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Backward error analysis is the most powerful tool for thedgtaf the long-time
behaviour of numerical integrators.

1 Modified differential equation

Consider an ordinary differential y&c\' #1(%0)
equation -
! = 1) =1

produces the approximations

and a numerical methaodl, (y) which }J’ Yni1 = Pp(yn)

Y0, Y1, Y2y - - - - y=fuy)

A forward error analysis consists of the study of the ergersyy, (o) (local error)
andy, — ¢nn(yo) (global error) in the solution space. The idea of backwardrer
analysis is to search forraodified differential equatioy = f,(y ) of the form

J=f@)+hfo(§)+ R f(T) + ..., (1)

such thaty,, = y(nh), and to study the difference of the vector fielfls/) and
frn(y). We remark that the series in (1) usually diverges and thabhas to truncate
it suitably for a rigorous analysis. For the moment we contemselves with a
formal analysis without taking care of convergence issues.
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For the computation of the modified equation (1) wegput y(t) for a fixedt,
and we expand the solution of (1) into a Taylor series

Jt+h) = y+h(fy)+hfaly) + B2 fs(y) +...)

h2 /! / (2)
+ E(f () +hfsy)+.. ) (f) +hfaly)+..) +...
We assume that the numerical methindy) can be expanded as
Ci(y) =y + hf(y) + Wda(y) + Kds(y) + ... (3)

(the coefficient ofh is f(y) for consistent methods). The functiorgy) are
known and are typically composed ffy) and its derivatives. To gétnh) = y,
for all n, we must haveg/(t + h) = ®,(y). Comparing like powers of in the
expressions (2) and (3) yields recurrence relations fofuhetionsf;(y):

fly) = doly) — 5 ' F(y) (4)
fly) = dsly) = 5 (£ D@ + 11T®)) = 5 (FRW) + W),

Example 1 Consider the scalar differential equatigr- 32, y(0) = 1 with exact
solutiony(t) = 1/(1 — t). It has a singularity at = 1. We apply the explicit
Euler methody,,.1 = v, + hf(y,) with step sizeh = 0.02. The above procedure
for the computation of the modified equation is implemented Maple script

> fcn =y > y'2:

> nn = 6:

> fcoe[l] = fen(y):

> for n from 2 by 1 to nn do

> modeq := sum(h’j =*fcoe[j+1], j=0..n-2):

> diffy[0] = v:

> for i from 1 by 1 to n do

> diffy[i] := diff(diffy[i-1],y) * modeq:
> od:

> ytilde := sum(h’k = diffy[k]/k!, k=0..n):

> res := ytilde-y-h *fen(y):

> tay := convert(series(res,h=0,n+1),polynom):
> fcoe[n] := -coeff(tay,h,n):

> od:

> simplify(sum(h’j *fcoe[j+1], j=0..nn-1));
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Figure 1: Solutions of the modified equation for the problem 2, y(0) = 1.

Its output is

o~ o~ ~ ~ ~ 1~ 157 ~
y:y2—hy3+h2;y4—h3§y5+h4%y6—h5%57y7j:.... (5)

Figure 1 presents the exact solution (dashed curve), thencahsolution (thick
dots), and the solution of the modified equation, when trtettafter 1, 2, 3, and
4 terms. We observe an excellent agreement of the numedhkalan with the
exact solution of the modified equation.

A similar program for the implicit midpoint rule computestimodified equa-
tion

~ ~2 g92l~4  4l~e ;611 ~8 ;8 3 ~q0

Y=y Ny Ay A sy R ey (6)
and for the classical (explicit) Runge—Kutta method of ortle

~  ~2 41 <6 6 65 ~g ;717 9 8 19 ~10

y=y-—nh 51 Y +h £ Y h o5 Y +h 1Y +.... (7)

We observe that the perturbation terms in the modified eguatre of size
O(h"), wherer is the order of the method. This is true in general.

Theorem 1 Suppose that the methgg,; = ®,(y,) is of orderr, i.e.,

®,(y) = on(y) + W 6,41 (y) + O(R),

wherey; (y) denotes the exact flow ¢f= f(y), andh™ 14, (y) the leading term
of the local truncation error. The modified equation thersfads

J=F@)+ N o @)+ @)+, F(0) =0 (8)

with f,1(y) = 6,41 (y).

Proof. The construction of the functions(y) (see the beginning of this section)
shows thatf;(y) = 0 for 2 < j < rifand only if ®,(y) — on(y) = O(h"*). O
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Example 2 We next consider the Lotka—Volterra equations

¢=qlp—-1), p=p2-9q),

and we apply (a) the explicit Euler method, and (b) the syctd=uler method,
both with constant step size= 0.1. The first terms of their modified equations

are h
@ d=qlp—1) - 590" —pg+1)+OR?),

. h
p==plq—2) = 5p(¢* = pg— 3¢+ 4) + O(h?),
. h
®  ¢=aqlp—1) = 5a(p* +pg—4dp+ 1)+ O(R?),
. h
p=—plg—2)+5p(d* +pq—5q+4) + O(h?).

Figure 2 shows the numerical solutions for initial valuedicated by a thick dot.
In the pictures to the left they are embedded in the exact flotheodifferential
equation, in those to the right they are embedded in the flotheofodified dif-
ferential equation, truncated after theterms. For the symplectic Euler method,
the solutions of the truncated modified equation are pesj@di is the case for the
unperturbed problem.

(a) explicit Euler,s = 0.1
[
I

Figure 2: Numerical solution compared to the exact and nmextiffows
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Figure 3: Study of the truncation in the modified equation

In Figure 3 we present the numerical solution and the exdatisn of the
modified equation, once truncated after théerms (dashed-dotted), and once
truncated after the? terms (dotted). The exact solution of the problem is inctlde
as a solid curve.

Example 3 For a linear differential equation with constant coeffi¢gen

g=A4y,  y(0)=yo
we consider numerical methods which yield.; = R(hA)y,, whereR(z) is the
stability function of the method. In this case we get= R(hA)"y,, so that
Yn = y(nh), wherey(t) = R(hA)""yy = exp(LIn R(hA))yo is the solution of
the modified differential equation

5= % In R(hA) G = (A + hbyA? + 23 A® + .. )G (9)

with suitable constants,, bs,... . SinceR(z) = 1+ z + O(z?) andIn(1 +
r) = x — 2?/2 + O(2*) both have a positive radius of convergence, the series (9)
converges foth| < hy with someh, > 0. This is an exceptional situation.

2 Modified Hamiltonian for symplectic integrators

We consider a Hamiltonian systein= J~'V H(y) with smoothH (y), and we
show that the modified equation of symplectic methods is ldmiltonian.

Theorem 2 (Existence of a local modified Hamiltonian)If a symplectic method
®,,(y) is applied to a Hamiltonian systemn= J~'V H(y) with a smooth Hamil-
tonianH : U — R, then the modified equation (1) is locally Hamiltonian.

More precisely, for every, € U and for all j there exist smooth functions
H,(y), such thatf;(y) = J~'*V H;(y) on a suitable neighborhood g§.



Proof.! 2 Assume thaf;(y) = J-'VH,(y) for j = 1,2, ..., r (this is satisfied for
r =1, becausd(y) = f(y) = J-'VH(y)). We have to prove the existence of a
HamiltonianH,,(y). The idea is to consider the truncated modified equation

J=f@)+hfo(§)+...+h @), (10)

which is a Hamiltonian system with Hamiltoni&h(y)+hHy(y)+. . .+h" 1 H,(y).
Its flow ¢, (yo), compared to that of (1), satisfies

®1,(y0) = @rn(yo) + K fria(yo) + O(R"2),
and also
P (yo) = ln(yo) + K fliy (yo) + O(R7H2).

By our assumption on the method and by the induction hypathés andy, ,
are symplectic transformations. Together with,(yo) = I + O(h), this implies

J = (yo)" TP}, (yo) = J + 1" (f;+1(yo)TJ + Jf;+1(yo)) +O(h™?),

The matrixJ f;,, (y) is therefore symmetric, and the (local) existencélof; (y)
satisfyingf,.1(y) = J 'V H,,,(y) follows from the Integrability Lemma. O

The application of the Integrability Lemma shows that thedified Hamilto-
nian is globally defined ot, if U = R??, or if U is star-shaped, or {f’ is simply
connected.

3 Near conservation of the total energy

As a first application of backward error analysis we studyltimg-time energy
conservation of a symplectic numerical scheme (of ordepplied to Hamilto-
nian systemg = J 'V H(y). It follows from Theorem 2 that the corresponding
modified differential equation is also Hamiltonian. Afteurication we get

H™N(y) = H(y)+ b Hya(y) + ..+ WV Hy(y), (11)

which we assume to bglobally defined on the same open set as the original
HamiltonianH (y).

1G. Benettin & A. Giorgilli,On the Hamiltonian interpolation of near to the identity sylactic
mappings with application to symplectic integration algoms J. Statist. Phys. 74 (1994) 1117—
1143.

2Y.-F. Tang,Formal energy of a symplectic scheme for Hamiltonian systand its applica-
tions (I), Computers Math. Applic. 27 (1994) 31-39.
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Theorem 3 Consider a Hamiltonian system with smodth: U — R (where
U c R?), apply a symplectic numerical methdg, (y) with step sizeh, and
assume that its modified Hamiltonian is globally defined/on

If the numerical solution stays in the compact&et U, then we have asymp-
totically forh — 0

H™N(y,) = H™(yo) + O(t hY)
H(yn) = H(yo) + O(h")
over time intervals of sizé = nh < C h= N1,

Proof. We letyn (o) be the flow of the truncated modified equation. The effect
of the truncation is thaty; .1 — o~ (y;)|| < C AN L. Since the truncated mod-
ified equation is Hamiltonian wit [V (y) of (11), we haveH™ (o (y;)) =
HWI(y,) for all timest. Using a globalr-independent Lipschitz constant for
HIN on the compact set, the statement on the long-time conservatioof!

is a consequence of

n—1

H™ y,) — H™ (o) = Z(H[N](yjﬂ) — g (?/g))
= Z(H[N](ijrl)_H[N}(@N,h(yj))> _ O(nhNJrl),

The statement for the Hamiltonidi follows from (11), becaus#, . (y) + ...+
hN="=1Hy(y) is uniformly bounded otk independently of: and V. O

If the Hamiltonian and the integrator are analytic, it is @b to prove expo-
nentially small error bounds on exponentially large tinteinals. More precisely,
for sufficiently smalli there existsV = N(h) ~ h~! such that in the estimates
of the theorem above" can be replaced by /",

Example 4 The mathematical pendulum is a system with one degree afdrae
1

having the HamiltonianH (p, ) = § p® — cosq. Since the Hamiltonian and the
vector field arer-periodic ing, it is natural to consideq as a variable on the
circle S*. Hence, the phase space of poifisq) becomes the cylindek x S*.
Figure 4 shows some level curves@fp, ¢) together with numerical solutions.
Theorem 3 explains the near conservation of the Hamiltowidéim the sym-
plectic Euler method (existence of a global modified Hamik will be dis-
cussed later). This is illustrated in Figure 5. The linedft aif the numeri-

cal Hamiltonian for non-symplectic methods can be explhiog a computation
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Figure 4: Solutions of the pendulum problem; explicit Eudeth step sizeh =
0.2, initial value (po, ¢o) = (0,0.5); symplectic Euler with, = 0.3 and initial
valuesgy = 0, po = 0.7, 1.4, 2.1; Stormer—Verlet withh = 0.6.

11
J ’

N

= Error in total energy

Figure 5: Error in the total energy for the explicit and syeqtic Euler methods
applied with step sizé = 0.005 and initial value(py, qo) = (2.5, 0).

similar to that of the proof of Theorem 3. From a Lipschitz dition of the
Hamiltonian and from the standard local error estimate, Weaio H(y,1) —
H(pn(y,)) = O(h™+1). SinceH (on(y,)) = H(y,), @ summation of these terms
leads to

H(y,) — H(yo) = O(th") for t = nh. (12)

Example 5 In the numerical experiment of Figure 6 we study the effetlarfje”

step sizes for the pendulum problem. We have dra@r)00 steps of the numer-
ical solution of the implicit midpoint rule for various stegizesh and for ini-

tial values(po, ¢0) = (0, —1.5), (po,q0) = (0,—2.5), (po,q0) = (1.5, —7), and

(po, q0) = (2.5,—m). They are compared to the contour lines of the truncated
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Figure 6: Numerical solutions of the implicit midpoint rukgth large step sizes

modified Hamiltonian
2 h2

HY (p,q) = % —cosq + = <COS(2(]) — 2p° cos q),

This shows that for step sizes as largé as 0.7 the Hamiltonian/ ! is extremely
well conserved. Beyond this value, the dynamics of the nigalkemethod soon
turns into chaotic behaviour.

Example 6 (Modified Hamiltonian of the Stormer—\Verlet method) We present
the modified Hamiltonian for a separable Hamiltoniéiip, ¢) = T'(p) + U(q)
with T'(p) = 3 p"p. Using the notation{4, B} = V,A"V,B — V,A"V,B for
the Poisson bracket of two functions depending@mdg, it is given by

H =T+U+h? (11—2{T, {T,U}} - i{U,{U,T}D

1 1
1t (= AT AT AT AT, UM} + s {UAT AT AT U} )
1 1
— A UAUATAT U + s {T AT {UAU, T} ) + 0080).

This modified Hamiltonian can be computed with the recurgik@cedure ex-
plained in the beginning of this lecture. A more elegant\adgion is by the use of
the symmetric Baker—Campbell-Hausdorff formula (cf. Skc#.2 of the mono-
graph on “Geometric Numerical Integration”). Siné&p, q) it is composed of
derivatives ofl’ andU, it is globally defined.

9



4 Counter-example: Takahashi—-Imada integrator

We consider a second order differential equatjos f(q), and we assume that
it is Hamiltonian, i.e.,f(q) = —VU(q). Takahashi & Imadanoticed that the

accuracy of the Stormer—Verlet discretization is greatiproved by adding the

expressionh? f'(q) f(q) with o = % to every force evaluation. This yields

Prire = Put o (I+ah?f(g.) f(g.)

Gn+1 = Qn+hpn+1/2 (13)
h
Pn+1 = Dnit1/2 + 9 (I + ath/(Qn-l-l))f(Qn—i—l)?
which is still symplectic, because fgi{q) = —VU(q) it can be interpreted as

applying the Stormer—Verlet method to the Hamiltoniarteyswith potential
Vig) =Ulq) — 5 1 [IVU ()]

Simplified Takahashi—Imada method. To avoid the derivative evaluation of the
vector fieldf(¢), which corresponds to a Hessian evaluationffer) = —VU (q),
we replace(I + ah?f'(q)) f(q) with f (¢ + ah?f(¢)) and thus considér

h
Pnt1/2 = Pnt g f(qn + ozhzf(qn))
n+1 = Gn+ hpn+1/2 (14)
h
Dnt1 = DPnt1/2 + 5 f(qn+1 + ath(QnJrl))

which is aO(h®) perturbation of the method (13). The method is volume preser
ing and thus symplectic for problems with one degree of foeedTo see this, note
that (14) is a composition of shears (mappings of the fgwm) — (p + a(q), q)
and(p,q) — (p,q + hp)), and shears always preserve the volume.

Modified differential equation. Substituting in the modified Hamiltonian of
Example 6 the potentidl with U — $r2(|VU|? = U — $h*{U,{U,T}} yields
the modified Hamiltonian of the symplectic Takahashi—Imiadegrator (13):

~

H(p,q) = H(p,q) + h*Hs(p,q) + h*Hs(p, q)

3M. Takahashi and M. Imadavonte Carlo calculation of quantum systems. Il. Higher orde
correction.J. Phys. Soc. Jpn., 53:3765-3769, 1984.

4J. Wisdom, M. Holman, and J. Toun@ymplectic correctordn J. E. Marsden, G. W. Patrick,
and W. F. Shadwick, editor$ntegration Algorithms and Classical Mechanigsgges 217-244.
Amer. Math. Soc., Providence R. ., 1996.
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where (for one degree of freedom)
1 1
Hy(p,q) = 59" Uyla) - (ﬂ + %) Ug(0)Uy(9) (15)
1 1
Hs(p,q) = ~ 750 P Ugqaa(q) — 1_20172 Ug(@)Ugge(q) + - - (16)

Since the method (14) differs from (13) only by¥15) perturbation, we find that
the modified differential equation of (14) satisfies

p = =V, H(p,q)+ 5 h*a (f'(f, ) () + O(h°)

N (17)
¢ = V,H(p,q) + O(h®)

Notice that for potential&/(q) that are2r-periodic, the function (p, q) is also
2m-periodic ing, but the integral of the perturbation need notheperiodic.

To study energy conservation of the simplified Takahashadanintegrator
(14) we notice that along the (formal) exact solution of itsdified differential
equation (17) we have

d Ty 1 1 1

T H(p,q) = 5 h'a? pr (fs )+ O(hﬁ) Y h'a? Uyge(p, Uy Uy) + O(hG)a
(18)

where we have used(q) = —VU(q) = —U,(q). In general, the expression on

the right-hand side of (18) cannot be written as a total tgffiéal. However, this

formula yields much insight into the long-time energy cawmation of (14)°

e Bounded error in the energy without any drifor problems with one de-
gree of freedom the right-hand side of (18) can be writterf.d3(¢(t))
with F'(q) = U,,(q)U,(q)* (neglecting terms of siz&(h%)). If U(q) is
T-periodic ing, andfOTquq(q)Uq(q)qu = 0, then the antiderivative (or in-
definite integral)F(¢) of U,,,(q)U,(¢q)* is globally defined on the circlg’.
This is the situation for the pendulum, whérgq) = — cosq. We expect
that also higher order terms can be treated in this way, $athenergy drift
can be observed in this situation (see Figure 7, whefe 0.2, and initial
valuesg(0) = 0, p(0) = 2.5 are used).

e Linear energy drift. In general, without any particular assumption on the
potential, the numerical energy will have a drift of si2¢th?). E.g., for a
non-symmetrically perturbed pendulum withig) = — cos ¢+ 0.2 sin(2q),
for which [ Uy, (q)U,(q)*dq ~ 3.77 (see Figure 7).

SE. Hairer, R.l. McLachlan, and R.D. SkeelOn energy conservation of the simplified
Takahashi—-Imada metho&SAIM: M2AN 43:631644, 2009.
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Figure 7: Error in the shifted modified enerd¥(p,., ¢.) + h* Hs(p, q) along the
numerical solution of the simplified Takahashi—-Imada métho

Random walk behavior — drift like square root of timdnder the assump-
tion that the solution of the modified differential equatisrergodic on an
invariant setA with respect to an invariant measuyrgwe have

t
i < [ F(p).0()) ds = [ Pla) utao) (19)
wherex = (p, ¢) and the functiorF’(x) is the right-hand side of (18). Again
there will be a linear drift of siz&(th*) in general. However, in the pres-
ence of symmetries, the integral of the right-hand side 8) (4 likely to
vanish and the numerical Hamiltonian will look like a randwaslk, so that
there will be a drift of size)(y/t h*).

F e T
6F x10°6 A . Jk” “”'“W);‘ ““’ﬁ? = el S
[ . / w/ s W
b et g ""“’“’f it % e L E i ;
4 e e ﬁ
i Lﬂ&w;&%:ﬁ{ %”H : :
—R 1. L
6' | ) ) .ﬂ\u . Hﬂ%hmﬁlnmj
0 1

Figure 8: Error in the modified energ¥(p,,, ¢,) + h*Hs(pn, q,,) of the N-body
problem (V = 9. Lennard-Jones potential) along the numerical solutiothef
simplified Takahashi—Imada methdd trajectories). Included is the average over
400 trajectories as a function of tim@ (= 0.091 x 10-% at¢+ = 2 x 10%) and the
standard deviatioro(= 3.08 x 107 att = 2 x 10%).
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5 Existence of global modified Hamiltonian

The theory of generating functions shows that every syntigleae-step method
®y, : (p,q) — (P, Q) can be locally expressed in terms of a funct&®, ¢, h) as

p=P+V,S(P,qh), Q=q+V,S(P,q,h). (20)

This property allows us to prove the existence of a globadfireed modified
Hamiltonian, whenever the generating function is globd#§ined.

Theorem 4 Assume that the symplectic methiagdhas a generating function

with smoothS; (P, ¢) defined on an open sét. Then, the modified differential
equation is a Hamiltonian system with

H(p,q) = H(p,q) + h Ha(p,q) + h*Hs(p.q) + ... , (22)
where the function#/; (p, ¢) are defined and smooth on the wholdof
Proof. The exact solutioiP, Q) = (p(t), q(t)) of the Hamiltonian system corre-
sponding toH (p, q) is given by
p=P+VS(Pqt), Q=q+VeS(P.q.t),
whereS is the solution of the Hamilton—Jacobi differential egaati

0;,S(P,q,t) = H(P,q+VpS(P,q,t)),  S(P,q,0)=0. (23)

Since H depends on the parameter this is also the case faf. Our aim is to
determine the functiond(p, ¢) such that the solutiofi( P, ¢, t) of (23) coincides
fort = h with (21).
We first express$(P, ¢, t) as a series
g(P7Q7t) = tgl(P7Q7h) +t2§2(P7Q7h) +t3§3(P7Q7h) oy

insert it into (23) and compare powerstofThis allows us to obtain the functions
S;(p, ¢, h) recursively in terms of derivatives ¢f:

Si(p,q,h) = H(p,q)
(% - 5 ) wah) (24)

~ OH 98, 1/ 0*H ;19S, 85

2 §2(p7 q, h) =
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We then writeS; as a series

Si(p,a,h) = Sji(p.q) + 1 Sj2(p, q) + B2Sjs(prq) + - ..,

insert it and the expansion (22) féf into (24), and compare powers bf This
yields Six(p, q) = Hi(p,q) and forj > 1 we see thab,(p, ¢) is a function of
derivatives ofH; with | < k. B B

The requirement(p, q,h) = S(p, q, h) finally showsS;(p,q) = Si1(p, q),

Sa(p, q) = S12(p, q) + Sa1(p, q), etc., so that
S;(p,q) = H;(p, q) + “function of derivatives offf;(p, ¢) with k& < 5.

For a given generating functiofi( P, ¢, k), this recurrence relation allows us to
determine successively thé; (p, ¢). We see from these explicit formulas that the
functionsH; are defined on the same domain as$he O

Example 7 (Symplectic Euler Method) The symplectic Euler method is noth-
ing other than (20) withS(P,q,h) = h H(P,q). Following the constructive
proof of Theorem 4 we obtain

~ h h?

H = H—SHH,+ 5 (prﬂj + Ho H? + 4Hququ) +.... (25)
as the modified Hamiltonian of the symplectic Euler method.

Theorem 5 A symplectic Runge—Kutta method (iga;; + b;a;; = b;b; for all
i, 7) applied to a system with smooth Hamiltoniéin: U — R (with U C R?? an
arbitrary open set) has a modified Hamiltonian (22) with sthdanctionsH;(y),
defined globally ort/.

Proof. Let (P;,Q;) be the internal stages of an implicit Runge—Kutta method
(p,q) — (P, Q). Itfollows from implicit differentiation of the Runge—Ki& equa-
tions that, under the conditiona;; + b;a;; = b;b; for all 7, j, the Runge—Kutta
formulas can be written as (20) with (an idea of Lasagni 1988)

S(Pq,h) =hY biH(P, Q) = b Y biaiiHy(P, Qi) Hy(P}, Q).
=1

i,j=1
This shows that the coefficient functio$(P, ¢) can be expressed in terms of
derivatives ofH (P, q). O

This theorem extends to partitioned Runge—Kutta methadsdmg the Stormer—
Verlet integrators. Theorem 4 implies that all methods Basegenerating func-
tions (e.g., variational integrators) have a globally dedimodified Hamiltonian.
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6 Completely integrable Hamiltonian systems

There is an interesting class of Hamiltonian problems, foiclv symplectic inte-
grators have an improved long-time behavior of the globareHere and in the
following, we denote the standa#iedimensional torus by

T = RY/27Z¢ = {(6, mod2~, ... 0, mod2r) ; #; € R}.

Definition 1 We call a Hamiltonian systewompletely integrable, if, for every
(po, o) in the domain off (p, q), there exists a symplectic diffeomorphism

(p,q) = (a,0), 2m-periodicing

betweenl/ x T¢ andU c R?? (whereU is a neighborhood ofpy, ¢o), andV is
open), such that the Hamiltonian in the new variables besome

H(p,q) = H(Y(a,0)) = K(a).
The variables(a,0) = (a4,...,aq,6; mod2r,...,0, mod2r) are called

action-angle variablesln these variables, the system becomes

a; =0, 0;=wi(a), i=1,...,d
with w;(a) = ;2-K(a), and can be solved directly(t) = ai, 0:(t) = 0io +
wi(ap) t, SO that we get periodic (or quasi-periodic) flow

(p(t),q(t)) = (a0, b0 + w(ao) t).
The following theorem gives a practical characterizatibimtegrability?.
Theorem 6 (Arnold-Liouville) Suppose that for the HamiltoniaH (p, ¢) there
exist smooth function$}, = H, F», ..., F;: U — R, U C R* satisfying

(11) Fy,..., Fyareininvolution, i.e.{F;, F;} = 0, where the Poisson bracket
is given by{F, G} = V,F'V,G — V,F''V,G,
(12) the gradients of 1, ..., F,; are everywhere linearly independent,

(I3) the solution trajectories of the Hamiltonian systems witlinHltonian F;
(fori=1,...,d) exist for all times and remain ify.

If, in addition, the level setg(p,q) € U; Fi(p,q) = ¢;,i = 1,...,d} are com-
pact, then the Hamiltonian system is completely integrable

6\.I. Arnold, Mathematical Methods of Classical Mechani@pringer-Verlag, New York,
1978, second edition 1989.
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Example 8 (Motion in central field) Consider the Hamiltonian

1
H=g@i+p)+V(r), r=\/a+a,

with a potentiall/(r) that is defined and smooth fer > 0. The Kepler prob-
lem corresponds t&'(r) = —1/r, and the perturbed Kepler problemitdr) =
—1/r — p/(3r%). Changing to polar coordinates (see Exercises 3 and 4)

@1\ _ [rcose pr\ [ cose  sing \ (p (26)
g2)  \rsing/’ ps) \—rsing rcosep) \p2/)’
this becomes

1 P>
H(prapgmrv 90) = é(p?" + 7”_%20> + V(T)

The system has the angular momentlima- p, as a first integral, sinc& does
not depend orp. Clearly,{H, L} = 0 everywhere. The gradients éf and L
are linearly independent unless bgth = 0 andp? = r°V'(r). By inserting
po, = 2r*(H — V(r)) and eliminatingr this becomes a condition of the form
«(H, L) = 0, which for the Kepler problem reads*(1 + 2HL?*) = 0. The
conditions of Theorem 6 are thus satisfied on the domain

U = {(pr,ppsr9) s 7> 0, a(H, L) #0}.

Example 9 (Toda lattice) This is a system of particles on a line interacting pair-
wise with exponential forces. The motion is determined lgyHamiltonian

H(p,q) = Z(%pi + exp(qr — Qk+1)>

k=1

with periodic boundary conditions},.; = ¢;. With the notationu;, = —%pk,
be = 3 exp(3(qk — gr+1)), all n eigenvalues of the matrix

aq bl bn

bl a9 b2 0

L = by '
0 . Ap—1 bn—l
bn bnfl G,

are first integrals of the system. It can be shown (here witpooof) that this
system is completely integrable

Many important problems in celestial mechanics are smatupeations of
integrable systems, e.g., planetary motion.
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7 Linear error growth for integrable systems

We consider a completely integrable Hamiltonian system

with real analytic Hamiltonian. We lep, q) = (a, ) be the symplectic dif-
feomorphism that transforms (27) to action-angle varigbéd we denote the
inverse transformation bfu, 0) = (I(p, q),0(p, q)). Consequently, the compo-
nentsly, ..., I, of I are first integrals of the system, i.é(p(¢), ¢(t)) = I(po, q0)
for all ¢. In the action-angle variables, the Hamiltoniarki$a) = H(p, q), and
we denote the vector of frequencies bya) = VK (a). We consider this in a
neighbourhood of some' € R?.

The aim of this section is to prove that for symplectic methagplied to
completely integrable systems we have simultaneously

e linear growth of the global error,

e near conservation of all first integrals depending only am dlotion vari-

ables.

These properties are illustrated in Figure 9. Non-symmeauethods, like the
classical Runge—Kutta method of ordershow a quadratic growth of the global
error and a linear growth of the error in the action variables

012 error in the eigenvalues df

010 RK4, h = 0.08
0081

006

004~ Stormer—Verleth = 0.02

% PR M B e
.000F : : : : '

T

ai Stormer—Verleth = 0.02

:0- WWMMNWWWWWWMWNWWWM . |

50 100

.8

global error v

.6

A

Figure 9: Euclidean norm of numerical errors for the Tod&datwith n = 3;
initial values arey; = —1.5,po = 1,p3 =0.5,andq; = 1, ¢ = 2, q3 = —1.
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Theorem 7 Consider

e completely integrable Hamiltonian system with real-atialiAamiltonian
e symplectic integrator of order with globally defined modified Hamiltonian
e strong non-resonance condition fofa*)

e w(a®)| Ak, k€T k#0 (28)
o [[1(po; q0) — a*|| < Const|log h|~"

Then, there exist constants h, such that forh < hg and fort = nh < h™" the
numerical solution satisfies

(P, @) — (p(2), ()| < C TR
11 (pns @) — I(po, q0)|| < CR".

Proof. Let us mention (without proof) that far > d — 1 the set of frequencies
in a fixed ball that do not satisfy (28) has Lebesgue measunadexn bycy.
Therefore, almost all frequencies satisfy (28) for some 0.

The main steps of the proof are illustrated in Figure 10. Th&simg part is

backward error

analysis
; ; I "
integrable numerical Y modified
Hamilton system| ——> | solution | ——— | Hamilton system
H(p,q) {Pn,an} H(p,q)
action — angle
1 <= ——  variables ———> l
, (p,q) = ¥(a,0) : )
Hamilton modif. Hamilton system
system K(a)+eKi(a,0)
K{(a) Lindstedt Poincaré with € = A7
P series - >
. = 9 — b — —
6= wia) (a,0) = x(b, ¢) 1

modif. Hamilton system
K@) +eKi(b) +...+eVNKn(b)
+eNFLR(b, )

1b(t) — bo| < CteNH
llo(t) — o — we(bo)t]] < C(t + t2)eN+1

Figure 10: Idea of the proof for the linear error growth of gfectic integrators.
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the recursive elimination of the angle-variables by theafselLindstedt—Poincaré
series. This will be discussed in the following (omittingheaical details).
We consider a perturbed Hamiltonian

K(a,0) = K(a) + cKi(a,0).

The problem is to find a symplectic transformatiané) = x (b, ) which elimi-
nates the angle variabbeas far as possible. We look for a transformation of the
form

b=a—VyS(b,0), p=0+V,S(b,0),

where the generating function is given by a truncated series
S(b,0) = Sy(b,0) +%55(b,0) + ...+ VSn(b, 0)

with coefficient functions that ar&r-periodic ind. Such a transformation §(¢)
close to the identity. In the new variables the Hamiltongn i

K(x(b,¢)) = K(a,0) = K(b+ V,5(b,0),6)
= K(b) +e(w(b) - VoSi(b,0) + K1(b,0)) + O(c?)
wherew(b) = VK (b). We aim in findingS; such that
w(b) . V(;Sl(b, ‘9) —+ Kl(b, 9)

does not depend ah Expanding the periodic functions into Fourier series

S1(b,0) = > si(b)e™?, Ky (b,0) = Y hi(b)e',

kezad kezad
we obtain a formal solution from

hy.(b)
ik-w(b)’

At this point we are struck by theroblem of small denominatar&or any values
of the frequenciesy;(b), the denominatok - w(b) = kywi(b) + - - + kwa(b)
becomes arbitrarily small for somie = (ky,...,k;) € Z%, and even vanishes
if the frequencies are rationally dependent. Using the m@onace condition
(28) and the fast decay of Fourier coefficients for analyticctions permits to
overcome this difficulty.

Further coefficients of the generating functis(b, #) can be constructed in a
similar way. O

Sk(b) = —

k # 0.
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8 Exercises

1. Change the Maple script of Example 1 in such a way that thdiffrad
equations for the implicit Euler method, the implicit midpborule, or the
trapezoidal rule are obtained. Observe that for symmeteithods one gets
expansions in even powers flof

2. Compute a first integral of the Lotka—\Volterra equatidesaimple 2) and of
the truncated modified equation for the symplectic Eulethmet

3. Let@ = x(q) be a change of position coordinates. Prove that the relation
p = X'(q)" P extend this to a symplectic mappifg q) — (P, Q).
Hint. Consider the generating functisi{P, q) = P x(q).

4. Lety = ¢(z) be a symplectic change of coordinates. Prove that it trans-
formsy = J7'VH (y)intoz = J7'VK (2) with K(z) = H(y) = H(¥(z)).

5. (Field & Nijhoff 2003)Y Apply the symplectic Euler method to the system
with HamiltonianH (p, ¢) = In(a + p) + In(5 + ¢). Compute the modified
Hamiltonian and prove that the series converges for sufiiijiesmall step
sizes.

Hint. The method conserves exacllip, q) = (o« + p)(8 + ¢). Find linear
two-term recursions fofp, } and{¢,}, and use the ideas of Example 3.
Result. k —k
= h*1(p,q)
H =H — _
(p,q) = H(p,q) Y

k>1

6. Consider a differential equatiah = f(y) with a divergence-free vector
field, and apply a volume-preserving integrator. Show thatyetruncation
of the modified equation has again a divergence-free veetor fi
Hint. Adapt the proof by induction of Theorem 2.

’C.M. Field & F.W. Nijhoff, A note on modified Hamiltonians for numerical integrations a
mitting an exact invariantNonlinearity 16 (2003) 1673-1683.
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