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We first extend the technique of modulated Fourier expansigoroblems with
several high frequencies, which can be resonant or nomagtoAn extension to
infinitely many non-resonant high frequencies permits tiaiolnteresting results
on the long-time behavior of nonlinearly perturbed waveatiquns.

1 Several high frequencies

We consider Hamiltonians of the form

)4
. 1 .
H(w,&) = 3 3 (sl + w2 lls]12) + U (), (1)
=0
wherez = (zg,21,...,70) With z; € R%, w; = \;/e with A\ = 0, distinct

A; > 0, and smalk > 0. After rescalings we may assumg; > 1 for all j. The
equations of motion are a system of second-order diffeabatjuations

i =—0% + g(x), (2)

where() = diag(w;I) with the frequencies;; = \;/e andg(z) = —VU(z). As
suitable numerical methods we consider again the classpafreential (trigono-
metric) integrators with filter functiong and¢, studied in Lecture 4.
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We are interested in the long-time near-conservation dftta¢energyH (z, i)
and the oscillatory energies
2

: L/,. A% .
I ) = 5 (a2 + S lasl?) - for  j=1 3)

or suitable linear combinations thereof. Benettin, Gailga@iorgilli * have shown
that the quantities

l
HCEEDD % I(z, &) 4)

are approximately preserved over long times along solstigith bounded en-
ergy (independent of) if the potentialU(x) is analytic andu = (u1, .. ., o) iS
orthogonal to theesonance module

M={kcZ : k) +...4+ ko =0}, (5)

and if a diophantine non-resonance condition holds outditle Sincep, = A
is orthogonal taM, the total oscillatory energEf.:1 I;(z, %) of the system is
always approximately preserved.

Example 1 To illustrate the conservation of the various energies, aresicler a
Hamiltonian (1) with? = 3, A = (1,1/2,2) and we assume that the dimensions
of z; are all1 with the exception of that of; = (z;1,212) wWhich is2. The
resonance module is then given B = {(k1,0, k3); k1 + 2k3 = 0}. We take
€1 = w = 70, the potential

U(x) = (0.05+ 211 + 712 + 72 + 2.523)* + %x% i+ %x%, (6)
andz(0) = (1,0.3¢,0.8¢, —1.1¢,0.7¢), £(0) = (—0.2,0.6,0.7, —0.9,0.8) as ini-
tial values. We considef, for i = (1,0,2) andu = (0,+/2,0), which are both
orthogonal toM. In Figure 1 we plot the oscillatory energies for the individ
ual components of the system. The corresponding frequeacgeattached to the
curves. We also plot the sum + I3 of the three oscillatory energies correspond-
ing to the resonant frequenciége and2/e. We see that; + I3 as well asl,
(which arel,, for the above two vectors L M) are well conserved over long
times up to small oscillations of siz@(¢). There is an energy exchange between
the two components corresponding to the same frequéficyand also between
components corresponding to resonant frequerigieand?2/e.

1G. Benettin, L. Galgani & A. GiorgilliRealization of holonomic constraints and freezing of
high frequency degrees of freedom in the light of classiedlybation theory. Il Commun. Math.
Phys. 121 (1989) 557—-601.
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Figure 1: Oscillatory energies of the individual compose(the frequencies
A\jw = \;/e are indicated) and the suf + I; of the oscillatory energies cor-
responding to the resonant frequenciesnd2w.

Numerical Experiment. We take the exponential integrator (discussed in Lec-
ture 4) withe(¢) = 1 andy (&) = sinc(€), and we apply it with large step sizes
so thathw = h/e takes the values, 2, 4, and8. Figure 2 shows the various os-
cillatory energies which can be compared to the exact vatuegyure 1. For all
step sizes, the oscillatory energy corresponding to tlpiecyy/2w and the sum

- h=1/w - h=8/w
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Figure 2: Oscillatory energies as in Figure 1 along the nicaksolution, ob-
tained with¢ (&) = 1 andy (&) = sinc(§).
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Figure 3: Oscillatory energies as in Figure 1 along the nicaksolution, ob-
tained withg(¢) = 1 andy (&) = sinc?(£/2).
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I, + I5 are well conserved on long time intervals. Oscillationdiese expressions
increase withh. The energy exchange between resonant frequencies istolose
that of the exact solution. We have not plotted the total gnéf(x,,, ©,,) which

is well conserved over long times.

We repeat this experiment with the method having filter fiomg¢(¢) = 1
and(¢) = sinc?(£/2) (Figure 3). Only the oscillatory energy corresponding to
V2w is approximately conserved over long times. Neither theesgion/; + I;
nor the total energy (not shown) are conserved.

2 Multi-frequency modulated Fourier expansions

The technique of modulated Fourier expansion can be extetw¢he multi-
frequency case by consideriig = (k1, ..., k;) as multi-index and by letting
k-w=Fkuw+...+kw, We explain the main differences to the single-frequency
case (Lecture 4) without giving technical details.

For a given vectoh = (), ..., \,) and for the resonance moduld defined
by (5), we callk andk equivalent (notatiot ~ E) ifk-A=Fk-\ie,k—ke M.
We let be a set of representatives of the equivalence classes afteathosen
such that for eaclt € K the sum|k| = |ki| + ... + |k¢| iS minimal in the
equivalence clasg| = k + M, and withk € K, also—k € K.

Let us consider an exponential integrator (see Lecture@ljeapto the system
(2). We write the numerical solution ag = xj(nh), where (formally)

wa(t) = )M (t) ()
keK
with w = A/e. Asin the single-frequency case we can construct smootttiturs
2F(t). We assume that the energy of the initial values is boundaepiendently
of ¢, 1/ ) )
5 (1)) + [92(0)?) < . ®)

thath /e > ¢y > 0, a numerical non-resonance condition, and bounds on tke filt
functiong. The dominant terms in each component are then bounded by

X=00), V=06 for j=1,...,1, (9)

J

where(j) = (0,...,1,...,0) denotes thgth unit vector. All other functions are
at least of sizéie or 2.

2For a precise formulation of the assumptions, see Sectiti0X of the monograph “Geo-
metric Numerical Integration”.



With y*(t) = b2k (t) for k € K, wherez!(t) are the modulation functions
of (7), we denotg = (y*)rcxc. We introduce the extended potential

1 m aq Qm,
Uy) = U@y")+ Y —U™(@y") (@Y™, .. @y™),  (10)
s(a)~0
where the sum is taken over all > 1 and all multi-indicesy = (aq,..., )

with o; € K anda; # 0, for whichs(a) = >, a; € M. The functionsy*(¢)
then satisfy
U'® P L(WD) y* = — V- U(Y), (11)

whereL(hD) = e — 2 cos(hQ2) + e"P. This system has almost-invariants that
are related to the Hamiltoniaid and the oscillatory energidg with 1 1L M.

Momentum-type invariants of the modulation system. For; € R’ we set
S“(T) y= (eik'w—yk)kglc, 7€R
so that, by the multi-linearity of the derivative, the detiom (10) yields

is(a)-pr
USu(r)y) = U@y + 3 © —— U (@) @y, By™). (12)

s(a)~0

If w L M, then the relatiors(a) ~ 0 implies s(a) - © = 0, and hence the
expression (12) is independentoflt therefore follows that

0= Lu ey =ik w ey a9

dr
kek

for all vectorsy = (y*),cxc. Multiplying the relation (11) with (—k - 1) (y*’f)T
and summing ovek € K, we obtain with (13) that, formally,

- é S (k- T OB LMAD)YE = 0 if L M.
ke

Its dominant term is obtained far= +(j), j = 1,...,¢,

¥ (hw;)

As in the single-frequency case, the left-hand expressiorstout to be the time
derivative of a functior?; (y(t)) which after suitable truncation of the asymptotic

. l
i heos . : : .
-l S, O(hw;) 1 ((yj DT LmDYY — ()T L(hD)y; (J>) L -0
J=1
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series givesZ*(y(t)) = O(hY). This proves fob < ¢ < T

Zi(y(t) = Z;(y(0)) + O@h™) if Ll M. (14)
Since L(hD)yY (t) = L(hD) (%2 (1)) = 2isinc(hw;) hPw; et 27 () + ...
and I;(x,, &,) = 2w’ Hz§”(nh)|]2 + O(e), the invariantZ; (y(t)) is close to a
modified oscillatory energy (witlw (£) = sinc(£)p(&) /1¥(£))

THY(nh)) = I5(xn,d0) + O(e), Iz, i) = Zg(hwj)i—jfj(x,g;«). (15)

Jj=1

3 Long-time energy conservation

With o(&) = sinc(§)¢(€)/¥(€) and w; = A, /e, we consider the modified total
and oscillatory energies
H*(z,i) = H(z, &)+ Y (o(hw;) —1) I;(z, &)
, ’ (16)
Ii(z,d) = Y olhw) 1w, @),

J

1~

=

j=1
Theorem 1 Under a numerical non-resonance assumption and the usunali€o

tion on the filter functions)(¢) and ¢(£) of an exponential integrator, its numeri-
cal solution satisfies, fol/* and I; defined by (16),

H*(xp,%,) = H*(x9,20) + O(h)
Ly, @0) = (20, d0) +O(h)
for u € R with pp L M.
Proof. The proof of the statement fd[j(xn, t,) has been outlined in the previous

section. That for the modified total Hamiltonian follows dam lines and is not
presented. O

Foro (&) = 1 (or equivalentlyy) (&) = sinc(€)¢(£)) the modified energies *
and/} are identical to the original energiésand/, of (1) and (4). The condition
¥(€) = sinc(€)p(€) is known to be equivalent to the symplecticity of the one-
step methodz,,, ,) — (x,.1,Z,41), bUt its appearance in the above theorem is
caused by a mechanism which is not in any obvious way relatsgrplecticity.

Explanation of the Numerical Experiment of Section 1.All numerical methods
in Figures 2—3 satisfy the conditions of Theorem 1 for the siees considered.

for 0<nh<h Nt
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In Figure 2 we have the (symplectic) method witt¢) = 1 and¢ (&) =
sinc(§), which haso(§) = 1, so thatH and H*, and/,, and/; coincide. For all
step sizes, the oscillatory ener@ycorresponding to the non-resonant frequency
V2w and the suni; + I; are well conserved on long time intervals, in accordance
with Theorem 1. There is an exchange between the indivichegges/; and I
corresponding to the resonant frequencies 1/ and2/e.

In Figure 3 we use the method with(¢) = 1 and (&) = sinc?(£/2), for
which o(¢) is not identical to 1, and hencl# and H*, and [, and [;; do not
coincide. The oscillatory energly = 051]; with © = (0,1,0) L M, which
corresponds to the non-resonant frequeyi@y, is approximately conserved over
long times. Since Theorem 1 only states thatrtiaifiedenergies are well pre-
served, it is not surprising that neithgr+ I3 nor the original total energ$/ (not
shown in the figure) are conserved. The modified enerffieando,l; + o313
(not shown) are indeed well conserved.

Experiment with the Stormer—Verlet method. We repeat the experiment of
Figure 1 with the Stormer—\Verlet method. Recall that thexiimal frequency of
the system iQw = 2/ = 140. Figure 4 shows a surprising behavior of the
oscillatory energies. The enerdy (corresponding ta,, = v/2/¢) and the sum
I, + I5 (corresponding to the two components with= 1/« and the resonant one
with w = 2/¢) are well conserved.

For the step sizé = 0.15/w, the oscillatory energy; is nearly constant,
and there is an exchange of energy between the two compamwrgsponding to
the same frequency. This can be explained by the fact, that the Stormer—Verlet
method is identical to an exponential integrator appliea $ystem with modified
frequenciess; defined byin(2%;) = hw;. If w; andw; = 2w, are resonant, this
is no longer the case for the correspondingThe picture to the right of Figure 4
shows that rather small step sizes are needed to reproduseeayy exchange,
and a much smaller step size to reproduce it correctly.

 h=0.15/w  h=0.015/w
2F -
1 %

E \\\\\\\\\ | | [ f \\\\\\\\\ | vy [
OO 10000 20000 300000 10000 20000 30000

Figure 4: Oscillatory energies as in Figure 1 along the nicaksolution of the
Stormer—Verlet method.



4 Semi-linear wave equations

We consider the one-dimensional nonlinear wave equation

fort > 0 and—7 < z < 7 subject to periodic boundary conditions. We assume
p > 0 and a nonlinearity that is a smooth real function wi{0) = ¢'(0) = 0.
We consider small initial data: in appropriate Sobolev r&rthe initial values
u(+,0) andw(+,0) are bounded by a small parameterBy rescalingu, this as-
sumption could be rephrased a®a4l) initial datum but a small non-linearity.

The semi-linear wave equation (17) conserves several eardalong every
solution(u(z, t), v(z,t)), with v = d,u. Thetotal energyor Hamiltonian, defined
for 2m-periodic functions:, v as

H(u,v) = — / ’ (1(& + (u)? + pu2> (z) + U(u(x))) dr,  (18)

o | \2
where the potentidl/ (u) is such that/’(u) = ¢g(u), and themomentum
K(u,v) = %/ Oyu(z)v(x)de = — Z iju_jv, (19)
- =

are exactly conserved along every solut(cuq-, t),v(-, t)) of (17). Hereu; =
Fjuandv; = F,v are the Fourier coefficients in the serigs)) = >0 wu;el”

j=—o0

and correspondingly(z). Since we consider only real solutions, we note that

u_; = u; andv_; = v;. In terms of the Fourier coefficients, equation (17) reads
8t2uj + CUJQ-U]' + f]g(u) =0, Jj €7, (20)
with the frequencies ‘
q wj =Vp+J2
Theharmonic actions
1 1
[j(uvv> = 5((4)]' |uj|2+w_j ‘Uj|2> ) (21)

for which we note/_; = I;, are conserved for the linear wave equation, that is,
for g(u) = 0. In the semi-linear equation (17), they turn out to remainstant up
to small deviations over long times for almost all valueg of 0, when the initial
data are smooth and small. Such a result is proved in BampBsurgain*, and

3D. BambusiBirkhoff normal form for some nonlinear PDESomm. Math. Phys. 234 (2003)
253-285

4J. BourgainConstruction of approximative and almost periodic solnti@f perturbed linear
Schiddinger and wave equationGeom. Funct. Anal. 6 (1996) 201-230
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Cohen, Hairer, and Lubich We recall the precise statement of this result, because
this will help to understand related assumptions for the enizal discretizations.
We work with the Sobolev space, fer> 0,

o0

1/2
H = {oe 2(T): Jolly < oo, folls= (3 w2 fosf?) "
j=—o00
wherev; denote the Fourier coefficients ofa-periodic functiorw. For the initial
position and velocity we assume that for suitably lasgend smalk,

1/2
(Il 012, + [l 0)]2) <. (22)

Theorem 2 Under a suitable non-resonance condition ondheand the assump-
tion (22) on the initial data witls > o + 1, the estimate

W?S-’_l M S CS for 0 S t S €—N+1

=0 <
with I,(t) = I,(u(-,t),v(-,t)) holds with a constant’ which depends o and
N, but is independent afandt.

The smallness of the initial data, which implies that the-hpearity is small
compared to the linear terms, is essential for our analgsice we do not impose
any further restrictions on the non-linearity, such an ag#ion permits to avoid
blow-up in finite time.

5 Spectral semi-discretization in space

For the numerical solution of (17) we first discretize in spé&method of lines)
and then in time. We consider pseudo-spectral semi-dizaten in space with
equidistant collocation points, = kx/M (for k = —M, ..., M —1). This yields
an approximation in form of real-valued trigopnometric pubynials

M) = 3 g0, oM@t = 3 p(1)e (23)
l71<M ljl<M

where the prime indicates that the first and last terms in tine are taken with
the factorl/2. We havep;(t) = <4¢;(t), and the2\/-periodic coefficient vector

5D. Cohen and E. Hairer and C. Lubichong-time analysis of nonlinearly perturbed wave
equations via modulated Fourier expansipAsch. Ration. Mech. Anal. 187 (2008) 341-368
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q(t) = (g;(t)) is a solution of the M -dimensional system of ordinary differential
equations

d?q ) . 1

Tl + Q% = f(q) with 1(q@) = =Famg(Fyp09)- (24)
The matrix(2 is diagonal with entriesv; for |j| < M, and F;), denotes the
discrete Fourier transform:

M-1
(ngw)j = ﬁ Z Wi e 1Tk
k=—M

Since the components of the nonlinearity in (24) are of tmenfo

9 ) M—1
- . 1
_8(],]- V(q) with Vig) = BN U((sz‘J)k) )

k=—M

filq) =

we are concerned with a finite-dimensional complex Hami#orsystem with

energy
1 /
Hu(a.p) =5 Y (Il +o? o) + V(o). (25)

ljl<M

which is exactly conserved along the solutify(t), p(t)) of (24) with p(t) =
dq(t)/dt. We further consider the actions (fgif < M) and the momentum

1 1 "o
Ia.p) = 5 (@i lal+ Il K@p) ==Y tiaem  (26)
’ <M

where the double prime indicates that the first and last tamrttee sum are taken
with the factorl/4. The definition of these expressions is motivated by the fact
that they agree with the corresponding quantities of Sectialong the trigono-
metric polynomials:,™ , v (with the exception of ;. ,;, where a facto# must be
included to get a unified formula). Since we are concernel vl approxima-
tions (23), the Fourier coefficients satisfy; = g; andp_; = p;, so that also
I_;=1,.

On the space ofM-periodic sequenceg = (¢;) we consider the weighted

norm
1/2

lalls = (2 w2 lal?) " 27)

ljl<M

which is defined such that it equals tih& norm of the trigonometric polyno-
mial with coefficientsg;. We assume that the initial dagg0) andp(0) satisfy a

10



condition corresponding to (22):
1/2
()12, + IpO)]2) <. (28)

The following resulf is the analogue of Theorem 2 of the previous section.

Theorem 3 Under a suitable non-resonance condition on thgwhich involves
a parametew), and the assumption (28) of small initial data with> o + 1, the
near-conservation estimates

M
I,(t) — I,(0
gs+1|z<) g( )| C<€

p e? for 0<t<e N
|K<t)_2K(O>| < CtSMfsfl
g
for actions/,(t) = I,(¢(t), p(t)) and momentunk () = K (q(t), p(t)) hold with
a constant' that depends om and N, but is independent af M, andt.

Since the expressioﬁjj}i0 w; 1, (t) is essentially (up to the factors in the
boundary terms) equal to the squaréti™ x H* norm of the solutior{¢(t), p(t)),
Theorem 3 implies long-time spatial regularity:

1/2
(la®lz + Ip@I2) " <e+C2)  for 1< (29)

Theorems 2 and 3 have been included as a motivation of outse$hey will not
be used in the following.

Example 2 In our numerical experiments we consider the Sine—Gordoaten,
which is of the form (17) withp = 0 andg(u) = sin u. We use initial data

u(z,0) =m, Odu(z,0) = 1.4(sin(rz) + 0.005 7°z(2 — x))

for 0 < x < 2. The spatial discretization is (24) with dimensiah/ = 27. Con-
sidered ag-periodic functions, the initial datd,«(-,0) has a jump discontinuity
in the first derivative. The assumption (28) is thereforésfat fors < 1.5.

Figure 5 shows the total energy (black bold line) and the lbaimactionsl,
(for evenk in red, and for odd: in blue lines) along the exact solution of the
problem. To see a more interesting dynamics, we have chatatively large
initial functions (otherwise only straight lines could kees).

8E. Hairer and C. LubichSpectral semi-discretisations of weakly nonlinear waveagiqns
over long timesFound. Comput. Math. 8 (2008) 319-334.

All our numerical experiments are done for a normalizatian [0, 2], so that the frequencies
w; becomev; = jr for p = 0.
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Figure 5: Actions and total energy (upper bold line) along ¢xact solution of
the Sine—Gordon equation (data of Example 2).
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Figure 6: Actions and total energy (upper bold line) alorgniamerical solution
of DOPRI5,Atol = Rtol = 4 - 1074, average CFL number13.
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We apply an explicit Runge—Kutta method in the variable stepimplemen-
tation DOPRIS5, with local error tolerancégol = Rtol = 4 - 10~*. The program
chose62 267 accepted steps for the integration over the intetval ¢ < 350,
which corresponds to an average stepsize 0.00562 and average CFL number
hwy = 1.13. In Figure 6 we plot the actiong of (21), and the total energsf
of (25) along the numerical solution. Even on the short tintervals the actions
with values below the tolerance are not at all conserved.reltgea substantial
drift in all the quantities (also in the total energy) ovender time intervals.

6 Full discretizations — main results

We consider trigonometric (exponential) time integratevhich give the exact
solution for linear problems (24) witfi(¢q) = 0, and reduce to the Stormer—\erlet
/ leapfrog method for (24) witk) = 0:

¢" = 2cos(hQ) " +¢" = T f(‘PCJ”)
2hsinc(hQ) p" = ¢ — ¢,

whereW = ¢ (hS2) and® = ¢(hS2) with filter functionsy and¢ that are bounded,
even, and satisfy(0) = ¢(0) = 1. We have the following resulfs.

(30)

Theorem 4 Under the symplecticity condition(§) = sinc(£)¢(§), under a suit-
able non-resonance conditions (involving a parametgrand under the assump-
tion (28) of small initial data withs > o + 1 for (¢°,p°) = (¢(0),p(0)), the
near-conservation estimates
|H1w(qn7pn) - HJ\J(qO7pO)|
52
[K(¢",p") — K(q°, ")
52

< (e

< C(a + M5 +etM 511

M 0,0
Z 2s+1 ‘IZ q P ) - [Z(q P )| S Ce
£

=0

for energy, momentum and actions hold for long tintes. t = nh < ¢~ V+!
with a constantC' which depends om and NV, but is independent of the small
parameterz, the dimensio M of the spatial discretization, the time stepsize
and the time = nh.

8D. Cohen, E. Hairer and C. Lubicionservation of energy, momentum and actions in nu-
merical discretizations of nonlinear wave equatipNsmer. Math. 110 (2008) 113-143.
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In addition we obtain that the original Hamiltoni&hof (18) along the trigono-
metric interpolation polynomialgu™(z), v ()) with Fourier coefficient$q?', p7)
satisfies the long-time near-conservation estimate

‘H(un’ Un) B H(’U,O7 UO)|
82

< Ce for 0<nh<e Nl

The proof of Theorem 4 is based on the idea of interpolatimegnilnmerical
solution by a function where different time scales are wefiazated (modulated
Fourier expansion). This is done by the ansatz

Gu(t) =) e ® R (et), (31)
k

approximating the numerical solutigff att = nh. It s a (truncated) series of
products ok“i* (oscillations with respect to the fast timewith coefficient func-
tions that are smooth in the slow time= <t. The proof then proceeds as follows:

e Proving existence of smooth functiong®(7) with derivatives
bounded independently ef(on intervals of lengtlx—!). This is the tech-
nically difficult part and requires non-resonance condgi@and a careful
truncation of the series.

e Establishing a Hamiltonian structure and the existencewnél invariants
in the differential and algebraic equations for the funesio® (7).

e Proving closeness (on intervals of length') of the formal invariants to
actions/,, to the total energy, and to the momenturfy.

e Stretching from short to long intervals of length¥ *! by patching together
previous results along an invariant.

New difficulties arise due to the large number of independeaguencies (all
estimates have to be independentldj, the analytic non-resonance condition,
and the necessity of working with suitable Sobolev norms.

Numerical experiments. We study the effect of numerical resonance at the prob-
lem of Example 2 (notice that the frequencies@aje= jr for j = 0,1,..., M).

We start with the method of Gautschi for whighi¢) = sinc?(¢/2) andg(¢) = 1.

We choose step sizes closelte= 0.1 so thathw,y = 7. Figure 7 shows that the
harmonic energy of the 10th Fourier mode explodes rapidiyGauses a wrong
behavior of the solution. Surprisingly, for the case of éxasonance we have a
relative good behavior.

14
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Figure 7: lllustration of numerical resonance; method ofitSehi with

¥(€) = sinc?(§/2) andg(§) =
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Figure 8: lllustration of numerical resonance; method ofiflfeard with

¥(§) = sinc(§) ando(§) =
The resonance behaviour depends strongly on the choice bltér functions.

For the method of Deuflhard (with(£) = sinc(§) and¢(¢) = 1) the conservation
of total energy and harmonic actions is much improved (sgarEi8). Only the

15



g
T

L | L | L | L | L | L | L | L | L |

0 100 200 300 O 100 200 300 O 100 200 300
Figure 9: lllustration of numerical resonance; method ofd@aArchilla & al.

with ¢(¢) = sinc(§)¢(§) andg(§) = sinc(§).

harmonic energy corresponding to the 10 th mode and lateitladd for the 20 th
mode show a drift. Still better is the method of Figure 9.

7 The Srmer—Verlet / leapfrog discretization

The leapfrog discretization of (24) reads, in the two-stapiulation,

@ =2¢" + 4" =R + f(q), (32)
with the velocity approximatiop™ given by
2hpn _ qn+1 _ qn—l. (33)

The starting value is chosen as = ¢° + hp° + %2 f(q°). Conservation properties
of this method will be obtained by reinterpreting it as adrigmetric method (30)
with modified frequencies; satisfyingl — h°w? = cos(h&;), that s,

sin(% h@) = % hw;. (34)

This is possible as long d@sv; < 2. Under the stepsize restrictidiv,; < ¢ < 2
the productw,; cannot be close to an integral multiplerafand we have

(,LJj S (,LJj S C’wj,

16



whereC' depends only or. Hence, the assumption (28) of small initial data is
satisfied with the same exponerfor the weighted norms defined witly or with
w;. We can therefore apply Theorem 4 in the transformed vasallefined by

" =x(hQ)q", P =x(hQ)'p

with x2(£) = sinc(€) (notice that the corresponding exponential integrator has
¥(€) = x(€) andp (&) = x1(€) and is symplectic) and thus obtain, for example,

M

~2s+1 |[Z(an7ﬁn) - [Z(Ejoaﬁoﬂ
Wy

5 <Ce for 0<t<e N
9

=0

It follows from the computations of the last section in Leetd that the harmonic
actions/,(q™,p") are related td,(¢", p™) by

T 5y = (22 (g, gy 209 ),

Wy 2w;
where
hw/2)? 10t
(hw) =7 ( Zziu/)Q) - /
- I ITRRTIRTRRTIN R L
100§ 5 1.5 20
This implies that for the modified energies 10%
i(m o n ooy, V(hw)) 107
I;(q",p") = L(q",p") + 2. [l E hw
i F

we have the estimate

M n *

W25t [L(¢"p") =1 (¢°, ")
Wy 62

=0

<Ce for 0<t<e N (35)

Numerical experiment. We apply the leapfrog method to the problem of Ex-
ample 5 with stepsizé = 0.009, so that the CFL numbérw,; ~ 1.81 is close

to the linear stability limit. In Figure 10 we observe thag tharmonic action$,
are very well reproduced for small valueséofFor large values of, in particular
when they are close td/, oscillations with large relative amplitude proportional
to v(hw,) are observed, but there is no drift in actions and energyréason of
comparison, we include again the picture for the exact w(aetually obtained
with an exponential integrator).
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Figure 10: Actions and total energy (upper bold line) aldmg numerical of the
Stomer—Verlet / leapfrog method (problem of Example 2)
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Figure 11: Actions and total energy (upper bold line) aldmg éxact solution of
the Sine—Gordon equation (data of Example 2)
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