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Backward error analysis is the most powerful tool for the study of the long-time
behaviour of numerical integrators.

1 Modified differential equation
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ẏ = f(y)

ϕt(y0)

yn+1 = Φh(yn)

˙̃y = fh(ỹ )

exact

numerical

exact

Consider an ordinary differential
equation

ẏ = f(y),

and a numerical methodΦh(y) which
produces the approximations

y0, y1, y2, . . . .

A forward error analysis consists of the study of the errorsy1−ϕh(y0) (local error)
andyn − ϕnh(y0) (global error) in the solution space. The idea of backward error
analysis is to search for amodified differential equatioṅ̃y = fh(ỹ ) of the form

˙̃y = f(ỹ ) + hf2(ỹ ) + h2f3(ỹ ) + . . . , (1)

such thatyn = ỹ(nh), and to study the difference of the vector fieldsf(y) and
fh(y). We remark that the series in (1) usually diverges and that one has to truncate
it suitably for a rigorous analysis. For the moment we content ourselves with a
formal analysis without taking care of convergence issues.
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For the computation of the modified equation (1) we puty := ỹ(t) for a fixedt,
and we expand the solution of (1) into a Taylor series

ỹ(t+ h) = y + h
(
f(y) + hf2(y) + h2f3(y) + . . .

)

+
h2

2!

(
f ′(y) + hf ′

2(y) + . . .
)(
f(y) + hf2(y) + . . .

)
+ . . . .

(2)

We assume that the numerical methodΦh(y) can be expanded as

Φh(y) = y + hf(y) + h2d2(y) + h3d3(y) + . . . (3)

(the coefficient ofh is f(y) for consistent methods). The functionsdj(y) are
known and are typically composed off(y) and its derivatives. To get̃y(nh) = yn

for all n, we must havẽy(t + h) = Φh(y). Comparing like powers ofh in the
expressions (2) and (3) yields recurrence relations for thefunctionsfj(y):

f2(y) = d2(y) − 1

2!
f ′f(y) (4)

f3(y) = d3(y) − 1

3!

(
f ′′(f, f)(y) + f ′f ′f(y)

)
− 1

2!

(
f ′f2(y) + f ′

2f(y)
)
.

Example 1 Consider the scalar differential equationẏ = y2, y(0) = 1 with exact
solutiony(t) = 1/(1 − t). It has a singularity att = 1. We apply the explicit
Euler methodyn+1 = yn + hf(yn) with step sizeh = 0.02. The above procedure
for the computation of the modified equation is implemented as a Maple script

> fcn := y -> yˆ2:
> nn := 6:
> fcoe[1] := fcn(y):
> for n from 2 by 1 to nn do
> modeq := sum(hˆj * fcoe[j+1], j=0..n-2):
> diffy[0] := y:
> for i from 1 by 1 to n do
> diffy[i] := diff(diffy[i-1],y) * modeq:
> od:
> ytilde := sum(hˆk * diffy[k]/k!, k=0..n):
> res := ytilde-y-h * fcn(y):
> tay := convert(series(res,h=0,n+1),polynom):
> fcoe[n] := -coeff(tay,h,n):
> od:
> simplify(sum(hˆj * fcoe[j+1], j=0..nn-1));
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Figure 1: Solutions of the modified equation for the problemẏ = y2, y(0) = 1.

Its output is

˙̃y = ỹ 2 − hỹ 3 + h2 3

2
ỹ 4 − h3 8

3
ỹ 5 + h4 31

6
ỹ 6 − h5 157

15
ỹ 7 ± . . . . (5)

Figure 1 presents the exact solution (dashed curve), the numerical solution (thick
dots), and the solution of the modified equation, when truncated after 1, 2, 3, and
4 terms. We observe an excellent agreement of the numerical solution with the
exact solution of the modified equation.

A similar program for the implicit midpoint rule computes the modified equa-
tion

˙̃y = ỹ 2 + h2 1

4
ỹ 4 + h4 1

8
ỹ 6 + h6 11

192
ỹ 8 + h8 3

128
ỹ 10 ± . . . , (6)

and for the classical (explicit) Runge–Kutta method of order 4

˙̃y = ỹ 2 − h4 1

24
ỹ 6 + h6 65

576
ỹ 8 − h7 17

96
ỹ 9 + h8 19

144
ỹ 10 ± . . . . (7)

We observe that the perturbation terms in the modified equation are of size
O(hr), wherer is the order of the method. This is true in general.

Theorem 1 Suppose that the methodyn+1 = Φh(yn) is of orderr, i.e.,

Φh(y) = ϕh(y) + hr+1δr+1(y) + O(hr+2),

whereϕt(y) denotes the exact flow ofẏ = f(y), andhr+1δr+1(y) the leading term
of the local truncation error. The modified equation then satisfies

˙̃y = f(ỹ ) + hrfr+1(ỹ ) + hr+1fr+2(ỹ ) + . . . , ỹ(0) = y0 (8)

with fr+1(y) = δr+1(y).

Proof. The construction of the functionsfj(y) (see the beginning of this section)
shows thatfj(y) = 0 for 2 ≤ j ≤ r if and only if Φh(y) − ϕh(y) = O(hr+1).
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Example 2 We next consider the Lotka–Volterra equations

q̇ = q(p− 1), ṗ = p(2 − q),

and we apply (a) the explicit Euler method, and (b) the symplectic Euler method,
both with constant step sizeh = 0.1. The first terms of their modified equations
are

(a) q̇ = q(p− 1) − h

2
q(p2 − pq + 1) + O(h2),

ṗ = −p(q − 2) − h

2
p(q2 − pq − 3q + 4) + O(h2),

(b) q̇ = q(p− 1) − h

2
q(p2 + pq − 4p+ 1) + O(h2),

ṗ = −p(q − 2) +
h

2
p(q2 + pq − 5q + 4) + O(h2).

Figure 2 shows the numerical solutions for initial values indicated by a thick dot.
In the pictures to the left they are embedded in the exact flow of the differential
equation, in those to the right they are embedded in the flow ofthe modified dif-
ferential equation, truncated after theh2 terms. For the symplectic Euler method,
the solutions of the truncated modified equation are periodic, as is the case for the
unperturbed problem.

2 4 6

1

2

3

4

2 4 6

1

2

3

4

2 4 6

1

2

3

4

2 4 6

1

2

3

4

q

p
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow
exact
flow

(a) explicit Euler,h = 0.1
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(b) symplectic Euler,h = 0.1(b) symplectic Euler,h = 0.1
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Figure 2: Numerical solution compared to the exact and modified flows
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Figure 3: Study of the truncation in the modified equation

In Figure 3 we present the numerical solution and the exact solution of the
modified equation, once truncated after theh terms (dashed-dotted), and once
truncated after theh2 terms (dotted). The exact solution of the problem is included
as a solid curve.

Example 3 For a linear differential equation with constant coefficients

ẏ = Ay, y(0) = y0

we consider numerical methods which yieldyn+1 = R(hA)yn, whereR(z) is the
stability function of the method. In this case we getyn = R(hA)ny0, so that
yn = ỹ(nh), whereỹ(t) = R(hA)t/hy0 = exp

(
t
h

lnR(hA)
)
y0 is the solution of

the modified differential equation

˙̃y =
1

h
lnR(hA) ỹ = (A+ hb2A

2 + h2b3A
3 + . . .) ỹ (9)

with suitable constantsb2, b3, . . . . SinceR(z) = 1 + z + O(z2) and ln(1 +
x) = x− x2/2 + O(x3) both have a positive radius of convergence, the series (9)
converges for|h| < h0 with someh0 > 0. This is an exceptional situation.

2 Modified Hamiltonian for symplectic integrators

We consider a Hamiltonian systeṁy = J−1∇H(y) with smoothH(y), and we
show that the modified equation of symplectic methods is alsoHamiltonian.

Theorem 2 (Existence of a local modified Hamiltonian)If a symplectic method
Φh(y) is applied to a Hamiltonian systeṁy = J−1∇H(y) with a smooth Hamil-
tonianH : U → R , then the modified equation (1) is locally Hamiltonian.

More precisely, for everyy0 ∈ U and for all j there exist smooth functions
Hj(y), such thatfj(y) = J−1∇Hj(y) on a suitable neighborhood ofy0.
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Proof.1 2 Assume thatfj(y) = J−1∇Hj(y) for j = 1, 2, . . . , r (this is satisfied for
r = 1, becausef1(y) = f(y) = J−1∇H(y)). We have to prove the existence of a
HamiltonianHr+1(y). The idea is to consider the truncated modified equation

˙̃y = f(ỹ ) + hf2(ỹ ) + . . .+ hr−1fr(ỹ ), (10)

which is a Hamiltonian system with HamiltonianH(y)+hH2(y)+. . .+h
r−1Hr(y).

Its flow ϕr,t(y0), compared to that of (1), satisfies

Φh(y0) = ϕr,h(y0) + hr+1fr+1(y0) + O(hr+2),

and also
Φ′

h(y0) = ϕ′
r,h(y0) + hr+1f ′

r+1(y0) + O(hr+2).

By our assumption on the method and by the induction hypothesis, Φh andϕr,h

are symplectic transformations. Together withϕ′
r,h(y0) = I + O(h), this implies

J = Φ′
h(y0)

TJΦ′
h(y0) = J + hr+1

(
f ′

r+1(y0)
TJ + Jf ′

r+1(y0)
)

+ O(hr+2).

The matrixJf ′
r+1(y) is therefore symmetric, and the (local) existence ofHr+1(y)

satisfyingfr+1(y) = J−1∇Hr+1(y) follows from the Integrability Lemma.

The application of the Integrability Lemma shows that the modified Hamilto-
nian is globally defined onU , if U = R

2d, or if U is star-shaped, or ifU is simply
connected.

3 Near conservation of the total energy

As a first application of backward error analysis we study thelong-time energy
conservation of a symplectic numerical scheme (of orderr) applied to Hamilto-
nian systemṡy = J−1∇H(y). It follows from Theorem 2 that the corresponding
modified differential equation is also Hamiltonian. After truncation we get

H [N ](y) = H(y) + hrHr+1(y) + . . .+ hN−1HN(y), (11)

which we assume to beglobally defined on the same open set as the original
HamiltonianH(y).

1G. Benettin & A. Giorgilli,On the Hamiltonian interpolation of near to the identity symplectic
mappings with application to symplectic integration algorithms, J. Statist. Phys. 74 (1994) 1117–
1143.

2Y.-F. Tang,Formal energy of a symplectic scheme for Hamiltonian systems and its applica-
tions (I), Computers Math. Applic. 27 (1994) 31–39.
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Theorem 3 Consider a Hamiltonian system with smoothH : U → R (where
U ⊂ R

2d), apply a symplectic numerical methodΦh(y) with step sizeh, and
assume that its modified Hamiltonian is globally defined onU .

If the numerical solution stays in the compact setK ⊂ U , then we have asymp-
totically for h→ 0

H [N ](yn) = H [N ](y0) + O(t hN)

H(yn) = H(y0) + O(hr)

over time intervals of sizet = nh ≤ C h−N+r.

Proof. We letϕN,t(y0) be the flow of the truncated modified equation. The effect
of the truncation is that‖yj+1 − ϕN,h(yj)‖ ≤ C hN+1. Since the truncated mod-
ified equation is Hamiltonian withH [N ](y) of (11), we haveH [N ]

(
ϕN,t(yj)

)
=

H [N ](yj) for all times t. Using a globalh-independent Lipschitz constant for
H [N ] on the compact setK, the statement on the long-time conservation ofH [N ]

is a consequence of

H [N ](yn) −H [N ](y0) =

n−1∑

j=0

(
H [N ](yj+1) −H [N ](yj)

)

=

n−1∑

j=0

(
H [N ](yj+1) −H [N ]

(
ϕN,h(yj)

))
= O(nhN+1).

The statement for the HamiltonianH follows from (11), becauseHr+1(y)+ . . .+
hN−r−1HN(y) is uniformly bounded onK independently ofh andN .

If the Hamiltonian and the integrator are analytic, it is possible to prove expo-
nentially small error bounds on exponentially large time intervals. More precisely,
for sufficiently smallh there existsN = N(h) ∼ h−1 such that in the estimates
of the theorem abovehN can be replaced bye−γ/h.

Example 4 The mathematical pendulum is a system with one degree of freedom
having the HamiltonianH(p, q) = 1

2
p2 − cos q. Since the Hamiltonian and the

vector field are2π-periodic inq, it is natural to considerq as a variable on the
circleS1. Hence, the phase space of points(p, q) becomes the cylinderR × S1.
Figure 4 shows some level curves ofH(p, q) together with numerical solutions.

Theorem 3 explains the near conservation of the Hamiltonianwith the sym-
plectic Euler method (existence of a global modified Hamiltonian will be dis-
cussed later). This is illustrated in Figure 5. The linear drift of the numeri-
cal Hamiltonian for non-symplectic methods can be explained by a computation
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explicit Eulerexplicit Euler symplectic Eulersymplectic Euler Störmer–VerletStörmer–Verlet

Figure 4: Solutions of the pendulum problem; explicit Eulerwith step sizeh =
0.2, initial value (p0, q0) = (0, 0.5); symplectic Euler withh = 0.3 and initial
valuesq0 = 0, p0 = 0.7, 1.4, 2.1; Störmer–Verlet withh = 0.6.
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Figure 5: Error in the total energy for the explicit and symplectic Euler methods
applied with step sizeh = 0.005 and initial value(p0, q0) = (2.5, 0).

similar to that of the proof of Theorem 3. From a Lipschitz condition of the
Hamiltonian and from the standard local error estimate, we obtainH(yn+1) −
H(ϕh(yn)) = O(hr+1). SinceH(ϕh(yn)) = H(yn), a summation of these terms
leads to

H(yn) −H(y0) = O(thr) for t = nh. (12)

Example 5 In the numerical experiment of Figure 6 we study the effect of“large”
step sizes for the pendulum problem. We have drawn200 000 steps of the numer-
ical solution of the implicit midpoint rule for various stepsizesh and for ini-
tial values(p0, q0) = (0,−1.5), (p0, q0) = (0,−2.5), (p0, q0) = (1.5,−π), and
(p0, q0) = (2.5,−π). They are compared to the contour lines of the truncated
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Figure 6: Numerical solutions of the implicit midpoint rulewith large step sizes

modified Hamiltonian

H [4](p, q) =
p2

2
− cos q +

h2

48

(
cos(2q) − 2p2 cos q

)
.

This shows that for step sizes as large ash ≤ 0.7 the HamiltonianH [4] is extremely
well conserved. Beyond this value, the dynamics of the numerical method soon
turns into chaotic behaviour.

Example 6 (Modified Hamiltonian of the Störmer–Verlet method) We present
the modified Hamiltonian for a separable HamiltonianH(p, q) = T (p) + U(q)
with T (p) = 1

2
pTp. Using the notation{A,B} = ∇qA

T∇pB − ∇pA
T∇qB for

the Poisson bracket of two functions depending onp andq, it is given by

H̃ = T + U + h2
(

1

12

{
T, {T, U}

}
− 1

24

{
U, {U, T}

})

+h4
(
− 1

720

{
T,

{
T,

{
T, {T, U}

}}}
+

1

360

{
U,

{
T,

{
T, {T, U}

}}}

− 1

480

{
U,

{
U,

{
T, {T, U}

}}}
+

1

120

{
T,

{
T,

{
U, {U, T}

}}})
+ O(h6).

This modified Hamiltonian can be computed with the recursiveprocedure ex-
plained in the beginning of this lecture. A more elegant derivation is by the use of
the symmetric Baker–Campbell–Hausdorff formula (cf. Sect. III.4.2 of the mono-
graph on “Geometric Numerical Integration”). SincẽH(p, q) it is composed of
derivatives ofT andU , it is globally defined.
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4 Counter-example: Takahashi–Imada integrator

We consider a second order differential equationq̈ = f(q), and we assume that
it is Hamiltonian, i.e.,f(q) = −∇U(q). Takahashi & Imada3 noticed that the
accuracy of the Störmer–Verlet discretization is greatlyimproved by adding the
expressionαh2f ′(q)f(q) with α = 1

12
to every force evaluation. This yields

pn+1/2 = pn +
h

2

(
I + αh2f ′(qn)

)
f(qn)

qn+1 = qn + h pn+1/2 (13)

pn+1 = pn+1/2 +
h

2

(
I + αh2f ′(qn+1)

)
f(qn+1),

which is still symplectic, because forf(q) = −∇U(q) it can be interpreted as
applying the Störmer–Verlet method to the Hamiltonian system with potential

V (q) = U(q) − α

2
h2 ‖∇U(q)‖2.

Simplified Takahashi–Imada method. To avoid the derivative evaluation of the
vector fieldf(q), which corresponds to a Hessian evaluation forf(q) = −∇U(q),
we replace

(
I + αh2f ′(q)

)
f(q) with f

(
q + αh2f(q)

)
and thus consider4

pn+1/2 = pn +
h

2
f
(
qn + αh2f(qn)

)

qn+1 = qn + h pn+1/2 (14)

pn+1 = pn+1/2 +
h

2
f
(
qn+1 + αh2f(qn+1)

)

which is aO(h5) perturbation of the method (13). The method is volume preserv-
ing and thus symplectic for problems with one degree of freedom. To see this, note
that (14) is a composition of shears (mappings of the form(p, q) 7→ (p + a(q), q)
and(p, q) 7→ (p, q + hp)), and shears always preserve the volume.

Modified differential equation. Substituting in the modified Hamiltonian of
Example 6 the potentialU with U − α

2
h2‖∇U‖2 = U − α

2
h2

{
U, {U, T}

}
yields

the modified Hamiltonian of the symplectic Takahashi–Imadaintegrator (13):

Ĥ(p, q) = H(p, q) + h2H3(p, q) + h4H5(p, q)

3M. Takahashi and M. Imada.Monte Carlo calculation of quantum systems. II. Higher order
correction.J. Phys. Soc. Jpn., 53:3765–3769, 1984.

4J. Wisdom, M. Holman, and J. Touma.Symplectic correctors.In J. E. Marsden, G. W. Patrick,
and W. F. Shadwick, editors,Integration Algorithms and Classical Mechanics, pages 217–244.
Amer. Math. Soc., Providence R. I., 1996.
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where (for one degree of freedom)

H3(p, q) =
1

12
p2 Uqq(q) −

(
1

24
+
α

2

)
Uq(q)Uq(q) (15)

H5(p, q) = − 1

720
p4 Uqqqq(q) − 1

120
p2 Uq(q)Uqqq(q) + . . . (16)

Since the method (14) differs from (13) only by aO(h5) perturbation, we find that
the modified differential equation of (14) satisfies

ṗ = −∇qĤ(p, q) +
1

2
h4α2

(
f ′′(f, f)

)
(q) + O(h6)

q̇ = ∇pĤ(p, q) + O(h6)
(17)

Notice that for potentialsU(q) that are2π-periodic, the functionĤ(p, q) is also
2π-periodic inq, but the integral of the perturbation need not be2π-periodic.

To study energy conservation of the simplified Takahashi–Imada integrator
(14) we notice that along the (formal) exact solution of its modified differential
equation (17) we have

d

dt
Ĥ(p, q) =

1

2
h4α2 pTf ′′(f, f) + O(h6) = −1

2
h4α2Uqqq(p, Uq, Uq) + O(h6),

(18)
where we have usedf(q) = −∇U(q) = −Uq(q). In general, the expression on
the right-hand side of (18) cannot be written as a total differential. However, this
formula yields much insight into the long-time energy conservation of (14).5

• Bounded error in the energy without any drift.For problems with one de-
gree of freedom the right-hand side of (18) can be written asd

dt
F

(
q(t)

)

with F ′(q) = Uqqq(q)Uq(q)
2 (neglecting terms of sizeO(h6)). If U(q) is

T -periodic inq, and
∫ T

0
Uqqq(q)Uq(q)

2dq = 0, then the antiderivative (or in-
definite integral)F (q) of Uqqq(q)Uq(q)

2 is globally defined on the circleS1.
This is the situation for the pendulum, whereU(q) = − cos q. We expect
that also higher order terms can be treated in this way, so that no energy drift
can be observed in this situation (see Figure 7, whereh = 0.2, and initial
valuesq(0) = 0, p(0) = 2.5 are used).

• Linear energy drift. In general, without any particular assumption on the
potential, the numerical energy will have a drift of sizeO(th4). E.g., for a
non-symmetrically perturbed pendulum withU(q) = − cos q+0.2 sin(2q),
for which

∫ 2π

0
Uqqq(q)Uq(q)

2dq ≈ 3.77 (see Figure 7).

5E. Hairer, R.I. McLachlan, and R.D. Skeel.On energy conservation of the simplified
Takahashi–Imada method.ESAIM: M2AN 43:631644, 2009.
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Figure 7: Error in the shifted modified energyH(pn, qn) + h2H3(p, q) along the
numerical solution of the simplified Takahashi–Imada method.

• Random walk behavior – drift like square root of time.Under the assump-
tion that the solution of the modified differential equationis ergodic on an
invariant setA with respect to an invariant measureµ, we have

lim
t→∞

1

t

∫ t

0

F
(
p(s), q(s)

)
ds =

∫

A

F (x)µ(dx), (19)

wherex = (p, q) and the functionF (x) is the right-hand side of (18). Again
there will be a linear drift of sizeO(th4) in general. However, in the pres-
ence of symmetries, the integral of the right-hand side in (19) is likely to
vanish and the numerical Hamiltonian will look like a randomwalk, so that
there will be a drift of sizeO(

√
t h4).

0 1 2

−6

−3

0

3

6 ×10−6

×104

Figure 8: Error in the modified energyH(pn, qn) + h2H3(pn, qn) of theN-body
problem (N = 9. Lennard–Jones potential) along the numerical solution ofthe
simplified Takahashi–Imada method (50 trajectories). Included is the average over
400 trajectories as a function of time (µ = 0.091 × 10−6 at t = 2 × 104) and the
standard deviation (σ = 3.08 × 10−6 at t = 2 × 104).
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5 Existence of global modified Hamiltonian

The theory of generating functions shows that every symplectic one-step method
Φh : (p, q) 7→ (P,Q) can be locally expressed in terms of a functionS(P, q, h) as

p = P + ∇qS(P, q, h), Q = q + ∇pS(P, q, h). (20)

This property allows us to prove the existence of a globally defined modified
Hamiltonian, whenever the generating function is globallydefined.

Theorem 4 Assume that the symplectic methodΦh has a generating function

S(P, q, h) = hS1(P, q) + h2S2(P, q) + h3S3(P, q) + . . . (21)

with smoothSj(P, q) defined on an open setU . Then, the modified differential
equation is a Hamiltonian system with

H̃(p, q) = H(p, q) + hH2(p, q) + h2H3(p, q) + . . . , (22)

where the functionsHj(p, q) are defined and smooth on the whole ofU .

Proof. The exact solution(P,Q) =
(
p̃(t), q̃(t)

)
of the Hamiltonian system corre-

sponding toH̃(p, q) is given by

p = P + ∇qS̃(P, q, t), Q = q + ∇P S̃(P, q, t),

whereS̃ is the solution of the Hamilton–Jacobi differential equation

∂tS̃(P, q, t) = H̃
(
P, q + ∇P S̃(P, q, t)

)
, S̃(P, q, 0) = 0. (23)

SinceH̃ depends on the parameterh, this is also the case for̃S. Our aim is to
determine the functionsHj(p, q) such that the solutioñS(P, q, t) of (23) coincides
for t = h with (21).

We first express̃S(P, q, t) as a series

S̃(P, q, t) = t S̃1(P, q, h) + t2S̃2(P, q, h) + t3S̃3(P, q, h) + . . . ,

insert it into (23) and compare powers oft. This allows us to obtain the functions
S̃j(p, q, h) recursively in terms of derivatives of̃H:

S̃1(p, q, h) = H̃(p, q)

2 S̃2(p, q, h) =
(∂H̃
∂q

· ∂S̃1

∂P

)
(p, q, h) (24)

3 S̃3(p, q, h) =
(∂H̃
∂q

· ∂S̃2

∂P

)
(p, q, h) +

1

2

(
∂2H̃

∂q2

(∂S̃1

∂P
,
∂S̃1

∂P

))
(p, q, h).
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We then writeS̃j as a series

S̃j(p, q, h) = S̃j1(p, q) + h S̃j2(p, q) + h2S̃j3(p, q) + . . . ,

insert it and the expansion (22) for̃H into (24), and compare powers ofh. This
yields S̃1k(p, q) = Hk(p, q) and forj > 1 we see that̃Sjk(p, q) is a function of
derivatives ofHl with l < k.

The requirementS(p, q, h) = S̃(p, q, h) finally showsS1(p, q) = S̃11(p, q),
S2(p, q) = S̃12(p, q) + S̃21(p, q), etc., so that

Sj(p, q) = Hj(p, q) + “function of derivatives ofHk(p, q) with k < j”.

For a given generating functionS(P, q, h), this recurrence relation allows us to
determine successively theHj(p, q). We see from these explicit formulas that the
functionsHj are defined on the same domain as theSj.

Example 7 (Symplectic Euler Method) The symplectic Euler method is noth-
ing other than (20) withS(P, q, h) = hH(P, q) . Following the constructive
proof of Theorem 4 we obtain

H̃ = H − h

2
HpHq +

h2

12

(
HppH

2
q +HqqH

2
p + 4HpqHqHp

)
+ . . . . (25)

as the modified Hamiltonian of the symplectic Euler method.

Theorem 5 A symplectic Runge–Kutta method (i.e.,biaij + bjaji = bibj for all
i, j) applied to a system with smooth HamiltonianH : U → R (withU ⊂ R

2d an
arbitrary open set) has a modified Hamiltonian (22) with smooth functionsHj(y),
defined globally onU .

Proof. Let (Pi, Qi) be the internal stages of an implicit Runge–Kutta method
(p, q) 7→ (P,Q). It follows from implicit differentiation of the Runge–Kutta equa-
tions that, under the conditionbiaij + bjaji = bibj for all i, j, the Runge–Kutta
formulas can be written as (20) with (an idea of Lasagni 1988)

S(P, q, h) = h

s∑

i=1

biH(Pi, Qi) − h2

s∑

i,j=1

biaijHq(Pi, Qi)
THp(Pj , Qj).

This shows that the coefficient functionsSj(P, q) can be expressed in terms of
derivatives ofH(P, q).

This theorem extends to partitioned Runge–Kutta methods including the Störmer–
Verlet integrators. Theorem 4 implies that all methods based on generating func-
tions (e.g., variational integrators) have a globally defined modified Hamiltonian.
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6 Completely integrable Hamiltonian systems

There is an interesting class of Hamiltonian problems, for which symplectic inte-
grators have an improved long-time behavior of the global error. Here and in the
following, we denote the standardd-dimensional torus by

T
d = R

d/2πZ
d = {(θ1 mod2π, . . . , θd mod2π) ; θi ∈ R}.

Definition 1 We call a Hamiltonian systemcompletely integrable, if, for every
(p0, q0) in the domain ofH(p, q), there exists a symplectic diffeomorphism

(p, q) = ψ(a, θ), 2π-periodic inθ

betweenV × T
d andU ⊂ R

2d (whereU is a neighborhood of(p0, q0), andV is
open), such that the Hamiltonian in the new variables becomes

H(p, q) = H(ψ(a, θ)) = K(a).

The variables(a, θ) = (a1, . . . , ad, θ1 mod2π, . . . , θd mod2π) are called
action-angle variables. In these variables, the system becomes

ȧi = 0, θ̇i = ωi(a), i = 1, . . . , d

with ωi(a) = ∂
∂ai

K(a), and can be solved directlyai(t) = ai0, θi(t) = θi0 +
ωi(a0) t, so that we get periodic (or quasi-periodic) flow

(
p(t), q(t)

)
= ψ

(
a0, θ0 + ω(a0) t

)
.

The following theorem gives a practical characterization of integrability6.

Theorem 6 (Arnold-Liouville) Suppose that for the HamiltonianH(p, q) there
exist smooth functionsF1 = H,F2, . . . , Fd : U → R, U ⊂ R

2d satisfying

(I1) F1, . . . , Fd are in involution, i.e.,{Fi, Fj} = 0, where the Poisson bracket
is given by{F,G} = ∇qF

T∇pG−∇pF
T∇qG,

(I2) the gradients ofF1, . . . , Fd are everywhere linearly independent,

(I3) the solution trajectories of the Hamiltonian systems with HamiltonianFi

(for i = 1, . . . , d) exist for all times and remain inU .

If, in addition, the level sets{(p, q) ∈ U ; Fi(p, q) = ci, i = 1, . . . , d} are com-
pact, then the Hamiltonian system is completely integrable.

6V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York,
1978, second edition 1989.
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Example 8 (Motion in central field) Consider the Hamiltonian

H =
1

2
(p2

1 + p2
2) + V (r), r =

√
q2
1 + q2

2 ,

with a potentialV (r) that is defined and smooth forr > 0. The Kepler prob-
lem corresponds toV (r) = −1/r, and the perturbed Kepler problem toV (r) =
−1/r − µ/(3r3). Changing to polar coordinates (see Exercises 3 and 4)

(
q1
q2

)
=

(
r cosϕ
r sinϕ

)
,

(
pr

pϕ

)
=

(
cosϕ sinϕ

−r sinϕ r cosϕ

) (
p1

p2

)
, (26)

this becomes

H(pr, pϕ, r, ϕ) =
1

2

(
p2

r +
p2

ϕ

r2

)
+ V (r).

The system has the angular momentumL = pϕ as a first integral, sinceH does
not depend onϕ. Clearly,{H,L} = 0 everywhere. The gradients ofH andL
are linearly independent unless bothpr = 0 and p2

ϕ = r3V ′(r). By inserting
p2

ϕ = 2r2(H − V (r)) and eliminatingr this becomes a condition of the form
α(H,L) = 0, which for the Kepler problem readsL2(1 + 2HL2) = 0. The
conditions of Theorem 6 are thus satisfied on the domain

U = {(pr, pϕ, r, ϕ) ; r > 0, α(H,L) 6= 0}.
Example 9 (Toda lattice) This is a system of particles on a line interacting pair-
wise with exponential forces. The motion is determined by the Hamiltonian

H(p, q) =

n∑

k=1

(
1

2
p2

k + exp(qk − qk+1)
)

with periodic boundary conditions:qn+1 = q1. With the notationak = −1
2
pk,

bk = 1
2
exp

(
1
2
(qk − qk+1)

)
, all n eigenvalues of the matrix

L =




a1 b1 bn
b1 a2 b2 0

b2
. . . . . .

0
. . . an−1 bn−1

bn bn−1 an




are first integrals of the system. It can be shown (here without proof) that this
system is completely integrable

Many important problems in celestial mechanics are small perturbations of
integrable systems, e.g., planetary motion.
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7 Linear error growth for integrable systems

We consider a completely integrable Hamiltonian system

ṗ = −∇qH(p, q), q̇ = ∇pH(p, q). (27)

with real analytic Hamiltonian. We let(p, q) = ψ(a, θ) be the symplectic dif-
feomorphism that transforms (27) to action-angle variables, and we denote the
inverse transformation by(a, θ) =

(
I(p, q),Θ(p, q)

)
. Consequently, the compo-

nentsI1, . . . , Id of I are first integrals of the system, i.e.,I(p(t), q(t)) = I(p0, q0)
for all t. In the action-angle variables, the Hamiltonian isK(a) = H(p, q), and
we denote the vector of frequencies byω(a) = ∇K(a). We consider this in a
neighbourhood of somea∗ ∈ R

d.
The aim of this section is to prove that for symplectic methods applied to

completely integrable systems we have simultaneously
• linear growth of the global error,
• near conservation of all first integrals depending only on the action vari-

ables.
These properties are illustrated in Figure 9. Non-symplectic methods, like the
classical Runge–Kutta method of order4, show a quadratic growth of the global
error and a linear growth of the error in the action variables.

50 100
.000
.002
.004
.006
.008
.010
.012

50 100
.0

.2

.4

.6

.8

error in the eigenvalues ofL

Störmer–Verlet,h = 0.02

RK4,h = 0.08
error in the eigenvalues ofL

Störmer–Verlet,h = 0.02

RK4,h = 0.08

global error

Störmer–Verlet,h = 0.02

RK4,h = 0.08

global error

Störmer–Verlet,h = 0.02

RK4,h = 0.08

Figure 9: Euclidean norm of numerical errors for the Toda lattice with n = 3;
initial values arep1 = −1.5, p2 = 1, p3 = 0.5, andq1 = 1, q2 = 2, q3 = −1.
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Theorem 7 Consider
• completely integrable Hamiltonian system with real-analytic Hamiltonian
• symplectic integrator of orderr with globally defined modified Hamiltonian
• strong non-resonance condition forω(a∗)

|k · ω(a∗)| ≥ γ|k|−ν , k ∈ Z
d, k 6= 0 (28)

• ‖I(p0, q0) − a∗‖ ≤ Const | log h|−ν−1

Then, there exist constantsC, h0 such that forh ≤ h0 and fort = nh ≤ h−r the
numerical solution satisfies

‖(pn, qn) − (p(t), q(t))‖ ≤ C t hr

‖I(pn, qn) − I(p0, q0)‖ ≤ C hr.

Proof. Let us mention (without proof) that forν > d − 1 the set of frequencies
in a fixed ball that do not satisfy (28) has Lebesgue measure bounded bycγ.
Therefore, almost all frequencies satisfy (28) for someγ > 0.

The main steps of the proof are illustrated in Figure 10. The missing part is

backward error
analysis

integrable
Hamilton system

H(p, q)

numerical
solution
{pn, qn}

modified
Hamilton system

H̃(p, q)

Hamilton
system
K(a)

action – angle
variables

(p, q) = ψ(a, θ)
modif. Hamilton system
K(a) + εK1(a, θ)

with ε = hr

ȧ = 0
θ̇ = w(a)

Lindstedt Poincaré
series

(a, θ) = χ(b, ϕ)

modif. Hamilton system
K(b) + εK1(b) + . . .+ εNKN (b)

+εN+1R(b, ϕ)

‖b(t) − b0‖ ≤ CtεN+1

‖ϕ(t) − ϕ0 − wǫ(b0)t‖ ≤ C(t+ t2)εN+1

Figure 10: Idea of the proof for the linear error growth of symplectic integrators.
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the recursive elimination of the angle-variables by the useof a Lindstedt–Poincaré
series. This will be discussed in the following (omitting technical details).

We consider a perturbed Hamiltonian

K̃(a, θ) = K(a) + εK1(a, θ).

The problem is to find a symplectic transformation(a, θ) = χ(b, ϕ) which elimi-
nates the angle variableθ as far as possible. We look for a transformation of the
form

b = a−∇θS(b, θ), ϕ = θ + ∇bS(b, θ),

where the generating function is given by a truncated series

S(b, θ) = εS1(b, θ) + ε2S2(b, θ) + . . .+ εNSN(b, θ)

with coefficient functions that are2π-periodic inθ. Such a transformation isO(ε)
close to the identity. In the new variables the Hamiltonian is

K̃(χ(b, ϕ)) = K̃(a, θ) = K̃(b+ ∇θS(b, θ), θ)

= K(b) + ε
(
ω(b) · ∇θS1(b, θ) +K1(b, θ)

)
+ O(ε2)

whereω(b) = ∇K(b). We aim in findingS1 such that

ω(b) · ∇θS1(b, θ) +K1(b, θ)

does not depend onθ. Expanding the periodic functions into Fourier series

S1(b, θ) =
∑

k∈Zd

sk(b)e
i k·θ, K1(b, θ) =

∑

k∈Zd

hk(b)e
i k·θ,

we obtain a formal solution from

sk(b) = − hk(b)

i k · ω(b)
, k 6= 0.

At this point we are struck by theproblem of small denominators. For any values
of the frequenciesωj(b), the denominatork · ω(b) = k1ω1(b) + · · · + kdωd(b)
becomes arbitrarily small for somek = (k1, . . . , kd) ∈ Z

d, and even vanishes
if the frequencies are rationally dependent. Using the non-resonace condition
(28) and the fast decay of Fourier coefficients for analytic functions permits to
overcome this difficulty.

Further coefficients of the generating functionS(b, θ) can be constructed in a
similar way.
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8 Exercises

1. Change the Maple script of Example 1 in such a way that the modified
equations for the implicit Euler method, the implicit midpoint rule, or the
trapezoidal rule are obtained. Observe that for symmetric methods one gets
expansions in even powers ofh.

2. Compute a first integral of the Lotka–Volterra equations (Example 2) and of
the truncated modified equation for the symplectic Euler method.

3. LetQ = χ(q) be a change of position coordinates. Prove that the relation
p = χ′(q)TP extend this to a symplectic mapping(p, q) 7→ (P,Q).
Hint. Consider the generating functionS(P, q) = PTχ(q).

4. Let y = ψ(z) be a symplectic change of coordinates. Prove that it trans-
formsẏ = J−1∇H(y) into ż = J−1∇K(z) withK(z) = H(y) = H

(
ψ(z)

)
.

5. (Field & Nijhoff 2003)7 Apply the symplectic Euler method to the system
with HamiltonianH(p, q) = ln(α+ p) + ln(β + q). Compute the modified
Hamiltonian and prove that the series converges for sufficiently small step
sizes.
Hint. The method conserves exactlyI(p, q) = (α + p)(β + q). Find linear
two-term recursions for{pn} and{qn}, and use the ideas of Example 3.
Result.

H̃(p, q) = H(p, q) −
∑

k≥1

hk I(p, q)−k

k(k + 1)
.

6. Consider a differential equatioṅy = f(y) with a divergence-free vector
field, and apply a volume-preserving integrator. Show that every truncation
of the modified equation has again a divergence-free vector field.
Hint. Adapt the proof by induction of Theorem 2.

7C.M. Field & F.W. Nijhoff, A note on modified Hamiltonians for numerical integrations ad-
mitting an exact invariant, Nonlinearity 16 (2003) 1673–1683.
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