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We first extend the technique of modulated Fourier expansionto problems with
several high frequencies, which can be resonant or non-resonant. An extension to
infinitely many non-resonant high frequencies permits to obtain interesting results
on the long-time behavior of nonlinearly perturbed wave equations.

1 Several high frequencies

We consider Hamiltonians of the form

H(x, ẋ) =
1

2

ℓ∑

j=0

(
‖ẋj‖2 + ω2

j ‖xj‖2
)

+ U(x), (1)

wherex = (x0, x1, . . . , xℓ) with xj ∈ R
dj , ωj = λj/ε with λ0 = 0, distinct

λj > 0, and smallε > 0. After rescalingε we may assumeλj ≥ 1 for all j. The
equations of motion are a system of second-order differential equations

ẍ = −Ω2x+ g(x), (2)

whereΩ = diag(ωjI) with the frequenciesωj = λj/ǫ andg(x) = −∇U(x). As
suitable numerical methods we consider again the class of exponential (trigono-
metric) integrators with filter functionsψ andφ, studied in Lecture 4.
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We are interested in the long-time near-conservation of thetotal energyH(x, ẋ)
and the oscillatory energies

Ij(x, ẋ) =
1

2

(
‖ẋj‖2 +

λ2
j

ǫ2
‖xj‖2

)
for j ≥ 1 (3)

or suitable linear combinations thereof. Benettin, Galgani & Giorgilli 1 have shown
that the quantities

Iµ(x, ẋ) =
ℓ∑

j=1

µj

λj

Ij(x, ẋ) (4)

are approximately preserved over long times along solutions with bounded en-
ergy (independent ofε) if the potentialU(x) is analytic andµ = (µ1, . . . , µℓ) is
orthogonal to theresonance module

M = {k ∈ Z
ℓ : k1λ1 + . . .+ kℓλℓ = 0}, (5)

and if a diophantine non-resonance condition holds outsideM. Sinceµ = λ
is orthogonal toM, the total oscillatory energy

∑ℓ
j=1 Ij(x, ẋ) of the system is

always approximately preserved.

Example 1 To illustrate the conservation of the various energies, we consider a
Hamiltonian (1) withℓ = 3, λ = (1,

√
2, 2) and we assume that the dimensions

of xj are all1 with the exception of that ofx1 = (x1,1, x1,2) which is 2. The
resonance module is then given byM = {(k1, 0, k3) ; k1 + 2k3 = 0}. We take
ǫ−1 = ω = 70, the potential

U(x) = (0.05 + x1,1 + x1,2 + x2 + 2.5 x3)
4 +

1

8
x2

0 x
2
1,1 +

1

2
x2

0, (6)

andx(0) = (1, 0.3ǫ, 0.8ǫ,−1.1ǫ, 0.7ǫ), ẋ(0) = (−0.2, 0.6, 0.7,−0.9, 0.8) as ini-
tial values. We considerIµ for µ = (1, 0, 2) andµ = (0,

√
2, 0), which are both

orthogonal toM. In Figure 1 we plot the oscillatory energies for the individ-
ual components of the system. The corresponding frequencies are attached to the
curves. We also plot the sumI1 + I3 of the three oscillatory energies correspond-
ing to the resonant frequencies1/ǫ and2/ǫ. We see thatI1 + I3 as well asI2
(which areIµ for the above two vectorsµ ⊥ M) are well conserved over long
times up to small oscillations of sizeO(ǫ). There is an energy exchange between
the two components corresponding to the same frequency1/ǫ, and also between
components corresponding to resonant frequencies1/ǫ and2/ǫ.

1G. Benettin, L. Galgani & A. Giorgilli,Realization of holonomic constraints and freezing of
high frequency degrees of freedom in the light of classical perturbation theory. II, Commun. Math.
Phys. 121 (1989) 557–601.
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Figure 1: Oscillatory energies of the individual components (the frequencies
λjω = λj/ǫ are indicated) and the sumI1 + I3 of the oscillatory energies cor-
responding to the resonant frequenciesω and2ω.

Numerical Experiment. We take the exponential integrator (discussed in Lec-
ture 4) withφ(ξ) = 1 andψ(ξ) = sinc(ξ), and we apply it with large step sizes
so thathω = h/ǫ takes the values1, 2, 4, and8. Figure 2 shows the various os-
cillatory energies which can be compared to the exact valuesin Figure 1. For all
step sizes, the oscillatory energy corresponding to the frequency

√
2ω and the sum
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Figure 2: Oscillatory energies as in Figure 1 along the numerical solution, ob-
tained withφ(ξ) = 1 andψ(ξ) = sinc(ξ).
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Figure 3: Oscillatory energies as in Figure 1 along the numerical solution, ob-
tained withφ(ξ) = 1 andψ(ξ) = sinc2(ξ/2).
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I1+I3 are well conserved on long time intervals. Oscillations in these expressions
increase withh. The energy exchange between resonant frequencies is closeto
that of the exact solution. We have not plotted the total energy H(xn, ẋn) which
is well conserved over long times.

We repeat this experiment with the method having filter functionsφ(ξ) = 1
andψ(ξ) = sinc2(ξ/2) (Figure 3). Only the oscillatory energy corresponding to√

2ω is approximately conserved over long times. Neither the expressionI1 + I3
nor the total energy (not shown) are conserved.

2 Multi-frequency modulated Fourier expansions

The technique of modulated Fourier expansion can be extended to the multi-
frequency case by consideringk = (k1, . . . , kℓ) as multi-index and by letting
k ·ω = k1ω1 + . . .+kℓωℓ. We explain the main differences to the single-frequency
case (Lecture 4) without giving technical details.

For a given vectorλ = (λ1, . . . , λℓ) and for the resonance moduleM defined
by (5), we callk andk̂ equivalent (notationk ∼ k̂) if k ·λ = k̂ ·λ, i.e.,k− k̂ ∈ M.
We letK be a set of representatives of the equivalence classes whichare chosen
such that for eachk ∈ K the sum|k| = |k1| + . . . + |kℓ| is minimal in the
equivalence class[k] = k + M, and withk ∈ K, also−k ∈ K.

Let us consider an exponential integrator (see Lecture 4) applied to the system
(2). We write the numerical solution asxn = xh(nh), where (formally)

xh(t) =
∑

k∈K

eik·ωtzk
h(t) (7)

with ω = λ/ε. As in the single-frequency case we can construct smooth functions
zk

h(t). We assume that the energy of the initial values is bounded independently
of ǫ, 1

2

(
‖ẋ(0)‖2 + ‖Ωx(0)‖2

)
≤ E, (8)

thath/ε ≥ c0 > 0, a numerical non-resonance condition, and bounds on the filter
functions2. The dominant terms in each component are then bounded by

z00 = O(1), z
±〈j〉
j = O(ε) for j = 1, . . . , ℓ, (9)

where〈j〉 = (0, . . . , 1, . . . , 0) denotes thejth unit vector. All other functions are
at least of sizehε or ε2.

2For a precise formulation of the assumptions, see Section XIII.9.2 of the monograph “Geo-
metric Numerical Integration”.
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With yk(t) = eik·ωtzk
h(t) for k ∈ K, wherezk

h(t) are the modulation functions
of (7), we denotey = (yk)k∈K. We introduce the extended potential

U(y) = U(Φy0) +
∑

s(α)∼0

1

m!
U (m)(Φy0)

(
Φyα1 , . . . ,Φyαm

)
, (10)

where the sum is taken over allm ≥ 1 and all multi-indicesα = (α1, . . . , αm)
with αj ∈ K andαj 6= 0, for which s(α) =

∑
j αj ∈ M. The functionsyk(t)

then satisfy
Ψ−1Φh−2L(hD) yk = −∇y−k U(y), (11)

whereL(hD) = ehD − 2 cos(hΩ) + ehD. This system has almost-invariants that
are related to the HamiltonianH and the oscillatory energiesIµ with µ ⊥ M.

Momentum-type invariants of the modulation system. Forµ ∈ R
ℓ we set

Sµ(τ) y = (eik·µτyk)k∈K, τ ∈ R

so that, by the multi-linearity of the derivative, the definition (10) yields

U
(
Sµ(τ) y

)
= U(Φy0) +

∑

s(α)∼0

eis(α)·µτ

m!
U (m)(Φy0)

(
Φyα1 , . . . ,Φyαm

)
. (12)

If µ ⊥ M, then the relations(α) ∼ 0 implies s(α) · µ = 0, and hence the
expression (12) is independent ofτ . It therefore follows that

0 =
d

dτ
U

(
Sµ(τ) y

)∣∣∣
τ=0

=
∑

k∈K

i (k · µ) (yk)T∇ykU(y) (13)

for all vectorsy = (yk)k∈K. Multiplying the relation (11) withi
ε
(−k · µ)

(
y−k

)T

and summing overk ∈ K, we obtain with (13) that, formally,

− i

ε

∑

k∈K

(k · µ)(y−k)TΨ−1Φh−2L(hD)yk = 0 if µ ⊥ M.

Its dominant term is obtained fork = ±〈j〉, j = 1, . . . , ℓ,

− i

ε

ℓ∑

j=1

µj
φ(hωj)

ψ(hωj)
h−2

(
(y

−〈j〉
j )TL(hD)y

〈j〉
j − (y

〈j〉
j )TL(hD)y

−〈j〉
j

)
+ . . . = 0.

As in the single-frequency case, the left-hand expression turns out to be the time
derivative of a functionI∗

µ

(
y(t)

)
which after suitable truncation of the asymptotic
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series givesd
dt
I∗

µ

(
y(t)

)
= O(hN ). This proves for0 ≤ t ≤ T

I∗
µ

(
y(t)

)
= I∗

µ

(
y(0)

)
+ O(thN ) if µ ⊥ M. (14)

SinceL(hD)y
〈j〉
j (t) = L(hD)

(
eiωjtz

〈j〉
j (t)

)
= 2i sinc(hωj) h

2ωj eiωjt ż
〈j〉
j (t) + . . .

and Ij(xn, ẋn) = 2ω2
j ‖z

〈j〉
j (nh)‖2 + O(ε), the invariantI∗

µ

(
y(t)

)
is close to a

modified oscillatory energy (withσ(ξ) = sinc(ξ)φ(ξ)/ψ(ξ))

I∗
µ

(
y(nh)

)
= I∗µ(xn, ẋn) + O(ε), I∗µ(x, ẋ) =

ℓ∑

j=1

σ(hωj)
µj

λj

Ij(x, ẋ). (15)

3 Long-time energy conservation

With σ(ξ) = sinc(ξ)φ(ξ)/ψ(ξ) and ωj = λj/ε, we consider the modified total
and oscillatory energies

H∗(x, ẋ) = H(x, ẋ) +

ℓ∑

j=1

(
σ(hωj) − 1

)
Ij(x, ẋ)

I∗µ(x, ẋ) =
ℓ∑

j=1

σ(hωj)
µj

λj

Ij(x, ẋ).

(16)

Theorem 1 Under a numerical non-resonance assumption and the usual condi-
tion on the filter functionsψ(ξ) andφ(ξ) of an exponential integrator, its numeri-
cal solution satisfies, forH∗ andI∗µ defined by (16),

H∗(xn, ẋn) = H∗(x0, ẋ0) + O(h)

I∗µ(xn, ẋn) = I∗µ(x0, ẋ0) + O(h)
for 0 ≤ nh ≤ h−N+1

for µ ∈ R
ℓ with µ ⊥ M.

Proof. The proof of the statement forI∗µ(xn, ẋn) has been outlined in the previous
section. That for the modified total Hamiltonian follows similar lines and is not
presented.

For σ(ξ) = 1 (or equivalentlyψ(ξ) = sinc(ξ)φ(ξ)) the modified energiesH∗

andI∗µ are identical to the original energiesH andIµ of (1) and (4). The condition
ψ(ξ) = sinc(ξ)φ(ξ) is known to be equivalent to the symplecticity of the one-
step method(xn, ẋn) 7→ (xn+1, ẋn+1), but its appearance in the above theorem is
caused by a mechanism which is not in any obvious way related to symplecticity.

Explanation of the Numerical Experiment of Section 1.All numerical methods
in Figures 2–3 satisfy the conditions of Theorem 1 for the step sizes considered.
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In Figure 2 we have the (symplectic) method withφ(ξ) = 1 andψ(ξ) =
sinc(ξ), which hasσ(ξ) = 1, so thatH andH∗, andIµ andI∗µ coincide. For all
step sizes, the oscillatory energyI2 corresponding to the non-resonant frequency√

2ω and the sumI1 + I3 are well conserved on long time intervals, in accordance
with Theorem 1. There is an exchange between the individual energiesI1 andI3
corresponding to the resonant frequenciesω = 1/ε and2/ε.

In Figure 3 we use the method withφ(ξ) = 1 andψ(ξ) = sinc2(ξ/2), for
which σ(ξ) is not identical to 1, and henceH andH∗, and Iµ and I∗µ do not
coincide. The oscillatory energyI2 = σ−1

2 I∗µ with µ = (0, 1, 0) ⊥ M, which
corresponds to the non-resonant frequency

√
2ω, is approximately conserved over

long times. Since Theorem 1 only states that themodifiedenergies are well pre-
served, it is not surprising that neitherI1 + I3 nor the original total energyH (not
shown in the figure) are conserved. The modified energiesH∗ andσ1I1 + σ3I3
(not shown) are indeed well conserved.

Experiment with the Störmer–Verlet method. We repeat the experiment of
Figure 1 with the Störmer–Verlet method. Recall that the maximal frequency of
the system is2ω = 2/ε = 140. Figure 4 shows a surprising behavior of the
oscillatory energies. The energyI2 (corresponding toω2 =

√
2/ε) and the sum

I1 + I3 (corresponding to the two components withω = 1/ε and the resonant one
with ω = 2/ε) are well conserved.

For the step sizeh = 0.15/ω, the oscillatory energyI3 is nearly constant,
and there is an exchange of energy between the two componentscorresponding to
the same frequencyω. This can be explained by the fact, that the Störmer–Verlet
method is identical to an exponential integrator applied toa system with modified
frequencies̃ωj defined bysin( 2

h
ω̃j) = 1

2
hωj . If ω1 andω3 = 2ω1 are resonant, this

is no longer the case for the correspondingω̃j. The picture to the right of Figure 4
shows that rather small step sizes are needed to reproduce anenergy exchange,
and a much smaller step size to reproduce it correctly.

0 10000 20000 30000
0

1

2

0 10000 20000 30000

h = 0.15/ω h = 0.015/ω

Figure 4: Oscillatory energies as in Figure 1 along the numerical solution of the
Störmer–Verlet method.
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4 Semi-linear wave equations

We consider the one-dimensional nonlinear wave equation

utt − uxx + ρu+ g(u) = 0 (17)

for t > 0 and−π ≤ x ≤ π subject to periodic boundary conditions. We assume
ρ > 0 and a nonlinearityg that is a smooth real function withg(0) = g′(0) = 0.
We consider small initial data: in appropriate Sobolev norms, the initial values
u(·, 0) andut(·, 0) are bounded by a small parameterε. By rescalingu, this as-
sumption could be rephrased as aO(1) initial datum but a small non-linearity.

The semi-linear wave equation (17) conserves several quantities along every
solution

(
u(x, t), v(x, t)

)
, with v = ∂tu. Thetotal energyor Hamiltonian, defined

for 2π-periodic functionsu, v as

H(u, v) =
1

2π

∫ π

−π

(
1

2

(
v2 + (∂xu)

2 + ρ u2
)
(x) + U

(
u(x)

))
dx, (18)

where the potentialU(u) is such thatU ′(u) = g(u), and themomentum

K(u, v) =
1

2π

∫ π

−π

∂xu(x) v(x) dx = −
∞∑

j=−∞

i j u−j vj (19)

are exactly conserved along every solution
(
u(·, t), v(·, t)

)
of (17). Here,uj =

Fju andvj = Fjv are the Fourier coefficients in the seriesu(x) =
∑∞

j=−∞ uje
ijx

and correspondinglyv(x). Since we consider only real solutions, we note that
u−j = uj andv−j = vj . In terms of the Fourier coefficients, equation (17) reads

∂2
t uj + ω2

juj + Fjg(u) = 0, j ∈ Z, (20)

with the frequencies
ωj =

√
ρ+ j2.

Theharmonic actions

Ij(u, v) =
1

2

(
ωj |uj|2 +

1

ωj

|vj|2
)
, (21)

for which we noteI−j = Ij , are conserved for the linear wave equation, that is,
for g(u) ≡ 0. In the semi-linear equation (17), they turn out to remain constant up
to small deviations over long times for almost all values ofρ > 0, when the initial
data are smooth and small. Such a result is proved in Bambusi3, Bourgain4, and

3D. Bambusi,Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys. 234 (2003)
253–285

4J. Bourgain,Construction of approximative and almost periodic solutions of perturbed linear
Schr̈odinger and wave equations, Geom. Funct. Anal. 6 (1996) 201–230
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Cohen, Hairer, and Lubich5. We recall the precise statement of this result, because
this will help to understand related assumptions for the numerical discretizations.

We work with the Sobolev space, fors ≥ 0,

Hs = {v ∈ L2(T) : ‖v‖s <∞}, ‖v‖s =
( ∞∑

j=−∞

ω2s
j |vj |2

)1/2

,

wherevj denote the Fourier coefficients of a2π-periodic functionv. For the initial
position and velocity we assume that for suitably larges and smallε,

(
‖u(·, 0)‖2

s+1 + ‖v(·, 0)‖2
s

)1/2

≤ ε. (22)

Theorem 2 Under a suitable non-resonance condition on theωj , and the assump-
tion (22) on the initial data withs ≥ σ + 1, the estimate

∞∑

ℓ=0

ω2s+1
ℓ

|Iℓ(t) − Iℓ(0)|
ε2

≤ Cε for 0 ≤ t ≤ ε−N+1

with Iℓ(t) = Iℓ
(
u(·, t), v(·, t)

)
holds with a constantC which depends ons and

N , but is independent ofε andt.

The smallness of the initial data, which implies that the non-linearity is small
compared to the linear terms, is essential for our analysis.Since we do not impose
any further restrictions on the non-linearity, such an assumption permits to avoid
blow-up in finite time.

5 Spectral semi-discretization in space

For the numerical solution of (17) we first discretize in space (method of lines)
and then in time. We consider pseudo-spectral semi-discretization in space with
equidistant collocation pointsxk = kπ/M (for k = −M, . . . ,M−1). This yields
an approximation in form of real-valued trigonometric polynomials

uM(x, t) =
∑

|j|≤M

′
qj(t)e

ijx, vM(x, t) =
∑

|j|≤M

′
pj(t)e

ijx (23)

where the prime indicates that the first and last terms in the sum are taken with
the factor1/2. We havepj(t) = d

dt
qj(t), and the2M-periodic coefficient vector

5D. Cohen and E. Hairer and C. Lubich,Long-time analysis of nonlinearly perturbed wave
equations via modulated Fourier expansions, Arch. Ration. Mech. Anal. 187 (2008) 341–368
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q(t) = (qj(t)) is a solution of the2M-dimensional system of ordinary differential
equations

d2q

dt2
+ Ω2q = f(q) with f(q) = −F2Mg(F−1

2Mq). (24)

The matrixΩ is diagonal with entriesωj for |j| ≤ M , andF2M denotes the
discrete Fourier transform:

(
F2Mw

)
j
=

1

2M

M−1∑

k=−M

wk e−ijxk.

Since the components of the nonlinearity in (24) are of the form

fj(q) = − ∂

∂q−j
V (q) with V (q) =

1

2M

M−1∑

k=−M

U
(
(F−1

2Mq)k

)
,

we are concerned with a finite-dimensional complex Hamiltonian system with
energy

HM(q, p) =
1

2

∑

|j|≤M

′(
|pj|2 + ω2

j |qj|2
)

+ V (q), (25)

which is exactly conserved along the solution
(
q(t), p(t)

)
of (24) with p(t) =

dq(t)/dt. We further consider the actions (for|j| ≤M) and the momentum

Ij(q, p) =
1

2

(
ωj |qj |2 +

1

ωj
|pj|2

)
, K(q, p) = −

∑

|j|≤M

′′
i j q−jpj, (26)

where the double prime indicates that the first and last termsin the sum are taken
with the factor1/4. The definition of these expressions is motivated by the fact
that they agree with the corresponding quantities of Section 4 along the trigono-
metric polynomialsuM , vM (with the exception ofI±M , where a factor4 must be
included to get a unified formula). Since we are concerned with real approxima-
tions (23), the Fourier coefficients satisfyq−j = qj andp−j = pj, so that also
I−j = Ij .

On the space of2M-periodic sequencesq = (qj) we consider the weighted
norm

‖q‖s =
( ∑

|j|≤M

′′
ω2s

j |qj |2
)1/2

, (27)

which is defined such that it equals theHs norm of the trigonometric polyno-
mial with coefficientsqj. We assume that the initial dataq(0) andp(0) satisfy a
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condition corresponding to (22):(
‖q(0)‖2

s+1 + ‖p(0)‖2
s

)1/2

≤ ε. (28)

The following result6 is the analogue of Theorem 2 of the previous section.

Theorem 3 Under a suitable non-resonance condition on theωj (which involves
a parameterσ), and the assumption (28) of small initial data withs ≥ σ + 1, the
near-conservation estimates

M∑

ℓ=0

ω2s+1
ℓ

|Iℓ(t) − Iℓ(0)|
ε2

≤ Cε

|K(t) −K(0)|
ε2

≤ C t εM−s−1

for 0 ≤ t ≤ ε−N+1

for actionsIℓ(t) = Iℓ
(
q(t), p(t)

)
and momentumK(t) = K

(
q(t), p(t)

)
hold with

a constantC that depends ons andN , but is independent ofε,M , andt.

Since the expression
∑M

ℓ=0 ω
2s+1
ℓ Iℓ(t) is essentially (up to the factors in the

boundary terms) equal to the squaredHs+1×Hs norm of the solution
(
q(t), p(t)

)
,

Theorem 3 implies long-time spatial regularity:
(
‖q(t)‖2

s+1 + ‖p(t)‖2
s

)1/2

≤ ε(1 + Cε) for t ≤ ε−N+1. (29)

Theorems 2 and 3 have been included as a motivation of our results. They will not
be used in the following.

Example 2 In our numerical experiments we consider the Sine–Gordon equation,
which is of the form (17) withρ = 0 andg(u) = sin u. We use initial data7

u(x, 0) = π, ∂tu(x, 0) = 1.4
(
sin(πx) + 0.005 π2x(2 − x)

)

for 0 ≤ x ≤ 2. The spatial discretization is (24) with dimension2M = 27. Con-
sidered as2-periodic functions, the initial data∂tu(·, 0) has a jump discontinuity
in the first derivative. The assumption (28) is therefore satisfied fors < 1.5.

Figure 5 shows the total energy (black bold line) and the harmonic actionsIk
(for evenk in red, and for oddk in blue lines) along the exact solution of the
problem. To see a more interesting dynamics, we have chosen relatively large
initial functions (otherwise only straight lines could be seen).

6E. Hairer and C. Lubich,Spectral semi-discretisations of weakly nonlinear wave equations
over long times, Found. Comput. Math. 8 (2008) 319–334.

7All our numerical experiments are done for a normalizationx ∈ [0, 2], so that the frequencies
ωj becomeωj = jπ for ρ = 0.
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Figure 5: Actions and total energy (upper bold line) along the exact solution of
the Sine–Gordon equation (data of Example 2).
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Figure 6: Actions and total energy (upper bold line) along the numerical solution
of DOPRI5,Atol = Rtol = 4 · 10−4, average CFL number1.13.
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We apply an explicit Runge–Kutta method in the variable stepsize implemen-
tation DOPRI5, with local error tolerancesAtol = Rtol = 4 · 10−4. The program
chose62 267 accepted steps for the integration over the interval0 ≤ t ≤ 350,
which corresponds to an average stepsizeh = 0.00562 and average CFL number
hωM = 1.13. In Figure 6 we plot the actionsIj of (21), and the total energyHM

of (25) along the numerical solution. Even on the short time intervals the actions
with values below the tolerance are not at all conserved. There is a substantial
drift in all the quantities (also in the total energy) over longer time intervals.

6 Full discretizations – main results

We consider trigonometric (exponential) time integrators, which give the exact
solution for linear problems (24) withf(q) = 0, and reduce to the Störmer–Verlet
/ leapfrog method for (24) withΩ = 0:

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψ f(Φqn)

2h sinc(hΩ) pn = qn+1 − qn−1,
(30)

whereΨ = ψ(hΩ) andΦ = φ(hΩ) with filter functionsψ andφ that are bounded,
even, and satisfyψ(0) = φ(0) = 1. We have the following results.8

Theorem 4 Under the symplecticity conditionψ(ξ) = sinc(ξ)φ(ξ), under a suit-
able non-resonance conditions (involving a parameterσ), and under the assump-
tion (28) of small initial data withs ≥ σ + 1 for (q0, p0) =

(
q(0), p(0)

)
, the

near-conservation estimates

|HM(qn, pn) −HM(q0, p0)|
ε2

≤ Cε

|K(qn, pn) −K(q0, p0)|
ε2

≤ C
(
ε+M−s + εtM−s+1

)

M∑

ℓ=0

ω2s+1
ℓ

|Iℓ(qn, pn) − Iℓ(q
0, p0)|

ε2
≤ Cε

for energy, momentum and actions hold for long times0 ≤ t = nh ≤ ε−N+1

with a constantC which depends ons andN , but is independent of the small
parameterε, the dimension2M of the spatial discretization, the time stepsizeh,
and the timet = nh.

8D. Cohen, E. Hairer and C. Lubich,Conservation of energy, momentum and actions in nu-
merical discretizations of nonlinear wave equations, Numer. Math. 110 (2008) 113–143.
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In addition we obtain that the original HamiltonianH of (18) along the trigono-
metric interpolation polynomials

(
un(x), vn(x)

)
with Fourier coefficients(qn

j , p
n
j )

satisfies the long-time near-conservation estimate

|H(un, vn) −H(u0, v0)|
ε2

≤ Cε for 0 ≤ nh ≤ ε−N+1 .

The proof of Theorem 4 is based on the idea of interpolating the numerical
solution by a function where different time scales are well separated (modulated
Fourier expansion). This is done by the ansatz

q̃h(t) =
∑

k

ei(k·ω)tzk(εt), (31)

approximating the numerical solutionqn at t = nh. It s a (truncated) series of
products ofeiωjt (oscillations with respect to the fast timet) with coefficient func-
tions that are smooth in the slow timeτ = εt. The proof then proceeds as follows:

• Proving existence of smooth functionszk(τ) with derivatives
bounded independently ofε (on intervals of lengthε−1). This is the tech-
nically difficult part and requires non-resonance conditions and a careful
truncation of the series.

• Establishing a Hamiltonian structure and the existence of formal invariants
in the differential and algebraic equations for the functionszk(τ).

• Proving closeness (on intervals of lengthε−1) of the formal invariants to
actionsIℓ, to the total energyH, and to the momentumK.

• Stretching from short to long intervals of lengthε−N+1 by patching together
previous results along an invariant.

New difficulties arise due to the large number of independentfrequencies (all
estimates have to be independent ofM), the analytic non-resonance condition,
and the necessity of working with suitable Sobolev norms.

Numerical experiments. We study the effect of numerical resonance at the prob-
lem of Example 2 (notice that the frequencies areωj = jπ for j = 0, 1, . . . ,M).
We start with the method of Gautschi for whichψ(ξ) = sinc2(ξ/2) andφ(ξ) = 1.
We choose step sizes close toh = 0.1 so thathω10 = π. Figure 7 shows that the
harmonic energy of the 10 th Fourier mode explodes rapidly and causes a wrong
behavior of the solution. Surprisingly, for the case of exact resonance we have a
relative good behavior.
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Figure 7: Illustration of numerical resonance; method of Gautschi with
ψ(ξ) = sinc2(ξ/2) andφ(ξ) = 1.
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Figure 8: Illustration of numerical resonance; method of Deuflhard with
ψ(ξ) = sinc(ξ) andφ(ξ) = 1.

The resonance behaviour depends strongly on the choice of the filter functions.
For the method of Deuflhard (withψ(ξ) = sinc(ξ) andφ(ξ) = 1) the conservation
of total energy and harmonic actions is much improved (see Figure 8). Only the
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Figure 9: Illustration of numerical resonance; method of Garcı́a-Archilla & al.
with ψ(ξ) = sinc(ξ)φ(ξ) andφ(ξ) = sinc(ξ).

harmonic energy corresponding to the 10 th mode and later also that for the 20 th
mode show a drift. Still better is the method of Figure 9.

7 The Sẗormer–Verlet / leapfrog discretization

The leapfrog discretization of (24) reads, in the two-step formulation,

qn+1 − 2 qn + qn−1 = h2
(
−Ω2qn + f(qn)

)
, (32)

with the velocity approximationpn given by

2h pn = qn+1 − qn−1. (33)

The starting value is chosen asq1 = q0 +hp0 + h2

2
f(q0). Conservation properties

of this method will be obtained by reinterpreting it as a trigonometric method (30)
with modified frequencies̃ωj satisfying1 − 1

2
h2ω2

j = cos(hω̃j), that is,

sin
(

1

2
hω̃j

)
=

1

2
hωj . (34)

This is possible as long ashωj ≤ 2. Under the stepsize restrictionhωM ≤ c < 2
the producthω̃j cannot be close to an integral multiple ofπ, and we have

ωj ≤ ω̃j ≤ Cωj,
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whereC depends only onc. Hence, the assumption (28) of small initial data is
satisfied with the same exponents for the weighted norms defined with̃ωj or with
ωj. We can therefore apply Theorem 4 in the transformed variables, defined by

q̃ n = χ(hΩ̃) qn, p̃n = χ(hΩ̃)−1pn

with χ2(ξ) = sinc(ξ) (notice that the corresponding exponential integrator has
ψ(ξ) = χ(ξ) andφ(ξ) = χ−1(ξ) and is symplectic) and thus obtain, for example,

M∑

ℓ=0

ω̃2s+1
ℓ

|Ĩℓ(q̃ n, p̃n) − Ĩℓ(q̃
0, p̃ 0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1.

It follows from the computations of the last section in Lecture 4 that the harmonic
actionsĨℓ(q̃ n, p̃n) are related toIℓ(qn, pn) by

Ĩℓ(q̃
n, p̃n) =

( ω̃ℓ χ
2(hωℓ)

ωℓ

)(
Iℓ(q

n, pn) +
γ(hωj)

2ωj

‖pn
ℓ ‖2

)
.

where

γ(hω) =
(hω/2)2

1 − (hω/2)2

.5 1.0 1.5 2.0

10−2

10−1

100

101
γ

hω

This implies that for the modified energies

I∗ℓ (qn, pn) = Iℓ(q
n, pn) +

γ(hωj)

2ωj
‖pn

ℓ ‖2

we have the estimate

M∑

ℓ=0

ω2s+1
ℓ

|I∗ℓ (q n, pn) − I∗ℓ (q 0, p 0)|
ε2

≤ Cε for 0 ≤ t ≤ ε−N+1. (35)

Numerical experiment. We apply the leapfrog method to the problem of Ex-
ample 5 with stepsizeh = 0.009, so that the CFL numberhωM ≈ 1.81 is close
to the linear stability limit. In Figure 10 we observe that the harmonic actionsIℓ
are very well reproduced for small values ofℓ. For large values ofℓ, in particular
when they are close toM , oscillations with large relative amplitude proportional
to γ(hωℓ) are observed, but there is no drift in actions and energy. Forreason of
comparison, we include again the picture for the exact values (actually obtained
with an exponential integrator).
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Figure 10: Actions and total energy (upper bold line) along the numerical of the
Stömer–Verlet / leapfrog method (problem of Example 2).
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Figure 11: Actions and total energy (upper bold line) along the exact solution of
the Sine–Gordon equation (data of Example 2).
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