward

2.1 Evaluation of a policy

Definition 1 (Value Function).

$$
\begin{aligned}
v_{\pi}(s) & =\mathbb{E}_{\pi}\left[\sum_{t=0}^{+\infty} \gamma^{t} R_{t+1} \mid S_{0}=s\right] \\
& =\sum_{t=0}^{+\infty} \gamma^{t} \mathbb{E}_{\pi}\left[R_{t+1} \mid S_{0}=s\right]
\end{aligned}
$$

Definition 2 (Bellman Operator).

$$
\begin{aligned}
\mathcal{T}_{\pi} v(s) & =\mathbb{E}_{\pi}[R \mid s]+\gamma \sum_{s^{\prime}} \mathbb{P}_{\pi}\left(s^{\prime} \mid s\right) v\left(s^{\prime}\right) \\
\mathcal{T}_{\pi} v & =r_{\pi}+\gamma P_{\pi} v
\end{aligned}
$$

Proposition 2 (Value Function Characterization). Let π be a stationary Markov policy, if $0<\gamma<1$ then v_{π} is the only solution of $v=\mathcal{T}_{\pi} v$,

$$
v=r_{\pi}+\gamma P_{\pi} v
$$

and $v_{\pi}=\left(\operatorname{Id}-\gamma P_{\pi}\right)^{-1} r_{\pi}$.
Proof. By definition, if v is a solution of $v=\mathcal{T}_{\pi} v$ then $\left(\operatorname{Id}-\gamma P_{\pi}\right) v=r_{\pi}$. As P_{π} is a stochastic matrix, $\left\|\left\|P_{\pi}\right\| \leq 1\right.$ and thus

$$
\sum_{k=0}^{\infty} \gamma^{k} P_{\pi}^{k}
$$

is well defined. One verify easily that this is an inverse of $I-\gamma P_{\pi}$ and such a v exists, is unique and equal to

$$
\sum_{k=0}^{\infty} \gamma^{k} P_{\pi}^{k} r_{\pi}
$$

Now,

$$
\begin{aligned}
v_{\pi}(s) & =\sum_{t=0}^{+\infty} \gamma^{t} \mathbb{E}_{\pi}\left[R_{t+1} \mid S_{0}=s\right] \\
& =\sum_{t=0}^{+\infty} \gamma^{t} \sum_{s^{\prime}} \mathbb{P}_{\pi}\left(S_{t}=s^{\prime} \mid S_{0}=s\right) \mathbb{E}_{\pi}\left[R \mid S=s^{\prime}\right] \\
& =\sum_{t=0}^{+\infty} \gamma^{t} \sum_{s^{\prime}}\left(P_{\pi}^{t}\right)_{s, s^{\prime}} r_{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

$$
=\sum_{t=0}^{+\infty} \gamma^{t}\left(P_{\pi}^{t} r_{\pi}\right)(s)
$$

and thus $v=v_{\pi}$.
Proposition 3 (Bellman Operator Property). The operator \mathcal{T}_{π} satisfies the following contraction property

$$
\left\|\mathcal{T}_{\pi} v-\mathcal{T}_{\pi} v^{\prime}\right\|_{\infty} \leq \gamma\left\|v-v^{\prime}\right\|_{\infty}
$$

Furthermore, $v \leq v^{\prime}$ implies $\mathcal{T}_{\pi} v \leq \mathcal{T}_{\pi} v^{\prime}$ and $\mathcal{T}_{\pi}(v+\delta \mathbb{1})=\mathcal{T}_{\pi} v+\gamma \delta \mathbb{1}$
Proof. For any s,

$$
\begin{aligned}
\left|\mathcal{T}_{\pi}(v)-\mathcal{T}_{\pi}\left(v^{\prime}\right)(s)\right| & =\left|\gamma P_{\pi}\left(v-v^{\prime}\right)(s)\right| \\
& \leq \gamma\left\|v-v^{\prime}\right\|_{\infty}
\end{aligned}
$$

because P_{π} is a stochastic matrix.
It suffices to use the positivity of a stochastic matrix and the fact that $\mathbb{1}$ is a eigenvector for the eigenvalue 1 to obtain the two remaining properties.

Proposition 4 (Policy Prediction). For any v_{0}, define $v_{n+1}=\mathcal{T}_{\pi} v_{n}$ then

$$
\lim _{n \rightarrow \infty} v_{n}=v_{\pi}
$$

and

$$
\left\|v_{n}-v_{\pi}\right\|_{\infty} \leq \gamma^{n}\left\|v_{0}-v_{\pi}\right\|_{\infty}
$$

Furthermore,

$$
\left\|v_{n}-v_{\pi}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|v_{n}-v_{n-1}\right\|_{\infty}
$$

Finally, if $v_{0} \geq \mathcal{T}_{\pi} v_{0}$ (respectively $v_{0} \leq \mathcal{T}_{\pi} v_{0}$) then $v_{0} \geq v_{\pi}$ (respectively $v_{0} \leq v_{\pi}$) and v_{n} converges monotonously to v_{π}.

Proof. For the first part of the proposition, we notice that v_{π} is the only fixed point of \mathcal{T}_{π} which is a contraction. Hence, by the fixed point theorem, for any v_{0}, the sequence defined by $v_{n+1}=\mathcal{T}_{\pi} v_{n}$ converges toward v_{π}.

A straightforward computation shows that

$$
\left\|v_{n}-v_{\pi}\right\|_{\infty} \leq \gamma\left\|v_{n-1}-v_{\pi}\right\|_{\infty} \leq \gamma^{n}\left\|v_{0}-v_{\pi}\right\|_{\infty}
$$

Along the same line,

$$
\left\|v_{n+k}-v_{n+k+1}\right\|_{\infty} \leq \gamma^{k+1}\left\|v_{n}-v_{n-1}\right\|_{\infty}
$$

This implies that

$$
\left\|v_{n}-v_{\pi}\right\|_{\infty} \leq \sum_{i=0}^{k}\left\|v_{n+i}-v_{n+i+1}\right\|_{\infty}+\left\|v_{n+k+1}-v_{\infty}\right\|_{\infty}
$$

$$
\leq \frac{\gamma-\gamma^{k+2}}{1-\gamma}\left\|v_{n}-v_{n-1}\right\|_{\infty}+\gamma^{n+k+1}\left\|v_{0}-v_{\pi}\right\|_{\infty}
$$

which yields the result by taking the limit in k.

2.2 Optimal Policy

2.2.1 Characterization

Definition 3 (Optimal Reward).

$$
v_{\star}(s)=\max _{\pi} v_{\pi}(s)
$$

where the maximum can be taken indifferently in the set of history dependent policies or Markov policies.

Definition 4 (Optimal Bellman Operator).

$$
\begin{aligned}
\mathcal{T}_{*} v(s) & =\max _{a} \mathbb{E}[R \mid S=s, A=a]+\gamma \sum_{s^{\prime}} \mathbb{P}\left(S^{\prime}=s^{\prime} \mid S=s, A=a\right) v\left(s^{\prime}\right) \\
& =\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right) \\
\mathcal{T}_{*} v & =\max _{\pi \in \mathcal{D}} r_{\pi}+\gamma P_{\pi} v
\end{aligned}
$$

where \mathcal{S} is the set of deterministic Markov policies and the max is componentwise.

Proposition 5 (Optimal Bellman Operator and Markov Policies).

$$
\mathcal{T}_{*} v(s)=\max _{\pi} \mathcal{T}_{\pi} v(s)
$$

or $\mathcal{T}_{*} v=\max \pi r_{\pi}+\gamma P_{\pi} v$
Proof. $\pi_{a}=e_{a}$ is such that $\mathcal{T}_{\pi_{a}}(s)=\mathbb{E}[R \mid s, a]+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)$ so that $\max _{\pi} \mathcal{T}_{\pi}(s) \geq \mathcal{T}_{*}(s)$.

Now, for any π,

$$
\begin{aligned}
\mathcal{T}_{\pi}(s) & =\sum_{a} \pi(a \mid s)\left(\mathbb{E}[R \mid S=s, A=a]+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)\right) \\
& \leq \max _{a} \mathbb{E}[R \mid S=s, A=a]+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right) \\
& \leq \mathcal{T}_{*}(s)
\end{aligned}
$$

Proposition 6 (Bellman Operator Property). The operator \mathcal{T}_{*} satisfies the following contraction property

$$
\left\|\mathcal{T}_{*} v-\mathcal{T}_{*} v^{\prime}\right\|_{\infty} \leq \gamma\left\|v-v^{\prime}\right\|_{\infty}
$$

Furthermore, $v \leq v^{\prime}$ implies $\mathcal{T}_{*} v \leq \mathcal{T}_{*} v^{\prime}$ and $\mathcal{T}_{*}(v+\delta \mathbb{1})=\mathcal{T} v+\gamma \delta \mathbb{1}$
Proof. For any s, if $\mathcal{T}_{*} v(s) \geq \mathcal{T}_{*} v^{\prime}(s)$

$$
\begin{aligned}
\left|\mathcal{T}_{*} v-\mathcal{T}_{*} v^{\prime}(s)\right| & =\mathcal{T}_{*} v(s)-\mathcal{T}_{*} v^{\prime}(s) \\
& =\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)-\left(\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v^{\prime}\left(s^{\prime}\right)\right) \\
& \leq \max _{a}\left(r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)-\left(\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v^{\prime}\left(s^{\prime}\right)\right)\right) \\
& \leq \gamma \max _{a} \sum_{s^{\prime} \mid s, a} p\left(s^{\prime} \mid s,^{\prime} a\right)\left(v\left(s^{\prime}\right)-v^{\prime}\left(s^{\prime}\right)\right) \\
& \leq \gamma\left\|v-v^{\prime}\right\|_{\infty}
\end{aligned}
$$

Now, if $v \leq v^{\prime}$, for any a^{\prime}

$$
\begin{aligned}
r\left(s, a^{\prime}\right)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a^{\prime}\right) v\left(s^{\prime}\right) & \leq r\left(s, a^{\prime}\right)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a^{\prime}\right) v^{\prime}\left(s^{\prime}\right) \\
& \leq \mathcal{T}_{*} v^{\prime}(s)
\end{aligned}
$$

hence $\mathcal{T}_{*} v \leq \mathcal{T}_{*} v^{\prime}$.
Finally,

$$
\begin{aligned}
\mathcal{T}_{*}(v+\delta \mathbb{1})(s) & =\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left(v\left(s^{\prime}\right)+\delta\right) \\
& =\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) v\left(s^{\prime}\right)+\delta \\
& =\mathcal{T}_{*}(v)(s)+\delta
\end{aligned}
$$

Proposition 7 (Optimal Reward Characterization). v_{\star} is the unique solution of $V=\mathcal{T}_{*} V$.

Proof. Assume $v \geq \mathcal{T}_{*} v$ so that

$$
v \geq \max _{\pi} r_{\pi}+\gamma P_{\pi} v
$$

Let $\pi=\left(\pi_{0}, \pi_{1}, \ldots\right)$ be a sequence of Markov policies,

$$
\begin{array}{r}
v \geq r_{\pi_{0}}+\gamma P_{\pi_{0}} v \\
v \geq r_{\pi_{0}}+\gamma P_{\pi_{0}}\left(r_{\pi_{1}}+\gamma P_{\pi_{1}} v\right)
\end{array}
$$

$$
v \geq \sum_{k=0}^{n} \gamma^{k} P_{\pi}^{t} r_{\pi_{k}}+\gamma^{n+1} P_{\pi}^{n+1} v
$$

where $P_{\pi}^{k}=\prod_{k^{\prime}<k} P_{\pi_{k^{\prime}}}$. As $v_{\pi}=\sum_{k=0}^{\infty} \gamma^{k} P_{\pi}^{k} r_{\pi_{k}}$, we verify that

$$
v-v_{\pi} \geq \gamma^{n+1} P_{\pi}^{n+1} v-\sum_{k=n+1}^{\infty} \gamma^{k} P_{\pi}^{k} r_{\pi_{k}}
$$

Taking the limit in k yields $v \geq v_{\pi}$ and thus $v \geq v_{*}$.
Now, if $v \leq \mathcal{T}_{*} v=\max _{\pi} r_{\pi}+\gamma P_{\pi} v$ then assuming the max is reached at $\tilde{\pi}$

$$
v \leq r_{\tilde{\pi}}+\gamma P_{\tilde{\pi}} v \leq \sum_{k=0}^{n} \gamma^{k} P_{\tilde{\pi}}^{t} r_{\tilde{\pi}}+\gamma^{n+1} P_{\tilde{\pi}}^{n+1} v
$$

and thus $v \leq v_{\tilde{\pi}} \leq v_{*}$.
We deduce thus that $v=\mathcal{T}_{*} v$ implies $v=v_{*}$. It remains to prove that such a solution exists. This is a direct application of the fixed point theorem for the operator \mathcal{T}_{*}.

Proposition 8. Any policy π_{*} such that $v_{\pi_{*}}=v_{*}$ is optimal.
Proof. This is a direct consequence of the previous theorem.
Proposition 9. Any stationary policy π_{*} verifying $\pi_{*} \in \operatorname{argmax} r_{\pi}+\gamma P_{\pi} v_{*}$ is optimal.

Proof. By definition,

$$
\begin{aligned}
\mathcal{T}_{\pi_{*}} v_{*} & =r_{\pi_{*}}+P_{\pi_{*}} v_{*} \\
& =\max _{\pi} r_{\pi}+P_{\pi} v_{*} \\
& =\mathcal{T}_{*} v_{*}=v_{*}
\end{aligned}
$$

Hence $v_{\pi_{*}}=v_{*}$ and the policy is optimal.

2.2.2 Policy Improvement and Policy Iteration

Proposition 10 (One step look-head policy improvement). For any π, π_{+} define by

$$
\pi_{+} \in \underset{\pi^{\prime}}{\operatorname{argmax}} r_{\pi^{\prime}}+\gamma P_{\pi^{\prime}} v_{\pi}
$$

satisfies

$$
v_{\pi_{+}} \leq v_{\pi}
$$

Proof. By construction,

$$
r_{\pi_{+}}+\gamma P_{\pi_{+}} v_{\pi} \geq r_{\pi}+\gamma P_{\pi} v_{\pi}=v_{\pi}
$$

and thus

$$
r_{\pi_{+}}-\left(I-\gamma P_{\pi_{+}}\right) v_{\pi} \geq 0
$$

It suffices to notice that $v_{\pi_{+}}=\left(I-\gamma P_{\pi_{+}}\right)^{-1} r_{\pi_{+}}$so that

$$
v_{\pi_{+}}-v_{\pi}=\left(I-\gamma P_{\pi_{+}}\right)^{-1}\left(r_{\pi_{+}}-\left(I-\gamma P_{\pi_{+}}\right) v_{\pi}\right) \quad \geq 0
$$

where we have use the positivity of $\left(I-\gamma P_{\pi_{+}}\right)^{-1}=\sum \gamma^{k} P_{\pi_{+}}^{k}$.
Proposition 11. Let $\Delta=B-\mathrm{Id}$, the policy iteration scheme satisfies

$$
v_{n+1}=v_{n}+\sum_{k=0}^{\infty} \gamma^{k} P_{\pi_{n+1}}^{k} \Delta v_{n}
$$

Proof. As proved before,

$$
v_{n+1}=\left(\operatorname{Id}-\gamma P_{\pi_{n+1}}\right)^{-1} r_{\pi_{n+1}}
$$

Now by construction,

$$
B v_{n}=\mathcal{T}_{\pi_{n+1}} v_{n}=r_{\pi_{n+1}}+\gamma P_{\pi_{n+1}} v_{n}
$$

and thus

$$
r_{\pi_{n+1}}=\Delta v_{n}+\left(\operatorname{Id}-\gamma P_{\pi_{n+1}}\right) v_{n}
$$

This implies immediately

$$
\begin{aligned}
v_{n+1} & =v_{n}+\left(\operatorname{Id}-\gamma P_{\pi_{n+1}}\right)^{-1} \Delta v_{n} \\
& =v_{n}+\sum_{k=0}^{\infty} \gamma^{k} P_{\pi_{n+1}}^{k} \Delta v_{n}
\end{aligned}
$$

2.2.3 Value Iteration

Proposition 12. For any v_{0}, define $v_{n+1}=\mathcal{T}_{*} v_{n}$ then

$$
\lim _{n \rightarrow \infty} v_{n}=v_{*}
$$

and

$$
\left\|v_{n}-v_{*}\right\|_{\infty} \leq \gamma^{n}\left\|v_{0}-v_{*}\right\|_{\infty}
$$

Furthermore,

$$
\left\|v_{n}-v_{*}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|v_{n}-v_{n-1}\right\|_{\infty}
$$

Finally, if $v_{0} \geq \mathcal{T}_{*} v_{0}$ (respectively $v_{0} \leq \mathcal{T}_{*} v_{0}$) then $v_{0} \geq v_{*}$ (respectively $v_{0} \leq v_{*}$) and v_{n} converges monotonously to v_{*}.

Proof. For the first part of the proposition, we notice that v_{*} is the only fixed point of \mathcal{T}_{*} which is a contraction. Hence, by the fixed point theorem, for any v_{0}, the sequence defined by $v_{n+1}=\mathcal{T}_{*} v_{n}$ converges toward v_{*}.

A straightforward computation shows that

$$
\left\|v_{n}-v_{*}\right\|_{\infty} \leq \gamma\left\|v_{n-1}-v_{*}\right\|_{\infty} \leq \gamma^{n}\left\|v_{0}-v_{*}\right\|_{\infty}
$$

Along the same line,

$$
\left\|v_{n+k}-v_{n+k+1}\right\|_{\infty} \leq \gamma^{k+1}\left\|v_{n}-v_{n-1}\right\|_{\infty}
$$

This implies that

$$
\begin{aligned}
\left\|v_{n}-v_{*}\right\|_{\infty} & \leq \sum_{i=0}^{k}\left\|v_{n+i}-v_{n+i+1}\right\|_{\infty}+\left\|v_{n+k+1}-v_{*}\right\|_{\infty} \\
& \leq \frac{\gamma-\gamma^{k+2}}{1-\gamma}\left\|v_{n}-v_{n-1}\right\|_{\infty}+\gamma^{n+k+1}\left\|v_{0}-v_{*}\right\|_{\infty}
\end{aligned}
$$

which yields the result by taking the limit in k.
Proposition 13. For any v and any $\pi \in \operatorname{argmax}_{\pi} \mathcal{T}_{\pi} v$,

$$
\left\|v_{\pi}-v_{*}\right\|_{\infty} \leq \frac{2 \gamma}{1-\gamma}\left\|v-v_{*}\right\|_{\infty}
$$

If $v=\mathcal{T}_{*} v^{\prime}$ then

$$
\left\|v_{\pi}-v_{*}\right\|_{\infty} \leq \frac{2 \gamma}{1-\gamma}\left\|v-v^{\prime}\right\|_{\infty}
$$

Proof. By definition of $\pi, \mathcal{T}_{\pi} v=\mathcal{T}_{*} v$, hence

$$
\begin{aligned}
\left\|v_{\pi}-v_{*}\right\|_{\infty} & \leq\left\|v_{\pi}-\mathcal{T}_{\pi} v\right\|_{\infty}+\left\|\mathcal{T}_{*} v-v_{*}\right\|_{\infty} \\
& \leq\left\|\mathcal{T}_{\pi} v_{\pi}-\mathcal{T}_{\pi} v\right\|_{\infty}+\left\|\mathcal{T}_{*} v-\mathcal{T}_{*} v_{*}\right\|_{\infty} \\
& \leq \gamma\left\|v_{\pi}-v\right\|_{\infty}+\gamma\left\|v-v_{*}\right\|_{\infty} \\
& \leq \gamma\left\|v_{\pi}-v_{*}\right\|_{\infty}+2 \gamma\left\|v-v_{*}\right\|_{\infty}
\end{aligned}
$$

and thus

$$
\left\|v_{\pi}-v_{*}\right\|_{\infty} \leq \frac{2 \gamma}{1-\gamma}\left\|v-v_{*}\right\|_{\infty}
$$

For the second inequality,

$$
\left\|v_{\pi}-v_{*}\right\|_{\infty} \leq\left\|v_{\pi}-v\right\|_{\infty}+\left\|v-v_{*}\right\|_{\infty}
$$

Now

$$
\left\|v_{\pi}-v\right\|_{\infty} \leq\left\|\mathcal{T}_{\pi} v_{\pi}-\mathcal{T}_{\pi} v\right\|_{\infty}+\left\|\mathcal{T}_{*} v-\mathcal{T}_{*} v^{\prime}\right\|_{\infty}
$$

$$
\leq \gamma\left\|v_{\pi}-v\right\|_{\infty}+\gamma\left\|v-v^{\prime}\right\|_{\infty}
$$

and thus

$$
\left\|v_{\pi}-v\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|v-v^{\prime}\right\|_{\infty}
$$

Along the same line,

$$
\begin{aligned}
\left\|v-v_{*}\right\|_{\infty} & \leq\left\|v-\mathcal{T}_{*} v\right\|_{\infty}+\left\|\mathcal{T}_{*} v-v_{*}\right\|_{\infty} \\
& \leq\left\|\mathcal{T}_{*} v^{\prime}-\mathcal{T}_{*} v\right\|_{\infty}+\left\|\mathcal{T}_{*} v-\mathcal{T}_{*} v_{*}\right\|_{\infty} \\
& \leq \gamma\left\|v-v^{\prime}\right\|_{\infty}+\gamma\left\|v-v_{*}\right\|_{\infty}
\end{aligned}
$$

and thus

$$
\left\|v-v_{*}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|v-v^{\prime}\right\|_{\infty}
$$

. Combining those two bounds yields the result.

2.2.4 Modifier Policy Iteration

Proposition 14 (MPI). Let v_{0} such that $\mathcal{T}_{*} v_{0} \geq v_{0}$, define for any n and any m_{n}

- $\pi_{n+1} \in \operatorname{argmax} r_{\pi}+P_{\pi} v_{n}$
- $v_{n, 0}=\mathcal{T}_{*} v_{n}=\mathcal{T}_{\pi_{n+1}} v_{n}$
- $v_{n, m}=\mathcal{T}_{\pi_{n+1}} v_{n, m-1}$
- $v_{n+1}=v_{m_{n}}$
then $v_{n+1} \geq v_{n}$ and

$$
\lim _{n \rightarrow \infty} v_{n}=v_{*} .
$$

At any step,

$$
\left\|v_{\pi_{n+1}}-v_{*}\right\|_{\infty} \leq \frac{2}{1-\gamma}\left\|v_{n}-v_{n, 0}\right\|_{\infty}
$$

Furthermore,

$$
\left\|v_{n+1}-v_{*}\right\|_{\infty} \leq\left(\frac{\gamma-\gamma^{m_{n}+1}}{1-\gamma}\| \| P_{\pi_{n+1}}-P_{\pi_{*}}\| \|+\gamma^{m_{n}+1}\right)\left\|v_{n}-v_{*}\right\|_{\infty}
$$

Proposition 15. Let $\Delta=\mathcal{T}_{*}-\mathrm{Id}$, let $W_{\pi}^{(m)} v=\mathcal{T}_{\pi}^{m+1} v$,

$$
\begin{aligned}
W_{\pi}^{(m)} v & =\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} r_{\pi}+\gamma^{m+1} P_{\pi}^{m_{n}+1} v \\
& =v_{n}+\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \Delta v
\end{aligned}
$$

Proof. By definition,

$$
\begin{aligned}
W_{\pi}^{(m)} v & =\mathcal{T}_{\pi}^{m_{n}+1} v \\
& =r_{\pi}+\gamma P_{\pi} \mathcal{T}_{\pi}^{m} v \\
& =\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} r_{\pi}+\gamma^{m+1} P_{\pi}^{m+1} v \\
& =\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k}\left(r_{\pi}+\gamma P_{\pi} v-v\right)+v \\
& =v+\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \Delta v
\end{aligned}
$$

Proposition 16. Define $W_{*}^{\left(m_{n}\right)}$ by

$$
W_{*}^{\left(m_{n}\right)} v(s)=\max _{\pi} W_{\pi}^{\left(m_{n}\right)} v(s)
$$

then $W_{*}^{\left(m_{n}\right)}$ is a contraction:

$$
\left\|W_{*}^{\left(m_{n}\right)} v-W_{*}^{\left(m_{n}\right)} v^{\prime}\right\|_{\infty} \leq \gamma^{m_{n}+1}\left\|v-v^{\prime}\right\|_{\infty}
$$

Furthermore, $W_{*}^{\left(m_{n}\right)} v_{*}=v_{*}$.
Proof. Assume without loss of generality that $W_{*}^{\left(m_{n}\right)} v(s)-W_{*}^{\left(m_{n}\right)} v^{\prime}(s) \geq 0$ and let $\tilde{\pi} \in \operatorname{argmax} W_{\pi}^{\left(m_{n}\right)} v(s)$,

$$
\begin{aligned}
W_{*}^{\left(m_{n}\right)} v(s)-W_{*}^{\left(m_{n}\right)} v^{\prime}(s) & =\max _{\pi} W_{*}^{\left(m_{n}\right)} v(s)-\max _{\pi} W_{*}^{\left(m_{n}\right)} v^{\prime}(s) \\
& \leq W_{\tilde{\pi}}^{\left(m_{n}\right)} v(s)-W_{\tilde{\pi}}^{\left(m_{n}\right)} v^{\prime}(s) \\
& \leq \gamma^{m_{n}+1} P_{\tilde{\pi}}^{m_{n}+1}\left(v-v^{\prime}\right)(s) \\
& \leq \gamma^{m_{n}+1}\left\|v-v^{\prime}\right\|_{\infty}
\end{aligned}
$$

By construction $\Delta v_{*}=\mathcal{T}_{*} v_{*}-v_{*}=0$ and thus $W_{\pi}^{\left(m_{n}\right)} v_{*}=v_{*}$. We deduce immediately that $W_{*}^{\left(m_{n}\right)} v_{*}=\sup _{\pi} W_{\pi}^{\left(m_{n}\right)} v_{*}=v_{*}$

Proposition 17. If $u \geq v$ then for any π, $W_{*}^{m} u \geq W_{\pi}^{m} v$
If $u \geq v$ and $\Delta u \geq 0$ then for any $\pi W_{\pi} u \geq \mathcal{T}_{*} v$.
If $\Delta \bar{u} \geq 0$ and π_{u} such that $\mathcal{T}_{*} u=\mathcal{T}_{\pi_{u}} u$ then $W_{\pi_{u}}^{(m)} u \geq 0$
Proof. By definition,

$$
\begin{aligned}
W_{*}^{m} u-W_{\pi}^{m} v & \geq W_{\pi}^{m} u-W_{\pi}^{m} v \\
& \geq W_{\pi}^{m}(u-v) \\
& \geq \gamma^{m_{n}+1} P_{\pi}^{m_{n}+1}(u-v) \geq 0
\end{aligned}
$$

Now,

$$
\begin{aligned}
W_{\pi}^{(m)} u & =u+\sum_{k=0}^{m} \gamma^{k} P_{\pi}^{k} \Delta u \\
& \geq u+\Delta u=\mathcal{T}_{*} u \\
& \geq \mathcal{T}_{*} v
\end{aligned}
$$

By construction

$$
\begin{aligned}
\Delta W_{\pi_{u}}^{(m)} u & =\mathcal{T}_{*} W_{\pi_{u}}^{(m)} u-W_{\pi_{u}}^{(m)} u \\
& \geq \mathcal{T}_{\pi_{u}} W_{\pi_{u}}^{(m)} u-W_{\pi_{u}}^{(m)} u \\
& \geq \Delta u-\mathcal{T}_{\pi_{u}} u+u \\
& \geq \Delta u+\left(\gamma P_{\pi_{u}}-\mathrm{Id}\right)\left(W_{\pi_{u}}^{(m)} u-u\right) \geq \Delta u+\left(\gamma P_{\pi_{u}}-\mathrm{Id}\right) \sum_{k=0}^{m} \gamma^{k} P_{\pi_{u}}^{k} \Delta u \\
& \geq \gamma^{m} P_{\pi_{u}}^{m} \Delta u \geq 0
\end{aligned}
$$

Proof of MPI. Let $u_{0}=v_{0}=w_{0}$.
By construction $\mathcal{T}_{\pi_{n+1}} v_{n}=\mathcal{T}_{*} v_{n}$ and one verify easily that $v_{n+1}=\mathcal{T}_{\pi_{n+1}}^{m_{n}+1} v_{n}=$ $W_{\pi_{n+1}}^{\left(m_{n}\right)} v_{n}$.

Define now, $u_{n+1}=\mathcal{T}_{*} u_{n}$ and $w_{n+1}=W_{*}^{\left(m_{n}\right)} w_{n}$. We can prove by recursion that $\Delta v_{n} \geq 0, v_{n+1} \geq v_{n}$ and $u_{n} \leq v_{n} \leq w_{n}$.

By assumption, $\Delta v_{0} \geq 0$ so that $v_{1}=W_{\pi_{1}}^{\left(m_{n}\right)} v_{0} \geq \mathcal{T}_{*} v_{0} \geq v_{0}$.
Assume the property holds for $n-1$ then using the previous lemmas one obtains immediately $\Delta v_{n} \geq 0$ and

$$
u_{n}=\mathcal{T}_{*} u_{n-1} \leq v_{n}=W_{\pi_{n}}^{\left(m_{n-1}\right)} v_{n-1} \leq w_{n}=W_{*}^{\left(m_{n-1}\right)} w_{n-1}
$$

Finally,

$$
\begin{aligned}
v_{n} & =W_{\pi_{n}}^{\left(m_{n-1}\right)} v_{n-1} \\
& =v_{n-1}+\sum_{k=0} m_{n-1} \gamma^{k} P_{\pi_{n}} \Delta v_{n-1} \\
& \geq v_{n-1}
\end{aligned}
$$

Now, we have already proved that $u_{n}=\mathcal{T}_{*} u_{0}$ tends to v_{*} with

$$
\left\|u_{n}-v_{*}\right\|_{\infty} \leq \gamma^{n}\left\|v_{0}-v_{*}\right\|_{\infty}
$$

It suffices now to prove that w_{n} also converges toward v_{*} to obtain the convergence of v_{n}. We verify that

$$
\left\|w_{n}-v_{*}\right\|_{\infty}=\left\|W_{*}^{\left(m_{n-1}\right)} w_{n-1}-W_{*}^{\left(m_{n-1}\right)} v_{*}\right\|_{\infty}
$$

$$
\begin{aligned}
& \gamma^{m_{n-1}}\left\|w_{n-1}-v_{*}\right\|_{\infty} \\
& \gamma^{\sum_{k=0}^{n-1} m_{k}}\left\|v_{0}-v_{*}\right\|_{\infty}
\end{aligned}
$$

which implies the convergence of w_{n}.
We have

$$
\left\|v_{\pi_{n+1}}-v_{*}\right\|_{\infty} \leq\left\|v_{\pi_{n+1}}-v_{n}\right\|_{\infty}+\left\|v_{n}-v_{*}\right\|_{\infty}
$$

Notice that $v_{n, 0}=\mathcal{T}_{\pi_{n+1}} v_{n}=\mathcal{T}_{*} v_{n}$ so that

$$
\begin{aligned}
\left\|v_{\pi_{n+1}}-v_{n}\right\|_{\infty} & \leq\left\|v_{\pi_{n+1}}-v_{n, 0}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty} \\
& \leq\left\|\mathcal{T}_{\pi_{n+1}} v_{\pi_{n+1}}-\mathcal{T}_{\pi_{n+1}} v_{n}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty} \\
& \leq \gamma\left\|v_{\pi_{n+1}}-v_{n}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty}
\end{aligned}
$$

Along the same line,

$$
\begin{aligned}
\left\|v_{*}-v_{n}\right\|_{\infty} & \leq\left\|v_{*}-v_{n, 0}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty} \\
& \leq\left\|\mathcal{T}_{*} v_{*}-\mathcal{T}_{*} v_{n}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty} \\
& \leq \gamma\left\|v_{*}-v_{n}\right\|_{\infty}+\left\|v_{n, 0}-v_{n}\right\|_{\infty}
\end{aligned}
$$

Combining those two inequalities yields

$$
\left\|v_{\pi_{n+1}}-v_{*}\right\|_{\infty} \leq \frac{2}{1-\gamma}\left\|v_{n}-v_{0, n}\right\|_{\infty}
$$

As show before,

$$
0 \leq v_{*}-v_{n+1} \leq v_{*}-v_{n}-\sum_{k=0}^{m_{n}} \gamma^{k} P_{\pi_{n+1}}^{k} \Delta v_{n}
$$

Now, let π_{*} such that $\mathcal{T}_{\pi_{*}} v_{*}=B v_{*}$,

$$
\begin{aligned}
\Delta_{n}=\Delta v_{n}-\Delta v_{*} & =\mathcal{T}_{*} v_{n}-v_{n}-\left(\mathcal{T}_{*} v_{*}-v_{*}\right) \\
& \leq \mathcal{T}_{\pi_{*}} v_{n}-v_{n}-\left(\mathcal{T}_{\pi_{*}} v_{*}-v_{*}\right) \\
& \leq\left(\gamma P_{\pi_{*}}-\operatorname{Id}\right)\left(v_{n}-v_{*}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
0 \leq v_{*}-v_{n+1} & \leq v_{*}-v_{n}-\sum_{k=0}^{m_{n}} \gamma^{k} P_{\pi_{n+1}}^{k}\left(\gamma P_{\pi_{*}}-\mathrm{Id}\right)\left(v_{n}-v_{*}\right) \\
& \leq \sum_{k=1}^{m_{n}} \gamma^{k} P_{\pi_{n+1}}^{k}\left(v_{n}-v_{*}\right)-\sum_{k=0}^{m_{n}} \gamma^{k+1} P_{\pi_{n+1}} P_{\pi_{*}}\left(v_{n}-v_{*}\right) \\
& \leq \sum_{k=0}^{m_{n}} \gamma^{k+1} P_{\pi_{n+1}}^{k}\left(P_{\pi_{n+1}}-P_{\pi_{*}}\right)\left(v_{n}-v_{*}\right)-\gamma^{m_{n}+1} P_{\pi_{n+1}}^{m_{n}+1}\left(v_{n}-v_{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=0}^{m_{n}} \gamma^{k+1} \mid\left\|P_{\pi_{n+1}}-P_{\pi_{*}}\right\|\| \| v_{n}-v_{*}\left\|_{\infty}+\gamma^{m_{n}+1}\right\| v_{n}-v_{*} \|_{\infty} \\
& \left.\leq\left(\frac{\gamma-\gamma^{m_{n}+1}}{1-\gamma}\| \| P_{\pi_{n+1}}-P_{\pi_{*}}\| \|+\gamma^{m_{n}+1}\right) \right\rvert\,\left\|v_{n}-v_{*}\right\|_{\infty}
\end{aligned}
$$

2.3 Asynchronous Dynamic Programming

Proposition 18. Assume $\mathcal{T}_{\pi_{0}} v_{0} \geq v_{0}$ and at any step n

- Define a subset S_{n} of the states and
- Either
- keep the policy $\pi_{n+1}=\pi_{n}$ and update the value function following

$$
v_{n+1}(s)= \begin{cases}\mathcal{T}_{\pi_{n}} v_{n}(s) & \text { if } s \in S_{n} \\ v_{n}(s) & \text { otherwise }\end{cases}
$$

- keep the value function $s_{n+1}=s_{n}$ and update the policy following

$$
\pi_{n+1}(s)= \begin{cases}\operatorname{argmax}_{a} r(s, a)+\gamma P_{\pi_{a}} v_{n}(s) & \text { if } s \in S_{n} \\ \pi_{n}(s) & \text { otherwise }\end{cases}
$$

Assume that for any state s and any n there exist $n^{\prime}>n$ such that $s \in S_{n^{\prime}}$ and one performs a value update at step n^{\prime} and $n^{\prime \prime}>n$ such that $s \in S_{n^{\prime \prime}}$ and one performs a policy update at step $n^{\prime \prime}$ then s_{n} tends monotonously to s_{*}.

Proof. We start by proving by recursion that $\mathcal{T}_{\pi_{n}} v_{n} \geq v_{n}$ implies

$$
\mathcal{T}_{\pi_{n+1}} v_{n+1} \geq v_{n+1} \geq v_{n} \quad \text { and } \quad \mathcal{T}_{\pi_{n}} v_{n}
$$

Note that that $\mathcal{T}_{\pi_{0}} v_{0} \geq v_{0}$ is an assumption.
Assume now that $\mathcal{T}_{\pi_{n}} v_{n} \geq v_{n}$, then either at step n we update the value function or the policy.

If we update the value function, $\pi_{n+1}=\pi_{n}$ and thus

$$
v_{n+1}(s)= \begin{cases}\mathcal{T}_{\pi_{n}} v_{n}(s) & \text { if } s \in S_{n} \\ v_{n}(s) & \text { otherwise }\end{cases}
$$

As $\mathcal{T}_{\pi_{n}} v_{n}(s) \geq v_{n}(s)$, we deduce $\mathcal{T}_{\pi_{n}} v_{n} \geq v_{n+1} \geq v_{n}$. It suffices to notice that $v_{n+1} \geq v_{n}$ implies

$$
\mathcal{T}_{\pi_{n+1}} v_{n+1}=\mathcal{T}_{\pi_{n}} v_{n+1} \geq \mathcal{T}_{\pi_{n}} v_{n}
$$

to obtain

$$
\mathcal{T}_{\pi_{n+1}} v_{n+1} \geq v_{n+1} \geq v_{n}
$$

Now, if we update the policy, $v_{n+1}=v_{n}$ and

$$
\mathcal{T}_{\pi_{n+1}} v_{n}(s)= \begin{cases}\mathcal{T}_{*} v_{n}(s) & \text { if } s \in S_{n} \\ \mathcal{T}_{\pi_{n}} v_{n}(s) & \text { otherwise }\end{cases}
$$

which implies $\mathcal{T}_{\pi_{n+1}} v_{n} \geq \mathcal{T}_{\pi_{n}} v_{n}$ and thus as $v_{n+1}=v_{n}$

$$
\mathcal{T}_{\pi_{n+1}} v_{n+1} \geq \mathcal{T}_{\pi_{n}} v_{n} \geq v_{n}=v_{n+1}
$$

We deduce thus that

$$
\mathcal{T}_{*}^{k} v_{n+1} \geq \mathcal{T}_{\pi_{n+1}} v_{n+1} \geq v_{n+1} \geq v_{n}
$$

which implies if we take the limit in k

$$
v_{*} \geq v_{n+1} \geq v_{n}
$$

Hence v_{n} converges toward a limit \tilde{v} satisfying

$$
v_{n} \leq \tilde{v} \leq \mathcal{T}_{*} \tilde{v} \leq v_{*}
$$

Assume now that there exists s such that $\tilde{v}(s)<\mathcal{T}_{*} \tilde{v}(s)$. By continuity of \mathcal{T}_{*}, there exists n such that for all $n^{\prime} \geq n$

$$
\tilde{v}(s)<\mathcal{T}_{*} v_{n^{\prime}}(s)
$$

Let $n^{\prime} \geq n$ such that one updates the policy of s and $n^{\prime \prime}$ the smallest integer larger than $n^{\prime \prime}$ where one updates the value of s.

$$
\begin{aligned}
v_{n^{\prime \prime}+1}(s) & =\mathcal{T}_{\pi_{n^{\prime \prime}}} v_{n^{\prime \prime}}(s) \\
& \geq \mathcal{T}_{\pi_{n^{\prime}+1}} v_{n^{\prime}+1}(s) \\
& \geq \mathcal{T}_{\pi_{n^{\prime}+1}} v_{n^{\prime}}(s) \\
& \geq \mathcal{T}_{*} v_{n^{\prime}}(s)>\tilde{v}(s)
\end{aligned}
$$

which is impossible.

2.4 Approximate Dynamic Programming

Proposition 19. If in a Generalized Policy Improvement, for all k

$$
\left\|v_{k}-v_{\pi_{k}}\right\|_{\infty} \leq \epsilon
$$

and

$$
\left\|\mathcal{T}_{\pi_{k+1}} v_{k}-\mathcal{T}_{*} v_{k}\right\|_{\infty} \leq \delta
$$

then

$$
\limsup \max _{s}\left(v_{*}(s)-v_{\pi_{k}}(s)\right) \leq \frac{\delta+2 \gamma \epsilon}{(1-\gamma)^{2}}
$$

Proof. By construction,

$$
\begin{aligned}
v_{\pi_{k}}(s)-v_{\pi_{k+1}}(s) & =\mathcal{T}_{\pi_{k}} v_{\pi_{k}}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\
& =\mathcal{T}_{\pi_{k}} v_{\pi_{k}}(s)-\mathcal{T}_{\pi_{k}} v_{k}(s)+\mathcal{T}_{\pi_{k}} v_{k}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\
& \leq \gamma \epsilon+\mathcal{T}_{*} v_{k}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}} \\
& \leq \gamma \epsilon+\mathcal{T}_{\pi_{k+1}} v_{k}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}}+\delta \\
& \leq \gamma \epsilon+\mathcal{T}_{\pi_{k+1}} v_{k}(s)+\mathcal{T}_{\pi_{k+1}} v_{\pi_{k}}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k}}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}}+\delta \\
& \leq 2 \gamma \epsilon+\delta+\gamma \max _{s^{\prime}}\left(v_{\pi_{k}}\left(s^{\prime}\right)-v_{\pi_{k+1}}\left(s^{\prime}\right)\right)
\end{aligned}
$$

and thus

$$
\max _{s^{\prime}}\left(v_{\pi_{k}}\left(s^{\prime}\right)-v_{\pi_{k+1}}\left(s^{\prime}\right)\right) \leq \frac{2 \gamma \epsilon+\delta}{1-\gamma}
$$

Now,

$$
\begin{aligned}
v_{*}(s)-v_{\pi_{k+1}}(s) & =v_{*}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}}(s) \\
& =v_{*}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k}}(s)+\mathcal{T}_{\pi_{k+1}} v_{\pi_{k}}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k+1}}(s) \\
& \leq v_{*}(s)-\mathcal{T}_{\pi_{k+1}} v_{\pi_{k}}(s)+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma} \\
& \leq v_{*}(s)-\mathcal{T}_{\pi_{k+1}} v_{k}(s)+\gamma \epsilon+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma} \\
& \leq v_{*}(s)-\mathcal{T}_{*} v_{k}(s)+\gamma \epsilon+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma} \\
& \leq v_{*}(s)-\mathcal{T}_{*} v_{k}(s)+\gamma \epsilon+\delta+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma} \\
& \leq \mathcal{T}_{*} v_{*}(s)-\mathcal{T}_{*} v_{\pi_{k}}(s)+2 \gamma \epsilon+\delta+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma} \\
& \leq \gamma \max _{s}\left(v_{*}(s)-v_{\pi_{k}}(s)\right)+2 \gamma \epsilon+\delta+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma}
\end{aligned}
$$

thus

$$
\max _{s}\left(v_{*}(s)-v_{\pi_{k+1}}(s)\right) \leq \gamma \max _{s}\left(v_{*}(s)-v_{\pi_{k}}(s)\right)+2 \gamma \epsilon+\delta \gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma}
$$

and
$\lim \sup \max _{s}\left(v_{*}(s)-v_{\pi_{k}}(s)\right) \leq \lim \sup \gamma \max _{s}\left(v_{*}(s)-v_{\pi_{k}}(s)\right)+2 \gamma \epsilon+\delta+\gamma \frac{2 \gamma \epsilon+\delta}{1-\gamma}$
which implies

$$
\lim \sup _{\max _{s}}\left(v_{*}(s)-v_{\pi_{k}}(s)\right) \leq \frac{2 \gamma \epsilon+\delta}{(1-\gamma)^{2}}
$$

3 Finite Horizon

Proposition 20. If $v_{0}=r_{\pi, T-1}$ and $v_{n}=\mathcal{T}_{\pi, T-n} v_{n-1}=r_{\pi, T-n}+P_{\pi, T-n} v_{n-1}$ then

$$
v_{n}(s)=\mathbb{E}_{\pi}\left[\sum_{t=T-n-1}^{T-1} R_{t+1} \mid S_{t-n-1}=s\right]=v_{\pi, T-n}(s)
$$

$$
\text { If } v_{0}=r_{*} \text { and } v_{n+1}=\mathcal{T}_{*} v_{n} \text { then }
$$

$$
v_{n}(s)=\max _{\pi} \mathbb{E}_{\pi}\left[\sum_{t=T-n-1}^{T-1} R_{t+1} \mid S_{t-n-1}=s\right]=v_{*, T-n}(s)
$$

Proof. If $n=0$ then by definition $v_{\pi, T}(s)=\mathbb{E}_{\pi}\left[R_{T} \mid S_{T-1}=s\right]=r_{\pi, T-1}(s)$.
Now,

$$
\begin{aligned}
v_{\pi, T-n}(s) & =\mathbb{E}_{\pi}\left[\sum_{t=T-n-1}^{T-1} R_{t+1} \mid S_{T-n-1}=s\right] \\
& =r_{\pi, T-n-1}(s)+\mathbb{E}_{\pi}\left[\sum_{t=T-n}^{T-1} R_{t+1} \mid S_{T-n-1}=s\right] \\
& =r_{\pi, T-n-1}(s)+\sum \sum_{a} p\left(s^{\prime} \mid s, a\right) \pi(a \mid s) \mathbb{E}_{\pi}\left[\sum_{t=T-n}^{T-1} R_{t+1} \mid S_{t-n}=s^{\prime}\right] \\
& =r_{\pi, T-n-1}(s)+P_{\pi, T-n-1} v_{\pi, T-n-1}(s)
\end{aligned}
$$

Along the same line, if $n=0$ then by definition $v_{*, T}(s)=\max _{\pi} \mathbb{E}_{\pi}\left[R_{T} \mid S_{T-1}=s\right]=$ $\max _{\pi} v_{\pi, T}(s)=r_{*}(s)$.

Now,

$$
\begin{aligned}
v_{*, T-n}(s) & =\max _{\pi} \mathbb{E}_{\pi}\left[\sum_{t=T-n-1}^{T-1} R_{t+1} \mid S_{T-n-1}=s\right] \\
& =\max _{\pi}\left(r_{\pi}(s)+\mathbb{E}\left[\sum_{t=T-n}^{T-1} R_{t+1} \mid S_{T-n-1}=s\right]\right) \\
& =\max _{\pi}\left(r_{\pi, T-n-1}(s)+\sum \sum_{a} p\left(s^{\prime} \mid s, a\right) \pi(a \mid s) \mathbb{E}\left[\sum_{t=T-n}^{T-1} R_{t+1} \mid S_{t-n}=s^{\prime}\right]\right) \\
& =\max _{\pi, T-n-1}(s)+P_{\pi, T-n-1} \max _{\pi} v_{\pi, T-n-1}(s) \\
& =\mathcal{T}_{*} v_{*, T-n-1}(s)
\end{aligned}
$$

4 Non Discounted Total Reward

Definition 5. Let \tilde{s} be the absorbing state, we define the expected absorption time starting from $s \tau_{\pi}(s)$ by

$$
\tau_{\pi}(s)=\mathbb{E}_{\pi}\left[\inf _{S_{t}=\tilde{s}} t \mid S_{0}=s\right]
$$

If τ_{π} is finite, we say that π is proper.
Definition 6. We define the maximum expected absorption time starting from s by $\tau_{*}(s)$ by

$$
\tau_{*}(s)=\max _{\pi} \tau_{\pi}(s)
$$

Proposition 21. If $\tau_{\pi}<+\infty$ then

$$
\tau_{\pi}=1+P_{\pi} \tau_{\pi} .=\mathcal{T}_{\pi} \tau_{\pi}
$$

If $\tau_{*}<+\infty$ then

$$
\tau_{*}=\max _{\pi} 1+P_{\pi} \tau_{*} .=\mathcal{T} \tau_{\pi}
$$

Proof. It suffices to notice that $\tau_{\pi}(s)=\mathbb{E}_{\pi}\left[\sum_{t=0}^{+\infty} R_{t+1}\right]$ with $R_{t}=0$ if $s_{t}=\tilde{s}$ and 1 otherwise.
Proposition 22. \mathcal{T}_{π} is a contraction of factor $\max \frac{\tau_{\pi}(s)-1}{\tau_{\pi}(s)}$ with respect to the norm $\|\cdot\|_{\infty, 1 / \tau_{\pi}}$
\mathcal{T}_{π} and \mathcal{T}_{*} are contraction of factor $\max \frac{\tau_{*}(s)-1}{\tau_{*}(s)}$ with respect to the norm $\|\cdot\|_{\infty, 1 / \tau_{\pi}}$.
Proof.

$$
\begin{aligned}
\left|\mathcal{T}_{\pi} v(s)-\mathcal{T}_{\pi} v^{\prime}(s)\right| & \leq\left|P_{\pi}\left(v-v^{\prime}\right)(s)\right| \\
& \leq P_{\pi}\left(\tau \times \frac{\left|v-v^{\prime}\right|}{\tau}\right)(s) \\
& \leq P_{\pi} \tau(s)\left\|v-v^{\prime}\right\|_{\infty, 1 / \tau} \\
& \leq \tau(s) \frac{1+P_{\pi} \tau(s)-1}{\tau(s)}\left\|v-v^{\prime}\right\|_{\infty, 1 / \tau} \\
& \leq \tau(s) \frac{1+P_{*} \tau(s)-1}{\tau(s)}\left\|v-v^{\prime}\right\|_{\infty, 1 / \tau}
\end{aligned}
$$

which yields the result for both $\tau=\tau_{\pi}$ and $\tau=\tau_{*}$.
Now, assume without loss of generality that $\mathcal{T}_{*} v(s) \geq \mathcal{T}_{*} v^{\prime}(s)$,

$$
\left|\mathcal{T}_{*} v(s)-\mathcal{T}_{*} v^{\prime}(s)\right|
$$

$$
\begin{aligned}
& =\max _{\pi} \mathcal{T}_{\pi} v(s)-\max _{\pi} \mathcal{T}_{\pi} v^{\prime}(s) \\
& \leq \max _{\pi}\left(\mathcal{T}_{\pi} v(s)-\mathcal{T}_{\pi} v^{\prime}(s)\right) \\
& \leq \tau(s) \frac{1+P_{*} \tau(s)-1}{\tau(s)}\left\|v-v^{\prime}\right\|_{\infty, 1 / \tau}
\end{aligned}
$$

which yields the result for $\tau=\tau_{*}$.

5 Bandits

5.1 Regret

Definition 7. A k-armed bandit is defined by a collection of k random variable $R(a), a \in\{1, \ldots, k\}$.

The best arm is a_{*} is such that $\mathbb{E}\left[R\left(a_{*}\right)\right] \geq \max _{a} \mathbb{E}[R(a)]$.
For any policy π, the regret is defined by

$$
r_{T, \pi}=T \mathbb{E}\left[R\left(a_{*}\right)\right]-\mathbb{E}\left[\sum_{t=1}^{T} R\left(A_{t}\right)\right]
$$

where A_{t} is the arm chosen at time t following the policy π.
Proposition 23. Let $T_{t}(a)=\sum_{s=1}^{t} \mathbf{1}_{A_{s}=i}$ and $\Delta(a)=\mathbb{E}\left[R\left(a_{*}\right)\right]-\mathbb{E}[R(a)]$ then

$$
r_{n, \pi}=\sum_{a=1}^{k} \Delta(a) \mathbb{E}\left[T_{t}(a)\right]
$$

Proof. By definition,

$$
\begin{aligned}
r_{T, \pi} & =n \mathbb{E}\left[R\left(a_{*}\right)\right]-\mathbb{E}\left[\sum_{t=1}^{T} R\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T}\left(\mathbb{E}\left[R\left(a_{*}\right)\right]-R\left(A_{t}\right)\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T} \sum_{a=1}^{k} \mathbf{1} A_{t}=a\left(\mathbb{E}\left[R\left(a_{*}\right)\right]-R(a)\right)\right] \\
& =\sum_{a=1}^{k} \mathbb{E}\left[\sum_{t=1}^{T} \mathbf{1} A_{t}=a\left(\mathbb{E}\left[R\left(a_{*}\right)\right]-R(a)\right)\right] \\
& =\sum_{a=1}^{k} \mathbb{E}\left[\sum_{t=1}^{T} \mathbf{1} A_{t}=a \Delta(a)\right] \\
& =\sum_{a=1}^{k} \mathbb{E}\left[T_{t}(a)\right] \Delta(a)
\end{aligned}
$$

5.2 Concentration of subgaussian random variables

Definition 8. A random variable X is said to be σ-subgaussian if

$$
\mathbb{E}[\exp \lambda X] \leq \exp \left(\lambda^{2} \sigma^{2} / 2\right)
$$

Proposition 24. If X is σ-subgaussian then for any $\epsilon>0$

$$
\mathbb{P}(X \geq \epsilon) \leq \exp \left(\frac{-\epsilon^{2}}{2 \sigma^{2}}\right)
$$

Proof.

$$
\begin{aligned}
\mathbb{P}(X \geq \epsilon) & =\mathbb{P}(\exp (\lambda X) \geq \exp (\lambda \epsilon)) \\
& \leq \frac{\mathbb{E}[\exp (\lambda X)]}{\exp (\lambda \epsilon)} \\
& \leq \exp \left(\lambda^{2} \sigma^{2} / 2-\lambda \epsilon\right) \\
& \leq \exp \left(\frac{-\epsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where the last inequality is obtained by optimizing in λ.
Proposition 25. If X is σ-subgaussian and Y is σ^{\prime}-subgaussian conditionnaly to X then

- $\mathbb{E}[X]=0$ and $\operatorname{Var}[X] \leq \sigma^{2}$
- $c X$ is $|c| \sigma$-subgaussian.
- $X+Y$ is $\sqrt{\sigma^{2}+\left(\sigma^{\prime}\right)^{2}}$-subgaussian.

Proof.

$$
\mathbb{E}[\exp \lambda X]=\sum_{k} \frac{\lambda^{k}}{k!} \mathbb{E}\left[X^{k}\right]
$$

while

$$
\exp \left(\lambda^{2} \sigma^{2} / 2\right)=\sum_{k} \frac{\lambda^{2 k} \sigma^{2 k}}{2^{k} k!}
$$

By looking at the term in front of λ^{1} and λ^{2}, we obtain

$$
\lambda \mathbb{E}[X] \leq 0 \quad \text { and } \quad \frac{\lambda^{2}}{2!} \mathbb{E}\left[X^{2}\right] \leq \frac{\lambda^{2} \sigma^{2}}{2 \times 1!}
$$

which implies

$$
\mathbb{E}[X]=0 \quad \text { and } \quad \operatorname{Var}[X] \leq \sigma^{2}
$$

By definition,

$$
\mathbb{E}[\exp (\lambda c X)] \leq \exp \left(\lambda^{2} c^{2} \sigma^{2} / 2\right)
$$

hence the $|c| \sigma$-subgaussianity of $c X$.
Now,

$$
\begin{aligned}
\mathbb{E}[\exp (\lambda(X+Y))] & \leq \mathbb{E}[\mathbb{E}[\exp (\lambda(X+Y)) \mid X]] \\
& \leq \mathbb{E}[\mathbb{E}[\exp (\lambda X) \exp (\lambda Y)) \mid X]] \\
& \leq E \operatorname{spexp}(\lambda X) \exp \left(\lambda^{2}\left(\sigma^{\prime}\right)^{2} / 2\right) \\
& \leq \exp \left(\lambda^{2}\left(\sigma^{2}+\left(\sigma^{\prime}\right)^{2}\right) / 2\right)
\end{aligned}
$$

Proposition 26. If $X_{i}-\mu$ are iid σ-subgaussian variable,

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \geq \mu+\epsilon\right) \leq \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right) \quad \text { and } \quad \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \leq \mu-\epsilon\right) \leq \exp \left(-\frac{n \epsilon^{2}}{2 \sigma^{2}}\right)
$$

Proof. It suffices to notice that $\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu$ and $\mu-\frac{1}{n} \sum_{i=1}^{n} X_{i}$ are σ / \sqrt{n} subgaussian.

5.3 Explore Then Commit strategy

Definition 9. The simple current mean estimate $Q_{t}(a)$ is defined by

$$
Q_{t}(a)=\frac{1}{T_{t}(a)} \sum_{s=1}^{t} \mathbf{1}_{A_{s}=a} R_{s}(a)
$$

Proposition 27. Assume we play the arm successively during $K m$ steps and then play the arm which maximize the current mean estimate $Q_{t}(a)$ then if the $R(a)-\mathbb{E}[R(a)]$ is 1 -subgaussian

$$
r_{T, \pi} \leq \min (m, T / K) \sum_{a=1}^{k} \Delta(a)+\max (T-m K, 0) \sum_{a=1}^{k} \Delta(a) \exp \left(-m \Delta(a)^{2} / 4\right)
$$

Furthermore,

$$
\mathbb{P}\left(a_{T}=a_{*}\right) \geq 1-\sum_{a \neq a_{*}} \exp \left(-m \Delta(a)^{2} / 4\right)
$$

Proof. We have

$$
r_{T, \pi}=\sum_{a=1}^{k} \Delta(a) \mathbb{E}\left[T_{T}(a)\right]
$$

we can thus focus on $\mathbb{E}\left[T_{T}(a)\right]$.
Now

$$
\begin{aligned}
\mathbb{E}\left[T_{T}(a)\right] & \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(a_{m K+1}=a\right) \\
& \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(Q_{t}(a) \geq \max _{a^{\prime} \neq a} Q_{t}\left(a^{\prime}\right)\right) \\
& \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(a_{m K+1}=a\right) \\
& \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(Q_{m}(a) \geq Q_{m}\left(a_{*}\right)\right) \\
& \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(Q_{m K+1}(a)-\mathbb{E}[R(a)]-\left(Q_{m K+1}\left(a_{*}\right)-\mathbb{E}\left[R\left(a_{*}\right)\right]\right) \geq \Delta(a)\right)
\end{aligned}
$$

It suffices then to notice that $Q_{m K+1}(a)-\mathbb{E}[R(a)]-\left(Q_{m K+1}\left(a_{*}\right)-\mathbb{E}\left[R\left(a_{*}\right)\right]\right)$
is $\sqrt{2 / m}$-subgaussian to obtain

$$
\begin{aligned}
\mathbb{E}\left[T_{T}(a)\right] & \leq \min (m, n / K)+\max (n-m K, 0) \mathbb{P}\left(Q_{m K+1}(a) \geq Q_{m K+1}\left(a_{*}\right)\right) \\
& \leq \min (m, n / K)+\max (n-m K, 0) \exp \left(-m \Delta(a)^{2} / 4\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathbb{P}\left(a_{T}=a_{*}\right) & =1-\sum a \neq a_{*} \mathbb{P}\left(a_{T}=a\right) \\
& \leq 1-\sum_{a \neq a_{*}} \exp \left(-m \Delta(a)^{2} / 4\right)
\end{aligned}
$$

$5.4 \quad \epsilon$-greedy strategy

Proposition 28. Let π be an ϵ_{t}-greedy strategy,

$$
r_{T, \pi} \geq \sum_{t=1}^{T} \frac{\epsilon_{t}}{k} \sum_{a=1}^{k} \Delta(a)
$$

Proof. By definition of an ϵ-greedy strategy

$$
\mathbb{E}\left[T_{t}(a)\right] \geq \sum_{t=1}^{T} \frac{\epsilon_{t}}{k}
$$

hence the first result.
Proposition 29. Let π be an ϵ_{t}-greedy strategy,

$$
\mathbb{P}\left(A_{T}=a_{*}\right) \geq 1-\epsilon_{T}-\Sigma_{t} \exp \left(-\Sigma_{T} /(6 k)\right)-\sum_{a \neq a_{*}} \frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T} /(4 k)}
$$

with $\Sigma_{T}=\sum_{s=1}^{T} \epsilon_{s}$.

Furthermore,
$\mathbb{P}\left(a_{*}=\operatorname{argmax} Q_{T, a}\right) \geq 1-\Sigma_{t} \exp \left(-\Sigma_{T} /(6 k)\right)-\sum_{a \neq a_{*}} \frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T} /(4 k)}$
If $\epsilon_{t}=c / t$,

$$
r_{T, \pi} \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(c \frac{\log (T)+1}{k}+C\right)+\frac{4}{\Delta(a)} C^{\prime}\right)
$$

as soon as $c /(6 k)>1$ and $c \min _{a \neq a_{*}} \Delta(a) / 4 k<1$.
If $\epsilon_{t}=c \log (t) / t$ then

$$
r_{T, \pi} \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(c \frac{\log (T)(\log (T)+1)}{k}+C\right)+\frac{4}{\Delta(a)} C^{\prime}\right)
$$

Proof. By definition of π,

$$
\mathbb{P}\left(A_{T}=a\right) \leq \frac{\epsilon_{t}}{k}+\left(1-\frac{\epsilon_{t}}{k} \mathbb{P}\left(Q_{T}(a) \geq Q_{T}\left(a_{*}\right)\right)\right.
$$

and

$$
\mathbb{P}\left(Q_{T}(a) \geq Q_{T}\left(a_{*}\right)\right) \leq \mathbb{P}\left(Q_{T}(a) \geq \mu(a)+\Delta(a) / 2\right)+\mathbb{P}\left(Q_{T}\left(a_{*}\right) \leq \mu\left(a_{*}\right)-\Delta(a) / 2\right)
$$

By symmetry, it suffices to bound

$$
\begin{aligned}
\mathbb{P}\left(Q_{T}(a) \geq \mu(a)+\Delta / 2\right) & \leq \sum_{t=1}^{T} \mathbb{P}\left(T_{t}(a)=t, Q_{T}(a) \geq \mu(a)+\Delta / 2\right) \\
& \leq \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a)=t, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right) \\
& \leq \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a)=t \left\lvert\, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right.\right) \mathbb{P}\left(\frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right) \\
& \leq \sum_{t=1}^{T} \mathbb{P}\left(T_{T}(a)=t \left\lvert\, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right.\right) e^{-\Delta^{2} t / 2} \\
& \leq \sum_{t=1}^{T_{0}} \mathbb{P}\left(T_{T}(a)=t \left\lvert\, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right.\right)+\sum_{t=T_{0}+1}^{T} e^{-\Delta^{2} t / 2}
\end{aligned}
$$

Let $T_{T}^{R}(a)$ be the number of time the arm a has been chosen at random before time T

$$
\leq \sum_{t=1}^{T_{0}} \mathbb{P}\left(T_{T}^{R}(a) \leq t \left\lvert\, \frac{1}{t} \sum_{k=1}^{t} R_{k}(a) \geq \mu(a)+\Delta / 2\right.\right)+\frac{2}{\Delta^{2}} e^{-\Delta^{2} T_{0} / 2}
$$

$$
\leq \sum_{t=1}^{T_{0}} \mathbb{P}\left(T_{T}^{R}(a) \leq t\right)+\frac{2}{\Delta^{2}} e^{-\Delta^{2} T_{0} / 2}
$$

Now the Bernstein inequality yields

$$
\mathbb{P}\left(T_{t}^{R}(a) \leq \mathbb{E}\left[T_{t}^{R}(a)\right]-\lambda\right) \leq \exp \left(-\frac{\lambda^{2} / 2}{\operatorname{Var}\left[T_{t}^{R}(a)\right]+\lambda / 2}\right)
$$

with

$$
\begin{aligned}
& \mathbb{E}\left[T_{t}^{R}(a)\right]=\sum_{s=1}^{t} \frac{\epsilon_{s}}{k} \\
& \mathbb{V a r}\left[T_{t}^{R}(a)\right]=\sum_{s=1}^{t} \frac{\epsilon_{s}}{k}\left(1-\frac{\epsilon_{s}}{k}\right) \\
& \leq \sum_{s=1}^{t} \frac{\epsilon_{s}}{k}
\end{aligned}
$$

. Choosing $T_{0}=\frac{1}{2} \frac{\Sigma_{T}}{k}=\frac{1}{2} \sum_{s=1}^{T} \frac{\epsilon_{s}}{k}=\frac{1}{2} \mathbb{E}\left[T_{T}^{R}(a)\right] \leq \frac{1}{2} \mathbb{V} \operatorname{ar}\left[T_{T}^{R}(a)\right]$ leads

$$
\begin{aligned}
\mathbb{P}\left(T_{T}^{R}(a) \leq T_{0}\right) & =\mathbb{P}\left(T_{T}^{R}(a) \leq 2 T_{0}-T_{0}\right) \\
& \leq \exp \left(-\frac{T_{0}^{2} / 2}{\sigma^{2}+T_{0} / 2}\right) \\
& \leq \exp \left(-\frac{T_{0}^{2} / 2}{T_{0}+T_{0} / 2}\right) \\
& \leq \exp \left(-T_{o} / 3\right)
\end{aligned}
$$

which implies

$$
\mathbb{P}\left(Q_{T}(a) \geq \mu(a)+\Delta / 2\right) \leq T_{0} \exp \left(-T_{o} / 3\right)+\frac{2}{\Delta^{2}} e^{-\Delta^{2} T_{0} / 2}
$$

and thus

$$
\begin{aligned}
\mathbb{P}\left(a=\operatorname{argmax} Q_{T}(a)\right) & \leq 2\left(1-\frac{\epsilon_{T}}{k}\right)\left(\Sigma_{T} /(2 k) \exp \left(-\Sigma_{T} /(6 k)\right)+\frac{2}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T} / 4}\right) \\
& \leq \frac{\epsilon_{T}}{k}+\frac{\Sigma_{T}}{k} \exp \left(-\Sigma_{T} /(6 k)+\frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T} /(4 k)}\right.
\end{aligned}
$$

with $\Sigma_{T}=\sum_{s=1}^{T} \epsilon_{s}$ which goes to 0 as soon as Σ_{T} tends to $+\infty$ We deduce then that

$$
\mathbb{P}\left(A_{T}=a\right) \leq \frac{\epsilon_{T}}{k}+\frac{\epsilon_{T}}{k}+\frac{\Sigma_{T}}{k} \exp \left(-\Sigma_{T} /(6 k)+\frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{T} /(4 k)}\right.
$$

which goes to 0 if furthermore ϵ_{T} tends to 0
Finally,

$$
\begin{aligned}
\mathbb{E}\left[T_{T}(a)\right] & =\sum_{t=1}^{T} \mathbb{P}\left(A_{t}=a\right) \\
& \leq \sum_{t=1}^{T}\left(\frac{\epsilon_{t}}{k}+\frac{\Sigma_{t}}{k} \exp \left(-\Sigma_{t} /(6 k)+\frac{4}{\Delta(a)^{2}} e^{-\Delta(a)^{2} \Sigma_{t} /(4 k)}\right)\right.
\end{aligned}
$$

Hence

$$
r_{T, \pi} \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(\frac{\Sigma_{T}}{k}+\sum_{t=1}^{T} \frac{\Sigma_{t}}{k} e^{-\Sigma_{t} /(6 k)}\right)+\frac{4}{\Delta(a)} \sum_{t=1}^{T} e^{-\Delta(a)^{2} \Sigma_{t} /(4 k)}\right)
$$

Assume that $\epsilon_{t}=c / t$ so that $\Sigma_{t} \leq c(\ln (t)+1)$ then the previous inequality becomes

$$
\begin{aligned}
r_{T, \pi} & \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(c \frac{\log (T)+1}{k}+\sum_{t=1}^{T} c \frac{\log (t)+1}{k} e^{-c(\log (t)+1) /(6 k)}\right)+\frac{4}{\Delta(a)} \sum_{t=1}^{T} e^{-\Delta(a)^{2} c(\log (t)+1) /(4 k)}\right) \\
& \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(c \frac{\log (T)+1}{k}+C\right)+\frac{4}{\Delta(a)} C^{\prime}\right)
\end{aligned}
$$

as soon as $c /(6 k)>1$ and $c \min _{a \neq a_{*}} \Delta(a) / 4 k<1$.
If $\epsilon_{t}=c \log (t) / t$ then

$$
r_{T, \pi} \leq \sum_{a \neq a_{*}}\left(\Delta(a)\left(c \frac{\log (T)(\log (T)+1)}{k}+C\right)+\frac{4}{\Delta(a)} C^{\prime}\right)
$$

5.5 UCB strategy

Proposition 30. Assume we use a $U C B$ strategy with a variance term $\sqrt{\frac{c \log t}{T_{t}(a)}}$ then

$$
r_{n}(t) \leq C_{c} \sum_{a} \Delta(a)+\sum_{a} \frac{4 c \ln t}{\Delta(a)}
$$

with $C_{c}<+\infty$ as soon as $c>3 / 2$
Furthermore

$$
\mathbb{P}\left(A_{t}=a_{*}\right) \geq 1-2 k t^{-2 c+2}
$$

as soon as $t \geq \max _{a} \frac{4 c \ln t}{\Delta(a)^{2}}$.

Proof. By construction,

$$
\begin{aligned}
& T_{t}(a)=\sum_{s=1}^{t} \mathbf{1}_{A_{s}=a} \\
& \leq \sum_{s=1}^{t} \mathbf{1}_{Q_{s}(a)+c_{s}(a)=\max Q_{s}\left(a^{\prime}\right)+c_{s}\left(a^{\prime}\right)} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \mathbf{1}_{Q_{s}(a)+c_{s}(a)=\max Q_{s}\left(a^{\prime}\right)+c_{s}\left(a^{\prime}\right), T_{s}(a) \geq T_{0}(a)} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \mathbf{1}_{Q_{s}(a)+c_{s}(a) \geq Q_{s}\left(a_{*}\right)+c_{s}\left(a_{*}\right), T_{t}(a) \geq T_{0}(a)} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \mathbf{1}_{\max _{T_{0}(a) \leq s^{\prime \prime} \leq t} \frac{1}{s^{\prime \prime}} \sum j=1^{s^{\prime \prime}} R(a)_{(j)}+\sqrt{\frac{c \ln s}{s^{\prime \prime}}} \geq \min _{s^{\prime} \leq t} \frac{1}{s^{\prime}} \sum j=1^{s^{\prime}} R\left(a_{*}\right)_{(j)}+\sqrt{\frac{c \ln s}{s^{\prime}}}} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \sum_{s^{\prime}=1}^{s-1} \sum_{s^{\prime \prime}=T_{0}(a)}^{s-1} \mathbf{1}_{\frac{1}{s^{\prime \prime}}} \sum j=1^{s^{\prime \prime}} R(a)_{(j)}+\sqrt{\frac{c \ln s}{s^{\prime \prime}}} \geq \frac{1}{s^{\prime}} \sum j=1^{s^{\prime}} R\left(a_{*}\right)_{(j)}+\sqrt{\frac{c \ln s}{s^{\prime}}} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \sum_{s^{\prime}=1}^{s-1} \sum_{s^{\prime \prime}=T_{0}(a)}^{s-1} \mathbf{1}_{\mu\left(a_{*}\right) \leq \mu(a)+2 \sqrt{\frac{c \ln s}{s^{\prime \prime}}}}+\mathbf{1}_{\frac{1}{s^{\prime \prime}}} \sum j=1^{s^{\prime \prime}} R(a)_{(j)} \geq \mu(a)+\sqrt{\frac{c \ln s}{s^{\prime \prime}}} \\
& +\mathbf{1}_{\frac{1}{s^{\prime}} \sum j=1^{s^{\prime}} R\left(a_{*}\right)_{(j)} \leq \mu\left(a_{*}\right)-\sqrt{\frac{c \ln n}{s^{\prime}}}} \\
& \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \sum_{s^{\prime}=1}^{s-1} \sum_{s^{\prime \prime}=T_{0}(a)}^{s-1} \mathbf{1}_{\mu\left(a_{*}\right) \leq \mu(a)+2 \sqrt{\frac{c \ln s}{s^{\prime \prime}}}+2 e^{-2 c \ln s} .{ }^{2} .} \\
& \mathbb{E}\left[T_{t}(a)\right] \leq T_{0}(a)+\sum_{s=T_{0}+1}^{t} \sum_{s^{\prime}=1}^{s-1} \sum_{s^{\prime \prime}=T_{0}(a)}^{s-1} \mathbf{1}_{\Delta(a) \leq 2 \sqrt{\frac{2 c \ln t}{s^{\prime \prime}}}}+2 s^{-2 c}
\end{aligned}
$$

choosing $T_{0}(a)=\frac{4 c \ln t}{\Delta(a)^{2}}$

$$
\begin{aligned}
& \leq \frac{4 c \ln t}{\Delta(a)^{2}}+\sum_{s=T_{0}+1}^{t} 2 s^{-2 c+2} \\
& \leq \frac{4 c \ln t}{\Delta(a)^{2}}+C_{c}
\end{aligned}
$$

as soon as $c>3 / 2$.
One deduce thus

$$
r_{n}(t) \leq C_{c} \sum_{a} \Delta(a)+\sum_{a} \frac{4 c \ln t}{\Delta(a)}
$$

Note that we have shown

$$
\mathbb{P}\left(A_{t}=a\right) \leq 2 t^{-2 c}
$$

as soon as $t \geq \frac{4 c \ln t}{\Delta(a)^{2}}$. Thus

$$
\mathbb{P}\left(A_{t}=a_{*}\right) \geq 1-2 k t^{-2 c+2}
$$

as soon as $t \geq \max _{a} \frac{4 c \ln t}{\Delta(a)^{2}}$.

6 Stochastic Approximation

6.1 Convergence of a mean

Proposition 31. Assume X_{i} are i.i.d. such that $\mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=\mu$ and $\operatorname{Var}\left[X_{i} \mid \mathcal{F}_{i-1}\right] \leq$ σ^{2}, let

$$
M_{n}=M_{n-1}+\alpha_{n}\left(X_{n}-M_{n-1}\right)
$$

with $1 \geq \alpha_{i} \geq 0$ then

- if $\sum_{i=1}^{n} \alpha_{i} \rightarrow+\infty$ and $\sum_{i=1}^{n} \alpha_{i}^{2}<+\infty, M_{n} \rightarrow \mu$ in quadratic norm.
- $\alpha_{i}=\alpha$ then $\lim \sup \| M_{n}-\left.\mu\right|^{2} \leq \alpha \sigma^{2}$

Proof. By definition,

$$
\begin{aligned}
M_{n} & =M_{n-1}+\alpha_{n}\left(X_{n}-M_{n-1}\right) \\
& =\left(1-\alpha_{n}\right) M_{n-1}+\alpha_{n} X_{n} \\
& =\prod_{i=1}^{n}\left(1-\alpha_{i}\right) M_{0}+\sum_{k=1}^{n} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right) \alpha_{k} X_{k}
\end{aligned}
$$

thus

$$
\mathbb{E}\left[\left\|M_{n}-\mu\right\|^{2}\right]=\prod_{i=1}\left(1-\alpha_{i}\right)\left\|M_{0}-\mu\right\|^{2}+\sum_{k=1}^{n} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2} \sigma^{2}
$$

Thus it suffices to prove that

$$
\prod_{i=1}^{n}\left(1-\alpha_{i}\right) \rightarrow 0 \quad \text { and } \quad \sum_{k=1}^{n} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2} \rightarrow 0
$$

For the first part, we use $(1-x) \leq e^{-x}$ for $0 \leq x \leq 1$ to obtain

$$
\prod_{i=1}\left(1-\alpha_{i}\right) \leq e^{-\sum_{i=1}^{n} \alpha_{i}}
$$

which goes to 0 if $\sum_{i=1}^{n} \alpha_{i} \rightarrow+\infty$.
For the second one,
$\sum_{k=1}^{n} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2} \leq \sum_{k=1}^{m} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2}+\sum_{k=m+1}^{n} \prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2}$

$$
\begin{aligned}
& \leq \sum_{k=1}^{m} \prod_{i=m}^{n}\left(1-\alpha_{i}\right)^{2} \alpha_{k}^{2}+\max _{k \geq m+1} \alpha_{k} \sum_{k=m+1}^{n}\left(\prod_{i=k+1}^{n}\left(1-\alpha_{i}\right)-\prod_{i=k}^{n}\left(1-\alpha_{i}\right)\right) \\
& \leq e^{-2 \sum_{k=m}^{n} \alpha_{i}} \sum_{k=1}^{m} \alpha_{k}^{2}+\max _{k \geq m+1} \alpha_{k}\left(1-\prod_{i=m+1}^{n}\left(1-\alpha_{i}\right)\right) \\
& \leq e^{-2 \sum_{k=m}^{n} \alpha_{i}} \sum_{k=1}^{m} \alpha_{k}^{2}+\max _{k \geq m+1} \alpha_{k}
\end{aligned}
$$

Choosing $m=n / 2$ yields

$$
\mathbb{E}\left[\left\|M_{n}-\mu\right\|^{2}\right] \leq e^{-\sum_{i=1}^{n} \alpha_{i}}\left\|M_{0}-\mu\right\|^{2}+e^{-2 \sum_{k=n / 2}^{n} \alpha_{i}} \sum_{k=1}^{n / 2} \alpha_{k}^{2} \sigma^{2}+\max _{k \geq n / 2} \alpha_{k} \sigma^{2}
$$

If we assume that $\sum_{k=1}^{n} \alpha_{i} \rightarrow+\infty$ and $\sum_{k=1}^{m} \alpha_{k}^{2}<+\infty$ then all the term in the right hand side goes to 0 .

If we assume $\alpha_{k}=\alpha$ then

$$
\mathbb{E}\left[\left\|M_{n}-\mu\right\|^{2}\right] \leq e^{-n \alpha}\left\|M_{0}-\mu\right\|^{2}+n e^{-n \alpha} \alpha^{2} \sigma^{2}+\alpha \sigma^{2}
$$

which is yields the result.

6.2 Generic Stochastic Approximation

Definition 10 (Generic Stochastic Algorithm). Let H_{t} be a sequence of approximation of an operator h, let $\alpha_{i}(t)$ be a set of non negative sequences, for any initial value X_{0}, we define the following iterative scheme

$$
X_{t+1, i}=X_{t, i}+\alpha_{i}(t) H_{t}\left(X_{t}\right)_{i}
$$

Definition 11. h and H_{t} are compatible if

$$
H_{t}(x)=h(x)+\epsilon_{t}(x)+\delta_{t}(x)
$$

with

$$
\mathbb{E}\left[\epsilon_{t}(x) \mid \mathcal{F}_{t}\right]=0 \quad \text { and } \quad \operatorname{Var}\left[\epsilon_{t}(x) \mid \mathcal{F}_{t}\right] \leq c_{0}\left(1+\|x\|^{2}\right)
$$

and with probability 1

$$
\left\|\delta_{n}(x)\right\|^{2} \leq c_{n}(1+\|x\|)^{2}
$$

with $c_{n} \rightarrow 0$ and either

- it exists a non negative $V C^{1}$ with L-Lipschitz gradient satisfying

$$
\begin{aligned}
\langle\nabla V(x), h(x)\rangle & \leq-c\|\nabla V(x)\|^{2} \\
\mathbb{E}\left[\left\|H_{t}(x)\right\|^{2}\right] & \leq c_{0}^{\prime}\left(1+\|\nabla V(x)\|^{2}\right)
\end{aligned}
$$

- or h is a contraction for the norm considered.

Proposition 32 (Generic Stochastic Approximation). Assume that for any i, we have almost surely

$$
\sum_{i=1}^{T} \alpha_{i} \rightarrow+\infty \quad \text { and } \quad \sum_{i=1}^{T} \alpha_{i}^{2}<+\infty
$$

Then providing h and H_{t} are compatible,

$$
h\left(X_{n}\right) \rightarrow 0 .
$$

Proof. See Neuro-Dynamic programming from Bertsekas and Tsitsiklis.

6.3 $\mathrm{TD}(\lambda)$ and linear approximation

Proposition 33. Provided there is a unique stationary distribution μ on the states, that the basis function are linearily independent and

$$
\sum_{i=1}^{T} \alpha \rightarrow+\infty \quad \text { and } \quad \sum_{i=1}^{T} \alpha^{2}<+\infty
$$

For any $\lambda \in(0,1)$, the $T D(\lambda)$ algorithm with linear approximation converges with probability one. The limit $\boldsymbol{w}_{*, \lambda}$ is the unique solution of

$$
\Pi_{\mu} \mathcal{T}_{\pi}^{(\lambda)} \mathbb{X} \boldsymbol{w}_{*, \lambda}=\mathbb{X} \boldsymbol{w}_{*, \lambda}
$$

Furthermore,

$$
\left\|\mathbb{X} \boldsymbol{w}_{*, \lambda}-v_{\pi}\right\|_{2, \mu} \leq \frac{1-\lambda \gamma}{1-\gamma}\left\|\Pi_{\mu} v_{\pi}-v_{\pi}\right\|_{2, \mu}
$$

Proof. See Tsitsiklis and Van Roy.
Proof. Assume \boldsymbol{A} is invertible and let $\boldsymbol{w}_{T D}=\boldsymbol{A}^{-1} \boldsymbol{b}$

$$
\begin{aligned}
\mathbb{E}\left[\boldsymbol{w}_{t+1}-\boldsymbol{w}_{T D} \mid \boldsymbol{w}_{t}\right] & =\boldsymbol{w}_{t}+\alpha\left(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{w}_{t}\right)-\boldsymbol{w}_{T D} \\
& =(\operatorname{Id}-\alpha \boldsymbol{A})\left(\boldsymbol{w}_{t}-\boldsymbol{w}_{T D}\right)
\end{aligned}
$$

If we prove that \boldsymbol{A} is positive definite then \boldsymbol{A} will be invertible and the asymptotic algorithm will converge provided α is small enough.

In the continuous task setting,

$$
\begin{aligned}
\boldsymbol{A} & =\sum_{s} \mu(s) \sum_{a} \pi(a \mid s) \sum_{r, s^{\prime}} p\left(r, s^{\prime} \mid s, a\right) \boldsymbol{x}(s)\left(\boldsymbol{x}(s)-\gamma \boldsymbol{x}\left(s^{\prime}\right)\right)^{t} \\
& =\sum_{s} \mu(s) \sum_{a} \pi(a \mid s) \sum_{s^{\prime}} p_{\pi}\left(s^{\prime} \mid s\right) \boldsymbol{x}(s)\left(\boldsymbol{x}(s)-\gamma \boldsymbol{x}\left(s^{\prime}\right)\right)^{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s} \mu(s) \boldsymbol{x}(s)\left(\boldsymbol{x}(s)-\gamma \sum_{s^{\prime}} p_{\pi}\left(s^{\prime} \mid s\right) \boldsymbol{x}\left(s^{\prime}\right)\right)^{t} \\
& =\boldsymbol{X}^{t} \boldsymbol{D}\left(\operatorname{Id}-\gamma P_{\pi}\right) \boldsymbol{X}
\end{aligned}
$$

where D is a diagonal matrix having $\mu(s)$ on the diagonal.
As P_{π} is a stochastic matrix, the row sums of $\boldsymbol{D}\left(\operatorname{Id}-\gamma P_{\pi}\right)$ are non negative. Recall that μ is such that $\mu^{t} P_{\pi}=\mu^{t}$ and thus

$$
\begin{aligned}
\mathbf{1}^{t} \boldsymbol{D}\left(\mathrm{Id}-\gamma P_{\pi}\right) & =\mu^{t}\left(\mathrm{Id}-\gamma P_{\pi}\right) \\
& =\mu^{t}-\gamma \mu^{t} P_{\pi} \\
& =(1-\gamma) \mu^{t}>0
\end{aligned}
$$

