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This lecturé deals with numerical approaches for second order Hamétosys-
tems with highly oscillatory solutions. We focus on the attan where the prod-
uct of time step size and highest frequency in the systemtismall.

1 A Fermi—Pasta—Ulam type problem

The problem of Fermi, Pasta & Ulangsee also the recent lecture ndeis a
simple model for simulations in statistical mechanics \whievealed highly unex-
pected dynamical behaviour. We consider a modificationisting of a chain of
m mass points, connected with alternating soft nonlinearsifidinear springs,
and fixed at the end points (see Galgani, Giorgilli, MartigoVanzini* and Fig-
ure 1). The variableg,, ..., ¢ (90 = ¢2m1 = 0) stand for the displacements

Large parts are taken from “Geometric Numerical Integrsttny Hairer, Lubich & Wanner.

2E. Fermi, J. Pasta & S. UlanStudies of non linear problem$.os Alamos Report No. LA-
1940 (1955), later published in E. Fermi: Collected Pap@tsqago 1965), and Lect. Appl. Math.
15, 143 (1974).

3G. Gallavotti (ed.),The Fermi—Pasta—Ulam problemLecture Notes in Physics, vol. 728,
Springer, Berlin, 2008. A status report.

L. Galgani, A. Giorgilli, A. Martinoli & S. Vanzini,On the problem of energy equipartition
for large systems of the Fermi—Pasta—Ulam type: analyticad nhumerical estimate®hysica D
59 (1992), 334-348.
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Figure 1: Chain with alternating soft nonlinear and stifidar springs

of the mass points, ang = ¢; for their velocities. The motion is described by a
Hamiltonian system with total energy

m 2 m m

H(p,q) = % Z(pngl +p§i) + WZ Z((J% — @)’ + Z(Q2i+1 — q2)",

=1 i=1 =0
wherew is assumed to be large. With the symplectic change of coateln
Toi = (q2i +QQi—1)/\/§, T, = (q2i - q2i—1)/\/§>
g0 = (poi +p21)/V2, i1 = (P — paic1)/V2,

wherez, ; is a scaled displacement of tit# stiff spring,z; ; a scaled expansion
(compression) of thé&h stiff spring, we get a Hamiltonian system with
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Besides the fact that the total energy is exactly consettiedsystem has a further
interesting feature. We consider the oscillatory energy

I=ht. 4L I=g(E,+ed,). ©

wherel; denotes the harmonic energy of tjta stiff spring, and the kinetic ener-
gies corresponding to the slow and fast motions

m m

1 : 1 :
Ty=3 Y dg, = 5 > it (4)
=1 =1
For an illustration we chooser = 3 (as in Figure 1)w = 50, x¢1(0) = 1,
t01(0) =1, 211(0) =w™!, #11(0) = 1, and zero for the remaining initial values.
Figure 2 shows the different time scales that are preserterevolution of the
system.
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Figure 2: Different time scales in the FPU type problem= 50).

Time Scalew™!. The vibration of the stiff linear springs is nearly harmowich
almost-periodr /w. This is illustrated by the plot df} in the first picture.

Time Scalew®. This is the time scale of the motion of the soft nonlinearrsysi
as is exemplified by the plot df, in the second picture of Figure 2.

Time Scalew. A slow energy exchange among the stiff
springs takes place on the scale In the third picture MW\AWWMW
(see also the zoom to the right), the initially excited firg

stiff spring passes energy to the second one, and th-}ﬂwwwww\)mww
also the third stiff spring begins to vibrate. The picturg
also illustrates that the problem is very sensitive to pey
turbations of the initial data: the grey curves of each o
I,, I, I; correspond to initial data whei® > has been

added toz(0), ©01(0) andi;1(0). The displayed solutions of the first three
pictures have been computed very accurately by an adaptegrator.

Time Scalew”, N > 2. The oscillatory energy has onlyO(w~!) deviations
from the initial value over very long time intervals. The fdupicture of Figure 2
shows the total energyf and the oscillatory energly as computed by an expo-
nential integrator (see Section 3) with step dize 2/w = 0.04, which is nearly
as large as the time interval of the first picture. No drifteers forH or I.
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2 Application of classical integrators

Which of the methods, discussed in Lecture 2, produce @igkly correct ap-
proximations when the product of the step siz&ith the high frequencw is
relatively large?

Linear stability analysis. To get an idea of the maximum admissible step size,
we neglect the nonlinear term in the differential equatgmthat it splits into the
two-dimensional problemé, ; = 0, &, = yo; and

yl,@- = _szl,ia 551,2‘ = Y1- (5)

Omitting the subscripts, the solution of (5) is

(0) = (o ) (20

The numerical solution of a one-step method applied to @lplgi

(Wy;:il) = M) (wy;n) ) (6)

and the eigenvalues; of M (hw) determine the long-time behaviour of the nu-
merical solution. Stability (i.e., boundedness of the 8otuof (6)) requires the
eigenvalues to be less than or equal to one in modulus. Foexplkcit Euler
method we have, , = 1 + ihw, so that the energ¥, = (y2 + w?z2)/2 increases
as(1 + h*w?)™2. For the implicit Euler method we have , = (1 +ihw)~!, and
the energy decreases @ds+ h?w?)~™/2. For the implicit midpoint rule and for all
symplectic Runge—Kutta methods, the matviX/w) is orthogonal and therefore
I,, is exactly preserved for all andn. Finally, for the symplectic Euler method
and for the Stormer—Verlet scheme we have

M(hw):(l —hw ) M(hw):(l_hQ;Q _%}(1_11252)).

hw 1 — h%w? hw 1 _ B2
2 2

For both matrices, the characteristic polynomialis- (2 — h?w?)\ + 1, so that
the eigenvalues are of modulus one if and onliuif| < 2.

Numerical experiments. We apply several methods to the FPU type problem,
with w = 50 and initial data as in Figure 2. Figure 3 presents the nuraleric
results forH — 0.8, I, I, Is, I3 (the last picture only fod and I,) obtained
with the implicit midpoint rule, the classical Runge—Kuttethod of orded, and

the Stormer—Verlet scheme. For the small step size 0.001 all methods give
satisfactory results, although the energy exchange isembduced accurately
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implicit mid-point | Runge—Kutta, order 4 Stormer—Verlet
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Figure 3: Numerical solution for the FPU problem (2) withalas in Figure 2.

over long times (compare with exact solution in Figure 2)e Bxplicit Runge—
Kutta method gives completely wrong solutions for largepstizes (or for small
step sizes and larger time intervals). The valuegio&dnd I are still bounded
over very long time intervals for the Stormer—Verlet methiout the relative error
is very large for step sizes close to the stability lindit-€ 0.025 corresponds to
hw = 1.25). These phenomena call for an explanation, and for numeniethods

with an improved behaviour.

3 Exponential (trigonometric) integrators

The Stormer—\Verlet scheme fdr = g(x) is obtained by replacing the second
derivative with the differencét2(z,, ., — 2x, +,,_1 ). For a differential equation

i+ Qv =g(z), g®)=-VU(x), Q= (8 u?[) (7)

we replace the linear part by
h™2 (xn+1 — 2 cos(hQ) x,, + xn_l),

which reproduces the exact solution for+ Q22 = 0. The derivative of the exact
solution for this linear problem satisfies (withic(£) = sin£/€)

2hsinc(hQ?) &(t) = x(t + h) — x(t — h),

which leads to an approximation of the derivative.
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Two-step formulation. We consider numerical integrators of the form

Tpy1 — 2cos(hQ) x, + 2,1 = h2Ug(Pzy,) @®
2hsinc(hQ)) &, = Tpi1 — Tpo1.
HereU = ¢ (h2) and® = ¢(hS2), where thdilter functionsy and¢ are bounded,

even, real-valued functions with(0) = ¢(0) = 1. In our numerical experiments
we will consider the following choices af and¢

(4) D) =sin¢(36)  o(§) =1 Gautschi

(B) (&) = sinc(§) #(6) =1 Deuflhard

(C)  P(€) =sinc(€) p(&) ¢(€) = sinc(§) Garcia-Archilla & al®
(D) (&) = sind(5¢) #(€) of 4 Hochbruck & Lubict
(E) (&) = sinc?(€) p(6) =1 Hairer & Lubicl?

One-step formulation. Eliminatingz,,_; from the two relations in (8), we obtain
the following equations
Tpi1 = cos hQx, + Q 'sin hQ @, + %hQ\II Jn (9)
Tpye1 = —Qsin hQ x,, + cos hQ) &, + %h(\IIO gn + ¥y gn+1) (20)

whereg,, = g(®x,) andWy = 1 (hQ), ¥; = ¥ (h$2) with even functions)y, ¢,
defined by

P(&) = sinc(§) Y1 (§),  tho(€) = cos(&) (). (11)

Method (9)-(10) is of orde? (for h — 0), and it is symmetric whenever (11) is
satisfied. The method is symplectic if in addition (see Eser2)

P(&) = sinc(£) ¢(£). (12)

1W. GautschiNumerical integration of ordinary differential equationased on trigonometric
polynomials Numer. Math. 3 (1961) 381-397.

2P. DeuflhardA study of extrapolation methods based on multistep schesittesut parasitic
solutions Z. angew. Math. Phys. 30 (1979) 177-189.

3B. Garcia-Archilla, J.M. Sanz-Serna & R.D. Skeehng-time-step methods for oscillatory
differential equationsSIAM J. Sci. Comput. 20 (1999) 930-963.

4M. Hochbruck & Ch. LubichA Gautschi-type method for oscillatory second-order diffie
tial equations Numer. Math. 83 (1999a) 403-426.

SE. Hairer & Ch. LubichLong-time energy conservation of numerical methods foitlasary
differential equationsSIAM J. Numer. Anal. 38 (2000) 414-441.
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Energy exchange between stiff componentsFigure 4 shows the energy ex-
change of the six methods (A)-(F) applied to the FPU probleth the same data
as in Figure 2. The figures show again the oscillatory engfgid-, I5 of the stiff
springs, their sund = I, + I, + I3 and the total energyf — 0.8 as functions of time
on the intervaD < ¢ < 200. Only the methods (B), (D) and (F) give a good ap-
proximation of the energy exchange between the stiff sgriBy the use of mod-

- (A)
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Figure 4. Energy exchange between stiff springs for methQfs(F)
(h = 0.035, w = 50). Method (F) is not considered in these notes.
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Figure 5: Maximum error of the total energy on the interf@all 000] for methods
(A) - (F) as a function ofw (step sizér = 0.02).




ulated Fourier expansions (see below) it can be shown that@ssary condition
for a correct approximation of the energy exchange (ikw)¢(hw) = sinc(hw),
which is satisfied for method (B). The good behaviour of mdt{i®) comes from
the fact that here (hw)¢(hw) ~ 0.95 sinc(hw) for hw = 1.5.

Near-conservation of total and oscillatory energies.Figure 5 shows the max-
imum error of the total energ¥l as a function of the scaled frequeny (step
sizeh = 0.02). We consider the long time intervél, 1000]. The pictures for
the different methods show that in general the total enesgyeil conserved. Ex-
ceptions are near integral multiples of Certain methods show a bad energy
conservation close to odd multiples of other methods close to even multiples
of 7. Only method (E) shows a uniformly good behaviour for altjfirencies. In

= | ’M |

0977 =« 1.037 1977 27 2037 1977 27 2037
Figure 6: Zoom (close t@ or 27) of the maximum error of the total energy on the
interval [0, 1000] for three methods as a function kb (step sizér = 0.02).
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Figure 7: Maximum deviation of the oscillatory energy on thierval [0, 1000]
for methods (A) - (F) as a function éfv (step sizeh = 0.02).
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Figure 6 we show in more detail what happens close to suchredtenultiples
of 7. If there is a difficulty close tar, it is typically in an entire neighbourhood.
Close to2r, the picture is different. Method (C) has good energy coragem for
values ofhw that are very close tdr, but there are small intervals to the left and
to the right, where the error in the total energy is large.ikénthe other methods
shown, method (B) has poor energy conservation in rathge listervals around
even multiples ofr. Methods (A) and (D) conserve the total energy particularly
well, for hw away from integral multiples of.

Figure 7 shows similar pictures where the total enekfys replaced by the
oscillatory energyl. For the exact solution we havét) = Const + O(w™1).
It is therefore not surprising that this quantity is not watinserved for small
values ofw. None of the considered methods conserves both quantitiasd /
uniformly for all values ofhw.

4 Modulated Fourier expansion

Let us consider second order ordinary differential equnatio

i+ Q% =g(z), g(x)=-VU(z), Q= (0 X ) : (13)
0 wl
To motivate a suitable ansatz for the solution, we noticettigeneral solution
of & + w?x = 0is z(t) = ce“! + c_1e7, that of  + w?zr = z is z(t) =
ez (t) +e Wiz 1(t) with 221 (¢) = cet ™ anda = Vw2 +1—w = O(w™),
If g(x) contains quadratic terms, also products6f'z*!(¢) will be involved.

Modulated Fourier expansion of the exact solution. We aim in writing the
solution of (13) as

o) = SOk, ) = (Zé,ig%) , (14)

kEZ

where the coefficient functiong®(¢) are partitioned according to the partition-
ing of Q in (13). This expansion is calleshodulated Fourier expansiérof the
solution. It is essential that the coefficient functiorf$t) do not contain high
oscillations. More precisely, we search for functions stet the derivatives of
2*(t) up to a certain order are bounded uniformly when- oo.

SE. Hairer & Ch. LubichLong-time energy conservation of numerical methods foitlasary
differential equationsSIAM J. Numer. Anal. 38 (2000) 414-441.
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Inserting the expansion (14) into the differential equatib3), and comparing
the coefficients ok** yields (forwy, = 0, w; = w)

Zf + Qikqu";-C + (wJQ — (kuJ)Q)z;C = Z L (m)(zo)(zal, ce, 20m), (15)

mi 93
s(a)=k

where the sum ranges over all > 0 and all multi-indicesx = (a4, ..., )
with a; # 0, having a given sum(a) = >~ | ;. Among the solutions of these
second order differential equations we have to select {hvaisese derivatives are
uniformly bounded inv. To achieve this, we determine the dominant term in the
left-hand side of (15) fow — oo, put the other terms to the right-hand side, and
eliminate higher derivatives by iteration until a suffidigrhigh order. In this way
we get

e a second order differential equation fei(t),
o first order differential equations fag! (1),
» algebraic equations for all othef(t).

This construction can best be understood by first studyiagthooth solution of
problems likez + w?z = g(t) or z + 2iwz = g(t).

Initial values for the differential equations are obtairfedm (14) and its
derivative taken at = 0:

2(0) =Y 2H0),  #(0) = Z(ik:wzk(O) + z’k(O)).

kEZ keZ

Using the above algebraic relations fzfr(t) and the differential equations for
21 (t), these equations constitute a nonlinear system that defirigaelyz(0),
:9(0), 21(0) as functions ofr(0) and(0). This construction yields a unique
(formal) expansion of the form (14) for the initial value ptem (13). Because of
the non-convergence of the series, they have to be trunbgtedglecting terms
of sizeO(w=N1).

The above construction shows that underibended-energy conditidor the
initial values,

1/ .
5 2O + 122(0)]*) < E, (16)
the coefficient functions of (14) satisfy on a finite time e 0 < ¢ < T,

+1 _ — _ —k—-2
(1), =0, =06 a7

(W™), 2z =0W™), =
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Modulated Fourier expansion of the numerical solution. To get insight into
the numerical solution of

Tpp1 — 208 hQ p, + 2, = W2V g(Px,,) (18)
we aim in writing the numerical solution ag = z,(nh) with
wn(t) = > e™ZE(L). (19)
keZ

As we proceeded for the analytic solution, we insert the @nd#®) into the nu-
merical method (18) and compare the coefficients’sf. Using the relation
. 2
rp(t+h) +ap(t—h) = Ze‘k“’t <2 cos(kwh) (25 (t) + h—z,’i(t) +..))

2!
kEZ h

+ 20 sin(kwh) (1) + 2250+ ).

and the abbreviations" = cos(%kw), sb = sinc(%(w; — kw)) we obtaift

2i

..+3

2k, p2uk | 2ksk | 9i ki sk o cko—k( 2 2k
so kwh?Z7 4+ 227 + 2185 kwzi + s7s; 7 (Wi — (kw)?) 2]

1 m « Qm

= Z — \I/jgj(- )(<I>zo)(<1>z L, Bz,
s(a)=k

which reduces to (15) in the limit — 0. Again we have to determine the

dominant terms in the right-hand side — this time asympaditidor h — 0 and

hw > ¢ > 0, so thatv~! = O(h). Under the numerical non-resonance condition
|sin(3kwh)| > evVh for k=1,....N (20)

we get a system of differential and algebraic equationsz;fonAs before, we get
a second order differential equation fg(¢), first order differential equations for
2F'(t), and algebraic relations for the oth€i(z). Also initial values are obtained
in the same way as for the analytic solution. To avoid thedaliffy with the non-
convergence of the arising series, we truncate them by cteggeterms of size
O(hN*t1). Under suitable assumptions on the filter functions, theficoents of
the modulated Fourier expansion are bounded as follows:

4=001), z'=0Ww?), z=0w"

A =0w?), ' =0w"), 2F=0w"). (21)

6Components of the functiond (¢) of (19) are written without the subscript Notice, never-
theless, that they are different from those of (14). We wamvbid a further subscript, and hope
that there will not arise any confusion.
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An expansion for the derivativg, = z},(nh) can be immediately obtained by
inserting (19) into the second equation of (8). Notice thgt) is not the time
derivative ofz, ().

5 Invariants of the modulated Fourier expansion
The equation (13) is a Hamiltonian system with the Hamikoni
H(w, i) = 3 (75 +270%) + U(w), (22)
and we have seen in the numerical experiments that the ¢panti
I(w,i) = 3 (i + @[l ]?) (23)

plays an important role.

Invariants for the exact solution. In the modulated Fourier expansion of the
analytic solutionr(t), denotey®(t) = e*<t2*(¢) for all k, and collect them in

y = ( A 7y727y717y07y17y27 A )
By (15) these functions satisfy
1
-~k k m aq Om
PN ==y S U (). (24)
s(a)=k
The important and somewhat surprising observation is thtattwe expression
1 m a1 Qimy
Uy) = U+ >, — 0@ ") (25)
s(a)=0
the differential equation foy(¢) obtains the Hamiltonian structure
JF+ Q%Y = =V, U(Y). (26)

This system does not only have the Hamiltonian as a first tategout it has the
following two (formal) first integrals:

Hy,y) = 5 2 (G779 + ™% +uwy)
keZ (27)
I(y,y) = —iw) k(y """



Theorem 1 For a fixedNV, and with a suitable truncation of the series in (25) and

BDWERAE a1y, 31(1) = HY(0).5(0) + O ™) 28)
H(y(1).¥(1) = H(x(t),2(t) + O(w™), (29)
where the constants symbolized®@re independent @f andt with0 <t < T,

but depend oty of (16), N andT.
Similar estimates are obtained for the second invariant

Z(y(t),y(t) = Z(y(0),y(0)) + O(w™) (30)

Z(y(t),y(t) = I(x(t),@(t)) + Ow™). (31)
Proof. Taking the scalar product of (26) wifhr* and summing over alt shows
that both sides become total derivatives. This leads to xpéc#t formula for
H(y,y). The proof of (30) is somewhat more tricky. We note that wiith vector
y(\), whose components ae#’y*, the expressiot(y()\)) is independent of.
Its derivative with respect ta thus yields

_ %u(y@))‘ = STk v Uy), (32)

A=0
kEZ

for all y. Using this relation, a multiplication of (26) witlk y—* leads to the
explicit formula forZ(y, y) which proves (30) after suitable truncation.
By the bounds (17), we have for<t¢ < T

My, Y) = 3lgll” + 9117 + w?llnil* + U°) + Ow™). (33)
On the other hand, we have from (23) and (14)
H(z, @) = gllinl* + 3l + 90 1 + 30 [lyr + o 1P+ U°) + O(w™). (34)

0

Usingy! = ezl andy! = e!(z! + iwz!) together withy; ! = 1, it follows
from 2 = O(w™") thatg{ + 7' = iw(yi —yr') + O(w™) and||gi]| = w(yill +
O(w™1). Inserted into (33) and (34), this yields (29).
Property (31) is obtained in the same way as for the Hamédioni O
Invariants for the numerical solution. We introduce the differential operator
L(hD) = e"? —2cos hQQ+ e "’ = 2(cos(ihD) — cos h)
= 4sin2(LhQ) + h2D? + — hiD! (33)
5 D .
so that the functiom}, () of (19) formally satisfies the difference scheme
L(hD)xy(t) = h*Vg(Pzy(2)). (36)
We insert the modulated Fourier expansigrt) = >, e*2k(t) = >, yk(t)

13



with y¥(t) = el*2¥(¢), expand the right-hand side into a Taylor series around
dyY(t), and compare the coefficients containing the faetti’. This yields, for
g(z) = —VU(z), the following formal equations for the function(t)

L(hD)y :—hQ\IfZ U““+1 (@) (Pys, ., ym),  (37)

s(a)=

which are the numerical analogue of (24). With the extendsdryial

1 a1 [a7%%%
Unly,) = U@+ D — U™ (@) (y,. . @y7),  (38)
s(a)=0
this system can be (formally) written as

TR 2L(AD) Y = — Vs Un(y,): (39)

The essential difference to the situation in (26) is the apgece of higher even
derivatives in the left-hand expression.

To find a first invariant of the differential equation (39), wake its scalar
product withy, * = y¥, so that the right-hand side becomes the total derivative
“<U(y,). Also the left-hand sides can be written as a total derieativhich is a
consequence of relations of the type

Rez’ :@) — Rejt (sz(zl D )T 4 % (E(l))Tz(l))

To find a second invariant, we take the scalar product witlj*, and use an
identity similar to that of (32), so that the right-hand si@mishes. To write the
left-hand side as a total derivative we use

d .
— Im dt< ST ) 370 (g(z))TZ(ZH))

A careful elaboration of these ideas (see Section XIIl.6 wf monograph on
“Geometric Numerical Integration”) we obtain the followinesult.

Im =7 ,2+2) —

Theorem 2 Under suitable assumptions on the filter functions and onstiee
size, which will be stated below in more detail, there exiscfionsH,(y) and
7 (y) such that the following holds far < ¢t = nh < T

Hiu(y(t) = Hu(y(0))) + O@hY) . Lp(y(t)) = Zn(y(0)) + O(th™)
Hy(Y(t)) = H(zn, &n) + O(h), Tu(Y(1) = I(zn, &) + O(h).

The constants symbolized &ydepend on the energy, on the truncation index
N and onT', but not ornw.
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6 Long-time energy conservation

The statements of the preceding section are valid on inejva’|, whereT is a
fixed value independent af. We show here how the results on energy conserva-
tion can be extended to much longer time intervals.

Conservation of the oscillatory energy for the analytic saltion. Whereas the
conservation of the total energy(x, &) along the analytic solution is obvious,
the near-conservation of the oscillatory energy is a nmaty but typical feature
of highly oscillatory problems.

Theorem 3 If the solutionz(t) of (13) stays in a compact set for< ¢ < w?,
then

I(z(t), (1)) = 1(2(0),2(0)) + O(w™) + Otw™ ™) .
The constants symbolized Byare independent af andt with 0 < ¢ < w¥, but
depend on the initial energly and on the truncation indeX .

Proof. With a fixedT > 0, lety; denote the vector of the modulated Fourier
expansion terms that correspond to starting valug$?’), (;7°)) on the exact
solution. Fort = (n + 0)T with 0 < § < 1, we have by Theorem 1,

I(x(t), 2(t)) — 1(x(0),(0))
= Z(y,(07),Y,(07)) + O(w™") = Z(¥(0), 5 (0)) + O(w ™)
= Z(y,(07),¥,(07T)) — Z(y,,(0),¥,(0)) +

n—1

Z(Y;+1(0),¥;41(0)) = Z(y;(0), S/j(O))> +O0(w™).

o

j=

Z(Y;41(0),¥551(0)) = Z(y;(0),y,(0)) = O(w™),
because, by the quasi-uniqueness of the coefficient furg;tive have for the
truncated modulated Fourier expansion that, (0) = y;(T) + O(w™") and
Y;11(0) =y;(T) + O(w™"). This yields the result. O

We note

Energy conservation for the numerical solution. We are now able to prove one
of the main results of this lecture — the near-conservatioihe total energyHd
and the oscillatory energly over long time intervals. In the previous section we
emphasized the ideas without giving details on the assompfor rigorous error
estimates. We state them here without proof.

e the energy boundz (||z(0)||* + ||Q2z(0)]]?) < E ;
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¢ the condition on the numerical solution: the valdes, stay in a compact
subset of a domain on which the potentials smooth;

¢ the conditions on the filter functions: and¢ are even, real-analytic, and
have no real zeros other than integral multiplesrpfurthermore, they
satisfyy(0) = ¢(0) = 1 and
[p(hw)| < Crsinc®(3hw),  [¢(hw)| < Cslsinc(3hw)|,
[ (hw)@(hw)| < Cslsinc(hw)| ;
e the conditioniw > ¢y > 0 ;
¢ the non-resonance condition (20): for soie> 2,

|sin(khw)| > ¢V for k=1,...,N.

(40)

Theorem 4 Under the above conditions, the numerical solution of (I&amed
by the method (9)—(10) with (11) satisfies, foK nh < h=V+1,

H(zp, ¥,) = H(zg,20) + O(h)
Iz, @,) = I(x0,%0) + O(h).

The constants symbolized By are independent of, /h, w satisfying the above
conditions, but depend aN and the constants in the conditions.

Proof. These long-time error bounds can be obtained as in the pfadiemrem 3.
One only has to use the estimates of Theorem 2 instead of thddeeorem 1.0

7 Behavior of the Sbrmer—\Verlet discretization

In applications, the Stormer—\Verlet method is often usdith step sizes: for
which the product with the highest frequeneyis not small, so that backward
error analysis does not provide any insight into the longetenergy preservation.
For example, in spatially discretized wave equatidns,is known as the CFL
number, which is typically kept near 1. Values/of around0.5 are often used in
molecular dynamics simulations.

Consider now applying the Stormer—Verlet method to thelinear model
problem (13),

Tpi1 — 200 +Tny = — h*Q%x, — B2VU(z,)

2hxn = Tp+1l — Tp-1

(41)
with hw < 2 for linear stability. The method is made accessible to thedyess
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of the preceding sections by rewriting it as an exponemiagrator

Toit — 2cos(hQ) x, + 1, 1 = —h2VU(z, _
+1 (h$2) - 1 (zn) Q:(O P]) (42)
2hsinc(hQ) 2!, = xpi1 — Tyq 0w
with (&) = ¢(£) = 1, and withmodified frequency, defined by
hw)?
2
The velocity approximation’, is related toi,, by

~ . hw
= cos(hw) or, equivalently, sin(%) = —.

. o
Tno = Tnpo

i, = sinc(h€2) z! or ~
" (hsd) T, = sinc(hw) z), ;.

(43)
Theorem 5 Let the Sérmer—\Verlet method be applied to (13) with initial values
satisfying (16), and with a step sizefor which0 < ¢y < hw < ¢ < 2 and
| sin(3kh@)| > evhfork =1,..., N for someN > 2 andc > 0.

Suppose further that the numerical solution valugstay in a region on which
all derivatives of/ are bounded. Then, we have for< nh < h=V+!

H(tn,d0) + 5 |l | = Const + O(h)

Iz, &n) + g |Zn1]|> = Const + O(h)

along the numerical solution, where 10t x| /
2 DT =
N = (hw/2) _ 10% 5 15 20
The constants symbolized 8yare indepen- 25
dent ofn, h, w with the above conditions. 3 hew

Proof. The condition) < ¢y < hw < ¢; < 2

implies| sin(2kh@)| > ¢; > 0 for k = 1,2, and hence conditions (40) are trivially
satisfied withhw instead ofhw. We are thus in the position to apply Theorem 4 to
(42), which yields

H(xn,2l) = H(zg,z)) + O(h)
X

B for 0 <nh<h Nt (44)
I(zn,xy,) = I(z,25) + O(h)

whereH and! are defined in the same way Asand/, but withw in place ofw.
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With the relations (43) we get

1 ~
Tan ) = 5 (Il + & l2]?)

= () (1)~ Slanal?) + Ll a5)
= () (1) + L)

Similarly, we get for the Hamiltonian

73 1 . ~
H(wa,@) = 5 (lnoll® + 25,17 + Bl l?) + Ulwa)
= H(wn,@n) — I(@n, @) + (2, 7)) (46)
. . w?\ =
= H(zn, i) + Lnal? + (1= 55) Twa,al)

and hence (44) yields the result. O

For fixedhw > ¢y > 0 andh — 0, the maximum deviation in the energy does
not tend to0, due to the highly oscillatory ter |4, ||*. This term is bounded

because of iy, [|> < ||z, ,||* < 2I(xn, x],) < Const. Itis possible to prove that
the average over a fixed (sufficiently large) number of comtbez values|i,, , ||>
is constant.

Numerical experiments. We consider the FPU-type problem (with = 50)
discussed in the beginning of this lecture. Figure 8 showsetinor in the total
energy of the Stormer—\Verlet method with four differemssizes. For the largest

ANk, . A

il 1l l, | ‘\' U “y“"‘l“ Lo . ,‘IH bl

"
104k | ' | “
H ) | X ) ) . ) | i |
0 5000 10000 15000 20000

Figure 8: Error in the total energy of the FPU-type problem £ 50) ob-
tained for the Stormer—Verlet method applied with fourfetént step sizes:
hw =1.95,1,0.5,0.25.

10°3
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step size (wheréw = 1.95) the error is very large and of the size of~ 20.
Nevertheless, there is no drift in the energy. Halving tlep size decreases the
error by a factor close t60. This is in good agreement with the form of the
functiony = ~(hw).

Our second experiment (Figure 9) shows again the energy fmroarious
choices ofw andh. It illustrates the fact that the terg|, .|| dominates the
error (for large step sizes) and depends essentially onrtiaupt hw. We can
also see that the error oscillates around a constant whidiffesent from the
theoretical value of the Hamiltonian.

2.3 2.3

22 22 hw=0>5 w=5>50

2.1 21;

’0 » o~

19F . }?w : 1| . |w : 5|O . 19F 1 .H<.I0’.j70.> . 2 L
100 200 300 400 100 200 300 400

2 hw = 0.5 w = 100
 —— i —
| H(I:t/o,:l)o)l =2

100 200 300 400

Figure 9: Total energy of the FPU-type problem along nunaésgolutions of the
Stormer—Verlet method.

8 Exercises

1. Interpret the exponential integrator (9)—(10) as a tapljtmethod: a half-
step of a symplectic Euler type method for= g(x), a step of the exact
solution fori + Q%2 = 0, and finally the adjoint of the first half-step.

2. Show that a method (9)—(10) satisfying (11) is symplataad only if

(&) =sinc(§) (§)  for &= hw.
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3. The change of coordinates = x (h{2)z,, transforms (9)—(10) into a method
of identical form with, 1, v, ¢, replaced byyxo, x 14, x 1o, x 111.
Prove that, forhw satisfyingsinc(hw)¢(hw) /¢ (hw) > 0, it is possible to
find x(hw) such that the transformed method is symplectic.

4. Prove that for infinitely differentiable functiogst) the solution of the dif-
ferential equation: + w?r = = + g(¢) can be written as

z(t) = y(t) + cos(wt) u(t) + sin(wt) v(t),

wherey(t), u(t), v(t) are given by asymptotic expansions in powers of.
Hint. Use the variation-of-constants formula and apply repepsetial in-
tegration.

5. Consider a HamiltoniaH (pr, p1, qr, qr) and let

H(p7 Q) = 2H(pR7p17qR7q1)

for p = pr + ipr, ¢ = qr + iq;. Prove that in the new variables ¢ the
Hamiltonian system becomes

=g i= )
p_ aqp7Q7 q_appaq
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