
MAP551. Systèmes dynamiques pour la modélisation et la simulation
des milieux réactifs multi-échelles (2018-2019)

Mini-Projet : Celestial Mechanics

Students :
Advisers : Ruben Di Battista

1 Introduction

In this mini-projet, we focus on the simulation of a N -body problem in celestial mechanics. The
purpose of the mini-project is to combine the Barnes-Hut algorithm with a symplectic integrator in
order to simulate the interaction of two galaxies.

2 Setting of the N-body problem

In physics, the N -body problem consists of the computation of all pair interactions in a system
consisting of N particles. The two best-known cases are gravitational interactions, e.g. between the
stars in a galaxy, and electrostatic interactions between atoms represented as point charges. The
interactions can be described by a potential energy or by the forces acting on each particle, i.e. the
derivatives of the potential energy with respect to the positions. The latter case is practically more
relevant in simulation algorithms.

The N-body problem can be formulated as

Fi =
∑
j 6=i

wiwjf(xi − xj) (1)

where xi are the positions of the particles, Fi is the total force acting on particle i, wi is a parameter
describing particle i (i.e. mass or charge), and f(dij) describes the functional form of the interactions,
which depend only on the distance vector dij between two particles.

In the following, we will be interested in simulating a galaxy consisting of many bodies (stars,
dusts, planets, ...). These bodies are represented by their position, their velocity and their mass. We
use Newton’s second law which says that mass times acceleration is equal to the total force on each
mass point. The forces are computed using Newton’s law of universal gravitation:

Fij = Gmimj(xj − xi)
|xj − xi|3

, (2)

where mi is the mass, xi the position of the particle i. The distance between particles i and j is
denoted |xj − xi|.

The acceleration is then given by

mi
d2xi

dt2
=

∑
j 6=i

Fij . (3)

As you can see, we have to solve a system of ODE. There are several methods to solve this equation
numerically. But before we choose one of theses schemes, let us take a look at the computation of the
forces.

Suppose that we have n bodies. A naive algorithm to compute the forces is of complexity n2 !!
It is a really slow algorithm. It is possible to improve the computation of the interactions between

1

particles by using the Barnes-Hut algorithm. The idea is to divide the n bodies recursively into groups
according to spatial proximity, by storing them in a quad-tree (for a 2D problem) and to say that if
a group of bodies is sufficiently far away from any other bodies, we can approximate its gravitational
effects by using its center of mass. The center of mass of a group of bodies is the average position of
a body in that group, weighted by mass. This algorithm is of complexity n logn.

2.1 Building the tree

Let’s take the example given on this excellent post http://arborjs.org/docs/barnes-hut. We
encourage you to read this article carefully to acquire a deeper understanding of the algorithm.

Figure 1: Example space.

The generated tree is the following

Figure 2: Example tree.

The algorithm for the construction of the tree is to insert the bodies one after another. We use a
recursive procedure to insert a body b into the tree at node x.

• if the node x is empty, put the new body b here,

• if the node x is a non-empty quadrant, find the right sub-quadrant for body b and apply the
procedure recursively substituting this sub-quadrant for x,

• if the node x is a body c, subdivide the region until bodies b and c are in different quadrants.
Then, insert bodies b and c in the right quadrants.

The most ”pythonic” way to represent a tree is to define a class representing a node which contains
a list of subnodes. However, such a representation is difficult to use efficiently with Cython, Pythran
or Numba. It is preferable to store the tree as an array as follows:

2

Figure 3: Tree array.

Figure 4: Example tree array.

In our example, the construction of the tree will give us the array where 0, 1, . . . , 7 represent the
bodies A,B, . . . ,H, −1 means that there is no body on this quadrant. The cell index is represented
by an integer greater than n− 1, where n is the number of bodies. To access the cell k in this array,
we just have to compute the index n+ 4(k + n).

2.2 Calculating the mass and the center of mass

Now that we have constructed our tree, we can calculate the center of mass and the total mass of the
cell using this algorithm

1. initialize the arrays ‘total mass‘ and ‘center of mass‘ with size nbodies + ncell

2. store the mass and the coordinates of the bodies at the beginning of the arrays ‘total mass‘ and
‘center of mass‘

3. loop over the cells starting at the end (i.e. the top-level node)

(a) find the elements of the cell
(b) sum the masses of all elements that are bodies or cells
(c) compute ‘center of mass‘ as the sum of the coordinates multiplied by the mass of each

element
(d) normalize ‘center of mass‘ by ‘total mass‘

2.3 Calculating the forces

To calculate the total force acting on body b, we use the following recursive procedure, starting with
the root of the quad-tree

1. If the current node is an external node (and it is not body b), calculate the force exerted by the
current node on b using Newton’s law of universal gravitation, and add this amount to b’s total
force.

2. Otherwise, calculate the ratio s
d . If s

d < θ, treat this internal node as a single body, and calculate
the force it exerts on body b by using the ‘center of mass‘ for the position and the ‘total mass‘
for the mass using again Newton’s law of universal gravitation, and add this amount to b’s total
force.

3. Otherwise, run the procedure recursively on each of the current node’s children.

3

2.4 Solving the ODE with a standard scheme

Now that we can compute the forces of our system, we can solve the ODE by using an iterative
method. Suppose that you want to solve the following ODE

y′(t) = f(t, y).

The Adam Bashforth of order 6 solves this equation numerically via the formula

yk+1 = yk + ∆t
5∑

j=0
ajf(tk−j , yk−j), (4)

where
a0 = 4277

1440 , a1 = −7923
1440 , a2 = 9982

1440 ,

a3 = −7298
1440 , a4 = 2877

1440 , a5 = −475
1440 .

(5)

To initialize this scheme, we will use a Runge Kutta method of order 4 to calculate the first solution
steps. In the N-body problem, the unknowns are the coordinates and the velocities of the system.
Calculating the forces gives us the acceleration of the system. With this acceleration, we can calculate
the velocities at the time step k + 1. The new positions at time step k + 1 are calculated using the
velocities at time step k, k − 1, . . . , k − 5.

3 Solar system

Using the orignal Adams-Bashforth scheme and the newly implemented composition method we have
studied in the PC9 (optimized 8-15), propose a study of the simple problem of the dynamics of the
solar system already implemented in the notebook and compare the two methods.

4 Galaxy interactions

Relying on the notebook provided in collaboration with Loic Gouarin and Roland Denis, provide a
simulation of the interaction of two Galaxies using the two schemes and analyze the observed dynamics.

The students will also be able to rely on
http://beltoforion.de/article.php?a=barnes-hut-galaxy-simulator.

4

