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This lecture1 deals with numerical approaches for second order Hamiltonian sys-
tems with highly oscillatory solutions. We focus on the situation where the prod-
uct of time step size and highest frequency in the system is not small.

1 A Fermi–Pasta–Ulam type problem

The problem of Fermi, Pasta & Ulam2 (see also the recent lecture notes3) is a
simple model for simulations in statistical mechanics which revealed highly unex-
pected dynamical behaviour. We consider a modification consisting of a chain of
m mass points, connected with alternating soft nonlinear andstiff linear springs,
and fixed at the end points (see Galgani, Giorgilli, Martinoli & Vanzini4 and Fig-
ure 1). The variablesq1, . . . , q2m (q0 = q2m+1 = 0) stand for the displacements

1Large parts are taken from “Geometric Numerical Integration” by Hairer, Lubich & Wanner.
2E. Fermi, J. Pasta & S. Ulam,Studies of non linear problems.Los Alamos Report No. LA-

1940 (1955), later published in E. Fermi: Collected Papers (Chicago 1965), and Lect. Appl. Math.
15, 143 (1974).

3G. Gallavotti (ed.),The Fermi–Pasta–Ulam problem.Lecture Notes in Physics, vol. 728,
Springer, Berlin, 2008. A status report.

4L. Galgani, A. Giorgilli, A. Martinoli & S. Vanzini,On the problem of energy equipartition
for large systems of the Fermi–Pasta–Ulam type: analyticaland numerical estimates, Physica D
59 (1992), 334–348.
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Figure 1: Chain with alternating soft nonlinear and stiff linear springs

of the mass points, andpi = q̇i for their velocities. The motion is described by a
Hamiltonian system with total energy

H(p, q) =
1

2

m∑

i=1

(
p2

2i−1 + p2
2i

)
+
ω2

4

m∑

i=1

(q2i − q2i−1)
2 +

m∑

i=0

(q2i+1 − q2i)
4,

whereω is assumed to be large. With the symplectic change of coordinates

x0,i =
(
q2i + q2i−1

)
/
√

2, x1,i =
(
q2i − q2i−1

)
/
√

2,

ẋ0,i =
(
p2i + p2i−1

)
/
√

2, ẋ1,i =
(
p2i − p2i−1

)
/
√

2,
(1)

wherex0,i is a scaled displacement of theith stiff spring,x1,i a scaled expansion
(compression) of theith stiff spring, we get a Hamiltonian system with

H(x, ẋ) =
1

2

m∑

i=1

(
ẋ2

0,i + ẋ2
1,i

)
+
ω2

2

m∑

i=1

x2
1,i +

1

4

(
(x0,1 − x1,1)

4+

+

m−1∑

i=1

(
x0,i+1 − x1,i+1 − x0,i − x1,i

)4
+ (x0,m + x1,m)4

)
.

(2)

Besides the fact that the total energy is exactly conserved,the system has a further
interesting feature. We consider the oscillatory energy

I = I1 + . . .+ Im, Ij =
1

2

(
ẋ2

1,j + ω2x2
1,j

)
, (3)

whereIj denotes the harmonic energy of thejth stiff spring, and the kinetic ener-
gies corresponding to the slow and fast motions

T0 =
1

2

m∑

i=1

ẋ2
0,i, T1 =

1

2

m∑

i=1

ẋ2
1,i. (4)

For an illustration we choosem = 3 (as in Figure 1),ω = 50, x0,1(0) = 1,
ẋ0,1(0) = 1, x1,1(0) = ω−1, ẋ1,1(0) = 1, and zero for the remaining initial values.
Figure 2 shows the different time scales that are present in the evolution of the
system.
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Figure 2: Different time scales in the FPU type problem (ω = 50).

Time Scaleωω−1. The vibration of the stiff linear springs is nearly harmonicwith
almost-periodπ/ω. This is illustrated by the plot ofT1 in the first picture.

Time Scaleωω0. This is the time scale of the motion of the soft nonlinear springs,
as is exemplified by the plot ofT0 in the second picture of Figure 2.
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Time Scaleωω. A slow energy exchange among the stiff
springs takes place on the scaleω. In the third picture
(see also the zoom to the right), the initially excited first
stiff spring passes energy to the second one, and then
also the third stiff spring begins to vibrate. The picture
also illustrates that the problem is very sensitive to per-
turbations of the initial data: the grey curves of each of
I1, I2, I3 correspond to initial data where10−5 has been
added tox0,1(0), ẋ0,1(0) and ẋ1,1(0). The displayed solutions of the first three
pictures have been computed very accurately by an adaptive integrator.

Time ScaleωωN , N ≥ 2. The oscillatory energyI has onlyO(ω−1) deviations
from the initial value over very long time intervals. The fourth picture of Figure 2
shows the total energyH and the oscillatory energyI as computed by an expo-
nential integrator (see Section 3) with step sizeh = 2/ω = 0.04, which is nearly
as large as the time interval of the first picture. No drift is seen forH or I.
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2 Application of classical integrators

Which of the methods, discussed in Lecture 2, produce qualitatively correct ap-
proximations when the product of the step sizeh with the high frequencyω is
relatively large?

Linear stability analysis. To get an idea of the maximum admissible step size,
we neglect the nonlinear term in the differential equation,so that it splits into the
two-dimensional problemṡy0,i = 0, ẋ0,i = y0,i and

ẏ1,i = −ω2x1,i, ẋ1,i = y1,i. (5)

Omitting the subscripts, the solution of (5) is
(
y(t)
ω x(t)

)
=

(
cosωt − sinωt
sinωt cosωt

)(
y(0)
ω x(0)

)
.

The numerical solution of a one-step method applied to (5) yields
(
yn+1

ω xn+1

)
= M(hω)

(
yn

ω xn

)
, (6)

and the eigenvaluesλi of M(hω) determine the long-time behaviour of the nu-
merical solution. Stability (i.e., boundedness of the solution of (6)) requires the
eigenvalues to be less than or equal to one in modulus. For theexplicit Euler
method we haveλ1,2 = 1± ihω, so that the energyIn = (y2

n + ω2x2
n)/2 increases

as(1 + h2ω2)n/2. For the implicit Euler method we haveλ1,2 = (1± ihω)−1, and
the energy decreases as(1 + h2ω2)−n/2. For the implicit midpoint rule and for all
symplectic Runge–Kutta methods, the matrixM(hω) is orthogonal and therefore
In is exactly preserved for allh andn. Finally, for the symplectic Euler method
and for the Störmer–Verlet scheme we have

M(hω) =

(
1 −hω
hω 1 − h2ω2

)
, M(hω) =

(
1 − h2ω2

2
−hω

2

(
1 − h2ω2

4

)

hω
2

1 − h2ω2

2

)
.

For both matrices, the characteristic polynomial isλ2 − (2 − h2ω2)λ + 1, so that
the eigenvalues are of modulus one if and only if|hω| ≤ 2.

Numerical experiments. We apply several methods to the FPU type problem,
with ω = 50 and initial data as in Figure 2. Figure 3 presents the numerical
results forH − 0.8, I, I1, I2, I3 (the last picture only forI and I2) obtained
with the implicit midpoint rule, the classical Runge–Kuttamethod of order4, and
the Störmer–Verlet scheme. For the small step sizeh = 0.001 all methods give
satisfactory results, although the energy exchange is not reproduced accurately
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Figure 3: Numerical solution for the FPU problem (2) with data as in Figure 2.

over long times (compare with exact solution in Figure 2). The explicit Runge–
Kutta method gives completely wrong solutions for larger step sizes (or for small
step sizes and larger time intervals). The values ofH and I are still bounded
over very long time intervals for the Störmer–Verlet method, but the relative error
is very large for step sizes close to the stability limit (h = 0.025 corresponds to
hω = 1.25). These phenomena call for an explanation, and for numerical methods
with an improved behaviour.

3 Exponential (trigonometric) integrators

The Störmer–Verlet scheme for̈x = g(x) is obtained by replacing the second
derivative with the differenceh−2(xn+1−2xn +xn−1). For a differential equation

ẍ+ Ω2x = g(x), g(x) = −∇U(x), Ω =

(
0 0
0 ωI

)
(7)

we replace the linear part by

h−2
(
xn+1 − 2 cos(hΩ) xn + xn−1

)
,

which reproduces the exact solution forẍ+ Ω2x = 0. The derivative of the exact
solution for this linear problem satisfies (withsinc(ξ) = sin ξ/ξ)

2h sinc(hΩ) ẋ(t) = x(t+ h) − x(t− h),

which leads to an approximation of the derivative.
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Two-step formulation. We consider numerical integrators of the form

xn+1 − 2 cos(hΩ) xn + xn−1 = h2Ψg(Φxn)

2h sinc(hΩ) ẋn = xn+1 − xn−1.
(8)

HereΨ = ψ(hΩ) andΦ = φ(hΩ), where thefilter functionsψ andφ are bounded,
even, real-valued functions withψ(0) = φ(0) = 1. In our numerical experiments
we will consider the following choices ofψ andφ

(A) ψ(ξ) = sinc2(1
2
ξ) φ(ξ) = 1 Gautschi1

(B) ψ(ξ) = sinc(ξ) φ(ξ) = 1 Deuflhard2

(C) ψ(ξ) = sinc(ξ)φ(ξ) φ(ξ) = sinc(ξ) Garcı́a-Archilla & al.3

(D) ψ(ξ) = sinc2(1
2
ξ) φ(ξ) of 4 Hochbruck & Lubich4

(E) ψ(ξ) = sinc2(ξ) φ(ξ) = 1 Hairer & Lubich5

One-step formulation. Eliminatingxn−1 from the two relations in (8), we obtain
the following equations

xn+1 = coshΩxn + Ω−1 sinhΩ ẋn + 1
2
h2Ψ gn (9)

ẋn+1 = −Ω sin hΩxn + cos hΩ ẋn + 1
2
h
(
Ψ0 gn + Ψ1 gn+1

)
(10)

wheregn = g(Φxn) andΨ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ) with even functionsψ0, ψ1

defined by
ψ(ξ) = sinc(ξ)ψ1(ξ) , ψ0(ξ) = cos(ξ)ψ1(ξ). (11)

Method (9)-(10) is of order2 (for h → 0), and it is symmetric whenever (11) is
satisfied. The method is symplectic if in addition (see Exercise 2)

ψ(ξ) = sinc(ξ)φ(ξ). (12)

1W. Gautschi,Numerical integration of ordinary differential equationsbased on trigonometric
polynomials, Numer. Math. 3 (1961) 381–397.

2P. Deuflhard,A study of extrapolation methods based on multistep schemeswithout parasitic
solutions, Z. angew. Math. Phys. 30 (1979) 177–189.

3B. Garcı́a-Archilla, J.M. Sanz-Serna & R.D. Skeel,Long-time-step methods for oscillatory
differential equations, SIAM J. Sci. Comput. 20 (1999) 930–963.

4M. Hochbruck & Ch. Lubich,A Gautschi-type method for oscillatory second-order differen-
tial equations, Numer. Math. 83 (1999a) 403–426.

5E. Hairer & Ch. Lubich,Long-time energy conservation of numerical methods for oscillatory
differential equations, SIAM J. Numer. Anal. 38 (2000) 414-441.
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Energy exchange between stiff components.Figure 4 shows the energy ex-
change of the six methods (A)-(F) applied to the FPU problem with the same data
as in Figure 2. The figures show again the oscillatory energiesI1, I2, I3 of the stiff
springs, their sumI = I1+I2+I3 and the total energyH−0.8 as functions of time
on the interval0 ≤ t ≤ 200. Only the methods (B), (D) and (F) give a good ap-
proximation of the energy exchange between the stiff springs. By the use of mod-
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Figure 4: Energy exchange between stiff springs for methods(A)-(F)
(h = 0.035, ω = 50). Method (F) is not considered in these notes.
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Figure 5: Maximum error of the total energy on the interval[0, 1000] for methods
(A) - (F) as a function ofhω (step sizeh = 0.02).
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ulated Fourier expansions (see below) it can be shown that a necessary condition
for a correct approximation of the energy exchange isψ(hω)φ(hω) = sinc(hω),
which is satisfied for method (B). The good behaviour of method (D) comes from
the fact that hereψ(hω)φ(hω) ≈ 0.95 sinc(hω) for hω = 1.5.

Near-conservation of total and oscillatory energies.Figure 5 shows the max-
imum error of the total energyH as a function of the scaled frequencyhω (step
sizeh = 0.02). We consider the long time interval[0, 1000]. The pictures for
the different methods show that in general the total energy is well conserved. Ex-
ceptions are near integral multiples ofπ. Certain methods show a bad energy
conservation close to odd multiples ofπ, other methods close to even multiples
of π. Only method (E) shows a uniformly good behaviour for all frequencies. In
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Figure 6: Zoom (close toπ or 2π) of the maximum error of the total energy on the
interval[0, 1000] for three methods as a function ofhω (step sizeh = 0.02).
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Figure 7: Maximum deviation of the oscillatory energy on theinterval [0, 1000]
for methods (A) - (F) as a function ofhω (step sizeh = 0.02).
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Figure 6 we show in more detail what happens close to such integral multiples
of π. If there is a difficulty close toπ, it is typically in an entire neighbourhood.
Close to2π, the picture is different. Method (C) has good energy conservation for
values ofhω that are very close to2π, but there are small intervals to the left and
to the right, where the error in the total energy is large. Unlike the other methods
shown, method (B) has poor energy conservation in rather large intervals around
even multiples ofπ. Methods (A) and (D) conserve the total energy particularly
well, for hω away from integral multiples ofπ.

Figure 7 shows similar pictures where the total energyH is replaced by the
oscillatory energyI. For the exact solution we haveI(t) = Const + O(ω−1 ).
It is therefore not surprising that this quantity is not wellconserved for small
values ofω. None of the considered methods conserves both quantitiesH andI
uniformly for all values ofhω.

4 Modulated Fourier expansion

Let us consider second order ordinary differential equations

ẍ+ Ω2x = g(x), g(x) = −∇U(x), Ω =

(
0 0
0 ωI

)
. (13)

To motivate a suitable ansatz for the solution, we notice that the general solution
of ẍ + ω2x = 0 is x(t) = c1e

iωt + c−1e
−iωt , that of ẍ + ω2x = x is x(t) =

eiωtz1(t)+ e−iωtz−1(t) with z±1(t) = c±1e
±iαt andα =

√
ω2 + 1−ω = O(ω−1).

If g(x) contains quadratic terms, also products ofe±iωtz±1(t) will be involved.

Modulated Fourier expansion of the exact solution. We aim in writing the
solution of (13) as

x(t) =
∑

k∈Z

eikωtzk(t), zk(t) =

(
zk
0 (t)
zk
1 (t)

)
, (14)

where the coefficient functionszk(t) are partitioned according to the partition-
ing of Ω in (13). This expansion is calledmodulated Fourier expansion5 of the
solution. It is essential that the coefficient functionszk(t) do not contain high
oscillations. More precisely, we search for functions suchthat the derivatives of
zk(t) up to a certain order are bounded uniformly whenω → ∞.

5E. Hairer & Ch. Lubich,Long-time energy conservation of numerical methods for oscillatory
differential equations, SIAM J. Numer. Anal. 38 (2000) 414-441.
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Inserting the expansion (14) into the differential equation (13), and comparing
the coefficients ofeikωt yields (forω0 = 0, ω1 = ω)

z̈k
j + 2ikωżk

j +
(
ω2

j − (kω)2
)
zk

j =
∑

s(α)=k

1

m!
g

(m)
j (z0)(zα1 , . . . , zαm), (15)

where the sum ranges over allm ≥ 0 and all multi-indicesα = (α1, . . . , αm)
with αj 6= 0, having a given sums(α) =

∑m
j=1 αj. Among the solutions of these

second order differential equations we have to select those, whose derivatives are
uniformly bounded inω. To achieve this, we determine the dominant term in the
left-hand side of (15) forω → ∞, put the other terms to the right-hand side, and
eliminate higher derivatives by iteration until a sufficiently high order. In this way
we get

• a second order differential equation forz0
0(t),

• first order differential equations forz±1
1 (t),

• algebraic equations for all otherzk
j (t).

This construction can best be understood by first studying the smooth solution of
problems likez̈ + ω2z = g(t) or z̈ + 2iωż = g(t).

Initial values for the differential equations are obtainedfrom (14) and its
derivative taken att = 0:

x(0) =
∑

k∈Z

zk(0), ẋ(0) =
∑

k∈Z

(
ikωzk(0) + żk(0)

)
.

Using the above algebraic relations forzk
j (t) and the differential equations for

z±1
1 (t), these equations constitute a nonlinear system that definesuniquelyz0

0(0),
ż0
0(0), z±1

1 (0) as functions ofx(0) and ẋ(0). This construction yields a unique
(formal) expansion of the form (14) for the initial value problem (13). Because of
the non-convergence of the series, they have to be truncatedby neglecting terms
of sizeO(ω−N−1).

The above construction shows that under thebounded-energy conditionfor the
initial values,

1

2

(
‖ẋ(0)‖2 + ‖Ωx(0)‖2

)
≤ E, (16)

the coefficient functions of (14) satisfy on a finite time interval 0 ≤ t ≤ T ,

z0
0 = O(1), z±1

0 = O(ω−3), zk
0 = O(ω−k−2)

z0
1 = O(ω−2), z±1

1 = O(ω−1), zk
1 = O(ω−k−2).

(17)
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Modulated Fourier expansion of the numerical solution. To get insight into
the numerical solution of

xn+1 − 2 coshΩxn + xn−1 = h2Ψg(Φxn) (18)

we aim in writing the numerical solution asxn = xh(nh) with

xh(t) =
∑

k∈Z

eikωtzk
h(t). (19)

As we proceeded for the analytic solution, we insert the ansatz (19) into the nu-
merical method (18) and compare the coefficients ofeikωt. Using the relation

xh(t+ h) + xh(t− h) =
∑

k∈Z

eikωt
(
2 cos(kωh)

(
zk

h(t) +
h2

2!
z̈k

h(t) + . . .
)

+ 2i sin(kωh)
(
hżk

h(t) +
h3

3!

...
z k

h(t) + . . .
))
.

and the abbreviationsck = cos(h
2
kω), sk

j = sinc(h
2
(ωj − kω)) we obtain6

. . .+
2i

3
s2k
0 kωh

2...
z k

j + c2kz̈k
j + 2is2k

0 kωż
k
j + sk

js
−k
j (ω2

j − (kω)2)zk
j

=
∑

s(α)=k

1

m!
Ψjg

(m)
j (Φz0)(Φzα1 , . . . ,Φzαm),

which reduces to (15) in the limith → 0. Again we have to determine the
dominant terms in the right-hand side – this time asymptotically for h → 0 and
hω ≥ c > 0, so thatω−1 = O(h). Under the numerical non-resonance condition

| sin(1
2
kωh)| ≥ c

√
h for k = 1, . . . , N (20)

we get a system of differential and algebraic equations forzk
j . As before, we get

a second order differential equation forz0
0(t), first order differential equations for

z±1
1 (t), and algebraic relations for the otherzk

j (t). Also initial values are obtained
in the same way as for the analytic solution. To avoid the difficulty with the non-
convergence of the arising series, we truncate them by neglecting terms of size
O(hN+1). Under suitable assumptions on the filter functions, the coefficients of
the modulated Fourier expansion are bounded as follows:

z0
0 = O(1), z±1

0 = O(ω−2), zk
0 = O(ω−k)

z0
1 = O(ω−2), z±1

1 = O(ω−1), zk
1 = O(ω−k).

(21)

6Components of the functionszk(t) of (19) are written without the subscripth. Notice, never-
theless, that they are different from those of (14). We want to avoid a further subscript, and hope
that there will not arise any confusion.
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An expansion for the derivativėxn = x′h(nh) can be immediately obtained by
inserting (19) into the second equation of (8). Notice thatx′h(t) is not the time
derivative ofxh(t).

5 Invariants of the modulated Fourier expansion

The equation (13) is a Hamiltonian system with the Hamiltonian

H(x, ẋ) =
1

2

(
ẋT ẋ+ xT Ω2x

)
+ U(x), (22)

and we have seen in the numerical experiments that the quantity

I(x, ẋ) =
1

2

(
‖ẋ1‖2 + ω2‖x1‖2

)
(23)

plays an important role.

Invariants for the exact solution. In the modulated Fourier expansion of the
analytic solutionx(t), denoteyk(t) = eikωtzk(t) for all k, and collect them in

y = (. . . , y−2, y−1, y0, y1, y2, . . . ).

By (15) these functions satisfy

ÿk + Ω2yk = −
∑

s(α)=k

1

m!
U (m+1)(y0)

(
yα1, . . . , yαm

)
. (24)

The important and somewhat surprising observation is that with the expression

U(y) = U(y0) +
∑

s(α)=0

1

m!
U (m)(y0)

(
yα1, . . . , yαm

)
(25)

the differential equation fory(t) obtains the Hamiltonian structure

ÿk + Ω2yk = −∇y−k U(y). (26)

This system does not only have the Hamiltonian as a first integrals, but it has the
following two (formal) first integrals:

H(y, ẏ) =
1

2

∑

k∈Z

(
(ẏ−k)T ẏk + (y−k)T Ω2yk

)
+ U(y)

I(y, ẏ) = − iω
∑

k∈Z

k (y−k)T ẏk.
(27)
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Theorem 1 For a fixedN , and with a suitable truncation of the series in (25) and
(27), we have H(y(t), ẏ(t)) = H(y(0), ẏ(0)) + O(ω−N) (28)

H(y(t), ẏ(t)) = H(x(t), ẋ(t)) + O(ω−1), (29)

where the constants symbolized byO are independent ofω andt with 0 ≤ t ≤ T ,
but depend onE of (16),N andT .

Similar estimates are obtained for the second invariant

I(y(t), ẏ(t)) = I(y(0), ẏ(0)) + O(ω−N) (30)

I(y(t), ẏ(t)) = I(x(t), ẋ(t)) + O(ω−1). (31)

Proof. Taking the scalar product of (26) witḣy−k and summing over allk shows
that both sides become total derivatives. This leads to the explicit formula for
H(y, ẏ). The proof of (30) is somewhat more tricky. We note that with the vector
y(λ), whose components areeikλyk, the expressionU(y(λ)) is independent ofλ.
Its derivative with respect toλ thus yields

0 =
d

dλ
U(y(λ))

∣∣∣
λ=0

=
∑

k∈Z

i k (yk)T ∇k U(y), (32)

for all y. Using this relation, a multiplication of (26) withk y−k leads to the
explicit formula forI(y, ẏ) which proves (30) after suitable truncation.

By the bounds (17), we have for0 ≤ t ≤ T

H(y, ẏ) = 1
2
‖ẏ0

0‖2 + ‖ẏ1
1‖2 + ω2‖y1

1‖2 + U(y0) + O(ω−1). (33)

On the other hand, we have from (23) and (14)

H(x, ẋ) = 1
2
‖ẏ0

0‖2 + 1
2
‖ẏ1

1 + ẏ−1
1 ‖2 + 1

2
ω2‖y1

1 + y−1
1 ‖2 +U(y0) +O(ω−1). (34)

Usingy1
1 = eiωtz1

1 and ẏ1
1 = eiωt(ż1

1 + iωz1
1) together withy−1

1 = y1
1, it follows

from ż1
1 = O(ω−1) thatẏ1

1 + ẏ−1
1 = iω(y1

1 − y−1
1 ) +O(ω−1) and‖ẏ1

1‖ = ω‖y1
1‖+

O(ω−1). Inserted into (33) and (34), this yields (29).
Property (31) is obtained in the same way as for the Hamiltonian.

Invariants for the numerical solution. We introduce the differential operator

L(hD) := ehD − 2 coshΩ + e−hD = 2
(
cos(ihD) − coshΩ

)

= 4 sin2
(

1
2
hΩ
)

+ h2D2 +
1

12
h4D4 . . .

(35)

so that the functionxh(t) of (19) formally satisfies the difference scheme

L(hD)xh(t) = h2Ψg
(
Φxh(t)

)
. (36)

We insert the modulated Fourier expansionxh(t) =
∑

k eikωtzk
h(t) =

∑
k y

k
h(t)

13



with yk
h(t) = eikωtzk

h(t), expand the right-hand side into a Taylor series around
Φy0

h(t), and compare the coefficients containing the factoreikωt. This yields, for
g(x) = −∇U(x), the following formal equations for the functionsyk

h(t),

L(hD)yk
h = −h2Ψ

∑

s(α)=k

1

m!
U (m+1)(Φy0

h)
(
Φyα1

h , . . . ,Φyαm

h

)
, (37)

which are the numerical analogue of (24). With the extended potential

Uh(yh) = U(Φy0
h) +

∑

s(α)=0

1

m!
U (m)(Φy0

h)
(
Φyα1

h , . . . ,Φyαm

h

)
, (38)

this system can be (formally) written as

Ψ−1Φh−2L(hD) yk
h = −∇−k Uh(yh). (39)

The essential difference to the situation in (26) is the appearance of higher even
derivatives in the left-hand expression.

To find a first invariant of the differential equation (39), wetake its scalar
product withẏ−k

h = yk
h, so that the right-hand side becomes the total derivative

d
dt
U(yh). Also the left-hand sides can be written as a total derivative, which is a

consequence of relations of the type

Reż
T
z(2l) = Re

d

dt

(
ż

T
z(2l−1) − . . .∓ (z(l−1))T z(l+1) ± 1

2
(z(l))T z(l)

)
.

To find a second invariant, we take the scalar product withk y−k
h , and use an

identity similar to that of (32), so that the right-hand sidevanishes. To write the
left-hand side as a total derivative we use

Im zT z(2l+2) = Im
d

dt

(
zT z(2l+1) − ż

T
z(2l) + . . .± (z(l))T z(l+1)

)
.

A careful elaboration of these ideas (see Section XIII.6 of our monograph on
“Geometric Numerical Integration”) we obtain the following result.

Theorem 2 Under suitable assumptions on the filter functions and on thestep
size, which will be stated below in more detail, there exist functionsHh(y) and
Ih(y) such that the following holds for0 ≤ t = nh ≤ T :

Hh

(
y(t)

)
= Hh

(
y(0)

)
) + O(thN ) , Ih

(
y(t)

)
= Ih

(
y(0)

)
+ O(thN )

Hh

(
y(t)

)
= H(xn, ẋn) + O(h), Ih

(
y(t)

)
= I(xn, ẋn) + O(h).

The constants symbolized byO depend on the energyE, on the truncation index
N and onT , but not onω.
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6 Long-time energy conservation

The statements of the preceding section are valid on intervals [0, T ], whereT is a
fixed value independent ofω. We show here how the results on energy conserva-
tion can be extended to much longer time intervals.

Conservation of the oscillatory energy for the analytic solution. Whereas the
conservation of the total energyH(x, ẋ) along the analytic solution is obvious,
the near-conservation of the oscillatory energy is a non-trivial, but typical feature
of highly oscillatory problems.

Theorem 3 If the solutionx(t) of (13) stays in a compact set for0 ≤ t ≤ ωN ,
then

I(x(t), ẋ(t)) = I(x(0), ẋ(0)) + O(ω−1) + O(tω−N) .

The constants symbolized byO are independent ofω andt with 0 ≤ t ≤ ωN , but
depend on the initial energyE and on the truncation indexN .

Proof. With a fixedT > 0, let yj denote the vector of the modulated Fourier
expansion terms that correspond to starting values(x(jT ), ẋ(jT )) on the exact
solution. Fort = (n+ θ)T with 0 ≤ θ < 1, we have by Theorem 1,

I(x(t), ẋ(t)) − I(x(0), ẋ(0))

= I(yn(θT ), ẏn(θT )) + O(ω−1) − I(y0(0), ẏ0(0)) + O(ω−1)

= I(yn(θT ), ẏn(θT )) − I(yn(0), ẏn(0)) +
n−1∑

j=0

(
I(yj+1(0), ẏj+1(0)) − I(yj(0), ẏj(0))

)
+ O(ω−1) .

We note I(yj+1(0), ẏj+1(0)) − I(yj(0), ẏj(0)) = O(ω−N) ,

because, by the quasi-uniqueness of the coefficient functions, we have for the
truncated modulated Fourier expansion thatyj+1(0) = yj(T ) + O(ω−N) and
ẏj+1(0) = ẏj(T ) + O(ω−N). This yields the result.

Energy conservation for the numerical solution. We are now able to prove one
of the main results of this lecture – the near-conservation of the total energyH
and the oscillatory energyI over long time intervals. In the previous section we
emphasized the ideas without giving details on the assumptions for rigorous error
estimates. We state them here without proof.

• the energy bound:1
2

(
‖ẋ(0)‖2 + ‖Ωx(0)‖2

)
≤ E ;
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• the condition on the numerical solution: the valuesΦxn stay in a compact
subset of a domain on which the potentialU is smooth;

• the conditions on the filter functions:ψ andφ are even, real-analytic, and
have no real zeros other than integral multiples ofπ; furthermore, they
satisfyψ(0) = φ(0) = 1 and

|ψ(hω)| ≤ C1 sinc2(1
2
hω) , |φ(hω)| ≤ C2 |sinc(1

2
hω)| ,

|ψ(hω)φ(hω)| ≤ C3 |sinc(hω)| ; (40)

• the conditionhω ≥ c0 > 0 ;
• the non-resonance condition (20): for someN ≥ 2,

| sin(1
2
khω)| ≥ c

√
h for k = 1, . . . , N.

Theorem 4 Under the above conditions, the numerical solution of (13) obtained
by the method (9)–(10) with (11) satisfies, for0 ≤ nh ≤ h−N+1,

H(xn, ẋn) = H(x0, ẋ0) + O(h)

I(xn, ẋn) = I(x0, ẋ0) + O(h).

The constants symbolized byO are independent ofn, h, ω satisfying the above
conditions, but depend onN and the constants in the conditions.

Proof. These long-time error bounds can be obtained as in the proof of Theorem 3.
One only has to use the estimates of Theorem 2 instead of thoseof Theorem 1.

7 Behavior of the Sẗormer–Verlet discretization

In applications, the Störmer–Verlet method is often used with step sizesh for
which the product with the highest frequencyω is not small, so that backward
error analysis does not provide any insight into the long-time energy preservation.
For example, in spatially discretized wave equations,hω is known as the CFL
number, which is typically kept near 1. Values ofhω around0.5 are often used in
molecular dynamics simulations.

Consider now applying the Störmer–Verlet method to the nonlinear model
problem (13),

xn+1 − 2xn + xn−1 = −h2Ω2xn − h2∇U(xn)

2h ẋn = xn+1 − xn−1

(41)

with hω < 2 for linear stability. The method is made accessible to the analysis
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of the preceding sections by rewriting it as an exponential integrator

xn+1 − 2 cos(hΩ̃) xn + xn−1 = −h2∇U(xn)

2h sinc(hΩ̃) x′n = xn+1 − xn−1

Ω̃ =

(
0 0
0 ω̃I

)
. (42)

with ψ(ξ) = φ(ξ) = 1, and withmodified frequencỹω, defined by

1 − (hω)2

2
= cos(hω̃) or, equivalently, sin

(hω̃
2

)
=
hω

2
.

The velocity approximationx′n is related toẋn by

ẋn = sinc(hΩ̃) x′n or
ẋn,0 = x′n,0

ẋn,1 = sinc(hω̃) x′n,1.
(43)

Theorem 5 Let the Sẗormer–Verlet method be applied to (13) with initial values
satisfying (16), and with a step sizeh for which 0 < c0 ≤ hω ≤ c1 < 2 and
| sin(1

2
khω̃)| ≥ c

√
h for k = 1, . . . , N for someN ≥ 2 andc > 0.

Suppose further that the numerical solution valuesxn stay in a region on which
all derivatives ofU are bounded. Then, we have for0 ≤ nh ≤ h−N+1

H(xn, ẋn) +
γ

2
‖ẋn,1‖2 = Const + O(h)

I(xn, ẋn) +
γ

2
‖ẋn,1‖2 = Const + O(h)

along the numerical solution, where

γ =
(hω/2)2

1 − (hω/2)2
.5 1.0 1.5 2.0

10−2

10−1

100

101
γ

hω

The constants symbolized byO are indepen-
dent ofn, h, ω with the above conditions.

Proof. The condition0 < c0 ≤ hω ≤ c1 < 2
implies| sin(1

2
khω̃)| ≥ c2 > 0 for k = 1, 2, and hence conditions (40) are trivially

satisfied withhω̃ instead ofhω. We are thus in the position to apply Theorem 4 to
(42), which yields

H̃(xn, x
′
n) = H̃(x0, x

′
0) + O(h)

Ĩ(xn, x
′
n) = Ĩ(x0, x

′
0) + O(h)

for 0 ≤ nh ≤ h−N+1 , (44)

whereH̃ andĨ are defined in the same way asH andI, but with ω̃ in place ofω.
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With the relations (43) we get

Ĩ(xn, x
′
n) =

1

2

(
‖x′n,1‖2 + ω̃2 ‖xn,1‖2

)

=
( ω̃
ω

)2 (
I(xn, ẋn) − 1

2
‖ẋn,1‖2

)
+

1

2
‖x′n,1‖2

=
( ω̃
ω

)2 (
I(xn, ẋn) +

γ

2
‖ẋn,1‖2

)
.

(45)

Similarly, we get for the Hamiltonian

H̃(xn, x
′
n) =

1

2

(
‖ẋn,0‖2 + ‖x′n,1‖2 + ω̃2‖xn,1‖2

)
+ U(xn)

= H(xn, ẋn) − I(xn, ẋn) + Ĩ(xn, x
′
n)

= H(xn, ẋn) +
γ

2
‖ẋn,1‖2 +

(
1 − ω2

ω̃2

)
Ĩ(xn, x

′

n) ,

(46)

and hence (44) yields the result.

For fixedhω ≥ c0 > 0 andh→ 0, the maximum deviation in the energy does
not tend to0, due to the highly oscillatory termγ

2
‖ẋn,1‖2. This term is bounded

because of‖ẋn,1‖2 ≤ ‖x′n,1‖2 ≤ 2Ĩ(xn, x
′
n) ≤ Const . It is possible to prove that

the average over a fixed (sufficiently large) number of consecutive values‖ẋn,1‖2

is constant.

Numerical experiments. We consider the FPU-type problem (withω = 50)
discussed in the beginning of this lecture. Figure 8 shows the error in the total
energy of the Störmer–Verlet method with four different step sizes. For the largest

0 5000 10000 15000 20000

10−4
10−3
10−2
10−1
100
101

Figure 8: Error in the total energy of the FPU-type problem (ω = 50) ob-
tained for the Störmer–Verlet method applied with four different step sizes:
hω = 1.95, 1, 0.5, 0.25.
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step size (wherehω = 1.95) the error is very large and of the size ofγ ≈ 20.
Nevertheless, there is no drift in the energy. Halving the step size decreases the
error by a factor close to60. This is in good agreement with the form of the
functionγ = γ(hω).

Our second experiment (Figure 9) shows again the energy error for various
choices ofω andh. It illustrates the fact that the termγ

2
‖ẋn,1‖2 dominates the

error (for large step sizes) and depends essentially on the producthω. We can
also see that the error oscillates around a constant which isdifferent from the
theoretical value of the Hamiltonian.
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hω = 1 ω = 50

hω = 0.5 ω = 50

H(x0, ẋ0) = 2

hω = 1 ω = 100

hω = 0.5 ω = 100

H(y0, ẏ0) = 2

Figure 9: Total energy of the FPU-type problem along numerical solutions of the
Störmer–Verlet method.

8 Exercises

1. Interpret the exponential integrator (9)–(10) as a splitting method: a half-
step of a symplectic Euler type method forẍ = g(x), a step of the exact
solution forẍ+ Ω2x = 0, and finally the adjoint of the first half-step.

2. Show that a method (9)–(10) satisfying (11) is symplecticif and only if

ψ(ξ) = sinc(ξ)φ(ξ) for ξ = hω.
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3. The change of coordinateszn = χ(hΩ)xn transforms (9)–(10) into a method
of identical form withφ, ψ, ψ0, ψ1 replaced byχφ, χ−1ψ, χ−1ψ0, χ−1ψ1.
Prove that, forhω satisfyingsinc(hω)φ(hω)/ψ(hω) > 0, it is possible to
find χ(hω) such that the transformed method is symplectic.

4. Prove that for infinitely differentiable functionsg(t) the solution of the dif-
ferential equation̈x+ ω2x = x+ g(t) can be written as

x(t) = y(t) + cos(ωt) u(t) + sin(ωt) v(t),

wherey(t), u(t), v(t) are given by asymptotic expansions in powers ofω−1.
Hint. Use the variation-of-constants formula and apply repeatedpartial in-
tegration.

5. Consider a HamiltonianH(pR, pI , qR, qI) and let

H(p, q) = 2H(pR, pI , qR, qI)

for p = pR + ipI , q = qR + iqI . Prove that in the new variablesp, q the
Hamiltonian system becomes

ṗ = −∂H
∂q

(p, q), q̇ =
∂H
∂p

(p, q).
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